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Abstract. This paper deals with a characterization of asymptotic stability

for a class of dynamical systems in terms of smooth Lyapunov pairs. We
point out that well known converse Lyapunov results for differential inclusions

cannot be applied to this class of dynamical systems. Following an abstract

approach we put an assumption on the trajectories of the dynamical systems
which demands for an estimate of the difference between trajectories. Under

this assumption, we prove the existence of a C∞-smooth Lyapunov pair. We

also show that this assumption is satisfied by differential inclusions defined by
Lipschitz continuous set-valued maps taking nonempty, compact and convex

values.

1. Introduction. After Lyapunov published his stability results in 1892 starting
in the 1950s a lot of effort has been spent on the derivation of converse theorems for
Lyapunov’s second method. Beginning with ordinary differential equations defined
by a continuous function, the results have been extended to differential inclusions

ẋ(t) ∈ F (x(t)), x(t) ∈ Rn, t ≥ 0, x(0) = x0 ∈ Rn, (1)

where F : Rn  Rn is a set-valued map satisfying 0 ∈ F (0). A comprehensive explo-
ration of the connection between stability of differential equations and differential
inclusions and Lyapunov functions can be found in [15]. For general references to
differential inclusions and set-valued maps the interested reader is referred to [1]
and [2], respectively.

A solution to (1) is an absolutely continuous function x : R+ → Rn with x(0) =
x0 such that (1) is satisfied almost everywhere. Following [6, Proposition 2.2] the
equilibrium x = 0 of differential inclusion (1) is called strongly asymptotically stable
if each solution can be extended to [0,∞), for any ε > 0 there is a δ > 0 such that
any solution x(·) with ‖x(0)‖ < δ satisfies ‖x(t)‖ < ε for all t ≥ 0, and for each
individual solution x(·), one has limt→∞ x(t) = 0.

The analysis of robust stability has been an active field in the dynamical systems
literature. In the wake of this, the investigation of converse Lyapunov theorems and,
in particular, the construction of smooth Lyapunov functions is of vital interest, cf.
[6, 20, 23].
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Clarke, Ledyaev and Stern [6] (see also [16, 23]) consider the case that F (x)
is nonempty, compact and convex for every x ∈ Rn and the set-valued map F is
upper semicontinuous, i.e. for any x ∈ Rn and any ε > 0 there is a δ > 0 such
that F (y) ⊂ F (x) + εB(0, 1) for all y ∈ x+ δB(0, 1), where B(0, 1) denotes the unit
open ball in Rn. In [6, Theorem 2] it is shown that the differential inclusion (1)
is strongly asymptotically stable if and only if there is a C∞-smooth and positive
definite pair of functions (V,W ) such that V is proper and (V,W ) satisfies the strong
infinitesimal decrease condition

max
v∈F (x)

〈∇V (x), v〉 ≤ −W (x) for all x ∈ Rn \ {0}. (2)

A different proof of this converse Lyapunov theorem has been obtained by Siconolfi
and Terrone, where the authors followed a metric approach using weak KAM theory,
cf. [20]. Related results for retarded functional equations and difference inclusions
can be found in [13] and [14], respectively.

Originating from stochastic systems, such as multiclass queueing networks and
semimartingale reflected Brownian motions [8, 9], there is a class of dynamical
systems that does not immediately fall into framework mentioned above. More
specifically, the remarkable insights of [8, 9, 18] show that the analysis of recurrence
behavior of the stochastic processes corresponding to multiclass queueing networks
or semimartingale reflected Brownian motions can be reduced to the stability anal-
ysis of a related deterministic system, called fluid network and linear Skorokhod
problem, respectively. Both models are obtained by taking limits of scaled ver-
sions of the stochastic processes. In [9, 19] it is outlined that a wide class of linear
Skorokhod problems and fluid networks can be defined by differential inclusions in
a natural way. An essential part in [9] is the description of the linear Skorokhod
problem in terms of a differential inclusion and the construction of a C1-Lyapunov
function.

The paper by Dupius and Williams [9] was published a few years before the work
of Clarke, Ledyaev and Stern [6], but the construction of the C1-Lyapunov function
is limited to the special type of differential inclusion under consideration while the
results in [6] are valid for differential inclusions defined by upper semicontinuous
set-valued maps taking nonempty, compact and convex values. The techniques used
to construct a smooth Lyapunov function have in common that the set-valued map
F is embedded into a local Lipschitz set-valued map FL, which keeps the property
of asymptotic stability. Whereas the procedure in [9] uses explicitly the properties
of the set-valued map describing the evolution of the linear Skorokhod problem, the
embedding technique in [6] is applicable to any upper semicontinuous set-valued
map taking nonempty, compact and convex values. The essential feature of the
set-valued map FL being local Lipschitz continuous is that it provides a Lyapunov
function which is locally Lipschitz continuous and this property can be carried over
to conclude a locally Lipschitz continuous Lyapunov function for the original differ-
ential inclusion. Moreover, the local Lipschitz continuity of the set-valued map FL
facilitates to establish that the convolution of the local Lipschitz continuous Lya-
punov function and a C∞-smooth mollifier satisfies locally the decrease condition
(2). The construction is completed by using a locally finite open covering of Rn and
a smooth partition of unity subordinate to it.

Considering the simplest possible fluid network, i.e. a single station fluid network
serving one type of fluids, it turns out that in general the set-valued map defining
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the differential inclusion that describes the evolution of a fluid network is not upper-
semicontinuous. Thus, although the zero solution may be strongly asymptotically
stable the existence of a C∞-smooth Lyapunov pair cannot be concluded by apply-
ing available results from the literature mentioned above. Moreover, the properties
of the set-valued map describing the evolution of the fluid network rest critically on
the discipline of the fluid network. In order to obtain an unified approach across
disciplines we choose an abstract framework based on common properties of fluid
networks under various disciplines.

