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Abstract We consider the class of closed generic fluid networks (GFN) models, which

provides an abstract framework containing a wide variety of fluid networks. Within

this framework a Lyapunov method for stability of GFN models was proposed by Ye

and Chen. They proved that stability of a GFN model is equivalent to the existence

of a functional on the set of paths that is decaying along paths. This result falls short

of a converse Lyapunov theorem in that no state dependent Lyapunov function is

constructed. In this paper we construct state-dependent Lyapunov functions in contrast

to path-wise functionals. We first show by counterexamples that closed GFN models

do not provide sufficient information that allow for a converse Lyapunov theorem. To

resolve this problem we introduce the class of strict GFN models by forcing the closed

GFN model to satisfy a concatenation and a semicontinuity condition of the set of

paths in dependence of initial condition. For the class of strict GFN models we define a

state-dependent Lyapunov function and show that a converse Lyapunov theorem holds.

Finally, it is shown that common fluid network models, like general work-conserving

and priority fluid network models as well as certain linear Skorokhod problems define

strict GFN models.
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1 Introduction

Multiclass queueing networks provide an effective tool for the modeling of complex man-

ufacturing systems, computer systems or telecommunication networks. As an example

consider semiconductor fabrication, where production lines are modeled as reentrant

lines, which are a special case of multiclass queueing networks. Especially in the pursuit

of deriving good control strategies for multiclass queueing networks the question of sta-

bility arises. For some time a common belief was that a sufficient condition for stability

of multiclass networks is that the traffic intensity at each server is strictly less than

one. But in 1990 Kumar and Seidman [27] presented a deterministic network with two

stations processing four types of jobs which is unstable although the traffic intensities

at the stations seem to be benevolent. This example inspired a number of examples

with different service disciplines, like first-in-first-out (FIFO) and priority, that have

surprising properties. In the literature they are known as the Lu-Kumar network, the

Rybko-Stolyar network or the Bramson network, see e.g. [5] or [6], [17] and [30]. In

recent years further disciplines like maximum pressure and join-the-shortest-queue are

investigated [16], [18], [19]. Rybko and Stolyar [30] and Dai [13] pursued the strategy

of rescaling the stochastic processes that describe the dynamics of a multiclass queue-

ing network and considered the limit obtained under scaling. This limit is called the

fluid limit model for the queueing network. The great benefit of this approach is, that

stability of the corresponding fluid limit model is more amenable to analysis and is

sufficient for the stability of a multiclass queueing network [13]. In addition, there are

conditions for instability of queueing networks based on their fluid limit model [14,28].

A discussion of the relationship between queueing networks and fluid models can be

found in [6].

Due to this fact the question arises, under which conditions fluid limit models are

stable. A fluid model is called stable if the fluid level process Q with unit initial level is

drained to zero in a uniform finite time τ and remains zero beyond τ . Of course, con-

ditions that guarantee stability depend on the service discipline of the network. In [7]

Chen states necessary and sufficient conditions for stability of general work-conserving

fluid networks. Stability conditions for fluid networks under FIFO and priority disci-

pline have been derived by Chen and Zhang [10], [11]. Often the strategy for proving

such conditions is to use a Lyapunov function. In this context a locally Lipschitz func-

tion V : RK+ → R+ such that V (x) = 0 if and only if x = 0 is called a Lyapunov

function, if there exists a constant ε > 0 such that for each fluid model solution it

holds that
d
dtV (Q(t)) ≤ −ε

whenever Q(t) 6= 0 and the derivative at time t exists for the map s 7→ V (Q(s)). For

more details see [15]. Within this framework linear Lyapunov functions of the form

V (x) = hT x, x ∈ RK+ ,

where h is some positive vector in RK+ , are used to establish a sufficient condition

for the stability of fluid network models under a priority discipline [11]. The special

case h = (1, ..., 1)T is used to show that a fluid model of a re-entrant line operating

under the last-buffer-first-served (LBFS) service discipline is stable, if the usual traffic

condition ρj < 1 is satisfied for all stations j [15]. This special case is also used to prove

a stability condition for fluid networks under the join-the-shortest-queue discipline [16].
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Ye and Chen investigated fluid networks under priority disciplines by using piecewise

linear Lyapunov functions of the form

V (x) = max
1≤j≤N

hTj x

for some nonnegative vectors h1, ..., hN , for details see [9]. This approach yields a

sharper stability condition for fluid networks under priority discipline than in [11].

Furthermore, in the verification of a stability condition for fluid networks under general

work-conserving disciplines a quadratic Lyapunov function

V (x) = xT Ax

with a strictly copositive matrix A is used [7]. What all the works mentioned above have

in common is that the existence of Lyapunov functions is only shown to be sufficient

for stability.

Before we investigate the question whether the existence of a Lyapunov function

is also necessary for the stability of a fluid network, we recall briefly the basic idea of

a Lyapunov function from the theory of dynamical systems. For a detailed description

the reader is referred e.g. to [3], [25]. Consider a dynamical system

ẋ = f(x), x ∈ Rn, t ∈ [0,∞) (1)

with initial condition x(0) = x0 and continuous f , where the origin is an equilibrium

position, i.e. f(0) = 0. Let Br be the open ball with center 0 of radius r > 0. A real

valued map V : Br ⊂ Rn → R is called a strict Lyapunov function for (1) if (i) it is

positive definite and proper, i.e. there exist continuous and strictly increasing functions

a, b : [0, r)→ [0,∞) with a(0) = b(0) = 0 such that

a(‖x‖) ≤ V (x) ≤ b(‖x‖), x ∈ Br (2)

and (ii) if there exists a continuous and strictly increasing function w : [0, r)→ [0,∞)

with w(0) = 0 such that for every solution x(·) and each interval I ⊂ [0,∞) one has

V (x(t2))− V (x(t1)) ≤ −
∫ t2

t1

w(‖x(t)‖)dt (3)

for each t1 < t2 ∈ I provided that x(·) is defined on I and x(t) ∈ Br for all t ∈ I. It

is well known that the origin is locally asymptotically stable, if and only if there is a

strict Lyapunov function [3].

In order to obtain a so called converse Lyapunov theorem for fluid networks Ye and

Chen followed a different, more general approach [35]. They collected the characteristic

properties of fluid networks and defined a generic fluid network (GFN) model as set Φ

of functions Q : R+ → RK+ that satisfy a few natural properties. A precise description

of a GFN model is given in Section 2. They proved that stability of a GFN model

is equivalent to the property that for every function Q ∈ Φ a Lyapunov functional

v : R+ → R+ is decaying along Q. In particular, v can be chosen as

v(t) =

∫ ∞
t

‖Q(s)‖ds. (4)

It can be seen that this approach differs from the one taken in the theory of dy-

namical systems in which Lyapunov functions are state-dependent. The dependence



4

on solutions is undesirable, because the benefit of Lyapunov’s second method is that

trajectories need not be known to be able to determine stability, whereas the method

of Ye and Chen requires the knowledge of all solutions. In this paper we define a state-

dependent Lyapunov function and prove a converse Lyapunov theorem in the abstract

setting of strict GFN models. Converse Lyapunov theorems for differential inclusions

as they are considered in Sections 4 and 6 were derived in [12,26,34]. Even when our

analysis reduces to differential inclusions the methods of these papers are not directly

applicable because of the state constraint set RK+ .

This paper is organized as follows. In the Section 2 we recall the definition of

a GFN model from [35]. Further we discuss counterexamples to emphasize that the

class of (closed) GFN models is too general to provide a converse Lyapunov theorem

with state-dependent Lyapunov functions. In the Section 3 we introduce the class of

strict GFN models by forcing the closed GFN models to satisfy additionally a concate-

nation and a lower semicontinuity property. The concatenation property is essential

for state-dependent Lyapunov functions whereas lower semicontinuity gives the addi-

tional benefit of continuity. For this model class we define a state-dependent Lyapunov

function and prove that within this framework the stability of a strict GFN model is

equivalently characterized by the existence of a state-dependent Lyapunov function. In

Section 4 we recall some results from differential inclusions and viability theory that

will be useful in Section 5. There we show that general work-conserving and priority

fluid networks define strict GFN models. In Section 6 we consider fluid limit models of

queueing networks for a specific class of disciplines and in Section 7 we comment on

linear Skorokhod problems. In Section 8 we explain why the approach of the current

paper is not immediately applicable to FIFO systems. We conclude in Section 9.

