
Simulating turbulence using the astrophysical
discontinuous Galerkin code TENET

Andreas Bauer, Kevin Schaal, Volker Springel, Praveen Chandrashekar, Rüdiger
Pakmor and Christian Klingenberg

Abstract In astrophysics, the two main methods traditionally in use for solving
the Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics
and finite volume discretization on a stationary mesh. However, the goal to effi-
ciently make use of future exascale machines with their ever higher degree of paral-
lel concurrency motivates the search for more efficient and more accurate techniques
for computing hydrodynamics. Discontinuous Galerkin (DG) methods represent a
promising class of methods in this regard, as they can be straightforwardly extended
to arbitrarily high order while requiring only small stencils. Especially for applica-
tions involving comparatively smooth problems, higher-order approaches promise
significant gains in computational speed for reaching a desired target accuracy. Here,
we introduce our new astrophysical DG code TENET designed for applications in
cosmology, and discuss our first results for 3D simulations of subsonic turbulence.
We show that our new DG implementation provides accurate results for subsonic
turbulence, at considerably reduced computational cost compared with traditional
finite volume methods. In particular, we find that DG needs about 1.8 times fewer

Andreas Bauer • Rüdiger Pakmor
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg,
Germany,
e-mail: andreas.bauer@h-its.org; ruediger.pakmor@h-its.org

Kevin Schaal • Volker Springel
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg,
Germany,
Zentrum für Astronomie der Universität Heidelberg, Astronomisches Recheninstitut, Mönchhofstr.
12-14, 69120 Heidelberg, Germany,
e-mail: kevin.schaal@h-its.org; volker.springel@h-its.org

Praveen Chandrashekar
TIFR Centre for Applicable Mathematics, Bangalore-560065, India,
e-mail: praveen@tifrbng.res.in

Christian Klingenberg
Institut für Mathematik, Universität Würzburg, Emil-Fischer-Str. 30, 97074 Würzburg, Germany,
e-mail: klingenberg@mathematik.uni-wuerzburg.de

1

2 A. Bauer et al.

degrees of freedom to achieve the same accuracy and at the same time is more than
1.5 times faster, confirming its substantial promise for astrophysical applications.

1 Introduction

Turbulent flows are ubiquitous in astrophysical systems. For example, supersonic
turbulence in the interstellar medium is thought to play a key role in regulating star
formation [1, 2]. In cosmic structure formation, turbulence occurs in accretion flows
onto halos and contributes to the pressure support in clusters of galaxies [3] and
helps in distributing and mixing heavy elements into the primordial gas. Also, tur-
bulence plays a crucial role in creating an effective viscosity and mediating angular
momentum transport in gaseous accretion flows around supermassive black holes.

Numerical simulations of astrophysical turbulence require an accurate treatment
of the Euler equations. Traditionally, finite volume schemes have been used in as-
trophysics for high accuracy simulations of hydrodynamics. They are mostly based
on simple linear data reconstruction resulting in second-order accurate schemes.
In principle, these finite volume schemes can also be extended to high order, with
the next higher order method using parabolic data reconstruction, as implemented in
piecewise parabolic schemes [4]. While a linear reconstruction needs only the direct
neighbours of each cell, a further layer is required for the parabolic reconstruction.
In general, with the increase of the order of the finite volume scheme, the required
stencil grows as well. Especially in a parallelized code, this affects the scalability, as
the ghost region around the local domain has to grow as well for a deeper stencil, re-
sulting in larger data exchanges among different MPI processes and higher memory
overhead.

An interesting and still comparatively new alternative are so-called discontinu-
ous Galerkin (DG) methods. They rely on a representation of the solution through
an expansion into basis functions at the sub-cell level, removing the reconstruction
necessary in high-order finite volume schemes. Such DG methods were first intro-
duced by [5], and later extended to non-linear problems [6, 7, 8, 9, 10]. Successful
applications have so far been mostly reported for engineering problems [11, 12], but
they have very recently also been considered for astrophysical problems [13, 14].
DG methods only need information about their direct neighbours, independent of
the order of the scheme. Furthermore, the computational workload is not only spent
on computing fluxes between cells, but has a significant internal contribution from
each cell as well. The latter part is much easier to parallelize in a hybrid paral-
lelization code. Additionally, DG provides a systematic and transparent framework
to derive discretized equations up to an arbitrarily high convergence order. These
features make DG methods a compelling approach for future exa-scale machines.
Building higher order methods with a classical finite volume approach is rather con-
trived in comparison, which is an important factor in explaining why mostly second
and third order finite volume methods are in used in practice.