In this paper we follow an abstract point of view, starting with Zubov [26],
understanding dynamical systems as abstract mathematical objects with certain
properties. This has been further explored by Hale, Infante, Slemrod and Walker,
cf. [11, 12, 21, 24]. In the literature there are several terms used, for instance,
generalized dynamical system, C0-semigroup, (semi)flow, process or abstract dy-
namical system, cf. [24] and the references therein. The class of abstract dynamical
systems considered in this paper is defined by the characteristic properties of fluid
networks. The trajectories of fluid networks evolve in the positive orthant. In order
to get a C∞-smooth Lyapunov function on the positive orthant we use an extension
of a Lyapunov function candidate to Rn by taking absolute values component-by-
component. As this defines a continuous map the extended Lyapunov function is
continuous as well. We note that, as the solutions to linear Skorokhod problems
also stay within the positive orthant, Dupuis and Williams [9] solved the boundary
problem by shifting the orthant by some positive constant. Further, we note that
the class of abstract dynamical systems under consideration may in general not be
defined by a differential inclusion. As a consequence the constructions of a local Lip-
schitz continuous Lyapunov function in [6, 9, 20], which are based on the right-hand
side of the differential inclusion, are not applicable in the present setting. It turns
out that the essential ingredient to obtain a local Lipschitz continuous Lyapunov
function is an estimate on the evolution of the difference of trajectories. For this
reason, we have to make an assumption on the trajectories of the abstract dynami-
cal system (see assumption (A) in Theorem 3.1). Considering the assumption from
the differential inclusions perspective we show that it is automatically satisfied for
every differential inclusion with Lipschitz continuous right-hand side.

The paper is organized as follows. In Section 2 we state relevant notation and
terminology that is used throughout the paper. Section 3 introduces the class of
abstract dynamical systems that is considered and the main result is presented. In
Section 4 we outline that the class of abstract dynamical systems is motivated by
the analysis of fluid networks. We also show that the classical results on smooth
Lyapunov functions do not apply to the class of abstract dynamical systems dis-
cussed in this paper. In Section 5 we examine the relation of the assumption posed
on the trajectories in the light of differential inclusions. Finally, Section 6 is devoted
to the proof of the main result.

2. Notation and terminology. A function f : Rn → R is called proper if the
sublevel sets {x ∈ Rn|f(x) ≤ c} are bounded for all c > 0. For r > 0 and x ∈ Rn let
B(x, r) := {y ∈ Rn|‖x− y‖ ≤ r}. A function k ∈ C∞(Rn,R+) is called a mollifier
if supp k = B(0, 1) and ∫

Rn

k(x) dx = 1.
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Furthermore, the support of a mollifier can be scaled in the following way. For
r > 0 consider kr(x) := 1

rn k(r−1x). Then, it follows kr ∈ C∞(Rn,R+), supp kr =
B(0, r), and ∫

Rn

kr(x) dx = 1.

Moreover, to consider the convolution of a function f ∈ C(Rn,R) and a mollifier
kr, let U be an open subset of Rn and Ur = {x ∈ U | d(x, ∂U) > r}. Then, the
convolution, denoted by fr : Ur → R, is defined by

x 7→ fr(x) := f ∗ kr (x) =

∫
B(0,r)

f(x− y) kr(y) dy.

By standard convolution results it follows fr ∈ C∞(Ur,R+), see for instance [10,
Theorem 6 Appendix C.4]. Furthermore, if f is continuous in U , it holds fr → f
uniformly on compact subsets (u.o.c.) of U as r → 0. The Dini subderivative of a
function f : U → R at x ∈ U in the direction v ∈ Rn is defined by

Df(x; v) := lim inf
ε→0,v′→v

f(x+ εv′)− f(x)

ε
.

Let T (x,Rn+) denote the contingent cone to Rn+ at x defined by

T
(
x,Rn+

)
=

{
v ∈ Rn | lim inf

ε→0

d(x+ εv,Rn+)

ε
= 0

}
,

with d(x,K) = inf{‖x− y‖ |y ∈ K}.

3. Statement of the main result. We start this section by recalling an abstract
definition of a dynamical system from [24]. A dynamical system defined on a metric
space (X, d) is a continuous mapping u : R+ ×X → X such that u(0, x) = x and

u(t, u(s, x)) = u(t+ s, x) for all t, s ∈ R+, x ∈ X.

Recall that x∗ ∈ X is an equilibrium if u(t, x∗) = x∗ for all t ≥ 0 and x∗ is said
to be stable if for every ε > 0 there is a δ > 0 such that d(x, x∗) < δ implies
that d (u(t, x), u(t, x∗)) < ε for all t ≥ 0. If in addition, there is a M > 0 so
that d(x, x∗) < M implies that limt→∞ d (u(t, x), u(t, x∗)) = 0, then ϕ∗ is called
asymptotically stable.

To define the class of dynamical systems that will be considered in this paper,
we first specify the metric space and define the mapping afterwards. Consider the
set P ⊂ C(R+,Rn+) defined by the following properties:

(a) There is a L > 0 such that

‖ϕ(t)− ϕ(s)‖ ≤ L |t− s| for all ϕ ∈ P, t, s ∈ R+.

(b) Scaling invariance: 1
r ϕ(r ·) ∈ P for all ϕ ∈ P, r > 0.

(c) Shift invariance: ϕ(·+ t) ∈ P for all ϕ ∈ P, t ≥ 0.
(d) If a sequence (ϕn)n∈N in P converges to ϕ∗ uniformly on compact sets, then

ϕ∗ ∈ P.
(e) Concatenation property: For all ϕ1, ϕ2 ∈ P with ϕ1(t∗) = ϕ2(0) for some

t∗ ≥ 0 it holds ϕ1 �t∗ ϕ2 ∈ P, where

ϕ1 �t∗ ϕ2(t) :=

{
ϕ1(t) t ≤ t∗,
ϕ2(t− t∗) t ≥ t∗.
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(f) There is a T > 0 such that the set-valued map P : Rn+  P defined by

P (x) = {ϕ : [0, T ]→ Rn+ |ϕ ∈ P, ϕ(0) = x}

is lower semicontinuous, i.e. for any ϕ ∈ P (x) and for any sequence of elements
(xn)n∈N ∈ Rn+ converging to x, there exists a sequence (ϕn)n∈N with ϕn ∈
P (xn) converging to ϕ uniformly on compact sets.

