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Route planning for bacter ia

Kathr in Hel lmuth 1 • Chr ist ian Kl ingenberg

Bacteria are fascinating biologists since their discov-
ery in the late 17th century. They analysed their
movement and translated it into mathematical mod-
els. Adapting these models to real situations can be
challenging, because the model coefficients cannot
be observed directly. We study this question math-
ematically and show why a simple ’route planning’
consideration is of great use.

1 Route planing

Imagine you have an appointment to meet with a friend in one hour. The direct
path from your place to his takes 40 min, so if you leave now, you will be early.
On the other hand the sun is shining and you do not want to wait at your place
for 20 min before leaving, so you decide to go for a walk and combine that
with walking to your friend. You thus choose an arbitrary direction and start
walking there. Say you want to walk at a constant speed, when do you need to
change your direction to be at your friend’s place on time?

Let us put this question in a mathematical setting:
At first, we formulate some assumptions and clarify the notation. For simplifi-
cation we approximate your neighbourhood with a flat plane R2 and assume
that there are no buildings etc on your way so you can walk along a straight
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line in any direction. Additionally, we suppose you walk with a constant speed
of 6km/h. Then all possible directions you can choose are collected in the
unit circle V = {w ∈ R2 | ∥w∥ = 1}. The norm ∥w∥ :=

√
w ◦ w :=

√
w2

1 + w2
2

of the vector w = (w1, w2) ∈ R2 is the Euclidean norm and calculates the
length of the vector. Here x ◦ y := x1 · y1 + x2 · y2 denotes the Euclidean
scalar product of two vectors x = (x1, x2), y = (y1, y2) ∈ R2 which measures
the angle between x and y. One can easily check that it is linear in each
component and symmetric, i.e. the following calculation rules of hold for all
λ1, λ2, µ1, µ2 ∈ R, x1, x2, y1, y2 ∈ R2:

x1 ◦ y1 = y1 ◦ x1 and
x1 ◦ (µ1 · y1 + µ2 · y2) = µ1 · (x1 ◦ y1) + µ2 · (x1 ◦ y2),

where the multiplication λ · x of a scalar λ ∈ R with a vector x = (x1, x2) ∈ R2

works componentwise λ · x = (λ · x1, λ · x2).

Then mathematically the problem can be formulated in the following way:

Question. You have a starting point S ∈ R2 (your house) and a destination
D ∈ R2 (your friend’s house) to reach in time t = 1 hour. Say you walk at a
constant speed of 6 km/h and the distance between your house and your friend’s
house is ∥D − S∥ = 4 km. The first direction you walk into after leaving your
house will be denoted by v ∈ V . You are interested in finding the time tX ∈ [0, 1]
and the point X ∈ R2 where you need to change direction and walk a straight
line to your friend.

Note that we leave out all units in the mathematical world to make the
calculations more clean. It is implicitly assumed that lengths and coordinates
are scaled in km, times in h and velocities in km/h.

The following geometrical considerations will help us solving this problem:
In one hour, you will walk 6 km in total to reach an aim that is 4 km away.
Since you want to change your direction only once, the starting point S, the
destination D and the turning point X form a triangle where your walking path
coincides with the sides [S, X] and [X, D], see figure 1. We are interested in
finding X or equivalently the time tX at which you reach X and need to change
direction. That means the task is to find the vertex X of a triangle with two
other vertices S and D such that the length of your walking path, i.e. the sum
of the lengths d = ∥X − S∥ and s = ∥D − X∥ of the sides [S, X] and [X, D], is
equal to d + s = 6. The direction of [S, X] is your initial direction v.

At first, you can ask yourself whether this problem is solvable at all and in case
it is, whether the solution is unique or if there are multiple possibilities. It turns
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Figure 1: Triangle SDX.

out, the knowledge on the initial direction v and the choice of d+s = t·6 ≥ 4 = x
guarantees a unique solution.

Let us get an intuition why this is true: Consider the situation where you
have not chosen your initial direction v yet, but still want to go from S to D
on a path of total length 6 while changing the direction only once. Then the
set of all possible turning points Y is an ellipse

E := {Y ∈ R2 | ∥Y − S∥ + ∥D − Y ∥ = 6},

with foci S and D and distance 6. In this notation ∥Y − S∥ = d gives the length
of the side [S, X]. As you can see in figure 2a, there are multiple solutions to
this problem, namely every Y ∈ E.

