POLYNOMIALS WITH A SHARP CAUCHY BOUND AND THEIR ZEROS OF MAXIMAL MODULUS

HARALD K. WIMMER

(Communicated by I. Franjić)

Abstract. The moduli of zeros of a complex polynomial are bounded by the positive zero of an associated auxiliary polynomial. The bound is due to Cauchy. This note describes polynomials with a sharp Cauchy bound and the location of peripheral zeros.

1. Introduction

Let
\[g(z) = z^m - (c_{m-1}z^{m-1} + \cdots + c_1z + c_0) \]
be a complex polynomial.

Define
\[g_a(z) = z^m - (|c_{m-1}|z^{m-1} + \cdots + |c_1|z + |c_0|). \]

If \(g(z) \neq z^m \) then (see e.g. [4, p. 122], [7, p. 3], [8, p. 243]) there exists a unique positive zero \(R(g) \) of \(g_a(z) \), and all zeros of \(g(z) \) have modulus less or equal to \(R(g) \). The number \(R(g) \) is known (see [8]) as Cauchy bound of \(g(z) \).

Set
\[\sigma(g) = \{ \lambda \in \mathbb{C}; g(\lambda) = 0 \} \quad \text{and} \quad \rho(g) = \max\{|\lambda|; \lambda \in \sigma(g)\}. \]

Then \(\rho(g) \leq R(g) \). In general, the numbers \(\rho(g) \) and \(R(g) \) do not coincide, that is, \(\rho(g) < R(g) \). For example, the polynomials
\[g(z) = z^2 - (z - 1) = (z - e^{2\pi i/6})(z - e^{-2\pi i/6}) \]
and
\[g_a(z) = z^2 - (z + 1) = (z - \frac{1 + \sqrt{5}}{2})(z + \frac{1 + \sqrt{5}}{2}) \]
satisfy \(1 = \rho(g) < R(g) = (1 + \sqrt{5})/2 \). We say that the Cauchy bound is sharp, if \(\rho(g) = R(g) \). Clearly, if \(g(z) = g_a(z) \) then \(\rho(g) = R(g) \), and \(R(g) \in \sigma(g) \). But the Cauchy bound may be sharp, even if \(g(z) \neq g_a(z) \). An example is the polynomial
\[g(z) = z^2 - (-z + 2) = (z - 1)(z + 2) \]

Keywords and phrases: Zeros of polynomials, Cauchy bound, companion matrix, nonnegative matrix.
with \(g_a(z) = z^2 - (z + 2) = (z + 1)(z - 2) \) and \(R(g) = \rho(g) = 2 \).

In this note we are concerned with polynomials \(g(z) \) which have the property that \(R(g) = \rho(g) \) and we describe their zeros of maximal modulus. For the straightforward proof of the following result I am indebted to a referee.

Theorem 1.1. Let \(g(z) \in \mathbb{C}[z] \) be given as in (1.1). Then \(\rho(g) = R(g) \) if and only if

\[
 g(z) = \lambda^m g_a(\lambda^{-1}z)
\]

for some \(\lambda \in \mathbb{C} \) with \(|\lambda| = 1 \).

Proof. Suppose \(g(z) \neq z^m \). Let \(R \) be the Cauchy bound of \(g(z) \), that is,

\[
 R^m = \sum_{j=0}^{m-1} |c_j| R^j.
\]

Then \(g(z) \) has a zero of modulus \(R \) if and only if

\[
 (\lambda R)^m = \sum_{j=0}^{m-1} c_j (\lambda R)^j
\]

for some \(\lambda \in \mathbb{C} \) with \(|\lambda| = 1 \). Because of (1.3) the equation (1.4) is equivalent to

\[
 \sum_{j=0}^{m-1} |c_j| R^j = \sum_{j=0}^{m-1} c_j \lambda^{-m+j} R^j.
\]

All terms on the left-hand side of (1.5) are nonnegative. Thus it is easy to see that (1.5) holds if and only if

\[
 |c_j| = c_j \lambda^{-m+j}, \quad j = 0, \ldots, m - 1,
\]

which is equivalent to (1.2). \(\square \)

In Section 2 we apply Theorem 1.1 to obtain a result on rotational symmetry of zeros of maximal modulus and we consider polynomials with real coefficients. A different approach to deal with the Cauchy bound and its sharpness is described in Section 3. It is based on companion matrices and the Perron-Frobenius theory of nonnegative matrices.