We now collect some notations that will be used throughout the paper. By RK+
we denote the nonnegative orthant {x ∈ RK : x ≥ 0}, where ≥ has to be understood

component-wise. Throughout the paper we mostly consider the space (RK+ , ‖ · ‖) with

‖x‖ :=
∑K
i=1 |xi|. Let D(R+,RK+ ) denote the space of right continuous functions f :

R+ → RK+ having left limits that is endowed with the Skorokhod topology [22]. Let

C(R+,RK+ ) be the subset of continuous functions. A sequence of functions, denoted by

(fn(t))n∈N, in D(R+,RK+ ) is said to converge uniformly on compact sets (u.o.c.) to a

continuous function f(t) ∈ C(R+,RK+ ), if for any T > 0

lim
n→∞

sup
t∈[0,T ]

‖fn(t)− f(t)‖ = 0.

We say that a function g : RK+ → R is upper semicontinuous at a ∈ RK+ , if g(a) ≥
lim supx→a g(x). Of course, g is called upper semicontinuous if it is upper semicontin-

uous for every a ∈ RK+ . Further a function g : RK+ → R+ is lower semicontinuous at

a ∈ RK+ if −g is upper semicontinuous at a and g is called lower semicontinuous if g

is lower semicontinuous everywhere. We use  to denote set-valued maps. Let X and

Y denote metric spaces. A set-valued map F : X  Y is a mapping that maps every

x ∈ X into a set F (x), called the value of F at x. The domain of a set-valued map

F : X  Y is the subset of elements x ∈ X such that the values F (x) are non empty, i.e.

dom(F ) = {x ∈ X : F (x) 6= ∅}. The image of F is the union of all values F (x) for all

x ∈ X. The graph of a set-valued map F is graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.
A set-valued map F is said to be closed-valued if the values of F are closed, i.e. for

every x ∈ X the set F (x) is closed. Accordingly, F is said to be convex if the images

are convex. Moreover, a set-valued map F : X  Y is called lower semicontinuous at
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x ∈ dom(F ) if for any y ∈ F (x) and for any sequence of elements (xn)n∈N ∈ dom(F )

converging to x, there exists a sequence (yn)n∈N with yn ∈ F (xn) converging to y. F is

said to be lower semicontinuous if it is lower semicontinuous at every point x ∈ dom(F ).

In addition, a set-valued map F is called upper semicontinuous at x ∈ dom(F ), if for

any open neighborhood U ⊃ F (x) there is an open neighborhood V of x such that for all

x′ ∈ V ∩ dom(F ) it holds that F (x′) ⊂ U . Again F is said to be upper semicontinuous

if it is upper semicontinuous at every point x ∈ dom(F ).

Finally, by K we denote the set of continuous functions w : R+ → R+ that satisfy

w(0) = 0 and are strictly increasing.

2 Generic fluid network models

In this section we consider generic fluid network models introduced by Ye and Chen in

[35]. They present a trajectory-based Lyapunov method for characterizing the stability

of fluid networks, in which the Lyapunov function depends on the path of the closed

GFN model. First we recall from [35] the definition of a closed generic fluid network

(closed GFN) model and the conditions for a function to be a Lyapunov function. Then

we define a candidate for a Lyapunov function that does not depend on the path and

show that in the setting it is not continuous in general. Further we give a counterex-

ample that shows that within the class of closed GFN models the concatenation of two

paths is not automatically contained in a closed GFN model, if the queue lengths at

the time of concatenation coincide.

Definition 1 [35] A nonempty set Φ of functions Q(·) : R+ → RK+ is said to be a

GFN model, if

(a) there is a L > 0, such that for any Q(·) ∈ Φ and t, s ∈ R+ it holds that

‖Q(t)−Q(s)‖ ≤ L |t− s|.

(b) Q(·) ∈ Φ implies 1
rQ(r·) ∈ Φ for all r > 0.

(c) Q(·) ∈ Φ implies Q(s+ ·) ∈ Φ for all s ≥ 0.

Furthermore, if the following condition is also satisfied, then we call Φ a closed GFN

model.

(d) If a sequence (Qn)n∈N ⊂ Φ converges to Q∗ u.o.c, then Q∗ ∈ Φ.

Any element Q(·) of Φ is called a path (of Φ) and the set of paths with initial level

one is denoted by Φ(1) = {Q(·) ∈ Φ : ‖Q(0)‖ = 1}. Condition (a) states that the

functions Q(·) are Lipschitz continuous, where condition (b) is a scaling property and

condition (c) is a shift property. We note that the terminology closed is not related

to closed queueing networks where a fixed number of jobs circulate in the network.

Rather, the content of condition (d) is that the set Φ is closed in the topology of

uniform convergence on compact sets. For future use we also introduce for x ∈ RK+ the

set Φx = {Q(·) ∈ Φ : Q(0) = x}. Moreover we recall from [35] the definition of stability

of a GFN model.

Definition 2 A GFN model Φ is said to be stable, if there exists a τ > 0, such that

Q(τ + ·) ≡ 0 for any path Q(·) ∈ Φ(1).
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From a dynamical systems perspective the definition of stability for a closed GFN

model Φ seems to deviate from the asymptotic stability in the Lyapunov sense, but

we will see that this is not the case. The zero path is said to be asymptotically stable,

provided that

Stability : For every ε > 0 there is a δ > 0 such that ‖x‖ < δ implies that ‖Q(t)‖ < ε

for all t ≥ 0 and for all Q ∈ Φx.

Attractivity : There is an η > 0 such that for all ‖x‖ < η it holds for all Q ∈ Φx that

lim
t→∞

‖Q(t)‖ = 0.

Lemma 1 Φ is stable if and only if the zero path is asymptotically stable in the sense

of Lyapunov.

Proof Suppose that Φ is stable, i.e. there is a τ <∞ such that Q(t) = 0 for all Q ∈ Φ(1)

and all t ≥ τ . Let Q(·) ∈ Φ and denote q := ‖Q(0)‖. The scaling property implies that
1
qQ(q ·) ∈ Φ(1); so that Q(qt) = 0 for all t ≥ τ or equivalently Q(t) = 0 for t ≥ qτ .

This implies limt→∞ ‖Q(t)‖ = 0 and attractivity holds true. Lyapunov stability follows

because by the definition of τ and the Lipschitz constant L given by condition (a) we

have ‖Q(t)‖ ≤ Lτ+1 for all Q ∈ Φ(1), t ≥ 0. By the scaling property it is thus sufficient

to choose δ = (Lτ + 1)−1ε for a given ε > 0.

Conversely, let Q(·) ≡ 0 be asymptotically stable in the sense of Lyapunov. Due to

the scaling property it suffices to consider a Q ∈ Φ(1). Then, by attractivity it holds

that limt→∞ ‖Q(t)‖ = 0. Proceeding exactly as in the proof of Theorem 6.1 in [33] the

assertion follows. ut

The notion of stability of a GFN may also be expressed by saying that the zero

fluid level process Q0(·) ≡ 0 is the unique stable and attractive fixed point of the shift

operator δτQ (·) := Q(τ + ·) defined on Φ.

The Lyapunov method to characterize stability of closed GFN models presented in

[35] is as follows. A GFN model Φ is said to satisfy the L-condition, if there exist class

K-functions wi : R+ → R+, i = 1, 2, 3 such that for any GFN path Q ∈ Φ there exists

an absolutely continuous function vQ : R+ → R+ such that

w1(‖Q(t)‖) ≤ vQ(t) ≤ w2(‖Q(t)‖), (5)

v̇Q(t) ≤ −w3(‖Q(t)‖) (6)

for almost all t ≥ 0. The corresponding converse Lyapunov theorem is then:

Theorem 1 A GFN model Φ is stable if and only if the L-condition is satisfied. In

particular, given Q ∈ Φ the function vQ can be chosen as

vQ(t) :=

∫ ∞
t

‖Q(s)‖ds . (7)

We note that an equivalent way of interpreting v is as a functional on the GFN

model defined by (7) by setting v̄ : Φ → R+, v̄(Q(·)) := vQ(0) . Then it is easy to see

that for v̄ there are comparison functions such that for each path Q(·) ∈ Φ its value

under the functional v̄ can be estimated from below and above by its initial value. That

is, for any Q(·) ∈ Φ it holds that

w1(‖Q(0)‖) ≤ v̄(Q) ≤ w2(‖Q(0)‖) .
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Furthermore, the evolution of v̄(Q) can also be estimated in terms of a comparison

function. Precisely, the mapping t 7→ v̄(Q)(t+ ·) satisfies

d

dt
v̄(δtQ(·)) =

d

dt
v̄(Q(t+ ·)) ≤ −w3(‖Q(t)‖) .

For this reason we refer to v, interpreted as v(0) =: v̄(Q), as a Lyapunov functional.