(a) Ellipse E.
(b) Triangle SDX is uniquely determined

by v.

Figure 2: Geometrical intuition why X is uniquely determined.

If, however, we know the initial direction v, then the turning point X is
unique: because X has to ly on the half line starting at S in direction v as well
as on E, it is the intersection point of this line with the ellipse E and therefore
unique, see figure 2b.

Now let us calculate X and tX explicitly: If you arrive at D after time t = 1,
that means

D = S + v · 6 · tX + v′ · 6 · (1 − tX).
The factor 6 appears, because you walk with constant speed of 6 km/h and
v′ denotes the direction in which you walk after turning at X. Hence, v′ is
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the direction of D − X, meaning you walk straight towards D from X on.
Rearranging yields

v′ = 1
6 · (1 − tX) (D − S − v · 6)︸ ︷︷ ︸

=:b

+v.

Note that the vector b in the brackets is the path one would have to walk if you
forgot to change direction in X and continued walking in direction v for the
full 1h. Since we know that v′ is a direction in V as well,

1 = ∥v′∥2 = v′ ◦ v′ = 1
36 · (1 − tX)2 ∥b∥2 + 2

6 · (1 − tX)b ◦ v + v ◦ v

= 1
36 · (1 − tX)2 ∥b∥2 + 2

6 · (1 − tX)b ◦ v + 12,

Solving this quadratic equation for λ = 1/(1 − tX) yields λ1 = 0, which is
impossible since 0 ≤ tX ≤ 1, or

1
1 − tX

= λ2 = −2b ◦ (6 · v)
∥b∥2

and thus by rearranging the upper equality and inserting b

tX = 1 + ∥b∥2

2b ◦ (6 · v) = 62 − ∥D − S∥2

2 · (62 − (D − S) ◦ (6 · v))

= 20
2 · (62 − (D − S) ◦ (6 · v)) = 10

6 · (6 − (D − S) ◦ v) , (1)

as the distance from your house S and your friends house D is ∥D − S∥ = x =
4(km).
Then X = S + tXv = S + 10

6·(6−(D−S)◦v) · v is the location at which you arrive at
time tX and have to stop to turn into direction v′ = 1

1−tX
(D − S − v · 6) + v

in order to arrive at your friend’s house D in exactly one hour.
We will now find out how these route planning calculations can help us with a
mathematical problem. This problem arises in the study of bacterial movement.

2 Bacter ia l movement

Certain bacteria, e.g. Escherichia coli (E. coli), have the possibility to move
autonomously by moving so called flagella. This ’motor’ has two gears: either
it moves clockwise or counter-clockwise. Counter-clockwise movement makes
the single flagella form a bundle that works like a rotor and moves the bacteria

4



forward in a certain direction. Clockwise movement however untangles this
bundle and makes the bacteria stop and ’tumble’ around, compare figure 3a.
In this process, they choose a new direction to run into. The movement of
bacteria thus consists of alternating phases of running in one direction and then
tumbling to find a new direction as displayed in figure 3b.

(a) Two modes of bacterial movement. (b) Run-and-tumble.

Figure 3: Bacterial movement

If the bacterium now wants to reach an aim like a food source, it cannot
simply run there. At first, bacteria cannot ’see’ very good, they only sense the
environment very close to them. Hence, it cannot pick the right direction to
run towards the food in a straight line. Bacteria solved this by developing a
’memory’: instead of looking at locations they could go to, they look at the
places they were. If the place the bacterium is now provides more food than the
places it was before, it might be a good choice to keep going in this direction
and hope to come even closer to the food source. The bacterium thus tumbles
less frequently and keeps its direction for longer times. If the place it is now
however offers less food than the places before, it moves away from the food
source and thus change the direction more often.
This behaviour can be summarized by a mathematical model. For example
a classical kinetic partial differential equation can be used for the description
[1, 7]:

∂tf(x, t, v) + v ◦ ∇xf(x, t, v)︸ ︷︷ ︸
run

(2)

=
∫

V

K(x, t, v, v′)f(x, t, v′) − K(x, t, v′, v)f(x, t, v) dv′︸ ︷︷ ︸
tumble

.