2. Zeros of maximal modulus

Throughout this paper \(g(z) \) will be a polynomial of the form (1.1) and we assume \(g(z) \neq z^m \). The following notation will be used. With regard to (1.2) we define

\[
 (\kappa \cdot g)(z) = \kappa^m g(\kappa^{-1}z),
\]

where \(\kappa \in \mathbb{C}, \kappa \neq 0 \). If \(g(z) = \prod_{j=1}^{m}(z - \lambda_j) \) then

\[
 (\kappa \cdot g)(z) = \prod_{j=1}^{m}(z - \kappa \lambda_j),
\]
and therefore $\sigma(\kappa \cdot g) = \kappa \sigma(g)$. Let $\partial \mathbb{D}$ denote the unit circle and let E_n be the group of n-th roots of unity,

$$E_n = \sigma(z^n - 1) = \{e^{2k\pi i/n}; k = 0, \ldots, n - 1\}.$$

The support $\Sigma(q)$ of a polynomial $q(z) = \sum_{j=0}^k q_j z^j$ is the set of indices j with nonzero coefficient q_j. Thus, for the polynomial $g(z)$ in (1.1) we have

$$\Sigma(g) = \{j; 0 \leq j \leq m - 1, c_j \neq 0\} \cup \{m\}.$$

Define

$$d(g) = \gcd\{j \in \Sigma(g)\} \quad \text{and} \quad \ell(g) = m/d(g).$$

If $d(g) = d$ and $\ell(g) = \ell$ then

$$g(z) = \left(z^d\right)^{\ell} - \left(c(\ell-1)d\right)^{\ell-1}c_dz^d + c_0. \quad (2.1)$$

Set $\check{c}_k = c_{kd}$, $k = 0, 1, \ldots, \ell - 1$, and

$$\check{g}(z) = z^\ell - \left(\check{c}_{\ell-1}z^{\ell-1} + \cdots + \check{c}_1z + \check{c}_0\right). \quad (2.2)$$

Then $g(z) = \check{g}(z^d)$. Moreover, $\Sigma(g) = d\Sigma(\check{g})$ implies $d(\check{g}) = 1$. In accordance with [1] we denote by π_{+1}^{k-1} the set of real polynomials $p(z) = \sum_{i=0}^{k-1} a_i z^i$ satisfying

$$0 < a_0 \leq a_1 \leq \cdots \leq a_{k-1} = 1.$$

Define $S(g) = \sum_{j=1}^{m-1} |c_j|$. Then $S(g) = 1$ is equivalent to $1 \in \sigma(g_a)$. On the other hand, $R(g) = 1$ means that $\lambda = 1$ is the (unique) positive zero of $g_a(z)$. Hence we have $R(g) = 1$ if and only if $S(g) = 1$.

In this section we deal with polynomials $g(z)$ with a sharp Cauchy bound and we focus on zeros of $g(z)$ of maximal modulus. For the sake of simplicity we shall assume $0 \notin \sigma(g)$. The following theorem can be traced back to Hurwitz [3]. We include a proof to make the note self-contained. The theorem has an interesting history, which is indicated in [1]. Only the special case with $d(g) = 1$ seems to be widely known [6, p. 92]). [7, p. 3].

Theorem 2.1. (Hurwitz) Assume $g(z) = g_a(z)$. Suppose $R(g) = 1$ and $g(0) \neq 0$. Let $d(g) = d$ and $\ell(g) = \ell$. Then $g(z) = (z^d - 1)\check{p}(z^d)$ with $\check{p}(z) \in \pi_{+1}^{\ell-1}$ and $\rho(\check{p}) < 1$. The unimodular zeros of $g(z)$ are simple, and $\sigma(g) \cap \partial \mathbb{D} = E_d$.

