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Abstract. A major open problem in the mathematical analysis of martensitic phase transformations is the

derivation of explicit formulae for the set of recoverable strains and for the relaxed energy of the system.

These are governed by the mathematical notion of quasiconvexity. Here we focus on bounds on these quasicon-

vex hulls and envelopes in the setting of geometrically-linear elasticity. Firstly, we will present mathematical

results on triples of transformation strains. This yields further insight into the quasiconvex hull of the twelve

transformation strains in cubic-to-monoclinic phase transformations. Secondly, we consider bounds on the en-

ergy of such materials based on the so-called energy of mixing thus obtaining a lamination upper bound on the

quasiconvex envelope of the energy. Here we present a new algorithm that yields improved upper bounds and

allows us to relate numerical results for the lamination upper bound on the energy with theoretical inner bounds

on the quasiconvex hull of triples of transformation strains.

1 Introduction

In this article we study martensitic phase transformations

in the context of shape memory alloys (SMA), which have

a large variety of technological applications, e.g., in med-

ical or satellite technology. SMAs are a class of materials

which show very flexible behaviour known as pseudoe-

lasticity (stress based) and shape-memory effect (temper-

ature based). This relies on a spontaneous diffusion-less

solid-solid phase transformation from austenite to marten-

site and vice-versa. A key feature is the formation of fine-

scale microstructures in the martensitic phase composed

of different martensitic variants.

Though these materials are very flexible, there is a

limit after which the material deforms plastically. This

article is concerned with the question of characterizing

this limit. Phrased differently, we aim to characterize all

strains that allow recovery of the original shape of the ma-

terial upon heating above a critical temperature. We fol-

low the variational approach proposed by Ball and James

[1], see [2] for an introduction. The mathematical notion

related to the addressed question is that of quasiconvex-

ity (in the sense of Morrey). The objects we seek are the

so-called quasiconvex hull of the set of (phase) transfor-

mation strains and the quasiconvex envelope of the related

free energy density. Unfortunately these are extremely dif-

ficult to evaluate. Quasiconvex hulls are known only in

some special cases. One therefore considers inner and

outer bounds on the quasiconvex hull such as the poly-
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convex hull, the rank-one convex hull and the lamination

convex hull, respectively, see, e.g., [3, 4] for details.

We work in the setting of geometrically-linear elastic-

ity and focus on mono-crystalline materials. We assume

that each variant obeys a linear-elastic material law from

which we obtain the energy

Wj(e) =
1

2

(
e − e( j)

)
: C :

(
e − e( j)

)
,

where e( j) is the transformation strain and C is the (variant-

independent) elastic modulus. This yields the microscopic

energy density

W(e) = min
j=1,...,n

Wj(e),

where n is the number of variants. The overall effec-

tive macroscopic energy is then given by the relaxation of

the microscopic energy, which corresponds to calculating

the quasiconvex envelope, QW(e, c), corresponding to the

vector of variant fractions

c ∈ Δn :=

⎧⎪⎪⎨⎪⎪⎩c ∈ Rn : ci ≥ 0, i = 1, . . . , n,
n∑

i=1

ci = 1

⎫⎪⎪⎬⎪⎪⎭ .

If the individual transformation strains are pairwise

compatible (see Def. 1 below), it is known [5] that their

quasiconvex hull/envelope and convex hull/envelope co-

incide. This applies to the cases of cubic-to-tetragonal,

cubic-to-trigonal and cubic-to-orthorhombic phase trans-

formations but it does not apply to cubic-to-monoclinic

phase transformations, which however are of great inter-

est, e.g., in NiTi, which has a wide industrial application.
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i e(i) i e(i) i e(i)

1
(
α δ ε
δ α ε
ε ε β

)
5
(
α ε δ
ε β ε
δ ε α

)
9

(
β ε ε
ε α δ
ε δ α

)

2
(
α δ −ε
δ α −ε−ε −ε β

)
6
(
α −ε δ−ε β −ε
δ −ε α

)
10

(
β −ε −ε
−ε α δ−ε δ α

)

3
(
α −δ −ε−δ α ε−ε ε β

)
7
(
α −ε −δ−ε β ε
−δ ε α

)
11

(
β −ε ε
−ε α −δ
ε −δ α

)

4
(
α −δ ε−δ α −ε
ε −ε β

)
8
(
α ε −δ
ε β −ε
−δ −ε α

)
12

(
β ε −ε
ε α −δ−ε −δ α

)

Thus, here we consider cubic-to-monoclinic (specif-

ically monoclinic-I) phase transformations. These are

described by the 12 transformation strains in E :={
e(1), . . . , e(12)

}
⊂ S3×3

c , where S3×3
c denotes real symmet-

ric 3 × 3-matrices S3×3 with constant trace, cf. Table 1.