As mentioned in the introduction the drawback of this definition is that the Lyapunov

functional is path-dependent as opposed to be state-dependent, which is the basic idea

of a Lyapunov function for a dynamical system. The definition of a Lyapunov function

that only uses information of the state is as follows. We denote A(Φ) := {x ∈ RK+ :

∃Q(·) ∈ Φ, Q(0) = x}.

Definition 3 Given a GFN model Φ a function V : A(Φ) → R+ is said to be a

Lyapunov function, if there exist class K functions wi : R+ → R+, i = 1, 2, 3 such that

w1(‖x‖) ≤ V (x) ≤ w2(‖x‖) , x ∈ A(Φ) (8)

V (Q(t))− V (Q(s)) ≤ −
∫ t

s

w3(‖Q(r)‖) dr (9)

for all 0 ≤ s ≤ t ∈ R+ and all paths Q(·) ∈ Φ.

For our purposes a certain candidate is useful; we consider in particular V : A(Φ)→
R+ ∪ {∞} defined by

V (x) = sup
Q(·)∈Φx

∫ ∞
0

‖Q(s)‖ds. (10)

In the sequel we assume that A(Φ) = RK+ . The function V defined in (10) can

be interpreted as a measurement of the state x in the sense that V (x) represents the

total possible fluid mass that the network has to deal with. An interesting question

concerns the regularity of V . Of course, we aim for continuous dependence on the state,

as this would entail robustness of stability, see [34], [26]. Note that for stable closed

GFN models the supremum in (10) is actually attained because of the requirement of

closedness in Definition 1 (d).

Proposition 1 If Φ is a stable closed GFN model, then the function V : A(Φ)→ R+

defined in (10) is well defined and upper semicontinuous.

Proof It is an easy consequence of Lipschitz continuity, scaling property and stability

that V (x) as defined in (10) is finite. Let x ∈ RK+ and (xn)n∈N ⊂ RK+ be a sequence

that converges to x. As Φ is stable the set {V (xn) : n ∈ N} is bounded. Hence there

exists a subsequence (xnl)l∈N such that

lim sup
n→∞

V (xn) = lim
l→∞

V (xnl) = lim
l→∞

∫ ∞
0

‖Qnl(s)‖ds

with Qnl(0) = xnl . Now, consider the family {Qnl(·) : l ∈ N }. Since Φ is stable the

family {Qnl(·) : l ∈ N } is bounded. By condition (a) in Definition 1 there is a single

Lipschitz constant for any path Qnl(·) of the family {Qnl(·) : l ∈ N } and thus the

family is equicontinuous. By the theorem of Arzelà-Ascoli there exists a subsequence
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which converges u.o.c. to some Q∗(·) with Q∗(0) = x. Since the model is closed it

follows that Q∗(·) ∈ Φ. Hence by the definition of V it holds that

lim sup
n→∞

V (xn) = lim
l→∞

∫ ∞
0

‖Qnl(s)‖ds =

∫ ∞
0

‖Q∗(s)‖ds ≤ V (x).

This shows the assertion. ut

As we are interested in the continuity of V the question remains whether V is also

lower semicontinuous.

Example 1 Let K = 2 and

Φ =

{(
(x1 − t)+

(x2 − t)+
)
,

(
(c− 1

2 t)
+

(c− 1
2 t)

+

)
: x1, x2, c ∈ R+

}
.

It is easy to check that Φ is a stable closed GFN model. We consider x0 = (1 , 1)T and

xn = (1 + 1
n , 1− 1

n )T . It holds that

lim
n→∞

V (xn) = lim
n→∞

∫ ∞
0

(1 + 1
n − t)

+ + (1− 1
n − t)

+dt

= lim
n→∞

1
2

(
(1 + 1

n )2 + (1− 1
n )2
)

= 1 < 2 =

∫ 2

0

2(1− 1
2 t)dt = V (x0).

So V defined by (10) is not necessarily lower semicontinuous for stable closed GFN

models.

Remark 1 The example shows that in the context of Definition 1 our candidate V is

not continuous in general. The problem with this example is that along the diagonal a

particular solution exists which is not approximated by solutions starting close to but

not on the diagonal.

The key property of a Lyapunov function V for a dynamical system is, that V is

decreasing along trajectories. The trajectories in the context of closed GFN models are

the paths. The next example addresses this problem. Here the concatenation of paths

plays a key role. For this reason we provide a definition.

Definition 4 Let Φ be a closed GFN model and suppose that Q1(·), Q2(·) are paths

of Φ such that for some t∗ ≥ 0 it holds that Q1(t∗) = Q2(0). Then Q1 �t∗ Q2 defined

by

Q1 �t∗ Q2(t) :=

{
Q1(t) for 0 ≤ t ≤ t∗,
Q2(t− t∗) for t ≥ t∗

is called the concatenation of Q1(·) and Q2(·) at t∗.

In the previous definition note that if Q1(t∗) = Q2(s) for an arbitrary s ≥ 0, then

because of the shift property we can consider the concatenation of Q1(·), Q2(s+ ·). In

this sense evaluation of Q2 at 0 in the definition poses no restriction.
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Example 2 Let K = 2 and define for given x1, x2 ∈ R+ the paths

Q1(t) =



(
x1 − t
x2 + t

)
if 0 ≤ t ≤ x1,(

0

x1 + x2 − t

)+

if t ≥ x1.

and

Q2(t) =



(
x1 + t

x2 − t

)
if t ≤ x2,(

x1 + x2 − t
0

)+

if t ≥ x2.

Then consider the stable closed GFN model

Φ = {Q1(·), Q2(·) : x1, x2 ∈ R+} .

In this GFN model it is obvious that paths cannot be concatenated. However, let us

assume that V is a state-dependent Lyapunov function which is decaying along paths.

The closed GFN model Φ has the following property. For every state z = (z1, z2) there

is a state y = (y1, y2) such that there are two paths that go to zero, where one path

starts in z and passes through y and the other path starts in y and passes through z.

As V is decaying along paths it follows that

V (z) < V (y) and V (y) < V (z),

which is a contradiction.

Example 2 shows that in the framework of Definition 1 there are GFNs that are

stable and for which no Lyapunov function in the sense of Definition 3 can be defined.

It will thus be the aim of the following section to identify situations where this is

possible.

3 A Converse Lyapunov Theorem

In this section we present a way out of the dilemma. We restrict the class of closed GFN

models by adding two conditions, namely a concatenation property and a lower semi-

continuity property. Fluid models with these properties are called strict GFN model.

The main result of this section is that the Lyapunov function candidate (10) is ap-

propriate to prove a converse Lyapunov theorem for the class of strict GFN models.

The road map is as follows. First we present the two additional conditions for the

closed GFN model. After that we show that under this conditions the candidate (10)

is continuous. In the sequel we prove the main theorem. Similar to the closed GFN

model we introduce the following notations Q(1) = {Q(·) ∈ Q : ‖Q(0)‖ = 1} and

Qx = {Q(·) ∈ Q : Q(0) = x} for x ∈ RK+ .

Definition 5 A set Q of functions Q(·) : R+ → RK+ is called a strict GFN model, if

(a’) it is a closed GFN model.
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(e) for GFN paths Q1(·), Q2(·) ∈ Q with Q1(t∗) = Q2(0) for some t∗ ∈ R+, the

concatenation Q1 �t∗ Q2(·) is also a path of Q.

(f) there is a T > 0 such that the set-valued map x Qx
∣∣
[0,T ]

is lower semicontinuous.

It is possible that a closed GFN model satisfies (e) and not (f). We do not introduce

yet another name for such GFN models but simply speak of a closed GFN model

satisfying (e).

Remark 2 We note for further reference, that for GFN models satisfying (e) the semi-

continuity condition (f) can be stated equivalently as:

(f’) For each x0 so that Qx0 6= ∅ there exists a T (x0) > 0 such that the set-valued map

x Qx
∣∣
[0,T (x0)]

is lower semicontinuous at x0.

It is clear that (f) implies (f’). Conversely, note first that the uniform Lipschitz constant

guaranteed by Definition 1 (a) implies that if a sequence of paths (Qn(·))n∈N converges

u.o.c. on an interval [0, T1), T1 < ∞, then the sequence converges uniformly on the

closed interval [0, T1]. Now fix any T > 0, x0 and a T0 := T (x0) such that (f’) holds.

Choose Q(·) ∈ Qx0 and a sequence (xn)n∈N converging to x0. We have to construct a

sequence Qn(·) ∈ Qxn such that Qn(·)→ Q(·) uniformly on [0, T ]. We may assume that

T0 < T as otherwise there is nothing to show. By assumption there exist Q1
n(·) ∈ Qxn

such that Q1
n(·) → Q(·) uniformly on [0, T0]. In particular, Q1

n(T0) → Q(T0). By the

shift property Q(T0 + ·) ∈ QQ(T0) and so for T1 := T (Q(T0)) we may by (f’) choose a

sequence Q̃1
n(·) ∈ QQ1

n(T0) such that Q̃1
n(·)→ Q(T0 + ·) uniformly on [0, T1].

