Self-inversive Hilbert space operator polynomials with spectrum on the unit circle

Naoharu Itoa, Harald K. Wimmerb,*

a Department of Mathematical Education, Nara University of Education, Nara 630-8528, Japan
b Mathematisches Institut, Universität Würzburg, 97074 Würzburg, Germany

Abstract

Hilbert space operator polynomials with self-inversive structure are studied. If the inner numerical radius of an associated polynomial is greater than or equal to one then the spectrum lies on the unit circle and consists of normal approximate characteristic values.

Keywords: self-inversive polynomials, operator polynomials, approximate spectrum, numerical range, inner numerical radius, normal spectral values.

2010 MSC: 15A33, 26C10, 30C15, 47A10, 47A12, 47A56.

1. Introduction

Let

\[f(z) = f_0 + f_1 z + \cdots + f_{n-1} z^{n-1} + f_n z^n \in \mathbb{C}[z] \]

with \(f_0 f_n \neq 0 \). Define

\[\widehat{f}(z) = \overline{f}_n + \overline{f}_{n-1} z + \cdots + \overline{f}_1 z^{n-1} + \overline{f}_0 z^n. \]

(1.1)

If

\[f(z) = \gamma \widehat{f}(z) \quad \text{and} \quad |\gamma| = 1, \]

(1.2)

then \(f(z) \) is said to be \(\gamma \)-self-inversive (see e.g. Marden [36, p. 201], Sheil-Small [49, p. 149], and Rahman and Schmeisser [45]). Self-inversive polynomials can be found in the literature under various names such as self-reciprocal [1, 15, 31], reciprocal [2, 32, 34], palindromic [9, 53, 11], conjugate symmetric [8], symmetric [51], or conjugate reciprocal [42]. If all zeros of a complex polynomial \(f(z) \) lie on the unit circle then there exists a unimodular \(\gamma \) such that \(f(z) \) is \(\gamma \)-self-inversive [16]. Polynomials with roots of modulus one have a wide range applications. We mention Lie algebras [30], kinematics [20], quantum chaotic dynamics [10], signal and speech processing [50,.

*Corresponding author
1The work of the first author was supported by JSPS KAKENHI Grant 25400204.
and self-dual codes [15]. The starting point of our note is a constructive result of Schur [48, XII]. We state it in a modified form as follows (see also [13], [29]).

Theorem 1.1. Let $p(z) \in \mathbb{C}[z]$ a polynomial of degree k, let $r \in \mathbb{N}_0$ and $|\gamma| = 1$. Then $f(z) = p(z) + \gamma z^r \hat{p}(z)$ is γ-self-inversive. Suppose $p(z) = c \prod_{j=1}^{k} (z - \omega_j)$. If $|\omega_j| \geq 1, j = 1, \ldots, k$, then the zeros of $f(z)$ lie on the unit circle.

In this paper we consider Hilbert space operator polynomials with γ-self-inversive structure. Let H be a complex Hilbert space and let $\mathcal{L}(H)$ be the algebra of bounded linear operators on H. If $T \in \mathcal{L}(H)$ then T^* shall denote the adjoint of T. Let

$$F(z) = F_0 + F_1 z + \cdots + F_{m-1} z^{m-1} + F_m z^m \in \mathcal{L}(H)[z]$$

with $F_0 \neq 0, F_m \neq 0$. In accordance with (1.1) and (1.2) we associate to $F(z)$ an operator polynomial

$$\hat{F}(z) = F_m^* + F_{m-1}^* z + \cdots + F_1^* z^{m-1} + F_0^* z^m,$$

and we say that $F(z)$ is γ-self-inversive if

$$F(z) = \gamma \hat{F}(z) \quad \text{and} \quad |\gamma| = 1.$$
2. Operator polynomials