We introduce a new algorithm to compute an upper bound

on the quasiconvex envelope of the free energy density.

This is based on the so-called energy of mixing and se-

quential lamination, described in §3. We discover that for

so-called T3-configurations, cf. §2, the (almost) zero set of

this bound is very close to the corresponding inner bound

on the quasiconvex hull of the related strains. This in-

ner bound is obtained by considering the compatible (ie.,

symmetrized rank-one convex) hull of the three strains in-

volved. These can be classified as follows:

Case 1: Pairwise incompatible which form T3s, e.g.,

{e(1), e(6), e(12)},
Case 2: Two incompatible pairs and one compatible

pair, e.g., {e(1), e(7), e(12)} and {e(1), e(6), e(8)},
Case 3: Two compatible pairs and one incompatible

pair with no compatibility between the compatible

lines, e.g., {e(1), e(7), e(10)},
Case 4: Two compatible pairs and one incompatible

pair with some compatibility between the compati-

ble lines, e.g., {e(1), e(3), e(12)} or {e(1), e(2), e(7)},
Case 5: Pairwise compatible, e.g., {e(1), e(2), e(3)}.

We study the corresponding compatible hulls theoretically

in §2 and investigate the envelope of the corresponding

energy numerically in §4, this is motived by [7] and [8],

respectively. A comparison of the results yields a striking

correspondence.

2 Stress-free situation

In the stress-free situation we are interested in the zero,

i.e., minimal, energy states of the system which are given

by the quasiconvex hull of E. In order to obtain some fur-

ther insight into this task, we follow ideas of [7, 8] and

consider inner/upper and outer/lower bounds on the quasi-

convex hull/envelope of triples of these 12 strains. It turns

out that these depend on compatibility properties of the

strains:

Definition 1. Let e1, e2 ∈ S3×3
c . Then e1 and e2 are

compatible (or e1 and e2 are symmetrized rank-one con-

nected), e1 � e2, if there exist a, b ∈ R3 such that e1 − e2 =
1
2
(a ⊗ b + b ⊗ a), where ⊗ denotes the dyadic product.

Otherwise they are said to be incompatible, e1���e2.

A simple characterization of compatibility in S3×3
c ob-

tained from [9, Lemma 4.1], cf. [7, Lemma 2.2] is:

e1 � e2 iff det(e1 − e2) = 0. (1)

This allows to easily determine specific examples for the

five cases above, see [7] for details and further examples.

The exact definition of the quasiconvex hull Q(E) of E
is not relevant here. We therefore refer to [7] and refer-

ences therein for the definition and for further definitions

and properties stated below. Crucial for the following con-

siderations are the bounds

L(E) ⊆ R(E) ⊆ Q(E) ⊆ C(E), (2)

where C(E) denotes the convex hull and L(E) the lami-

nation convex hull of E. However we need the definition

of the symmetrized rank-one convex hull, R(E), which is

based on the notion of symmetrized rank-one convex func-

tions:

Definition 2. A function f : S3×3 → R is symmetrized

rank-one convex if for all λ ∈ [0, 1] and for all e1, e2 ∈
S3×3 with e1 � e2,

f (λe1 + (1 − λ)e2) � λ f (e1) + (1 − λ) f (e2).

Definition 3. Let E ⊂ S3×3 be compact. Then the sym-

metrized rank-one convex hull of E is

R(E) :=
{
e ∈ S3×3 | f (e) = 0 ∀ f : S3×3 → [0,∞)

symmetrized rank-one convex with f (E) = {0}
}

We begin our analysis with a well-known result:

Lemma 1 ([5, § 3.4.1]). Let E ⊂ S3×3 be finite and let all
elements of E be pairwise compatible. ThenL(E) = C(E).

Moreover, for all e1, e2 ∈ S3×3
c

R({e1, e2}) =
⎧⎪⎪⎨⎪⎪⎩
[e1, e2] if e1 � e2,
{e1, e2} else,

where [e1, e2] := {λe1 + (1 − λ)e2 | λ ∈ [0, 1]}. Further,

if E consists of three pairwise compatible strains as in

Case 5, then R(E) = C(E) is the triangle with these strains
as extreme points.