Now define the concatenation Q2
n := Q1

n �T0
Q̃1
n(·) and note that Q2

n(·) → Q(·)
uniformly on [0, T0 + T1]. Repeating this step countably often, we can construct an

open interval [0, T̄ ) such that there exist Q̄n(·) ∈ Qxn such that Qn(·) → Q(·) u.o.c.

on [0, T̄ ). Assume that T̄ < ∞ is chosen as the maximal real for which this u.o.c.

convergence is possible.

Then by our first remark Qn(·) → Q(·) uniformly on [0, T̄ ]. Then we can repeat

the argument and extend the uniform convergence to the interval [0, T̄ + T (Q(T̄ ))].

This contradicts the assumption that T̄ was chosen to be maximal. This shows the

equivalence, as T̄ can be arbitrarily large and so chosen to be bigger than T . ut

We have seen that the absence of certain concatenations is an impediment to the

existence of Lyapunov function in Example 2. Next we show that conditions (e) and

(f) close the gap from upper semicontinuity to continuity.

Proposition 2 If Q is a stable strict GFN model, then V defined in (10) is continuous.

Proof We show that V is lower semicontinuous as the continuity of V then follows

together with Proposition 1. Let x∗ ∈ RK+ and Q∗(·) ∈ Qx∗ be such that

V (x∗) =

∫ ∞
0

‖Q∗(s)‖ds.

Further let (xn)n∈N be a sequence that converges to x∗. By condition (f) in Definition 5

there exists a T > 0 and a sequence
(
Qn(·)

∣∣
[0,T ]

)
n∈N

in Qxn

∣∣
[0,T ]

that converges uni-

formly to Q∗(·)
∣∣
[0,T ]

. In particular, x1n := Qn(T )
∣∣
[0,T ]

converges to x1 := Q∗(T )
∣∣
[0,T ]
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as n → ∞. Moreover, for Q1
∗(·)
∣∣
[0,T ]

∈ Qx1

∣∣
[0,T ]

such that Q1
∗(·)
∣∣
[0,T ]

= Q∗(·)
∣∣
[T,2T ]

condition (f) yields the existence of a sequence Q1
n(·) ∈ Qx1

n

∣∣
[0,T ]

satisfying

lim
n→∞

Q1
n(·)

∣∣
[0,T ]

= Q1
∗(·)
∣∣
[0,T ]

uniformly .

Using the concatenation property (e) we have a sequence (Qn(·)|[0,2T ])n∈N ∈ Qxn |[0,2T ]

that converges u.o.c. to Q∗(·)|[0,2T ] ∈ Qx∗ |[0,2T ]. A successive continuation in this

manner yields the existence of a sequence Qn(·) ∈ Qxn that converges u.o.c. to Q∗(·) ∈
Qx∗ . As Q is stable and using the same arguments as in the proof of Proposition 1 we

have

V (x∗) =

∫ ∞
0

‖Q∗(s)‖ds = lim
n→∞

∫ ∞
0

‖Qn(s)‖ds ≤ lim inf
n→∞

V (xn).

That is, V is lower semicontinuous. ut

Now we state the main theorem.

Theorem 2 A strict GFN model Q is stable if and only if it admits a Lyapunov

function. In particular, V can be chosen as

V (x) = sup
Q(·)∈Qx

∫ ∞
0

‖Q(s)‖ds

and V is continuous.

Proof First we show that the existence of a Lyapunov function is sufficient for stability.

Let V be a Lyapunov function forQ and fixQ ∈ Q. From (8) it follows that V (Q(t)) ≥ 0

and inequality (9) implies that

V (Q(t2))− V (Q(t1)) ≤ 0

for all t1 ≤ t2 ∈ R+. So V (Q(·)) is monotone decreasing and bounded. In order to

show that V (Q(t)) tends to zero as t goes to infinity assume that

lim
t→∞

V (Q(t)) =: c > 0.

Then for all t ≥ 0 it holds that

0 < c ≤ V (Q(t)) ≤ w2(‖Q(t)‖) (11)

and further 0 < w−12 (c) ≤ ‖Q(t)‖. It also holds that

0 < w3(w−12 (c)) ≤ w3(‖Q(t)‖).

Now observe that from (9) it follows that

V (Q(t))− V (Q(0)) ≤ −
∫ t

0

w3(‖Q(s)‖)ds ≤ −
∫ t

0

w3(w−12 (c))ds ≤ −w3(w−12 (c)) t

and hence limt→∞ V (Q(t)) = −∞, which is a contradiction to (11). Consequently

lim
t→∞

V (Q(t)) = 0. (12)
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By (8) it follows that limt→∞ ‖Q(t)‖ = 0. So the zero path is attractive. As Lyapunov

stability follows from (8), Lemma 1 implies the stability of the strict GFN model Q.

Conversely suppose that Q is stable. Then there is a τ > 0 such that Q(τ + ·) ≡ 0

for all paths Q ∈ Q(1). We define the following comparison functions

w1(r) :=
r2

2L
, w2(r) := r2 (1 + Lτ) τ, w3(r) := r

and show that our candidate

V (x) = sup
Q(·)∈Qx

∫ ∞
0

‖Q(s)‖ds

is a Lyapunov function. As Q satisfies the Lipschitz condition (a) it follows that

‖Q(s)‖ ≥ ‖Q(t)‖ − L(s− t) (13)

for all Q ∈ Q and s ≥ t. In particular for t = 0 this implies

‖Q(s)‖ ≥ ‖Q(0)‖ − Ls. (14)

Using the last inequality we get the following estimate from below

V (x) = sup
Q(·)∈Qx

∫ ∞
0

‖Q(s)‖ ds ≥ sup
Q(·)∈Qx

∫ ‖x‖
L

0

‖Q(s)‖ ds

≥ sup
Q(·)∈Qx

∫ ‖x‖
L

0

(‖x‖ − Ls ) ds

= sup
Q(·)∈Qx

{
‖x‖‖x‖

L
− ‖x‖

2

2L

}
=
‖x‖2

2L
= w1(‖x‖).

To obtain an estimate from above consider Q ∈ Qx. Note that by the scaling property

it follows that 1
‖x‖ Q(‖x‖·) ∈ Q(1) and further the stability of Q implies that

Q(s) = 0 ∀ s ≥ ‖x‖τ. (15)

The triangle inequality together with the Lipschitz condition imply that for all s ∈
[0, ‖x‖τ ] it holds that

‖Q(s)‖ ≤ ‖Q(0)‖ + L‖x‖τ = ‖x‖ (1 + Lτ). (16)

With (15) and (16) an estimate from above is derived as follows

V (x) = sup
Q(·)∈Qx

∫ ‖x‖τ
0

‖Q(s)‖ ds ≤ sup
Q(·)∈Qx

∫ ‖x‖τ
0

‖x‖ (1 + Lτ) ds

= ‖x‖2 (1 + Lτ) τ = w2(‖x‖).

Now consider the decrease condition

V (Q(t2))− V (Q(t1)) = sup
Q(·)∈QQ(t2)

∫ ∞
0

‖Q(s)‖ ds− sup
Q(·)∈QQ(t1)

∫ ∞
0

‖Q(s)‖ ds.
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From condition (e) it follows that

V (Q(t1)) = sup
Q(·)∈QQ(t1)

∫ ∞
0

‖Q(s)‖ ds

≥
∫ t2

t1

‖Q(s)‖ ds+ sup
Q(·)∈QQ(t2)

∫ ∞
0

‖Q(s)‖ ds

=

∫ t2

t1

‖Q(s)‖ ds+ V (Q(t2)).

And hence

V (Q(t2))− V (Q(t1)) ≤ −
∫ t2

t1

‖Q(s)‖ ds = −
∫ t2

t1

w3(‖Q(s)‖) ds.

Thus together with Proposition 2 we see that V is a Lyapunov function. ut

From the proof of the previous theorem we see that the semicontinuity property

(f) is only needed to conclude continuity of V . Thus we have also proved

Corollary 1 A closed GFN model Φ that satisfies the concatenation property (e) is

stable if and only if it admits a Lyapunov function. In particular V can be chosen as

in (10) and V is upper semicontinuous.