The set P is equipped with the metric

d(ϕ1, ϕ2) := max
N∈N

2−N
‖ϕ1 − ϕ2‖N

1 + ‖ϕ1 − ϕ2‖N
,

where ‖ϕ‖N := supt∈[0,N ] ‖ϕ(t)‖ so that convergence of functions is equivalent to
uniform convergence of the corresponding restrictions on each compact subset of
R+, cf. [17].

By condition (a) the functions ϕ ∈ P are Lipschitz continuous with respect to a
global Lipschitz constant. In particular, the functions ϕ ∈ P are differentiable for
almost all t ≥ 0. Condition (c) is in one-to-one correspondence to time-invariance
of differential equations/inclusions. Condition (d) expresses that the set P is closed
in the topology of uniform convergence on compact sets.

To introduce the continuous mapping defining the dynamical system we consider
the shift operator

S(t) : C(R+,Rn+)→ C(R+,Rn+), S(t)ϕ(·) = ϕ(·+ t).

The class of dynamical systems considered in this paper is

u : R+ × P → P, u(t, ϕ) = S(t)ϕ(·) = ϕ(·+ t) (3)

defined on the metric space (P,d). Throughout the paper we call a function ϕ ∈ P
a trajectory of the dynamical system. The zero trajectory ϕ∗ ≡ 0 is the unique
fixed point of the shift operator S(t) defined on P and thus, ϕ∗ ≡ 0 is the only
equilibrium of the dynamical system defined by (3). The scope of this paper is to
characterize asymptotic stability of the dynamical system u defined on P in terms
of the existence of a smooth Lyapunov function.

A pair (V,W ) of positive definite functions on Rn+ is called a Lyapunov pair for
the dynamical system u defined on P if V : Rn+ → R+ is proper and for any ϕ ∈ P,

V (ϕ(t))− V (ϕ(s)) ≤ −
∫ t

s

W (ϕ(r)) dr for all 0 ≤ s ≤ t ∈ R+. (4)

The pair (V,W ) is called a C∞-smooth Lyapunov pair if the functions V and W
are C∞-smooth. In the case we have a C∞-smooth Lyapunov pair, by property (a),
the decrease condition can also be expressed in the differential form

V̇ (ϕ(t)) := d
dtV (ϕ(t)) ≤ −W (ϕ(t)) for almost all t ≥ 0. (5)

We note that the definition of a Lyapunov function differs from the one in [24,
Chapter IV, Definition 1.1]. There a Lyapunov function for the dynamical system
u : R+×X → X defined on a metric space (X, d) is a lower semicontinuous function

V : X → R ∪ {∞} such that V̇ (x) ≤ 0 for all x ∈ X, (6)

where

V̇ (x) := lim inf
t↘0

V (u(t, x))− V (x)

t
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and V̇ (x) := 0 if V (x) = ∞ and V̇ (x) := 1 if V (x) = −∞. For Lyapunov’s second
method in this context we refer to [24, Theorem 3.1, Chapter IV]. A possible choice
for a Lyapunov function in the sense of (6) for the class of dynamical systems
considered in this paper is

Ṽ : P → R+, Ṽ (ϕ) :=

∫ ∞
0

‖ϕ(s)‖ ds.

It is shown in [25, Theorem 2.3], see also [19], that (3) is asymptotically stable if and
only if there are strictly increasing continuous functions ωi : R+ → R+, i = 1, 2, 3
satisfying ωi(0) = 0 such that

ω1(‖ϕ(0)‖) ≤ Ṽ (ϕ) ≤ ω2(‖ϕ(0)‖)
and

d
dt Ṽ (u(t, ϕ)) ≤ −ω3(‖ϕ(t)‖).

We are not following this approach because the drawback is, however, that in the
stability analysis of fluid networks under particular disciplines we aim at Lyapunov
functions depending only on the state of the fluid network, i.e. on the fluid level.
Thus, Lyapunov functions map the positive orthant to the real numbers. The main
result of the paper is the following.

Theorem 3.1. Suppose the dynamical system u : R+ × P → P, u(t, ϕ) = ϕ(· + t)
satisfies:

(A) For any ϕ ∈ P, ε > 0, and T > 0 there is a continuous function c : [0, T ]→ R+

such that limt→0
c(t)
t exists and is positive and for any y ∈ Rn with ϕ(0)−y ∈

B(ϕ(0), ε) ∩ Rn+ there is a trajectory ψ ∈ P with ψ(0) = ϕ(0)− y satisfying

‖ϕ(t)− y − ψ(t) ‖ ≤ ‖y‖ c(t) for all t ∈ [0, T ].

Then, the dynamical system u defined on P is asymptotically stable if and only if
there is a C∞-smooth Lyapunov pair (V,W ) such that for every ϕ ∈ P it holds

V̇ (ϕ(t)) ≤ −W (ϕ(t)) for almost all t ≥ 0. (7)

We note that estimates similar to (A) for trajectories of differential inclusions
with state constraints were derived by Bressan and Facchi, cf. [4] and the references
therein.

4. Motivation and application of the main result. To outline the motivation
for the consideration of the class of abstract dynamical systems, we give a very
brief introduction to fluid networks. For a comprehensive description of multiclass
queueing networks and fluid networks we refer to [3, 5, 8]. A fluid network consists
of J ∈ N stations serving n ∈ N different types of fluids with J ≤ n and each
fluid type is served exclusively at a predefined station. This assignment defines
the constituency matrix C ∈ RJ×K with cjk := 1 if fluid type k ∈ {1, ..., n} is
served at station j ∈ {1, ..., J} and cjk = 0 otherwise. The exogenous inflow rate of
fluid type k is denoted by αk and α = (α1, ..., αn)T ∈ Rn+ := {x ∈ Rn : xi ≥ 0, i =
1, ..., n} is called the exogenous inflow rate. Likewise, µk ∈ R+ denotes the potential
outflow rate of type k fluids and µ = (µ1, ..., µn)T ∈ Rn+. The substochastic matrix
P ∈ [0, 1]n×n describes the transitions in the network, where it is assumed that the
spectral radius of the matrix P is strictly less than one, i.e. 1 > max{|λ| | ∃x 6=
0 : Px = λx}. The initial fluid level and the fluid level at time t of the network
are denoted by x0 and x(t), respectively. We note that, as x(t) described the
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deterministic analog of the queue length of the multiclass queueing network, the
fluid level process x(·) evolves only in the positive orthant Rn+.