Next we will recall some results related to Case 1:

Definition 4. Three points e1, e2, e3 ∈ S3×3
c form a T3 if

1. They are pairwise incompatible, and
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Table 1. The transformation strains of the 12 variants of

monoclinic-I martensite, cf. eg., [6, Table 1]. In the

computations we choose the material parameters for NiTi:

α = 0.0243, β = −0.0437, δ = 0.0580 and ε = 0.0427, cf. [6].



2. There exist e1,1 ∈ (e2, e3), e2,2 ∈ (e3, e1), e3,3 ∈
(e1, e2) such that ei,i � ei, i = 1, 2, 3.

The following T3-lemma [7, Lemma 4.3] yields an

easy characterization of T3s:

Lemma 2. Three points e1, e2, e3 ∈ S3×3
c form a T3 iff

sign det(e1−e2) = sign det(e2−e3) = sign det(e3−e1) � 0.

It turns out that all triples of pairwise incompatible

strains in E are T3s, see [7, §3 and §7]. For T3s it is known

(cf., e.g., [10, §3]) that

[e1, e1,2] ∪ [e2, e2,3] ∪ [e3, e3,1] ∪ C({e1,2, e2,3, e3,1})
⊆ R({e1, e2, e3})

where e1,2, e2,3, e3,1 are defined by {ei, j} = [ei, ei,i] ∩
[e j, e j, j], see Def. 4.

Hence, in this case, an inner bound on the quasiconvex

hull is given by the inner triangle and the "arms" of the T3,

cf. Figure 2. An outer bound is the convex hull of the three

transformation strains.

Next we consider Case 3:

Lemma 3. Let e0, e1, e2 ∈ S3×3
c and e1, e2 � e0. Moreover

let x���y ∀x ∈ (e0, e1], y ∈ (e0, e2] (in particular e1���e2).
Then

R({e0, e1, e2}) ⊇ [e0, e1] ∪ [e0, e2].

Proof. First we notice that R({e0, e1, e2}) ⊇ R({e0, e1}) ∪
R({e0, e2}) and then apply Lemma 1.

The remaining cases require the following result from

[7, Lemma 3.1]:

Lemma 4. Any two-dimensional subspace of S3×3
c either

(i) contains precisely one, two or three compatible direc-
tions or (ii) is a compatible subspace.

Next we consider Case 4:

Lemma 5. Let e0, e1, e2 ∈ S3×3
c with e1, e2 �e0 and e1���e2.

Let

λ1 := max{λ ∈ [0, 1) | det(λe1 + (1 − λ)e0 − e2) = 0},
λ2 := max{λ ∈ [0, 1) | det(λe2 + (1 − λ)e0 − e1) = 0}.

(These exist since det(e0 − e1) = 0 and det(e0 − e2) = 0.)
Then λ1λ2 = 0 and

R({e0, e1, e2}) ⊇

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C({e0, λ1e1 + (1 − λ1)e0, e2})
∪(λ1e1 + (1 − λ1)e0, e1] if λ2 = 0,

C({e0, e1, λ2e2 + (1 − λ2)e0})
∪(λ2e2 + (1 − λ2)e0, e2] if λ1 = 0.

Proof. From Lemma 4, we obtain λ1λ2 = 0 since other-

wise we would have four compatible directions and yet

e1���e2. We consider the case λ2 = 0, the other case is anal-

ogous. Let e′1 = λ1e1 + (1 − λ1)e0.
By construction e1, e2 � e′1 and [e′1, e1]���[e

′
1, e2]. Thus

from Lemma 3, R({e′1, e1, e2}) ⊇ [e′1, e1] ∪ [e′1, e2]. On the

other hand, since e0, e′1 and e2 are pairwise compatible,

from Lemma 1, R({e0, e′1, e2}) ⊇ C({e0, e′1, e2}).
We conclude that R({e0, e1, e2}) = R({e0, e′1, e2}) ∪R({e′1, e1, e2}). The result follows.

Finally we address Case 2:

Lemma 6. Let e0, e1, e2 ∈ S3×3
c with e1 �e2 and e1, e2���e0.