Remark 3 It is possible to derive robustness results from the existence of continuous

Lyapunov functions, see [26], [34], which provide stability results for a system subject

to perturbations. This is not true if Lyapunov functions are merely semicontinuous. In

this sense the result of Corollary 1 provides less information about closed GFNs. On

the other hand we may expect that closed GFNs not satisfying (f) may have unpleasant

properties when it comes to the analysis of perturbations.

4 Fluid networks as differential inclusions

We want to apply the main theorem to fluid network models that work under a specific

discipline. So we need to show that the additional conditions (e) and (f) are satisfied in

each case. In order to obtain condition (e) we make use of concepts from the theory of

differential inclusions. Clearly a detailed description of the dynamics of a fluid network

depends on the specific discipline that is used. But one part of the dynamics of fluid

network models that all service disciplines have in common is the flow balance relation

Q(t) = Q(0) + αt− (I − PT )MT (t). (17)

Here α ∈ RK+ represents the inflow rate, µ ∈ RK+ denotes the outflow rate, M = diag(µ)

and P is the routing matrix. The initial value or level of the fluid network is given by

Q(0) = x. A basic property of the fluid level process Q(·) as well as the allocation

process T (·) is that both processes are Lipschitz continuous [7] and hence differentiable

almost everywhere by Rademacher’s Theorem. So for almost all t ∈ R+ the flow balance

relation (17) can also be written as

Q̇(t) = α− (I − PT )MṪ (t), Q(0) = x. (18)
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Now we consider the derivative of the allocation process as the control variable, i.e. we

define u(t) := Ṫ (t) a.e. Note that u is measurable. The allocation process is determined

through the service discipline. So each service discipline has a set of admissible controls

U(Q), where u ∈ U(Q) if and only if u ∈ RK+ satisfies some allocation conditions

that are specific to the discipline. As mentioned in [7] the allocation process need

not be unique and so for every Q ∈ RK+ there are different choices of u possible.

But the admissible control values u depend on the fluid level Q through the allocation

conditions. Consequently we consider the set of admissible control values as a set U(Q).

Thus, the flow balance relation (18) can also be expressed by a differential inclusion of

the form

Q̇(t) = α− (I − PT )Mu(t) =: f(Q(t), u(t)), Q(0) = Q0

with u(t) ∈ U(Q(t)). Often U is referred to as the feedback map. By setting

F (Q) = {f(Q, u) : u ∈ U(Q)} (19)

we rewrite this as a closed loop differential inclusion

Q̇(t) ∈ F (Q(t)), Q(0) = Q0. (20)

In the following we state some results from the theory of differential inclusions that

will be useful to show that specific fluid networks satisfy the conditions (e) and (f).

Let K ⊂ Rn and consider the differential inclusion

ẋ(t) ∈ F (x(t)). (21)

Let SF (x0) denote the set of solutions to (21) starting at x0 ∈ K. The existence

theorem is as follows [32, Theorem 5.2].

Theorem 3 Let K ⊂ Rn be a closed set. Assume that the set-valued map F : K  Rn
with closed convex values contained in a ball of radius b > 0 is upper semicontinuous.

Then the following conditions are equivalent.

(1) For any x0 ∈ K there is a solution x(·) ∈ SF (x0) satisfying x(t) ∈ K for all t ≥ 0.

(2) For any x ∈ K it holds that F (x) ∩ TK(x) 6= ∅.

Here TK(x) denotes the contingent cone to K ⊂ Rn at x, which is defined as the set of

v ∈ Rn such that there is a sequence (hn)n∈N ⊂ int(R+) converging to 0 and a sequence

(vn)n∈N ⊂ Rn converging to v such that for all n ∈ N it holds that x+ hn vn ∈ K. A

useful criterion to conclude upper semicontinuity of a parameterized set-valued map is

the following [2, Proposition 1.4.14].

Proposition 3 Let X,Y and Z be metric spaces and U : X  Z be a set-valued

map. Assume that f : graph(U)→ Y is continuous. If U is upper semicontinuous with

compact values then F : X  Y defined by

F (x) := {f(x, u) : u ∈ U(x)}

is upper semicontinuous.
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5 Applications to some fluid networks

In this section we show that our main result can be applied to some special fluid

networks. In particular, we show that fluid networks under general work-conserving and

priority disciplines satisfy the additional conditions (e) and (f) given in Definition 5.

The following description of a fluid network is taken from [35]. A fluid network consists

of K different fluid classes and J stations, where the fluids are served. There is a

(not necessarily injective) map s that prescribes which fluid class is served at which

station. Fluid class k is exclusively served at station s(k). For every station the set

C(j) := {k ∈ {1, ...,K} : s(k) = j} can without loss of generality assumed to be

nonempty. The corresponding J×K matrix C is called the constituency matrix, where

cjk = 1 if s(k) = j and zero else. Further we introduce two nonnegative vectors

α, µ ∈ RK+ and a K × K substochastic matrix P , where αk denotes the exogenous

inflow rate of fluid class k and µk denotes the potential outflow rate of fluid class k.

The matrix P will be referred to as the routing matrix. The element pkl of P denotes

the proportion of the outflow of class k which turns into fluid class l. So 1−
∑K
l=1 pkl

is the part of the outflow of class k that leaves the network. The routing matrix is

assumed to have spectral radius strictly less than one, i.e. all fluids eventually leave

the network. The initial fluid level is represented through the K-dimensional vector

Q0. The fluid network is described by (α, µ, P,C) with initial fluid level Q0. The time-

evolution is described by the K-dimensional fluid level process {Q(t) : t ≥ 0} and

the K-dimensional allocation process {T (t) : t ≥ 0}, where Qk(t) denotes the amount

of class k fluids in the network at time t and Tk(t) denotes the total amount of time

during the interval [0, t] that station s(k) has devoted to serve fluid class k. We note that

the processes are Lipschitz continuous and hence differentiable almost everywhere. A

precise description of the dynamics of a fluid network depends on the service discipline.

5.1 Fluid networks under general work-conserving disciplines

The dynamics of a fluid network under a general work-conserving service discipline can

be summarized as follows

Q(t) = Q0 + α t− (I − PT )MT (t) ≥ 0, (22)

T (0) = 0 and T (·) is nondecreasing, (23)

I(t) = et− C T (t) and I(·) is nondecreasing, (24)

0 =

∫ ∞
0

(C Q(t))T dI(t), (25)

where M = diag(µ) and e =
(
1 . . . 1

)T ∈ RJ+. Equation (25) describes the work-

conserving property of the network and relation (22) is called the flow balance relation.

In general the allocation process is not unique. Any pair (Q(·), T (·)) that satisfies (22)-

(25) is called fluid solution of the work-conserving fluid network. The set of all feasible

fluid level processes is denoted as

QC = {Q(·) : ∃T (·) such that (Q(·), T (·)) is a fluid solution }.

To prove the existence of a work-conserving allocation process we bring the conditions

(23)-(25) into the context of differential inclusions. To this end, we define Ṫ (t) =: u(t)
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and consider the differential form of the flow balance equation

Q̇(t) = α− (I − PT )Mu(t). (26)

For Q ∈ RK+ the conditions defining the admissible values of u are

u ≥ 0, e− Cu ≥ 0, (CQ)T · (e− Cu) = 0 . (27)

These are immediate consequences of (23), (24) and (25) in their differentiation. Note

the discontinuity of these conditions on the boundary of RK+ , because in this case zeros

may appear in (CQ)T . Ignoring the condition Q(t) ≥ 0 in (22) for the moment the set

of admissible controls is

UC(Q) :=
{
u ∈ RK : (27) is satisfied

}
.

The advantage of this formulation is that it automatically yields an upper semicon-

tinuous map; positivity of solutions can then be guaranteed using a condition on the

contingency cone of x ∈ RK+ and Theorem 3 as explained below. Using f(Q, u) :=

α− (I − PT )Mu this leads to a differential inclusion of the form

Q̇(t) ∈ {f(Q(t), u) : u ∈ UC(Q(t))} . (28)

For brevity, we define the following set-valued map F : RK+  RK by

F (Q) = {f(Q, u) : u ∈ UC(Q)} (29)

so that the corresponding differential inclusion compactly reads as

Q̇(t) ∈ F (Q(t)), Q(0) = Q0. (30)

Using this approach we are able to give an alternative proof for the Theorem 2.1 in [7].

Theorem 4 For any work-conserving fluid network (α, µ, P,C) with an initial level

Q0 the set QC is nonempty.