Proof. Suppose first that $d = 1$ such that $g(z) = \check{g}(z)$. The assumption $\gcd\{j \in \Sigma(g)\} = 1$ yields a Bezout identity $\sum_{j \in \Sigma(g)} y_j j = 1$ with $y_j \in \mathbb{Z}$. Let $\lambda \in \sigma(g) \cap \partial \mathbb{D}$. From the proof of Theorem 1.1 we know that λ satisfies (1.6). We have $y_j = |c_j|$ for all j. Then $g(0) = c_0 \neq 0$ and (1.6) imply $\lambda^n = 1$, and we obtain $j \in \Sigma(g)$ if and only if $\lambda^j = 1$. Hence $\lambda = \prod_{j \in \Sigma(g)} \lambda^{y_j} = 1$, that is, $\sigma(g) \cap \partial \mathbb{D} = \{1\}$. From

$$g'(1) = m - \sum_{j=1}^{m-1} jc_j > m - (m - 1) \sum_{j=1}^{m-1} c_j > 1$$

and therefore $\sigma(\kappa \cdot g) = \kappa \sigma(g)$. Let $\partial \mathbb{D}$ denote the unit circle and let E_n be the group of n-th roots of unity,
we see that \(\lambda = 1 \) is a simple zero of \(g(z) \). Hence \(g(z) = (z - 1)p(z) \) for some polynomial \(p(z) = \sum_{k=0}^{m-1} a_k z^k \) with \(a_{k-1} = 1 \) and \(\rho(p) < 1 \). The coefficients of \(g(z) \) and \(p(z) \) satisfy \(a_k = \sum_{j=0}^{k} c_j, \ k = 0, \ldots, m - 1 \). Thus \(p(z) \in \pi^{m-1}_1 \). In the general case, if \(d(g) = d \), it suffices to note that \(g(z) = \tilde{g}(z^d) \) with \(d(\tilde{g}) = 1 \). □

Combining Theorem 2.1 with Theorem 1.1 we obtain the following.

Corollary 2.2. Let \(d(g) = d \) and \(g(0) \neq 0 \). Suppose \(\rho(g) = R(g) = R \). If \(|\lambda| = R \) and \(g(\lambda) = 0 \) then \(\sigma(g) \cap R \partial \mathbb{D} = \lambda E_d \). In other words, the zeros of maximal modulus are the vertices of a regular \(d \)-sided polygon in the complex plane.

We now consider polynomials \(g(z) \) with real coefficients.

Theorem 2.3. Let \(g(z) \in \mathbb{R}[z] \) and \(d = d(g) \). Suppose \(g(0) \neq 0 \). Then \(\rho(g) = R(g) \) if and only if \(g(z) = g_a(z) \) or

\[g(z) = \eta \cdot g_a(z) = z^{\ell d} - (1)^\ell \sum_{\nu=0}^{\ell-1} (-1)^\nu |c_{\nu d}| z^{\nu d} \]

(2.3)

where \(\ell d = m \) and \(\eta = e^{\pi i/d} \).

Proof. Suppose \(\rho(g) = R(g) \). Let \(\tilde{g}(z) \) be the polynomial in (2.2). Then \(\rho(\tilde{g}) = R(\tilde{g}) \), and it follows from Theorem 1.1 that \(\tilde{g}(z) = \lambda^\ell \tilde{g}_a(\lambda^{-1} z) \) for some \(\lambda \in \partial \mathbb{D} \). Assuming \(R(g) = 1 \) we apply Theorem 2.1. Because of \(d(\tilde{g}) = 1 \) we obtain \(\sigma(\tilde{g}_a) \cap \partial \mathbb{D} = \{1\} \). Therefore

\[\tilde{g}(z) = \lambda^\ell (\lambda^{-1} z - 1) \tilde{p}(\lambda^{-1} z) = (z - \lambda) \lambda^{\ell-1} \tilde{p}(\lambda^{-1} z) = (z - \lambda) \lambda \cdot \tilde{p}(z). \]

The real polynomial \(\tilde{g}(z) = \lambda \cdot \tilde{p}(z) \) satisfies \(\rho(\tilde{g}) < 1 \). Thus \(\tilde{g}(z) \in \mathbb{R}[z] \) implies \(\lambda \in \{1, -1\} \). If \(\lambda = 1 \) then \(\tilde{g}(z) = \tilde{g}_a(z) \), and therefore

\[g(z) = g_a(z). \]