The evolution of the fluid level process x(·) is basically described by the balance
equation

x(t) = x0 + α t− (I − PT )MT (t) ≥ 0, (8)

where M = diag(µ) and T (·) denotes the allocation process according to the disci-
pline determining the rule under which the individual stations of the fluid network
are serving the different fluid types. The complete description of the evolution of
the fluid network under particular disciplines embraces additional equations char-
acterizing the allocation process, cf. [3] and the references therein. It is well-known
that the fluid level as well as the allocation process are Lipschitz continuous and
therefore differentiable almost everywhere. In order to consider fluid networks from
the differential inclusions point of view, we define Ṫ (t) =: u(t) and consider the
differential form of the flow balance equation

ẋ(t) = α− (I − PT )Mu(t) for almost all t ≥ 0.

For the class of general work-conserving fluid networks, given x ∈ Rn+, the set of

admissible allocation rates u = (u1, ..., un)T is

U(x) =
{
u ∈ Rn

∣∣u ≥ 0, e− Cu ≥ 0, (Cx)T · (e− Cu) = 0
}
, (9)

where e = (1, ..., 1)T ∈ RJ and the inequalities have to be understood component-
by-component. The evolution of a general work-conserving fluid network can then
be described by the following differential inclusion

ẋ ∈ F
(
x
)

:=
{
α− (I − PT)Mu

∣∣u ∈ U(x)
}
∩ T

(
x,Rn+

)
, x(0) = x0, (10)

where T (x,Rn+) denotes the contingent cone to Rn+ at x. The intersection with
the contingent cone to the positive orthant is to ensure the nonnegativity of the
solutions. In [5, Theorem 2.1] and [19, Theorem 4] it is shown that for any x0 ∈ Rn+
there is at least one solution, i.e. an absolutely continuous function ϕ : R+ → Rn+
satisfying ϕ(0) = x0 and ϕ̇(t) ∈ F (ϕ(t)) for almost all t ≥ 0. Let SF (x) denote the
set of solutions ϕ : R+ → Rn to (10) with ϕ(0) = x and SF := {SF (x) |x ∈ Rn}.

From the abstract point of view the mapping

u : R+ × SF → SF , u(t, ϕ) := ϕ(t+ ·) (11)

defines a dynamical system on SF . The zero trajectory ϕ∗ ∈ SF , ϕ∗(s) = 0 for
all s ≥ 0 of the differential inclusion (14) satisfies u(t, ϕ∗) = ϕ∗(t + ·) = ϕ∗ for all
t ≥ 0, i.e. ϕ∗ ≡ 0 is the only equilibrium of the dynamical system (11). Next, we
show that the notions of stability in the two approaches are equivalent if the set of
solutions satisfies the conditions (a)-(d).

Before doing this, based on the properties (a)-(d), we present a useful characteri-
zation of asymptotic stability for the class of dynamical systems under consideration.

Proposition 1. The dynamical system u defined on P is asymptotically stable if
and only if there is a τ > 0 such that u(‖ϕ(0)‖τ, ϕ) = ϕ(‖ϕ(0)‖τ + ·) ≡ 0 for all
ϕ ∈ P.

Proof. Suppose there is a τ < ∞ such that u(‖ϕ(0)‖τ, ϕ) = 0 for all ϕ ∈ P. To
conclude stability let ε > 0 and δ := ε

dLτe , where dre := min{k ∈ Z | k ≥ r} for
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r ∈ R. Let ϕ ∈ P with d(0, ϕ) < δ. By assumption, using the scaling and shift
property it holds

ϕ(s+ t) = 0 for all t ≥ τ ‖ϕ(s)‖. (12)

Together with the Lipschitz continuity property (a), for every t ∈ [0, τ‖ϕ(s)‖] we
have

‖ϕ(s+ t)‖ = ‖ϕ(s+ t)− ϕ
(
s+ τ‖ϕ(s)‖

)
‖ ≤ L

∣∣t− τ‖ϕ(s)‖
∣∣ ≤ Lτ‖ϕ(s)‖. (13)

By (12) we conclude that (13) holds for all t ≥ 0. Therefore,

‖ϕ(·+ t)‖N = sup
s∈[0,N ]

‖ϕ(s+ t)‖ ≤ Lτ‖ϕ‖N ≤ dLτe‖ϕ‖N = ‖dLτeϕ‖N .

In turn, by the triangular inequality, we have

d(0, u(t, ϕ)) ≤ max
N∈N

1

2N
‖dLτeϕ‖N

1 + ‖dLτeϕ‖N
= d(0, dLτeϕ) ≤ dLτe d(0, ϕ) < ε.

By assumption, it holds ϕ
(
‖ϕ(0)‖τ + t

)
= 0 for all t ≥ 0. This in turn implies

limt→∞ d(0, u(t, ϕ)) = 0 and we have attractivity.
Conversely, let ϕ∗ ≡ 0 be asymptotically stable. Due to the scaling property it

suffices to consider trajectories ϕ with ‖ϕ(0)‖ = 1. Then, as

lim
t→∞

d(0, u(t, ϕ)) = lim
t→∞

d(0, ϕ(t+ ·)) = 0

we have
lim
t→∞

‖ϕ(t)‖ = 0 for all ϕ ∈ P.

Hence, inf{‖ϕ(t)‖ | t ≥ 0} = 0 for any ϕ ∈ P with ‖ϕ(0)‖ = 1. The assertion then
follows from [22, Theorem 6.1].

We note that the closedness property (d) is required as it is an assumption of
Theorem 6.1 in [22]. In combination with [19, Lemma 1] the previous Lemma 1
yields

Corollary 1. Let F : Rn+  Rn be a set-valued map such that 0 ∈ F (0) and the set
of solutions SF to ẋ ∈ F (x) satisfies (a)-(d). Then, the origin 0 ∈ Rn+ is strongly
asymptotically stable if and only if the zero trajectory ϕ∗ ≡ 0 is an asymptotically
stable equilibrium of the dynamical system u : R+ × SF → SF , u(t, ϕ) = ϕ(t+ ·).