Proof From the conditions (27) it follows that the set UC(Q) is compact and convex

and upper semicontinuous. Further, the set-valued map UC(·) is upper semicontinuous

and f(Q, u) is continuous. Hence, by Proposition 3 the set-valued map F is upper

semicontinuous. Moreover, F has closed convex values that are contained in some ball

with radius b > 0. Also the conditions (27) imply that F (Q) ∩ TRK
+

(Q) 6= ∅ for all

Q ∈ RK+ . Then by Theorem 3 there exists a solution to (30). To show the existence

of an allocation T let Q(·) be a solution to (30). Note that f(Q, u) is continuous in

u and that U(t) := {u ∈ RK+ : e − Cu ≥ 0, (C Q(t))T (e − Cu) = 0} is closed and

bounded. Also, we note that t U(t) is upper semicontinuous. Then, by the Filippov

measurable selection Lemma in [23, p. 78/79], there is a measurable selection u(·) of

t 7→ UC(Q(t)) such that u(t) ∈ UC(Q(t)) a.e. and

Q̇(t) = α− (I − PT )M u(t) for almost all t ≥ 0.

Thus, integrating the latter yields that, given the initial value Q0, the pair (Q(·), T (·))
with T (t) :=

∫ t
0
u(s)ds is a fluid solution. ut
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So, we can represent the set of work-conserving fluid level processes by

QC = {Q(·) ∈ SF (Q0) : Q0 ∈ RK+ }.

In [35] it is shown that QC defines a closed GFN model. So we only have to prove that

the conditions (e) and (f) are satisfied.

Proposition 4 The set of fluid level processes QC satisfies the concatenation property.

Proof Since solutions of differential inclusions are by definition absolutely continuous

functions, and concatenation preserves absolute continuity the assertion follows. ut

To show that condition (f) is satisfied we need to show that the solution map is

lower semicontinuous.

Theorem 5 The set of fluid level processes QC satisfies the lower semicontinuity prop-

erty (f).

Proof To show condition (f) we have to verify the existence of a T > 0 such that

Q0  SF (Q0)|[0,T ] is lower semicontinuous. In view of Remark 2 and Proposition 4 it

is sufficient to construct for each Q0 a T (Q0) > 0 such that (f’) holds.

To this end, let Q0 ∈ RK+ be fixed, Q(·) ∈ SF (Q0). Then, by the proof of Theorem 4

there exists a function u(·) ∈ U(Q(·)) such that

Q(t) = Q0 + α t− (I − PT )M

∫ t

0

u(s)ds. (31)

We distinguish the following situations.

First, suppose that Q0 ∈ RK+ and all stations have some nonempty queues, i.e.

CQ0 > 0, where this inequality has to be understood componentwise. Choose T (Q0) >

0 such that for all k with Q0k > 0 we have Qk(t) > 0 on [0, T (Q0)]. We note that

(CQ)T · (e− Cu) = 0 from (27) also reads as

J∑
j=1

 ∑
l∈C(j)

Ql ·

1−
∑
l∈C(j)

ul

 = 0.

Since both factors are nonnegative and, in fact, CQ(t) > 0 for t ∈ [0, T (Q0)], it holds

by (27) that

1 =
∑
l∈C(j)

ul(·)|[0,T (Q0)] =: eTj Cu(·)|[0,T (Q0)] (32)

for all j = 1, ..., J . Let (Qn0 )n∈N be a sequence of initial values converging to Q0.

Consider the functions

Qn(t) := Qn0 + α t− (I − PT )M

∫ t

0

u(s)ds (33)

= Q(t) + (Qn0 −Q0) . (34)

The selection u clearly satisfies the constraint (27), so ifQn is nonnegative on [0, T (Q0)],

it defines a fluid solution on that interval. We claim that this is the case for n large

enough. Indeed (34) shows for the indices k for which Q0k = 0 that Qnk (t) ≥ Qk(t) ≥ 0,
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while if Q0k > 0, then by the choice of T (Q0) we have Qk(t) > 0 on [0, T (Q0)]. And so

for n sufficiently large Qn(t) > 0. As Qn → Q uniformly on [0, T (Q0)] we obtain that

Q SF (Q)|[0,T (Q0)] is lower semicontinuous at Q0.

Second, suppose that the initial fluid level at some stations is zero. We first treat the

case of a single station with empty queues. Without loss of generality let this station

be j = 1 and let a denote the set of classes which are served at station 1. Then, the

last constraint in (27) is not active for station 1 and therefore the constraints for fluid

classes k ∈ a are given by

uk ≥ 0, 1−
∑
l∈a

ul ≥ 0. (35)

However, since Q(·) is a solution to the differential inclusion (30) potentially only

a proper subset of (35) is feasible. If this condition enforces equality in the second

constraint in (35), then we can argue as in (32) on a sufficiently small time interval

and the previous argument applies again. The interesting case is when there is idle

capacity at station j = 1. Here uk(·) ≥ 0 are such that
∑
l∈a ul(·) < 1 and that the

fluid levels of classes k ∈ a remain nonnegative. Using b := {1, ...,K}\a the differential

form of the flow balance equation (22) can be expressed in block form by[
Q̇a(t)

Q̇b(t)

]
=

[
αa
αb

]
+

[
PTa PTab
PTba P

T
b

] [
Ma 0

0 Mb

] [
ua(t)

ub(t)

]
−
[
Ma 0

0 Mb

] [
ua(t)

ub(t)

]
.

The nonnegativity of the fluid levels for classes l ∈ a yields the following condition

0 ≤ αa + PTabMb ub(·)− (Ia − PTa )Ma ua(·),

which also reads as

ua(·) ≤M−1a (Ia − PTa )−1 (αa + PTabMb ub(·)).

As eTj CQ0 > 0 for j 6= 1 then, arguing as in (32) there is a T (Q0) > 0 such that

the allocation rates corresponding to fluid classes present at the stations j 6= 1 satisfy∑
l∈C(j) ul(·)|[0,T (Q0)] = 1. Let ε > 0 be fixed, so that if ‖Q0 − Q‖ < ε then Qk > 0

when Q0,k > 0. Now, for another initial value Q1
0 with ‖Q0 − Q1

0‖ < ε we consider

u1(·) := (ua(·) + v(·) , ub(·))T , where v(·) takes values in R|a| such that∑
l∈a

ul(t) + vl(t) = 1 if eT1 CQ
1(t) > 0, (36)

and v(t) = 0 otherwise. Then, we consider the solution Q1(·) associated with u1(·) and

Q1
0, i.e.

Q1(t) = Q1 + α t− (I − PT )M

∫ t

0

[
ua(s) + v(s)

ub(s)

]
ds

= Q1 −Q0 +Q(t)− (I − PT )M

∫ t

0

[
v(s)

0

]
ds.

So, the difference between the solutions Q(·) and Q1(·) is given by

Q1(t)−Q(t) = Q1
0 −Q0 +

∫ t

0

[
PTa Mav(s)

PTbaMav(s)

]
−
[
Mav(s)

0

]
ds.
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In particular, as Q0,a = 0 we have that

Q1
a(t)−Qa(t) = Q1

0,a − (I − PTa )Ma

∫ t

0

v(s) ds.

Hence, if Q1
0,a > 0 the nonnegativity of (I − PTa )Ma and v(·) imply that there is a

r ≥ 0 such that

Q1
0,a − (I − PTa )Ma

∫ r

0

v(s) ds = 0. (37)

We will assume that v(·) is chosen so that the time in which (37) is achieved is minimal.

Thus, given a sequence of initial values (Qn0 )n∈N converging to Q0 and in particular

Qn0,a converging to zero, we define

rn := min{r ≥ 0 : vn(·) satisfies (36) and (37)}

and

un(t) :=

{
(ua(t) + vn(t) ub(t) )T for 0 ≤ t ≤ rn,
(ua(t) ub(t) )T for t > rn.

Further, we note that (37) implies that if Qn0,a converges to Q0,a = 0 it holds that

rn converges to zero as well. Hence, we have that un(·) converges to u(·) and con-

sequently Qn(·) converges uniformly to Q(·) on [0, T (Q0)], i.e. Q(·)|[0,T (Q0)] depends

lower semicontinuously on Q0.

The cases where more than one stations have empty queues follows the same line

of reasoning. Finally, the assertion follows from Remark 2. ut

Summarizing we obtain.

Theorem 6 General work-conserving fluid networks define strict GFN models. In par-

ticular, it is stable if and only if it admits a continuous Lyapunov function.