2.1. The spectrum

Let $S = \{ x \in H; \|x\|^2 = \langle x, x \rangle = 1 \}$ be the unit sphere of a complex Hilbert space H. If $v \in H$ then $v^* \in H^*$ is defined by $v^*(u) = \langle v, u \rangle$, $u \in H$. Let $u = (u_\nu) \in H^\mathbb{N}$. We write

$$ u \approx 0 \quad \text{if} \quad \lim_{\nu \to \infty} u_\nu = 0, $$

and $u \not\approx 0$ if (u_ν) is not a null sequence. Let $T \in \mathcal{L}(H)$, and let $\sigma(T)$ denote the spectrum of the bounded linear operator T. A complex number λ is called an *approximate eigenvalue* of T, if for all $\epsilon > 0$ there exists a $y \in H$ such that

$$ \| (\lambda I - T)y \| < \epsilon \|y\|. \quad (2.1) $$

The set $\sigma_A(T)$ of approximate eigenvalues of T is the *approximate point spectrum* of T (see [6], [27, p. 54] [5, p. 241], [41, p. 413], [22, p. 81]). We say that a sequence $v = (v_\nu) \in H^\mathbb{N}$ is an *approximate eigenvector* corresponding to λ if

$$ (\lambda I - T)v \approx 0 \quad \text{and} \quad v \not\approx 0. \quad (2.2) $$

If convenient, one can assume $v_\nu \in S_H$, $\nu \in \mathbb{N}$, in (2.2). We define

$$ \text{Ker}_A(\lambda I - T) = \{ v \in H^\mathbb{N}; (\lambda I - T)v \approx 0 \}. $$

Suppose $\lambda \in \sigma_A(T)$. If there exists a corresponding approximate eigenvector $v = (v_\nu)$ such that $(\lambda I - T)^*v \approx 0$, then λ is called a *normal approximate eigenvalue* of T (see e.g. [17], [21], [35]). Thus λ is normal if

$$ \text{Ker}_A(\lambda I - T) = \text{Ker}_A(\lambda I - T)^*. $$

The set

$$ \sigma_P(T) = \{ \lambda \in \mathbb{C}; \lambda I - T \text{ is not injective} \} $$

is the *point spectrum* of T. From (2.1) follows $\sigma_P(T) \subseteq \sigma_A(T)$. Let

$$ \sigma_R(T) = \{ \lambda \in \mathbb{C}; \lambda I - T \text{ is injective and } \overline{\text{range}(\lambda I - T)} \neq H \} $$

be the *residual spectrum* of T. Then (see e.g. [41, p. 413])

$$ \sigma(T) = \sigma_A(T) \cup \sigma_R(T), $$

and (see e.g. [3, p. 298], [41, p. 412])

$$ \sigma_P(T) \cap \sigma_R(T) = \emptyset. \quad (2.3) $$
It is known ([47, p. 194], [18, p. 161]) that
\[\sigma_R(T) \subseteq \sigma_P(T^*). \quad (2.4) \]

We extend the notion of spectrum from operators \(T \in \mathcal{L}(H) \) to operator polynomials
\[B(z) = \sum_{j=0}^m B_j z^j \in \mathcal{L}(H)[z]. \quad (2.5) \]

We assume that \(B(\mu) \in \mathcal{L}(H) \) is invertible for some \(\mu \in \mathbb{C} \). If \(H \) is finite dimensional, say \(H = \mathbb{C}^n \), then \(B(z) \in \mathbb{C}^{n \times n}[z] \), and in that case the preceding assumption means that \(\det B(z) \) is not the zero polynomial. We define
\[\sigma(B) = \{ \lambda \in \mathbb{C}; \; B(\lambda) \text{ is not invertible} \}. \]

Thus \(\sigma(B) = \{ \lambda \in \mathbb{C}; \; 0 \in \sigma(B(\lambda)) \} \). Similarly, we define
\[\sigma_M(B) = \{ \lambda; \; 0 \in \sigma_M(B(\lambda)) \} \quad \text{for} \quad M \in \{ P, A, R \}. \]

