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Abstract

While disproving a conjecture of Cohen about monodromy groups
of polynomials and applying this to give new counter–examples to a
question of Chowla and Zassenhaus in [Fri95], Fried asked whether
there are polynomials over Q of odd square degree n with geometric
and arithmetic monodromy group the alternating group An and sym-
metric group Sn, respectively. In this note we give two different proofs
that such polynomials do not exist.

1 Introduction

Let K be a field of characteristic 0, and f(X) ∈ K[X] be a polynomial of
positive degree n. With t a transcendental, denote by L a splitting field of
f(X) − t over K(t), and let K̂ be the algebraic closure of K in L. Then
A := Gal(L/K(t)) and G := Gal(L/K̂(t)) are the arithmetic and geometric
monodromy group of f , respectively. These two groups are considered as
permutation groups on the roots of f(X)− t. Note that Gal(K̂/K) = A/G.
A subgroup of the symmetric group Sn is called even, if it is contained in the
alternating group An, otherwise it is called odd.

Suppose that G = An and K = Q. As G contains a cyclic transitive
group (see below), n must be odd. Using the branch cycle argument, Fried
showed that A = Sn provided that n is not a square. It is easy to give
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polynomials over Q with G = An. Such polynomials disprove a conjecture of
Cohen about possible pairs (A,G) and give new types of counter–examples
to a conjecture of Chowla and Zassenhaus. For all of this see [Fri95].

A question which was investigated but left open in [Fri95] is whether such
polynomials exist also for square n, see [Fri95, Synopsis of unsolved problems
4.9]. Fried gives several approaches, and shows that some cannot work. In
this note we show that such examples do not exist. Actually, we prove the
more general

Theorem. Let K be a field of characteristic 0, f ∈ K[X] be a polynomial of
degree n > 0, with A and G the arithmetic and geometric monodromy group
of f , respectively.

Suppose that G is even. Then n is odd, and A is even if and only if
(−1)(n−1)/2n is a square in K. In particular, if K = Q, then A is even if and
only if n is a square.

2 Proof of the Theorem

Let x1, x2, . . . , xn be the roots of f(X)− t, and y1, y2, . . . , yn−1 be the roots
of the derivative f ′(X). Without loss assume that f is monic, hence f ′(X) =
n
∏

(X − yk). From f ′(X) =
∑

j

∏
i,i 6=j(X − xi) one obtains f ′(xj) =∏

i,i 6=j(xj − xi). Using this, we get the following expression for the discrimi-
nant of f(X)− t with respect to X

(disX(f(X)− t))2 = (
∏

i,j,i<j

(xi − xj))
2

= (−1)n(n−1)/2
∏
j

∏
i,i 6=j

(xj − xi)

= (−1)n(n−1)/2
∏
j

f ′(xj)

= (−1)n(n−1)/2nn
∏
j

∏
k

(xj − yk)

= (−1)n(n−1)/2nn
∏
k

∏
j

(yk − xj)

= (−1)n(n−1)/2nn

n−1∏
k=1

(f(yk)− t).
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Note that n is odd, because G contains an n–cycle (a generator of an inertia
group of a place of L lying above the infinite place of K(t)). Therefore
(disX(f(X)− t))2 is a polynomial in t of degree n− 1 and highest coefficient
an−1 := (−1)n(n−1)/2nn. As n is odd, an−1 = [(−1)(n−1)/2n]n is a square in K
if and only if (−1)(n−1)/2n is a square in K. As G is even, (disX(f(X)− t))2

is a square in K̂(t). Accordingly write

(disX(f(X)− t))2 = an−1t
n−1 + · · ·+ a1t + a0 = (bmt

m + · · ·+ b1t + b0)
2

with m = (n − 1)/2 and bi ∈ K̂. If A is even, then we can assume bi ∈ K,
hence an−1 = b2m is a square in K. Conversely, if an−1 is a square in K, then
we can successively solve for bm, bm−1, . . . , b1, b0 and see that we get bi ∈ K
for i < m if we start with bm ∈ K. This proves the claim.

3 Another proof for K = Q
If K = Q, then the case of non–square degree n is covered by [Fri95], so we
assume that n is a square in the previous theorem. Note that (−1)(n−1)/2 = 1,
as n is an odd square. So we need to show that A is even. For that we may
assume that K is any field of characteristic 0.

Let P be a place of L lying above the infinite place of K(t). Denote by
D and I the decomposition and inertia group of P , respectively. Now D/I
induces the full Galois group of the residue field extension LP/K of the place
P , but K̂ embeds into LP , so D/I surjects to A/G = Gal(K̂/K). That is
A = GD, so in particular A = GNA(I), where NA(I) denotes the normalizer
of I in A. However, if n is a square, then the generators of I are already
conjugate inside the alternating group An (e. g. by the the irrational cycle
lemma [Fri95, page 332]), and this easily implies that NA(I) ≤ NAn(I) is
even, so A = GNA(I) is even as well.

4 Remark on explicit (An, Sn)–realizations

Let f ∈ Q[X] be a polynomial which gives an (An, Sn)–realization. Then, as
Fried showed in [Fri95], there are infinitely many primes p such that f(X)−b
is reducible modulo p for all integers b – contrary to a conjecture of Chowla–
Zassenhaus.
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In order to apply this result, one has to prove that there are polynomials
f ∈ Q[X] with geometric monodromy group An for odd non–square degree
n. Fried [Fri95] gives several constructions.

The simplest is the following: Let f be an antiderivative of (X−1)2Xn−3.
The corresponding inertia generators (see [Fri95] for this concept) are an
(n− 2)–cycle, a 3–cycle, and the n–cycle at infinity.

A slight modification of this construction would replace the 3–cycle by
a double–transposition. Fried investigates the arithmetic of this in [Fri95,
Example 4.5]. The only odd n ≥ 5 where he is able to show that there is
a realization over Q is for n = 5. He derives an explicit polynomial gn(X)
(of degree n − 3) with the property that factors over Q of degree at most
2 would give such realizations of degree n, and vice versa. However, these
polynomials seem to be irreducible for all n, though a proof is still missing.
(Fried checked this for n ≤ 31.)

[Fri95, Example] gives a well–known construction, where all inertia gener-
ators of the finite places are 3–cycles. Namely let g ∈ Q[X] be any separable
polynomial of degree (n− 1)/2, and f an antiderivative of g. Then f is such
an example, provided that the roots of g are mapped to distinct points under
f .

Again, as above, one might ask the analogous question if we replace the 3–
cycles by double–transpositions. [Fri95] contains much about this question,
but leaves the case n > 7 open.
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