5.2 Fluid networks under priority disciplines

The priority service discipline assigns different priorities to the fluid classes that are

served at one station, [35]. This is done via a permutation mapping π : {1, ...,K} →
{1, ...,K}. To be precise, let s(l) = s(k) for l, k ∈ {1, ...,K} then fluids of class l have

higher priority than fluids of class k, if π(l) < π(k). That is, fluids of class k are not

served as long as the fluid level of class l is greater than zero. For each k ∈ {1, ...,K} the

set of fluid classes that are served at the same location s(k) and have higher priority is

denoted by Πk := {l ∈ {1, ...,K} : l ∈ C(s(k)), π(l) ≤ π(k)}. To derive a description

of fluid networks under the priority discipline π we consider the unused capacity process

Y (t). Namely, Yk(t) is denotes the cumulative remaining capacity of location s(k) for

serving fluids of classes that have strictly lower priority than fluids of class k. The

dynamics can be described as follows

Q(t) = Q0 + α t− (I − PT )MT (t) ≥ 0, (38)

T (0) = 0 and T (·) is nondecreasing, (39)

Yk(t) = t−
∑
l∈Πk

Tl(t) and Y (·) is nondecreasing, k ∈ {1, ...,K}, (40)

0 =

∫ ∞
0

Qk(t) dYk(t), k ∈ {1, ...,K}. (41)
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Any pair (Q(·), T (·)) that satisfies (38)-(41) is called a fluid solution of the fluid network

under the priority discipline π. The set of all feasible fluid level processes is denoted

by

QP = {Q(·) : ∃T (·) such that (Q(·), T (·)) is a fluid solution }.

Again we bring this into the context of differential inclusions by setting Ṫ (t) = u(t).

The constraints for k ∈ {1, ...,K} are here

uk ≥ 0, 1−
∑
l∈Πk

ul ≥ 0, Qk · (1−
∑
l∈Πk

ul) = 0 (42)

and the set of admissible controls is

UP (Q) :=
{
u ∈ RK+ : (42) is satisfied for all k ∈ {1, ...,K}

}
.

Using the same line of reasoning we conclude the following.

Theorem 7 The set QP is nonempty and satisfies the lower semicontinuity property.

In order to prove that QP is a strict GFN model it remains to show that the

concatenation property holds, as the validity of the conditions (a)-(d) is shown in [35,

Lemma 3.5]. Using results from differential inclusions we obtain the following result.

Proposition 5 The set QP satisfies the concatenation property.

Thus we may conclude.

Theorem 8 The fluid network under priority discipline QP is a strict GFN model. It

is stable if and only if it admits a continuous Lyapunov function.

6 Fluid limit models of queueing networks

A further class of interest are fluid limit models of queueing networks. For this class

the open question remained whether they define closed GFN models [35]. As we will

see, taking the closure with respect to uniform convergence on compact sets does not

change the stability properties. In this way we obtain from fluid limit models closed

GFN models. We state a condition for which we conjecture that it guarantees condition

(e) but so far a proof has remained elusive.

A queueing network consists of J stations that serve K classes of customers. For

each class k ∈ {1, ...,K} the interarrival times are denoted by {ξk(n) : n ≥ 1} and

the service times are given by {ηk(n) : n ≥ 1}, where n ∈ N denotes the place in the

sequence of customers of the considered class. It is possible that for some customer

classes k no exogenous arrivals take place, then the interarrival time ξk(n) =∞ for all

n. The set of customers with exogenous arrivals is denoted by

E := {k ∈ {1, ...,K} : ξk(n) <∞, n ≥ 1}.

Further the waiting buffer at each station is assumed to have infinite capacity. The

random variables above are defined on some probability space (Ω,F ,P). The following

assumptions on the interarrival times ξk and service times ηk are made.

ξ1, ..., ξK , η1, ..., ηK are i.i.d. and mutually independent. (A1)
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The first moments are assumed to be finite, i.e.

α−1k = E[ ξk(1) ] <∞ ∀ k ∈ {1, ...,K},

µ−1k = E[ ηk(1) ] <∞ ∀ k ∈ E .
(A2)

The interarrival times are assumed to be unbounded and spread out, i.e. for each

k ∈ E there exists some integer jk ∈ N and some function pk : R+ → R+ with∫∞
0
pk(x)dx > 0, such that P[ ξk(1) ≥ x ] > 0 for all x > 0 and

P

[
a ≤

jk∑
i=1

ξk(i) ≤ b

]
≥
∫ b

a

pk(x)dx ∀ 0 ≤ a < b. (A3)

Let φk(n) be the routing vector for the nth customer of class k who finishes service at

the station s(k). So φk(n) is aK-dimensional Bernoulli random variable with parameter

PTk . The corresponding routing matrix P is assumed to have spectral radius strictly

less that one. Further, it is assumed that for each k ∈ {1, ...,K} the routing process

φk = {φk(n) : n ≥ 1}

is i.i.d., φ1, ..., φK are independent and independent of the arrival processes and service

processes. The evolution of the queueing network is described by a Markov process

X = {X(t), t ≥ 0} with state space (X ,BX ) defined on (Ω,F). Further, X is adapted

to the filtration (Ft)t∈R+ and the probability measures {Px, x ∈ X} on (Ω,F) satisfy

Px[X(0) = x] = 1 for all x ∈ X . In general the states are given by points

X ⊂ Z∞+ ×R2K+|E|
+ ,

where |E| denotes the cardinality of E and Z∞+ denotes the set of finitely terminating

sequences in ZK = {1, 2, ...,K}. For instance, for priority queueing networks the state

space is a subset of ZK+ × RK+|E|
+ . For further details see [6,13]. Analogously to the

fluid models there is a set of equations that embraces most of the network dynamics.

Consequently, Qx(t) ∈ D(R+,RK+ ) denotes the queue length process and Tx(t) ∈
D(R+,RK+ ) denotes the allocation process. The superscript x expresses the initial state

x = (q, u, v), where vectors q, u and v denote the queue length, the residual interarrival

time, and the residual service time. Consider a pair of sequence (rn, xn)n∈N, where

xn ∈ X is a sequence of initial states and rn ∈ R+ such that

lim
n→∞

rn =∞ , lim sup
n→∞

‖qn‖
rn

<∞ , lim
n→∞

‖un‖
rn

= lim
n→∞

‖vn‖
rn

= 0. (43)

In [6,13] it is shown that under the assumptions (A1)-(A3) for almost all sample paths

ω ∈ Ω and any pair of sequence (rn, xn)n∈N satisfying (43) there is a subsequence such

that almost surely

1

rnj

(Q
xnj (rnj t), T

xnj (rnj t)) −→ (Q(t), T (t)) u.o.c. as j →∞, (44)

where Q(·), T (·) ∈ C(R+,RK+ ). For a fixed queueing discipline any limit Q(·) is called

a fluid limit path of the discipline with initial level Q(0), if (Q(t), T (t)) are limits in

the sense above. The set of all such fluid limits Q is denoted by QL. We define the fluid

limit model as the closure with respect to uniform convergence on compact intervals

of QL and denote it by QL.
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Lemma 2 The fluid limit model QL is stable if and only if QL is stable.

Proof Obviously, if QL is stable then QL is stable. Conversely, assume that QL is

stable. Let Q∗(·) ∈ QL \QL and Qn(·) ∈ QL be a sequence such that Qn(·) → Q∗(·)
u.o.c. as n→∞. Since QL is stable there is a uniform τ > 0 such that Qn(τ + ·) ≡ 0

for all n ∈ N. It follows for all t ≥ τ that

Q∗(t) = lim
n→∞

Qn(t) = 0

and the proof is completed. ut

Proposition 6 The fluid limit model QL defines a closed GFN model.

Proof The Lipschitz continuity and the scaling property are shown in [35]. To show

the shift property we follow an idea that is due to [29, Section 9.2.3]. Let FL(q) denote

the set of fluid limits with initial level q, i.e.

FL (q) := {Q : R+ → RK+ : Q(t, q) = lim
n→∞,

1

rn
Qxn(rn t) , Q(0) = q }.

We fix a pair of sequences (rn, xn)n∈N that satisfies (43) and limn→∞
xn
rn

= (q, 0, 0).

Then, by the Skorokhod’s Theorem [29, Theorem C.6] we have along a subsequence

lim
k→∞

1

rnk

Qxnk (rnk t) = Q
nk

(t, q) ∈ FL(q)

a.s. in the Skorokhod topology. The superscript to the fluid limit expresses the de-

pendence on the particular sequence. Moreover, by the Markov property we have the

following equality in distribution

Qxnk (rnk (t+ s))
d
= QQ

xnk (rnk
s)(rnk t). (45)

Also, by Proposition 3.5.2 in [22] and as t 7→ Q
nk

(t, q) is continuous it holds that

lim
k→∞

1

rnk

Qxnk (rnks) = Q
nk

(s, q) a.s.

Consequently, dividing (45) by rnk and taking limits yields that

Q
nk

(t+ s)
d
= Q

nk
(t, Q

nk
(s))

and hence we have

Q
nk

(·+ s, q) ∈ FL (Q
nk

(s, q) ) .