Thus \(\lambda \in \sigma_A(B) \) if and only if
\[B(\lambda)v \hat{=} 0, \quad v \neq 0, \quad (2.6) \]

for some sequence \(v = (v_\nu) \in H^\mathbb{N} \). Adapting a notion of [4] we call the elements of \(\sigma_A(B) \) approximate characteristic values of \(B(z) \). If (2.6) holds then \(v = (v_\nu) \) is said to be an approximate eigenvector of \(B(z) \) corresponding to \(\lambda \). Moreover, \(\lambda \in \sigma_A(B) \) is called normal if there exists an approximate eigenvector \(v \) such that \(B(\lambda)^* v = 0 \). In particular, \(\lambda \) is normal, if \(\text{Ker}_A B(\lambda) = \text{Ker}_A B(\lambda)^* \). We note a preliminary result.

Lemma 2.1. Let \(F(z) = \sum_{j=0}^m F_j z^j \in \mathcal{L}(H)[z] \) be \(\gamma \)-self-inversive. If \(\lambda \in \sigma_A(F) \) and \(|\lambda| = 1 \), then \(\lambda \) is normal, and we have
\[\text{Ker}_A F(\lambda) = \text{Ker}_A \gamma \widehat{F}(\lambda)^*. \quad (2.7) \]

Proof. If \(|\lambda| = 1 \) and \(y \in H \) then \(F = \gamma \widehat{F} \) implies
\[(F(\lambda)y)^* = y^* \left(\sum_{j=0}^m F_j^* \lambda^{-j} \right) = \gamma y^* \left(\gamma \sum_{j=0}^m F_j^* \lambda^{-j} \right) = \left(\gamma \lambda^{-m} \right)(y^* \gamma \widehat{F}(\lambda)) = (\gamma \lambda^{-m})y^* F(\lambda). \quad (2.8) \]

Now let \(\lambda \in \sigma_A(F) \) and \(v = (v_\nu) \) be a corresponding approximate eigenvector. If \(|\lambda| = 1 \), then it follows from (2.8) that \(\lim_{\nu \to \infty} F(\lambda)v_\nu = 0 \) is equivalent to \(\lim_{\nu \to \infty} v_\nu^* F(\lambda) = 0 \). \(\square \)
2.2. The approximate numerical range

Let \(B(z) \in \mathcal{L}(H)[z] \). The set

\[
W(B) = \{ \lambda \in \mathbb{C}; \ y^*B(\lambda)y = 0 \text{ for some } y \in H, y \neq 0 \} \tag{2.9}
\]
is the numerical range of \(B(z) \). We refer to [33] for a detailed study of the numerical range of matrix polynomials and to [37], [19], [40], [43], [14] for further investigations. In addition to (2.9) we consider the approximate numerical range \(W_A(B) \) of \(B(z) \). We define

\[
W_A(B) = \{ \lambda \in \mathbb{C}; \ \lim_{\nu \to \infty} y^*\nu B(\lambda)y_\nu = 0 \text{ for some } y_\nu \in H, y \neq 0 \}.
\]

Then \(\sigma_A(B) \subseteq W_A(B) \). In [52] it was shown that

\[
W_A(B) = W(B). \tag{2.10}
\]

If \(B(z) = zI - T \) and \(T \in \mathcal{L}(H) \), then \(W_A(B) \) and \(W(B) \) are equal to

\[
N_A(T) = \{ \lambda \in \mathbb{C}; \ \lambda = \lim_{\nu \to \infty} x^*\nu Tx_\nu \text{ for some } (x_\nu) \in H^N, x_\nu \in S_H, \nu \in \mathbb{N} \}
\]
and

\[
N(T) = \{ \lambda \in \mathbb{C}; \ \lambda = x^*Tx \text{ for some } x \in S_H \} = \{ x^*Tx; x \in S_H \},
\]
respectively. The set \(N(T) \) is the numerical range (or field of values) of \(T \). Let

\[
w(B) = \sup\{|\lambda|; \ \lambda \in W(B)\}
\]
and \(\nu(T) = \sup\{|\lambda|; \ \lambda \in N(T)\} \)
be the numerical radius of \(B(z) \) and \(T \), respectively, and let