Tackling a simple example we show that the differential inclusion (10) does not
satisfy the standard assumption posed in the literature mentioned in the introduc-
tion.

Lemma 4.1. The set-valued map F describing the evolution of a general work-
conserving fluid network defined in (10) is not upper semicontinuous in general.

Proof. To show the claim we consider a single station fluid network serving one type
of fluid. That is, for α > 0, µ = α + 1, and P = 0 the differential inclusion (10) is
defined by the set-valued map

G(x) =
{
α− (α+ 1)u

∣∣ 0 ≤ u ≤ 1, x(1− u) = 0
}
∩ T (x,R+)

=
{
α− (α+ 1)u

∣∣ 0 ≤ u ≤ 1, u = 1 if x > 0 and u = α
α+δ else

}
.

(14)

To conclude that G is not upper semicontinuous let x = 0 and consider the sequence
(xk)k∈N with xk = 1

k . Then, for each k ∈ N we have G(xk) = −1. Let graph(G) :=

{ (x, y) ∈ R+ × R
∣∣ y ∈ G(x) } denote the graph of G and consider the sequence
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xk,−1

)
k∈N on the graph of G which converges to

(
0,−1

)
6∈ graph(G). Hence, the

graph is not closed and by Proposition 2 in [1, Section 1.1] the set-valued map G is
not upper semicontinuous.

We note that the origin is the only equilibrium of the differential inclusion
(14). Moreover, it is strongly asymptotically stable. However, as a consequence
of Lemma 4.1, the existence of a C∞-smooth Lyapunov pair (V,W ) satisfying the
strong infinitesimal decrease condition (2) cannot be concluded by the results on
differential inclusions mentioned above.

We use the main result Theorem 3.1 to conclude that the differential inclusion
(14) admits a C∞-smooth Lyapunov pair. It is well known that a single sta-
tion general work-conserving fluid network serving only one fluid type satisfies the
properties (a)-(f); cf. [5, 19, 22]. Thus, in order to conclude the existence of a
C∞-smooth Lyapunov function it is sufficient to verify assumption (A) and apply
the main result (Theorem 3.1) of the paper.

Theorem 4.2. The differential inclusion (14) admits a C∞-smooth Lyapunov pair,
i.e. there is a C∞-smooth and positive definite pair (V,W ) such that V is proper
and

max
v∈G(x)

〈∇V (x), v〉 ≤ −W (x) for all x ∈ (0,∞).

Proof. To show the existence of a C∞-smooth Lyapunov pair we verify that the set
of solutions SG to the differential inclusion (14) satisfies the assumption (A).

Let ϕ ∈ SG, ε > 0 and T > 0 be fixed. In a first step, we treat the case that
ϕ(0) > 0. Then, we have

ϕ(t) =

{
ϕ(0)− t if t ≤ ϕ(0)

0 else.

In the case y = ϕ(0) the only solution ψ to the differential inclusion starting in
ψ(0) = ϕ(0)− y = 0 is the zero solution and we obtain |ϕ(t)− y−ψ(t)| = |t| for all
t ≤ ϕ(0) and |ϕ(t)− y − ψ(t)| = |y| otherwise. Hence, one has

|ϕ(t)− y − ψ(t)| ≤ 1

ϕ(0)
|y| t for all t ≥ 0.

If y 6= ϕ(0) we consider the solution ψ to the differential inclusion starting in
ψ(0) = ϕ(0)− y given by

ψ(t) =

{
ϕ(0)− y − t if t ≤ ϕ(0)− y
0 else.

On one hand, if 0 < ϕ(0) − y < ϕ(0) it follows |ϕ(t) − y − ψ(t)| = 0 for all
t ∈ [0, ϕ(0) − y]. Also, for all t ∈ [ϕ(0) − y, ϕ(0)] we have |ϕ(t) − y − ψ(t)| =
|ϕ(0)− y− t| and for all t ≥ ϕ(0) one has |ϕ(t)− y−ψ(t)| = |y|. On other hand, if
0 < ϕ(0) ≤ ϕ(0)−y we have |ϕ(t)−y−ψ(t)| = 0 for all t ∈ [0, ϕ(0)]. Further, for all
t ∈ [ϕ(0), ϕ(0)− y] one has |ϕ(t)− y−ψ(t)| = |ϕ(0)− y− t| and for all t ≥ ϕ(0)− y
it follows |ϕ(t)− y − ψ(t)| = |y|. Consequently, in either case one obtains

|ϕ(t)− y − ψ(t)| ≤ 1

ϕ(0)
|y| t for all t ≥ 0.
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Finally, we consider the case ϕ(0) = 0. Then, we have ϕ ≡ 0. For y ∈ (−ε, 0] a
solution ψ of the differential inclusion with ψ(0) = −y is

ψ(t) =

{
−y − t if t ≤ −y
0 else.

Therefore, |ϕ(t)− y − ψ(t)| = t for all t ∈ [0,−y] and |ϕ(t)− y − ψ(t)| = |y| for all
t ≥ −y and one has

|ϕ(t)− y − ψ(t)| ≤ log(t+ e) |y| for all t ≥ 0.

Thus, assumption (A) is fulfilled and by Theorem 3.1 there is a C∞-smooth Lya-
punov pair (V,W ) such that for every solution ϕ ∈ SG one has

V̇ (ϕ(t)) ≤ −W (ϕ(t)) for almost all t ≥ 0.

Consequently, the pair (V,W ) satisfies

max
v∈G(x)

〈∇V (x), v〉 ≤ −W (x) for all x ∈ (0,∞).

This shows the assertion.