This shows the assertion. ut

In the following we consider queueing networks under disciplines that are memo-

ryless in the sense that the allocation process T of the fluid limit model at a time t

does only depend on the queue length at that time t. In particular, it does not require

information of the past. In terms of the fluid limit models described in [13] this means

that only the fluid level at a given time is needed to describe the evolution of the fluid

level process. Note that this explicitly excludes a number of disciplines as e.g. FIFO

networks. We will comment on FIFO fluid networks in Section 8. We also note that

the problem of concatenating fluid limits was also addressed by A. Stolyar [33] and
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Ph. Robert [29, Section 9.2.3]. In [33] it is shown that if the queueing disciplines in

every station satisfy a certain ’uniqueness condition’ on the disciplines of the individ-

ual servers the concatenation property holds. However, there the definition of state is

different, because the state as used in [33] includes the past trajectory of the queue.

Furthermore, in [29] concatenation is possible if the fluid limits going through a certain

queue level Q are unique.

Remark 4 Consider a queueing network with a memoryless discipline. We conjecture

that in this case the fluid limit model QL satisfies the concatenation property. Unfor-

tunately, this claim has shown some resilience towards attempts of proof.

Due to fact that QL is closed by definition we would obtain the following result.

Conjecture The fluid limit model of a ”memoryless” discipline defines a GFN model

satisfying (e). It is stable if and only if it admits an upper semicontinuous Lyapunov

function.

The conjecture holds true for the systems considered in [29], but unfortunately, the

interesting fluid limits do not have unique paths. As to the question of under which

conditions fluid limit models satisfy condition (f) we dare not venture a conjecture.

7 The linear Skorokhod problem

Another possible way to approximate a multiclass queueing network is to consider

the so called diffusion limit. This limit can be regarded as a semi-martingale reflected

Brownian motion (SRBM). Similar to the fluid limit, a sufficient condition for the

stability of the SRBM is the stability of the linear Skorokhod problem (LSP) [20]. The

following description is taken from [8] and [35]. Let R be a J × J matrix, θ ∈ RJ and

Z0 ∈ RJ+. The pair (Z(·), Y (·)) ∈ C(R+,RJ+) is said to solve the LSP (θ,R) with initial

state Z0, if they jointly satisfy

Z(t) = Z0 + θt+RY (t) ≥ 0, (46)

Y (0) = 0 and Y (·) is nondecreasing, (47)

0 =

∫ ∞
0

Zj(t) dYj(t), j = 1, ..., J. (48)

The first question that arises is, which conditions guarantee the existence of a

solution of the LSP(θ,R). In oder to state such a condition recall that a J × J matrix

R is said to be an S-matrix, if there exists an x ≥ 0 such that Rx > 0, and is said to be

completely-S if all of its principal submatrices are S-matrices. The following theorem

from [4, Theorem 1] contains the desired statement.

Theorem 9 The LSP(θ,R) has a solution (Z(·), Y (·)) if and only if the matrix R is

completely-S.

Analogous to the previous subsections we define

QLSP = {Z(·) : ∃Y (·) such that (Z(·), Y (·)) satisfy (46)− (48)}.

Note that Theorem 9 states only the existence of a solution. In general the solution is

not unique, for a counterexample see e.g. [4].
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Definition 6 A LSP(θ,R) is said to be stable if, for any number ε > 0 and any

Z(·) ∈ QLSP with ‖Z0‖ = 1, there exists a τ ≥ 0 such that ‖Z(τ + ·)‖ < ε.

To ensure that the set QLSP is nonempty, Theorem 9 states that R has to be

completely-S. In [35, Theorem 5.2] it is shown that in this case Definition 6 is equivalent

to Definition 2. To derive a necessary and sufficient condition for stability of the linear

Skorokhod problem we have to show that QLSP is a strict GFN model. The Lipschitz

condition for QLSP is in [4, Lemma 1] or [35, Lemma 5.1].

Lemma 3 If the matrix R is completely-S, then there exists a constant M such that

any solution (Z(·), Y (·)) of LSP(θ,R) is Lipschitz continuous with constant M .

The fact that QLSP is closed follows from Proposition 1 in [4]. Furthermore that

the scale, shift property hold is stated in [21, Section 2]. So it remains to investigate

whetherQLSP satisfies the concatenation and the lower semicontinuity property. Again

we bring the linear Skorokhod problem into the context of differential inclusions. That

is, let Ẏ (t) = u and

G(Z) = {θ +Ru : u ∈ ULSP (Z)} , (49)

where the set of admissible controls ULSP is determined through the conditions

u ≥ 0, Zj uj = 0, ∀ j = 1, ..., J. (50)

While it is clear that the set described by (50) is unbounded on the boundary of the

positive orthant, Lemma 3 may be used to see that the effective set of controls is

bounded. Indeed from the Lipschitz continuity of solutions, only values of u below a

certain bound need to be considered in (49). The corresponding differential inclusion

is of the form

Ż(t) ∈ G(Z(t)), Z(0) = Z0. (51)

It can be seen that the right-hand side is upper semicontinuous and the set G(Z) is

convex and compact. Again arguments from the theory of differential inclusions show

the validity of the concatenation property.

Theorem 10 QLSP is a closed GFN model satisfying (e). It is stable if and only if it

admits an upper semicontinuous Lyapunov function.

We note that the converse theorems for differential inclusions [12,26,34] are not

directly applicable, because of the state constraint Z ∈ RJ+. In particular, the inter-

section of G(Z) and the contingent cone of RJ+ at Z does not define an u.s.c. map.

However, the analytic tools used in [12], in particular the Lipschitz approximation,

appear to be appropriate also for (51).

Remark 5 The consequence of the above theorem is, that the main theorem is appli-

cable for the linear Skorokhod problem. However, for the provided Lyapunov function

we can only show upper semicontinuity.
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8 Remarks on fluid networks under FIFO service discipline

For fluid networks that work under the FIFO service discipline the fluids are served in

the order of their arrivals. To describe the evolution of class k fluids we have to consider

the workload W (t) = CM−1Q(t) of the station j = s(k). For any time t all jobs that

arrive after time t have lower priority in the FIFO discipline. As a result fluids that

arrive at time t are served at time t+Wj(t). The total arrivals of each fluid class until

time t is A(t) = αt + PT M T (t). For each class k ∈ {1, ...,K}, the defining property

of a FIFO fluid network can be represented by the following relation

Tk(t+Wj(t)) = mk(Qk(0) +Ak(t)), (52)

where mk = µ−1k . Note that the fluid network is not completely determined by the

initial fluid level Q(0) as it has to specified in which order the initial fluid level is

served in the time period [0,Wj(0)]. So the initial data for each class k ∈ {1, ...,K} is

given by

{Tk(s) : s ∈ [0,Wj(0)] }.

The dynamics of a fluid network under FIFO service discipline is given by (22)-(25)

and (52). Analogously to the previous disciplines we denote

QF = {Q(·) : ∃T (·) such that (Q(·), T (·)) is a solution (22)− (25), (52) }.

In [35, Lemma 3.7] it is shown that QF is a closed GFN model. However, the fluid

networks under FIFO discipline differ from the previous fluid models. One reason for

this is the following. Consider again the flow balance equation in differential form, i.e.

Q̇(t) = α− (I − PT )MṪ (t).

In the FIFO case the allocation process has to satisfy a functional differential equation

of neutral type [24], since the allocation process has to satisfy the differential form of

condition (52)

Ṫk(t+Wj(t)) (1 + Ẇj(t)) = mkαk −mk

K∑
l=1

plkµlṪl(t).

The second reason is given two paths Q1(·) and Q2(·) of QF that coincide at some time,

they will in general have different history, so that the concatenation is not immediately

possible. In this context the initial data {Tk(s) : s ∈ [0,Wj(0)] } plays a key role. If

this data is also used as a condition, this makes concatenation possible as explained

in [33]. An explicit counterexample to the concatenation property for FIFO networks

based on the state at time t may be found in [31].

9 Conclusion

In this paper we have derived a converse Lyapunov theorem for generic fluid networks

under a concatenation condition. Continuity of the Lyapunov function is ensured if the

solution set of the fluid network also has a lower semicontinuity property. Continuity

is of interest because this would ensure robustness properties of the network subject to

unknown parameters or external perturbations. The interesting class of FIFO networks

does not immediately fall under the results presented here. The question of a Lyapunov

theory for this and related cases is the subject of ongoing research.



26

References

1. Aubin, J.P.: Viability theory. Systems & Control: Foundations & Applications. Boston,
MA etc.: Birkhäuser (1991)
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