\[
w_i(B) = \inf\{|\lambda|; \ \lambda \in W(B)\}
\]
be the inner numerical radius of \(B(z) \). From (2.10) follows

\[
w(B) = \sup\{|\lambda|; \ \lambda \in W_A(B)\}
\]
and \(\nu(T) = \sup\{|\lambda|; \ \lambda \in N_A(T)\} \) and \(w_i(B) = \min\{|\lambda|; \ \lambda \in W_A(B)\} \).
3. The main result

Let \(\mathbb{D} = \{ \lambda; |\lambda| < 1 \} \) be the open unit disc and \(\partial\mathbb{D} = \{ \lambda; |\lambda| = 1 \} \) be the unit circle.

Theorem 3.1. Let \(P(z) = \sum_{j=0}^{k} A_j z^j \in \mathcal{L}(H)[z] \) be given with \(A_k \neq 0, A_0 \neq 0 \). If \(|\gamma| = 1 \) and \(r \geq 0 \) then

\[
F(z) = P(z) + \gamma z^r \hat{P}(z)
\]

is \(\gamma \)-self-inversive. If \(w_1(P) \geq 1 \) then

\[
\sigma(F) \subseteq W_A(F) \subseteq \partial\mathbb{D}.
\]

The residual spectrum of \(F(z) \) is empty, that is \(\sigma(F) = \sigma_A(F) \). The characteristic values \(\lambda \) of \(F(z) \) are approximately normal, satisfying (2.7).

Proof. Let us show first that \(\lambda \in \partial\mathbb{D} \) if \(\lambda \in W(F) \). Suppose \(v \in H, v \neq 0 \), and \(v^* F(\lambda) v = 0 \). Set

\[
p_v(z) = \left(\sum_{j=0}^{k} v^* A_j v z^j = v^* P(z) v \right. \quad \text{and} \quad f_v(z) = v^* F(z) v.
\]

Then \(f_v(z) = p_v(z) + \gamma z^r \hat{p}_v(z) \). The assumption \(w_1(P) \geq 1 \), that is \(W(P) \subseteq \{ \lambda; |\lambda| \geq 1 \} \), implies that \(|\omega| \geq 1 \) if \(p_v(\omega) = 0 \). Hence Theorem 1.1 yields \(\lambda \in \partial\mathbb{D} \), and we obtain \(W(F) \subseteq \partial\mathbb{D} \). Then \(\overline{W(F)} \subseteq \partial\mathbb{D} \). Therefore we conclude from \(W_A(F) = \overline{W(F)} \) and \(\sigma_A(F) \subseteq W_A(F) \) that

\[
\sigma_A(F) \subseteq W_A(F) \subseteq \partial\mathbb{D}.
\]

We now show that \(\sigma_R(F) = \emptyset \). Suppose \(\lambda \in \sigma_R(F) \), that is \(0 \in \sigma_R(F(\lambda)) \). Then (2.4) implies \(0 \in \sigma_P(F(\lambda)^*) \). If \(\lambda = 0 \) then \(0 \in \sigma_P(F(0)^*) = \sigma_P(F_0^*) \). Then \(0 = y^* F_0^* y = y^* F_0 y \) for some \(y \in S_H \). Thus \(0 \in W(F) \), in contradiction to \(W(F) \subseteq \partial\mathbb{D} \). If \(\lambda \neq 0 \) then

\[
(F(\lambda))^* = F_0^* + F_1^* \lambda + \cdots + F_m^* \lambda^m = \lambda^m (F_0^* \lambda^{-m} + F_1^* \lambda^{-(m-1)} + \cdots + F_m^*) = \lambda^m \hat{F} (\lambda^{-1}) = \lambda^m \gamma F(\lambda^{-1})
\]