5. Relating assumption (A) to differential inclusions. In this section we
investigate assumption (A) from the differential inclusions perspective. Due to the
fact that Clarke, Ledyaev and Stern [6] as well as Dupius and Williams [9] embed the
set-valued map defining the differential inclusion into a Lipschitz one, we consider
the differential inclusion

ẋ(t) ∈ F (x(t)), (15)

where F : Rn  Rn is Lipschitz continuous, i.e. there is a constant L > 0 such that

F (x) ⊂ F (y) + L ‖x− y‖B(0, 1) for all x, y ∈ Rn,

and F (x) is nonempty, compact and convex for every x ∈ Rn. Let SF (x) denote the
set of solutions ϕ : R+ → Rn to (15) with ϕ(0) = x. Let SF := {SF (x) |x ∈ Rn}.
Next we show that condition (A) is a natural assumption. More precisely, we show
that the set of solutions to a differential inclusion defined by a Lipschitz continuous
set-valued map automatically has property (A).

Theorem 5.1. Let F be a Lipschitz continuous set-valued map taking nonempty,
compact and convex values with 0 ∈ F (0). Then, the set of solutions SF satisfies
assumption (A).

Proof. Let ϕ ∈ SF , ε > 0 and T > 0. We define c(t) := eLt−1. Then, for y ∈ Rn
the function ϕy(·) := ϕ(·) − y is absolutely continuous with ϕy(0) = ϕ(0) − y.
Further, as F is Lipschitz it holds F (ϕy(t)) ⊂ F (ϕ(t)) + L ‖y‖B(0, 1) and we have

d(ϕ̇y(t), F (ϕy(t)) = d(ϕ̇(t), F (ϕy(t)) ≤ L ‖y‖.

Thus, by Filippov’s Theorem [1, Theorem 1 in Chapter 2, Section 4] there is a
solution ψ(·) to (15) defined on the interval [0, T ] with ψ(0) = ϕy(0) = ϕ(0) − y
satisfying

‖ϕy(t)− ψ(t)‖ = ‖ϕ(t)− y − ψ(t)‖ ≤ ‖y‖
(
eLt−1

)
for all t ∈ [0, T ].

This shows the assertion.
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6. Proof of Theorem 3.1. In [19, Theorem 2] it is shown that for the dynamical
system under consideration there is a continuous Lyapunov pair if and only if the
dynamical system is asymptotically stable. Thus, the non-converse implication is
already shown.

Conversely, let the dynamical system u defined on P be asymptotically stable.
Then, by Theorem 2 in [19] there is a continuous Lyapunov pair (V,W ) such that

V (ϕ(t))− V (ϕ(s)) ≤ −
∫ t

s

W (ϕ(r)) dr for all ϕ ∈ P, 0 ≤ s ≤ t. (16)

Thus, the construction of a C∞-smooth Lyapunov-pair remains.
To get differentiability on the boundary of the positive orthant, we first extend the

pair (V,W ) to Rn. To this end, let | · |vec denote the map that takes componentwise
absolute values defined by |x|vec := (|x1|, ..., |xn|)T ∈ Rn+. The extension of the pair
(V,W ) to Rn is defined by

V e(x) := V (|x|vec), W e(x) := W (|x|vec).

Note that, as a composition of continuous functions, the pair (V e,W e) is also con-
tinuous. As a first consequence of assumption (A) we conclude that V e is locally
Lipschitz.

Lemma 6.1. Suppose the dynamical system u defined on P satisfies (A) and is
asymptotically stable. Then, V e is locally Lipschitz on Rn.

Proof. Let U ⊂ Rn be open, convex, and bounded and let x ∈ U . Following
Corollary 3.7 in [7], since −V e is lower semicontinuous, it suffices to show that
there is a M > 0 such that for any v ∈ Rn it holds

D(−V e)(x; v) ≤M‖v‖.

Let v′ ∈ Rn and ξ > 0. Let ϕ ∈ P be a trajectory of the dynamical system satisfying
ϕ(0) = |x|vec and

V e(x) =

∫ ∞
0

‖ϕ(s)‖ ds =

∫ ‖x‖τ
0

‖ϕ(s)‖ ds,

where in the last equality used the stability of P and Lemma 1. By continuity of
| · |vec we have

lim
ξ→0
|x+ ξv′|vec = |x|vec.

So, for every ε > 0 and ξ sufficiently small we have |x+ ξv′|vec ∈ B(|x|vec, ε) ∩Rn+.
Moreover, there is a continuous mapping g : Rn → Rn satisfying ‖g(v′)‖ = ‖v′‖ and

|x+ ξv′|vec = |x|vec + ξg(v′).

For T := max{‖x‖ τ, ‖x+ξv′‖ τ} < τ(‖x‖+ε), by assumption (A) and the triangular
inequality, there are c > 0 and ψ ∈ P with ψ(0) = |x|vec + ξg(v′) such that

‖ϕ(t) ‖ − ‖ψ(t) ‖ ≤ ‖ϕ(t) − ψ(t) ‖ ≤ ξ ‖g(v′)‖ (1 + c(t)) = ξ ‖v′‖ (1 + c(t)) (17)

for all t ∈ [0, T ]. The definition of V e, the stability of P together with Lemma 1,
and ‖ |x|vec + ξg(v′)‖ = ‖x+ ξv′‖ yield

V e(x+ ξv′) ≥
∫ ∞

0

‖ψ(s) ‖ ds =

∫ ‖x+ξv′‖τ

0

‖ψ(s) ‖ ds.
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On the one hand, if ‖x‖ ≤ ‖x+ ξv′‖ by using (17) it follows

V e(x)− V e(x+ ξv′) ≤
∫ ‖x‖τ

0

‖ϕ(s) ‖ds−
∫ ‖x+ξv′‖τ

0

‖ψ(s) ‖ds

≤
∫ ‖x‖τ

0

‖ϕ(s)‖ − ‖ψ(s) ‖ ds

≤
∫ ‖x‖τ

0

ξ ‖v′‖ (1 + c(s)) ds ≤ ξ ‖v′‖ ‖x‖ τ C,

where C := max
0≤s≤‖x‖τ

(1 + c(s)). On the other hand, to consider the case ‖x‖ >

‖x+ ξv′‖ we note that the triangle inequality together with the Lipschitz condition
imply

‖ϕ(t)‖ ≤ ‖ϕ(0)‖ + Lt ≤ ‖x‖ (1 + Lτ) for all t ∈ [0, ‖x‖τ ]. (18)