If \(\lambda = -1 \) then

\[\tilde{g}(z) = (-1)^\ell \tilde{g}_a(-z) = z^\ell - (1)^\ell \sum_{\nu=0}^{\ell-1} (-1)^\nu \tilde{c}_\nu |z^\nu. \]

Hence

\[g(z) = \tilde{g}(z^d) \]

and \(\eta \cdot g = \eta^d \cdot \tilde{g} \) imply (2.3). □

The real polynomial \(g(z) = z^2 + 1 \) is an example with a sharp Cauchy bound and \(g(z) \neq (\pm 1) \cdot g_a(z) \). Here we have \(d = 2, \ \ell = 1, \ \eta = i, \ g_a(z) = z^2 - 1 \), and

\[g(z) = i \cdot g_a(z). \]
3. Companion matrices

A different approach to study zeros of polynomials uses companion matrices and takes advantage of the theory of Perron-Frobenius-Wielandt (see e.g. [9], [1], [8]). We indicate how results of this note can be viewed in that context. Let

$$F = \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ . & . & . & \ldots & . \\ 0 & 0 & 0 & \ldots & 1 \\ c_0 & c_1 & c_2 & \ldots & c_{m-1} \end{pmatrix} \quad \text{and} \quad F_a = \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ . & . & . & \ldots & . \\ 0 & 0 & 0 & \ldots & 1 \\ |c_0| & |c_1| & |c_2| & \ldots & |c_{m-1}| \end{pmatrix}$$

be companion matrices associated with the polynomials $g(z)$ and $g_a(z)$, respectively. Thus, $g(z) = \det(zI - F)$ and $g_a(z) = \det(zI - F_a)$. If $\sigma(F)$ and $\rho(F)$ denote the spectrum and the spectral radius of F then $\sigma(F) = \sigma(g)$, $\rho(F) = \rho(g)$ and $\rho(F_a) = R(g)$. The matrix F_a is a nonnegative matrix, and F_a is irreducible if and only if $c_0 \neq 0$.

Let $A = (a_{ij}) \in \mathbb{R}^{m \times m}$ be a nonnegative matrix and let $B = (b_{ij}) \in \mathbb{C}^{m \times m}$. We write $|B| \leq A$ if $|b_{ij}| \leq a_{ij}$ for all i, j. The following theorem is due to Wielandt (see [2, Theorem 8.4.5] or [5, Chapter 8]).

Theorem 3.1. Let $A \in \mathbb{R}^{m \times m}$ be nonnegative and irreducible. Suppose $|B| \leq A$. Then

$$\rho(B) \leq \rho(A).$$

We have $\rho(B) = \rho(A)$ if and only if

$$B = e^{i\phi} D A D^{-1}$$

for some $D = \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_m})$.

If $B = F$ and $A = F_a$ are given by (3.1) then (3.2) yields $\rho(g) \leq R(g)$. Moreover, if $\rho(g) = R(g)$ then (3.3) implies

$$F = \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ . & . & . & \ldots & . \\ 0 & 0 & 0 & \ldots & 1 \\ e^{i(\theta_1 - \theta_2)} & e^{i(\theta_2 - \theta_3)} & \ldots & 0 \\ 0 & 0 & \ldots & \ldots \\ e^{i(\theta_{m-1} - \theta)} & e^{i(\theta_{m-2} - \theta)} & \ldots & 0 \\ |c_0| & |c_1| & |c_2| & \ldots & |c_{m-1}| \end{pmatrix}.$$
The matrix F_λ is the companion matrix of
\[
z^m - (|c_0|\lambda^m + |c_1|\lambda^{m-1}z + \cdots + |c_{m-1}|\lambda) = \lambda^m g_a\left(\frac{z}{\lambda}\right) = \lambda \cdot g_a(z).
\]
Hence the polynomial $g(z)$ satisfies (1.2), in accordance with Theorem 1.1.

Acknowledgement. I thank a referee for useful comments and suggestions.

References

(Received February 7, 2015)

Harald K. Wimmer
Mathematisches Institut
Universität Würzburg
D-97074 Würzburg, Germany

e-mail: wimmer@mathematik.uni-wuerzburg.de