Suppose there exist λ1, λ2 such that

λ1 = min{λ ∈ (0, 1) | det(λe1 + (1 − λ)e2 − e0) = 0},
λ2 = max{λ ∈ (0, 1) | det(λe1 + (1 − λ)e2 − e0) = 0}

(note that we allow for λ1 = λ2). Then

R({e0, e1, e2})
⊇ C({e0, λ1e1 + (1 − λ1)e2, λ2e1 + (1 − λ2)e2}) ∪ [e1, e2].

Otherwise, R({e0, e1, e2}) ⊇ {e0} ∪ [e1, e2].

We omit the proof since it is similar to those for the

preceding cases. In the case λ1 = λ2 there can be another

compatible line.

Lemma 7. Assume that there is λ1, λ2 as in Lemma 6 with
λ1 = λ2. Then there is at most one λ3 ∈ (0, 1) solving the
equation det(λ3(e0,0) + (1 − λ3)e0 − e j) = 0 for j = 1 or
j = 2 with e0,0 := λ1e1 + (1−λ1)e2. If there is such λ3 then

R({e0, e1, e2})
⊇ C({e j, e0,0, λ3e0,0 + (1 − λ3)e0}) ∪ [e0, e0,0] ∪ [e1, e2].

3 Lamination upper bound and
corresponding numerical approach

The lamination upper bound relies on earlier works [9, 11,

12] and [13, 14]. It involves the so-called free energy of

mixing wmix : Δn → R, which allows to write the quasi-

convex envelope of the energy as

QW (e, c) =
n∑

j=1

c jWj (e) + wmix (c) .

The upper bound of our numerical approach is obtained by

an upper bound on the energy of mixing, which satisfies

wmix(θc1 + (1 − θ)c2) ≤
θwmix(c1) + (1 − θ)wmixc2 + θ(1 − θ)ψ(c1 − c2) (3)

for all c1, c2 ∈ Δn, where ψ is given in the references

above. In [13, 14], an upper bound of wmix based on (3)

was proposed, namely

wupp(c) := max {w(c) : w satisfies (3) and

w ≥ 0 on the vertices of Δn} .
Since the condition (3) has to be checked for all c1, c2 ∈
Δn with c1 � c2, it is in general not possible to compute

wupp. Our approach will be different. Starting from an

upper bound of wmix, we will use (3) to obtain a possibly

improved upper bound.

Lemma 8. Let w : Δn → R ∪ {+∞} be an upper bound of
wmix, i.e., wmix(c) ≤ w(c) for all c ∈ Δn. Let c1, c2 ∈ Δn be
given. Define the function w̃ : Δn → R ∪ {+∞} as

w̃(c) := min
{
w(c), θw(c1)+(1−θ)w(c2)+θ(1−θ)ψ(c1−c2)

}
(4)

if c = θc1+(1−θ)c2, θ ∈ (0, 1), otherwise set w̃(c) := w(c).
Then w̃ is also an upper bound of wmix.
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Note that the construction of w̃ is independent of

whether c1 and c2 are compatible or not.

Proof. Let c = θc1 + (1 − θ)c2 with θ ∈ (0, 1). It remains

to show w̃(c) ≥ wmix(c) in the case w(c) ≥ θw(c1) + (1 −
θ)w(c2) + θ(1 − θ)ψ(c1 − c2). Here, we have

w̃(c) = θw(c1) + (1 − θ)w(c2) + θ(1 − θ)ψ(c1 − c2)
≥ θwmix(c1) + (1 − θ)wmix(c2) + θ(1 − θ)ψ(c1 − c2)
≥ wmix(c),

where we used the assumption that w is an upper bound of

wmix.

By construction, we have wmix ≤ w̃ ≤ w, which im-

plies that the idea of Lemma 8 above can be used to obtain

iteratively improved upper bounds. To start the iteration,

an initial upper bound is needed. Here, it turns out that

the trivial Taylor upper bound w0(c) = 0 is enough to get

sensible iterates and is exact for the pure variants found at

the vertices of the triangle configurations considered in the

cases mentioned above.

We present the idea of the method for a mixture of

three pure phases as a special case of the twelve possible

martensitic variants in NiTi. For convenience we now re-

label the strains 1, 2, 3. The method can be extended to

more phases, but it is expected that the computational cost

grows exponentially with the number of phases.