Hence \(0 \in \sigma_P(F(\lambda)^*) \) is equivalent to \(0 \in \sigma_P(F(\lambda^{-1})) \), that is to \(\lambda^{-1} \in \sigma_P(F) \). Then \(\sigma_P(F) \subseteq \sigma_A(F) \subseteq \partial\mathbb{D} \) implies \(\lambda^{-1} = \lambda \in \sigma_P(F) \). Hence \(\lambda \in \sigma_R(F) \cap \sigma_P(F) \), in contradiction to (2.3). The last statement follows from Lemma 2.1. \(\square \)
4. $P(z) = I - Tz$

In this section we deal with self-inversive operator polynomials

$$F(z) = P(z) + z\hat{P}(z)$$

where $P(z) = I - Tz$ and $T \in \mathcal{L}(H)$. Let $\mathcal{R}(T) = \frac{1}{2}(T + T^*)$ be the real part of T. Then

$$F(z) = (1 + z^2)I - 2z\mathcal{R}(T).$$

It is easy to see that $w_\nu(P) = \nu(T)$. Hence $\sigma(F) \subseteq \partial D$ if $\nu(T) \leq 1$ (by Theorem 3.1). A sharper result is the following.

Proposition 4.1.

(i) The spectrum of $F(z) = (1 + z^2)I - 2z\mathcal{R}(T)$ is

$$\sigma(F) = \{\lambda; \lambda^2 - 2\lambda\mu + 1 = 0, \mu \in \sigma(\mathcal{R}(T))\}.$$ \hspace{1cm} (4.1)

(ii) Suppose $\sigma(\mathcal{R}(T)) = [-a, a], a \in \mathbb{R}, a > 0$. Then $\sigma(F) \subseteq \partial \mathbb{D}$ if and only if $a \leq 1$.

(iii) If $\sigma(\mathcal{R}(T)) = [-a, a] \subseteq [-1, 1], \text{ and } a = \cos \alpha, \text{ with } 0 \leq \alpha < \frac{\pi}{2}, \text{ then \hspace{1cm} }$

$$\sigma(F) = W_A(F) = A_+ \cup A_-,$$ \hspace{1cm} where

$$A_+ = \{e^{i\tau}; \alpha \leq \tau \leq \pi - \alpha\} \text{ and } A_- = \{e^{-i\tau}; \alpha \leq \tau \leq \pi - \alpha\},$$

are circular arcs with midpoints i and $-i$, respectively. In particular, if $a = 1$ then $\sigma(F) = W_A(F) = \partial \mathbb{D}$.

Proof. (i) The spectral mapping theorem for polynomials (see e.g. [5, p. 226], [24, p. 53]) implies

$$\sigma(F(\lambda)) = F[\sigma((\lambda^2 + 1)I - 2\lambda\mathcal{R}(T))].$$

Hence $0 \in \sigma(F(\lambda))$ if and only if

$$(\lambda^2 + 1) - 2\lambda\mu = 0$$ \hspace{1cm} (4.2)

for some $\mu \in \mathcal{R}(T)$.

(ii) If $\mu \in \mathbb{R}$, then the roots of the quadratic equation (4.2) are

$$\lambda_\pm(\mu) = \mu \pm \sqrt{\mu^2 - 1}.$$
If $|\mu| \leq 1$, $\mu = \cos \phi$, then $\lambda_\pm(\mu) = e^{\pm i\phi}$. If $|\mu| \geq 1$, $|\mu| = \cosh \psi$, then $\lambda_\pm(\mu) = \{\pm e^{\pm \psi}\}$. Therefore $|\lambda_\pm(\mu)| = 1$ is equivalent to $|\mu| \leq 1$. Hence we have $|\mu| \leq 1$ for all $\mu \in \mathbb{R}$ if and only if $a \leq 1$.

(iii) We have $\lambda_+(a) = e^{ia}$ and $\lambda_+(-a) = e^{i(\pi-a)}$. Hence, if μ varies between a and $-a$ then the characteristic values $\lambda_+(\mu)$ of $F(z)$ yield the arc A_+. Similarly, $\lambda_-(a) = e^{-ia}$ and $\lambda_-(a) = e^{-i(\pi-a)}$ are the end points of the arc A_-. If $a = 1$ then $\alpha = 0$, and $A_+ \cup A_- = \partial \mathbb{D}$.