Using (17), (18), and 0 ≤ ‖x‖ − ‖x+ ξv′‖ ≤ ξ‖v′‖ we obtain

V e(x)− V e(x+ ξv′) ≤
∫ ‖x‖τ

0

‖ϕ(s) ‖ ds−
∫ ‖x+ξv′‖τ

0

‖ψ(s) ‖ ds

≤
∫ ‖x+ξv′‖τ

0

‖ϕ(s)‖ − ‖ψ(s) ‖ds+

∫ ‖x‖τ
‖x+ξv′‖τ

‖ϕ(s) ‖ ds

≤
∫ ‖x+ξv′‖τ

0

ξ ‖v′‖ (1 + c(s)) ds+ τ( ‖x‖ − ‖x+ ξv′‖ ) · sup
s∈[‖x+ξv′‖τ,‖x‖τ ]

‖ϕ(s) ‖

≤ ξ ‖v′‖ ‖x+ ξv′‖ τ C + τ ξ ‖v′‖ ‖x‖ (1 + Lτ).

Consequently, taking limits and using that U is bounded there is a M > 0 such that

D(−V e)(x; v) = lim inf
ξ→0,v′→v

V e(x)− V e(x+ ξv′)

ξ
≤ τ (C + 1 + Lτ) ‖x‖ ‖v‖

≤M ‖v‖.

The shows Lemma 6.1.

Proceeding with the construction of a smooth Lyapunov pair, let U be an open
subset of Rn and consider the convolution of V e and kr defined by

V er (x) := V e ∗ kr (x) =

∫
Rn

V e(x− y) kr(y) dy =

∫
Rn

V (|x− y|vec) kr(y) dy.

Also, we consider the convolution of W e and kr given by

W e
r (x) := W e ∗ kr (x) =

∫
Rn

W e(x− y) kr(y) dy.

By standard convolution results it follows V er ∈ C∞(U,R+) and W e
r ∈ C∞(U,R+).

Furthermore, since V e is continuous on U it holds V er → V e uniform on compact
subsets of U as r → 0. Consequently, for every ε > 0 there is an r0 such that for
all r ∈ (0, r0) we have V er and W e

r are smooth on U and

|V er (x)− V e(x)| ≤ ε, |W e
r (x)−W e(x)| ≤ ε

2 for all x ∈ U. (19)

The subsequent statement addresses the decrease condition of the convolution along
trajectories ϕ ∈ P.
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Lemma 6.2. Let U ⊂ Rn be compact such that U ∩ Rn+ 6= ∅ and suppose (V,W )
satisfy (16) and assumption (A) is satisfied. Then, for every ε > 0 there exists a
r0 > 0 such that for all r ∈ (0, r0) we have

V̇ er (ϕ(t)) ≤ −W e(ϕ(t)) + ε (20)

for all ϕ ∈ P and almost all t ∈ [0, T ] with ϕ(·)|[0,T ] ⊂ U ∩ Rn+.

Proof. Let ϕ ∈ P be a trajectory satisfying ϕ(0) = x ∈ U ∩ Rn+. Let t ∈ [0, T ] be
such that ϕ is differentiable at t. Then, for h > 0 we have

V er
(
ϕ(t+ h)

)
− V er

(
ϕ(t)

)
=

∫
Rn

(
V e
(
ϕ(t+ h)− y

)
− V e

(
ϕ(t)− y

) )
kr(y) dy.

There is a continuous mapping g : Rn → Rn satisfying ‖g(y)‖ = ‖y‖ and

|ϕ(t)− y|vec = ϕ(t)− g(y).

Further, by assumption (A) and for h sufficiently small there is a continuous function

c : R+ → R+ with limt→0
c(t)
t =: c0 > 0 and a trajectory ψ(t + ·) ∈ P with ψ(t) =

ϕ(t)− g(y) such that

‖ϕ(t+ h)− y − ψ(t+ h)‖ ≤ ‖y‖c(h). (21)

Using this, as V e(ψ(t+ h)) = V (ψ(t+ h)) we obtain

V er (ϕ(t+ h))− V er (ϕ(t)) ≤
∫
Rn

∣∣∣V e(ϕ(t+ h)− y)) − V e(ψ(t+ h))
∣∣∣ kr(y) dy

+

∫
Rn

(
V (ψ(t+ h))− V (ϕ(t)− g(y))

)
kr(y) dy. (22)

By the local Lipschitz continuity of V with constant L and (21), the first term on
the right hand side in the above inequality can be estimated as follows∫

Rn

∣∣∣V e(ϕ(t+ h)− y) − V e(ψ(t+ h))
∣∣∣ kr(y) dy

=

∫
Rn

∣∣∣V (ϕ(t+ h)− g(y)) − V (ψ(t+ h))
∣∣∣ kr(y) dy

≤
∫
Rn

L
∥∥ϕ(t+ h)− g(y) − ψ(t+ h)

∥∥ kr(y) dy

≤ c(h)L

∫
Rn

‖g(y)‖ kr(y) dy = c(h)L

∫
Rn

‖y‖kr(y) dy.

Furthermore, it holds

∫
B(0,r)

‖y‖ kr(y) dy ≤
∫
B(0,r)

r kr(y) dy = r and choosing

r0 := ε
2 c0 L

it follows∫
Rn

∣∣V e(ϕ(t+ h)− y) − V (ψ(t+ h))
∣∣kr(y) dy ≤ c(h)

c0
ε
2 .
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Asymptotic stability of the dynamical system implies that the very last term in (22)
can be estimated by means of the function W and its mollification,

∫
Rn

(
V
(
ψ(t+ h)

)
− V

(
ϕ(t)− g(y)

) )
kr(y) dy

≤
∫
Rn

(
−
∫ t+h

t

W
(
ψ(s)

)
ds

)
kr(y) dy

= −
∫ h

0

(∫
Rn

W
(
ψ(t+ s)

)
kr(y) dy

)
ds,

where the last identity is obtained by integration by substitution. Next, we show
that the function

s 7→
∫
Rn

W
(
ψ(t+ s)

)
kr(y) dy

is continuous in [0, h]. To see this, consider the modulus of continuity of the function

s 7→W
(
ψ(t+ s)

)
,

defined for δ ∈ [0, h] by

m
(
δ,W

(
ψ(t+ ·)

))
:= sup
|s−s′|≤δ

∣∣∣W (ψ(t+ s)
)
−W

(
ψ(t+ s′)

)∣∣∣.
Then, for s, s′ ∈ [0, h] it holds

W
(
ψ(t+ s))

)
−W

(
ψ(t+ s′)

)
≤ m

(
h,W

(
ψ(t+ ·)

))
.