In this equation, the movement of bacteria is characterized by the evolution of
the bacteria density f for a full bacteria population instead of single bacteria.
This f is a function of space x ∈ R2, time t and direction v ∈ V on the unit circle
and f(x, t, v) denotes the part of the bacteria population which is at location x
at time t and runs into direction v. By relating the partial derivative in time
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∂tf and the gradient ∇xf , a derivative in space, the movement is characterized:
The left hand side describes a movement along a straight line into direction
v - this corresponds to the ’run’- phase. The integral on the right hand side,
instead, describes the tumbling. The tumbling coefficient K(x, t, v, v′) stands
for the probability of bacteria changing their direction from v′ into v at time t
at location x. The first term in the integral thus explains a gain in the bacteria
density f(x, t, v) by bacteria f(x, t, v′) that originally ran into another direction
v′ but at point (x, t) change their direction to v. The second term is a loss of
bacteria from f(x, t, v) that tumble into another velocity v′ at the point (x, t).
In order to consider all possible other directions v′, the integral is drawn.

We refer the interested reader to [10], chapter 3, for a more detailed expla-
nation of partial derivatives and the gradient and to [14], chapter 1.3, for an
explanation of the transport characteristics of the right hand side of (2). For
further information on the model, the interested reader is referred to Chapter
5 in [12]. However, we point out that in our case, we did not used the more
complicated coupled system presented there but solely the equation for the
bacterial movement with an independent chemoattractant.
We stress that there are various other possibilities to model bacterial movement.
E.g. one can consider a random walk of single bacteria on the microscopic
level [5, 2] or the Keller-Segel model [8, 11] on the macroscopic level, where
the information on the direction of movement is lost. Also on the kinetic scale,
more refined models were developed [13, 4].

Contemplating equation (2), one observes that the movement is character-
ized only by one coefficient K describing the tumbling, since this is the only
coefficient appearing in the model.
This tumbling coefficient therefore seems to be important and biologists are
very interested in determining it. Because they cannot simply observe it, they
do experiments: First, they place bacteria on a plate, see figure 4a, then they
wait for some time, before they take a picture to see where the bacteria are
now, compare figure 4b. From counting the bacteria at certain points of the
picture, they would like to determine this tumbling coefficient.

In the mathematical language, this problem is called an inverse problem. Usu-
ally models are used in a ’forward’ way, i.e., knowing the full model with all
coefficients as well as the initial configuration of the bacteria, they solve for
the location of bacteria at a later time T by evolving the initial configuration
w.r.t. the model (2), see figure 5a (left). In contrast, inverse problems aim
to determine e.g. a model coefficient by observing real experiments. They
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(a) Initial bacteria density. (b) Bacteria density at time tM .

Figure 4: Experiment: Bacteria are placed on a plate at time t = 0, then they
run for some time until at time tM the measurement M is taken by
counting all bacteria inside the circle. Darker blue stands for a higher
bacteria density.

(a) Forward problem. (b) Inverse problem.

Figure 5: Setup of forward and inverse problem. The aim is to determine the
red quantity.

thus observe the map of initial configuration to the measurements (containing
the unknown model) and try to infer a model parameter, here K, from these
observations, compare figure 5b (right).
In our research, we are considering the inverse problem of determining the

tumbling coefficient K from such measurements of the bacteria density in space
and time. At first, we studied whether this is theoretically possible at all [6].
This is where our above route planning considerations come into play.
Because inverse problems are usually hard to solve, mathematicians have de-
veloped different techniques to help them. In our case, the so called singular
decomposition technique, which proofed helpful in similar situations [9, 3], can
be applied. It tells us, that by a certain choice of initial data and measurement
method, we are able to observe only that part of all bacteria that tumbled
exactly once until time T . To be precise, for this technique it is crucial, that all
bacteria start at the same point xi in space running in the same initial direction
vi. Then the measurement is taken at a point xm in space after time T . As it
is observed in experiments that bacteria run at constant speed, this is just the
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setting of our path finding problem in the first section 1: The bacteria start at
point S = xi and have to reach point D = xm in time T . Their initial direction
is vi and they run with constant speed. Figure 6 illustrates the geometrical
setup.
Hence, we can adapt formula (1) by exchanging the 6 (km/h) by the bacterial
speed and calculate the time tX of tumbling as well as the tumbling point
xi + vitX . This is important for the inverse problem, because it tells us the
point at which we observed the tumbling coefficient. It was a crucial step in
our research where we showed that it is possible to determine the tumbling
coefficient from experimental measurements.

Figure 6: Bacterium in the route planning setting.
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Figure 3a “Two modes of bacterial movement.”. Authors: Matthew D Eg-
bert, Xabier E. Barandiaran, Ezequiel Di Paolo. Licensed under Creative
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