It remains to show that $\sigma(F) = W_A(F)$. We have $\lambda \in W_A(F)$ if and only if $v^*(\lambda^2 + 1)I - 2\lambda R(T)v = 0$ for some $v \in S_H$. (4.3)

Then $0 \notin W(F)$, and we obtain

$$W(F) = \{\lambda; \ (1 + \lambda^2)(2\lambda)^{-1} \in N(R(T))\}.$$ (4.4)

Let $\text{conv}(M)$ denote the convex hull of a set $M \subseteq \mathbb{C}$. The operator $R(T) \in \mathcal{L}(H)$ is normal, and therefore (see [23, p. 16], [25, Problem 216])

$$\overline{N(R(T))} = \text{conv} \left(\sigma(R(T)) \right).$$

Hence (4.4) implies

$$W_A(F) = \{\lambda; \ (1 + \lambda^2)(2\lambda)^{-1} = \mu \text{ for some } \mu \in [-a,a]\}.$$ Then (4.1) completes the proof.

To illustrate the preceding observations we choose $H = \ell_2(0,\infty)$ and $T = aS$, where S is the left shift on H,

$$S : (x_0, x_1, x_2, \ldots) \mapsto (x_1, x_2, x_3, \ldots),$$

and $a \in \mathbb{C}$, $a \neq 0$. If $P(z, a) = I - zaS$ and $F(z, a) = P(z, a) + \hat{P}(z, a)$ then

$$F(z, a) = (z^2 + 1)I - z(aS + \bar{a}S^*).$$

The adjoint S^* is the right shift on $\ell_2(0,\infty)$,

$$S^* : (x_0, x_1, x_2, \ldots) \mapsto (0, x_0, x_1, x_2, \ldots).$$

The numerical radius of S is equal to 1 (see e.g. [25, Problem 112]). Hence $\nu(aS) = |a|$, and therefore the condition $|a| \leq 1$ is sufficient for $\sigma(F(z, a)) \subseteq \partial \mathbb{D}$. If $|\eta| = 1$ and $D(\eta) = \text{diag}(1, \eta, \eta^2, \ldots)$, then $D(\eta)^{-1} = D(\eta)^*$ and

$$D(\eta)(\eta S)D(\eta)^{-1} = S.$$
Hence (see also [46, p.7]), if \(a = |a|e^{i\theta} \), then

\[
F(z, a) = (1 + z^2)I - z(aS + \overline{a}S^*) = \\
D(e^{-i\theta})[(1 + z^2)I - z|a|(S + S^*)]D(e^{i\theta}) = D(e^{-i\theta})F(z, |a|)D(e^{i\theta}).
\]

Therefore only the case \(a = |a| \) is of interest. Since \(S \) is hyponormal, that is \(S^*S - SS^* \geq I \), it follows from [44], [7] that

\[
\sigma(\mathcal{R}(S)) = [-1, 1] \quad \text{and} \quad \sigma(\mathcal{R}(S)) \cap \sigma_P(\mathcal{R}(S)) = \emptyset.
\] (4.5)

We also refer to [25, Problem 144]. Hence Proposition 4.1 implies that \(\sigma(F(z, a)) \subseteq \partial \mathbb{D} \) is equivalent to \(|a| \leq 1 \). Moreover, if \(0 < |a| \leq 1 \) and \(|a| = \cos \alpha, \ 0 \leq \alpha < \frac{\pi}{2} \), then

\[
\sigma(F(z, a)) = W_A(F(z, a)) = \{e^{i\theta}; \alpha \leq \theta \leq \pi - \alpha\} \cup \{e^{i\theta}; \pi + \alpha \leq \theta \leq 2\pi - \alpha\}.
\]

References