By asymptotic stability of the dynamical system ‖ψ(t+ s)‖ is bounded and, hence,
W (ψ(t+ ·) ) is uniformly continuous. Thus, we have

lim
h→0

m
(
h,W

(
ψ(t+ ·)

))
= 0.

That is, for every ε′ > 0 there is a δ′ > 0 such that m
(
h,W

(
ψ(t+ ·)

))
≤ ε′ for all

h ≤ δ′. For ε′ > 0 choose δ > 0 such that |s− s′| < δ < δ′. Then,

∫
Rn

(
W
(
ψ(t+ s)

)
−W

(
ψ(t+ s′)

))
kr(y) dy

≤
∫
Rn

m
(
δ,W

(
ψ(t+ ·)

))
kr(y) dy ≤

∫
Rn

ε′ kr(y) dy = ε′.
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Moreover, by conditions (19) we have −W e
r (x) + ε

2 ≤ −W
e(x) + ε. Finally, the

collection of the above relations yields

V̇ er (ϕ(t)) = lim
h→0

V er
(
ϕ(t+ h)

)
− V er

(
ϕ(t)

)
h

≤ ε

2
− lim
h→0

1

h

∫
Rn

(∫ h

0

W
(
ψ(t+ s)

)
kr(y) dy

)
ds

≤ − lim
h→0

1

h

∫ h

0

(∫
Rn

W
(
ψ(t+ s)

)
kr(y) dy

)
ds+

ε

2

= −
∫
Rn

W
(
ψ(t)

)
kr(y) dy +

ε

2
= −

∫
Rn

W
(
ϕ(t)− g(y)

)
kr(y) dy +

ε

2

= −
∫
Rn

W e(ϕ(t)− y) kr(y) dy +
ε

2

= −W e
r (ϕ(t)) +

ε

2
≤ −W e(ϕ(t)) + ε.

This shows Lemma 6.2.

Now, let U = {Ui}∞i=1 be a locally finite open cover of Rn such that for every i
the closure Ui is compact. Further, let {ψi}∞i=1 be a smooth partition of unity that
is subordinate to U . Define

εi = 1
4 min{min

x∈Ūi

V e(x), min
x∈Ūi

we(x)} and qi = max
x∈Ūi

‖∇ψi(x)‖. (23)

Then, by Lemma 6.2 for every i there is a C∞-pair (V ei ,W
e
i ) such that for every

x ∈ Ui,

|V e(x)− V ei (x)| < εi
2i+1(1 + qi)

and |W e(x)−W e
i (x)| < εi. (24)

Moreover, by the conditions (20) and (23) we have that

V̇ ei
(
ϕ(t)

)
≤ −W e

(
ϕ(t)

)
+ 2 εi ≤ − 1

2W
e
(
ϕ(t)

)
. (25)

Next, we define

V es (x) :=

∞∑
i=1

ψi(x)V ei (x).

The following estimate holds true

|V es (x)− V e(x)| ≤
∞∑
i=1

ψi(x)
∣∣V ei (x)− V e(x)

∣∣ ≤ V e(x)

4

∞∑
i=1

ψi(x)

2i+1(1 + qi)
≤ 1

8V
e(x).

Using the triangular inequality, the latter estimate shows that V es is proper and
positive definite. The next step is to derive that V es is decaying along trajectories



16 MICHAEL SCHÖNLEIN

of P. To this end, we consider

d
dt [V

e
s (ϕ(t))] = d

dt [V e(ϕ(t)) + V es (ϕ(t))− V e(ϕ(t))]

= d
dt [V

e(ϕ(t))] + d
dt

[ ∞∑
i=1

ψi(ϕ(t))
(
V ei (ϕ(t))− V e(ϕ(t))

)]

= V̇ e(ϕ(t)) +

∞∑
i=1

ψi(ϕ(t))
(
V̇ ei (ϕ(t))− V̇ e(ϕ(t))

)
+

∞∑
i=1

ψ̇i(ϕ(t))
(
V ei (ϕ(t))− V e(ϕ(t))

)

≤
∞∑
i=1

ψi(ϕ(t))

V̇ ei (ϕ(t)) +

∞∑
j=1

ψ̇j(ϕ(t))
∣∣∣V ej (ϕ(t))− V e(ϕ(t))

∣∣∣
 .

Using the conditions (24) and (25) we get the following estimate

V̇ es (ϕ(t)) ≤
∞∑
i=1

ψi(ϕ(t))

− 1
2 W

e(ϕ(t)) +

∞∑
j=1

qjεj
2j+1(1 + qj)

 .

Defining ε̃i := max{εj : x ∈ Ui ∩ Uj 6= ∅} we have that

V̇ es (ϕ(t)) ≤
∞∑
i=1

ψi(ϕ(t))

− 1
2 W

e(ϕ(t)) + ε̃i

∞∑
j=1

1
2j+1


=

∞∑
i=1

ψi(ϕ(t))
(
− 1

2W
e(ϕ(t)) + ε̃i

)
.

Using (23) and the triangular inequality applied to the second inequality in (24), it
holds that

− 1
2W

e(ϕ(t)) + ε̃i ≤ − 1
4W

e(ϕ(t)) ≤ − 1
5W

e
i (ϕ(t)).

Finally, we have that

V̇ es (ϕ(t)) ≤ − 1
5

∞∑
i=1

ψi(ϕ(t))W e
i (ϕ(t)) =: −W e

s (ϕ(t)).

Consequently, the pair (V es ,W
e
s ) defines a C∞-smooth Lyapunov pair, which

shows the assertion. �
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