In the simplex Δ3 we generate points with uniform dis-

tance h := 1/N, N ∈ N of the form c = (i/N, j/N, (N − i −
j)/N), i = 0, . . . ,N, j = 0, . . . ,N − i. Let these points form
the set C. Our goal is to compute upper bounds of wmix on

all the points c ∈ C.
In the next step, we generate all possible triplets of

points (c1, c2, c3) ∈ C3 with c2 = 1
2
(c1 + c3). Even though

alternative construction methods of the triplets, such as the

more general c2 = (ac1 + bc3)/(a + b), could be used to

potentially improve the quality of the bound, they would

also increase the computational effort significantly and are

therefore not evaluated here. All triplets considered are

collected in the set G.

Then for any triplet (c1, c2, c3) ∈ G we apply (4) to

obtain an improved upper bound of wmix. In order to do

so, the value of ψ at c1 − c3 has to be evaluated. Here,

we can employ the fact that ψ is positively homogeneous

of degree 2. Moreover, the distribution of points of C in

the simplex is highly regular and symmetric, and hence the

number of evaluations of ψ is much lesser than the number

of triplets in G. This means that ψ can be evaluated off-

line, i.e., before the actual iteration starts.

The iteration procedure can be described as follows.

1. Generate C, G.

2. Evaluate ψ: for all (c1, c2, c3) ∈ G compute ψ(c1 −
c3).

3. Set initial upper bound: k = 0, w0(c) := 0.

4. Outer iteration, set wk+1 := wk.

For each (c1, c2, c3) ∈ G: Set

wk+1(c2) := min
[
wk+1(c2),

(wk+1(c1) + wk+1(c3))/2 + ψ(c1 − c3)/4
]

5. Stop if ‖wk+1 − wk‖∞ is small enough, otherwise set

k := k + 1 and return to step 4.

Due to Lemma 8, all iterates wk generated by the above

algorithm are upper bounds of wmix. In our numerical tests,

the iteration was stopped if the maximum change between

two successive iterates was smaller than 10−12.

4 Numerical results

Next we report about the results of our numerical exper-

iments. The algorithm above was implemented in Mat-

lab and run on a standard desktop computer. The tests

were performed with grid size 1/N = 1/256 resulting in

≈ 33, 000 points in C. The set G contained ≈ 17.6 × 106

triplets. The minimization contained in the function ψ was

evaluated for 240 search directions. We used the cubic-to-

monoclinic-I transformation of NiTi, where we took the

material parameters summarized in Table 1; these param-

eters were also used for the upper bounds computed in

[8], cf. § 5. The C tensor is parametrized by three val-

ues C11 = 140, C12 = 110, C44 = 32. In the figures, the

vertices of the triangles are chosen such that the first men-

tioned strain is in the bottom left corner; the others follow

anti-clockwise.

Firstly, we investigated the upper bound for the triple

{e(1), e(6), e(12)}. These transformation strains are pairwise

incompatible (Case 1), hence from the above considera-

tions we expect to see T3 structures in the upper bound.

The total energy surface obtained from the upper bound

can be seen in Figure 1, where the vertices (0, 0), (1, 0),

and ( 1
2
,
√
3
2
) correspond to the phases e(1), e(6), and e(12).

Figure 2 shows the logarithmic scaling of the total energy.

Furthermore, the corresponding T3-configuration is super-

imposed; it shows a very good correspondence.

As can be seen from these figures, the upper bound of

the total energy is close to zero in the T3 region: the value

of the total energy at the barycenter of {e(1), e(6), e(12)} is
about 1.84 × 10−6, while the maximum total energy is of

order 3 · 10−3. This indicates that our approach is success-
ful at computing a sensible upper bound. Moreover, these

results prompt the question as to whether the iteratively

improved upper bounds would converge to the quasicon-

vex envelope of the energy if the grid size 1/N goes to zero

or if more complex patterns of G are considered.

Secondly, we study Case 2, namely the triple e(1), e(7),
and e(12), cf. Figure 3, as well as the triple e(1), e(6), and e(8),
cf. Figure 4. This also reflects the theoretical behaviour.

The first example is related to the last part of Lemma 6:

the upper bound is zero at the compatible line [e(1), e(7)];
otherwise it is clearly not zero, which corresponds to the

fact that there are no compatible lines within the triangle.
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Figure 1. Case 1: Upper bound of the total energy for phases

{e(1), e(6), e(12)}.

Figure 2. Case 1: Upper bound of the total energy for

phases {e(1), e(6), e(12)}, logarithmic scale. The corresponding T3-

configuration is superimposed.

Figure 3. Case 2: Upper bound of the total energy for phases

{e(1), e(7), e(12)}, logarithmic scale. Note that there is a blue line on

the bottom of the triangle that reflects the compatibility between

the strains e(1) and e(7).

The second example shows exactly the bound asserted in

Lemma 7.

Next we present our result for Case 3, in which the

strains e(1) and e(7) are compatible as are e(7) and e(10), but
e(1) and e(10) are not. Further, there is no other compatible

direction in the triangle, i.e., λ1 = λ2 = 0 in Lemma 5.

This computation, see Figure 5, also reflects the corre-

sponding theoretical result, see Lemma 3, which says that

an inner bound on the compatible hull is given by the com-

patible lines [e(1), e(7)] and [e(7), e(10)].
For Case 4 we show two different results, one for the

triple {e(1), e(2), e(7)} and one for the triple {e(1), e(3), e(12)}.

Figure 4. Case 2: Upper bound of the total energy for phases

{e(1), e(6), e(8)}, logarithmic scale. Note that the three compatible

lines that occur in this case are superimposed. The numerical

values on the right edge of the triangle are in the blue regime.

Figure 5. Case 3: Upper bound of the total energy for phases

{e(1), e(7), e(10)}, logarithmic scale.

Both triples have two compatible edges and one incompat-

ible edge as well as an additional compatible line.

First, we present upper bounds of the total energy for

the three phases {e(1), e(2), e(7)}. Here, the phase e(1) is com-

patible to e(2) and to e(7), while the latter two are incom-

patible, i.e. we are in Case 4. The upper bound on the total

energy by our method can be found in Figure 6 in logarith-

mic scaling. The value of the total energy at the barycenter

of the phases is 1.69×10−7, while the maximum of the total

energy is of the order of 3·10−3. This maximal value yields

an estimate of the difference between the upper bound and

the convex envelope of the energy. Note that the convex

envelope is zero on the whole triangle spanned by the three

strains considered. Hence, as in [8], we obtain that the dif-

ference between these two hulls is small.

As can be observed, the upper bound closely approxi-

mates the expected set of zeros of the total energy, which

is sketched by a solid line in the figure. Thus it confirms

the non-symmetric shape of the inner bound on the quasi-

convex hull. Moreover, the logarithmic figure appears to

indicate that there is a sharp transition between the zero set

of the energy and energy states outside of the inner trian-

gle.

Second, we studied {e(1), e(3), e(12)}. This again shows a
non-symmetric triangle, which however is much smaller,

cf. Figure 7. Note the correspondence with the theoreti-
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Figure 6. Case 4: Upper bound of the total energy for phases

{e(1), e(2), e(7)}, logarithmic scale. Note that the compatible lines

are superimposed.

Figure 7. Case 4: Upper bound of the total energy for phases

{e(1), e(3), e(12)}, logarithmic scale. Note that the compatible lines

are superimposed.

cal inner bound on the set of recoverable strains, which is

again indicated by a solid line in the figure.

Finally, our computations show that the lamination

upper bound in Case 5 of the three pairwise compatible

strains {e(1), e(2), e(3)} is almost zero on the whole triangle

(no figure shown). Since in this case, the lamination con-

vex hull equals the convex hull, this is exactly as expected.

5 Conclusion

In this article we have demonstrated a close relationship

between theoretical predictions on inner bounds of com-

patible hulls of transformation strains and numerical upper

bounds on the quasiconvex envelopes of the correspond-

ing energy. This work was motived by observations in

[8] about the lamination upper bound which yields en-

ergy values showing some relation to the corresponding

T3-configurations. With the new algorithm presented in

this article we obtain much better correspondence. Indeed,

the algorithm shows that the lamination upper bound is (al-

most) zero at the T3-configurations.

Similarly, for the other cases of triples of strains we ob-

tain a strikingly correspondence between the inner bound

on the quasiconvex hull of the strains and the (almost) zero

set of the upper bound of the quasiconvex envelope of the

energy.

Another observation made in [8] is related to the con-

vex envelope. In the case of pairwise compatible triples

of strains, the convex envelope happens to be identically

zero on the triangle spanned by the three strains. It turns

out that the relative difference between the energy values

of the lamination upper bound and the convex envelope is

small, even in the setting of T3s, which involves incom-

patibilities, the difference is 3 · 10−3. On the other hand

it shows well that there is an interesting structure that can

be seen in the lamination upper bound on the energy as

well as in the inner bound on the set of recoverable strains.

Whether these structures are also present in the quasicon-

vex envelopes and hulls remains an open problem.
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