Simulating turbulence using the astrophysical DG code TENET 3

As shown in [15], subsonic turbulence can pose a hard problem for some of the
simulation methods used in computational astrophysics. Standard SPH in particular
struggles to reproduce results as accurate as finite volume codes, and a far higher
computational effort would be required to obtain an equally large inertial range as
obtained with a finite volume method, a situation that has only been moderately
improved by many enhancements proposed for SPH in recent years [16, 17, 18, 19,
20, 21]. In this work, we explore instead how well the DG methods implemented
in our new astrophysical simulation code TENET [22] perform for simulations of
subsonic turbulence. In this problem, the discontinuities between adjacent cells are
expected to be small and the sub-cell representation within a cell can reach high
accuracy. This makes subsonic turbulence a very interesting first application of our
new DG implementation.

In the following, we outline the equations and main ideas behind DG and in-
troduce our implementation. We will first describe how the solution is represented
using a set of basis functions. Then, we explain how initial conditions can be derived
and how they are evolved forward in time. Next, we examine how well our newly
developed DG methods behave in simulating turbulent flows. In particular, we test
whether an improvement in accuracy and computational efficiency compared with
standard second-order finite volume methods is indeed realized.

2 Discontinuous Galerkin methods

Instead of describing the solution with averaged quantities q within each cell, in
DG the solution is represented by an expansion into basis functions, which are often
chosen as polynomials of degree k. This polynomial representation is continuous
inside a cell, but discontinuous across cells, hence the name discontinuous Galerkin
method. Inside a cell K, the state is described by a function qK(x, t). This function
is only defined on the volume of cell K. In the following, we will use qK to refer to
the polynomial representation of the state inside cell K.

The polynomials of degree k form a vector space, and the state qK within a cell
can be represented using weights wK

l , where l denotes the component of the weight
vector. Each wl contains an entry for each of the five conserved hydrodynamic quan-
tities. Using a set of suitable orthogonal basis functions φ K

l (x), the state in a cell can
be expressed as

qK (x, t) =
N(k)

∑
l=1

wK
l (t)φ

K
l (x). (1)

Note how the time and space dependence on the right hand side is split up into two
functions. This will provide the key ingredient for discretizing the continuous partial
differential equations into a set of coupled ordinary differential equations.

The vector space of all polynomials up to degree k has the dimension N(k). The
l-th component of the vector can be obtained through a projection of the state q onto

4 A. Bauer et al.

the l-th basis function:

wK
l (t) =

1
|K|

∫
K

q(x, t)φ K
l (x)dV, (2)

with |K| being the volume of cell K and wK
l = (wρ,l ,wp,l ,we,l) being the l-th compo-

nent of the weight vector of the density, momentum density and total energy density.
The integrals can be either solved analytically or numerically using Gauss quadra-
ture rules. By wi,l we refer to a single component of the l-th weight vector, i.e. w0,0
and w0,1 are the zeroth and first weights of the density field, which correspond to the
mean density and a quantity proportional to the gradient inside a cell, respectively.
If polynomial basis functions of degree k are used, a numerical scheme with spatial
order p=k+1 is achieved, provided the exact solution is sufficiently smooth.

2.1 Basis functions

We discretize the computational domain with a cartesian grid and adopt a classi-
cal modal DG scheme, in which the solution is given as a linear combinations of
orthonormal basis functions φ K

l . For the latter we use tensor products of Legendre
polynomials. The cell extensions are rescaled such that they span the interval from
−1 to 1 in each dimension. The transformation is given by

ξ =
2

∆xK

(
x−xK) , (3)

with xK being the centre of cell K.
The full set of basis functions can be written as

{φl(ξ)}
N(k)
l=1 =

{
P̃u(ξ1)P̃v(ξ2)P̃w(ξ3)|u,v,w ∈ N0∧u+ v+w≤ k

}
, (4)

where P̃u are scaled Legendre polynomials of degree u. The sum of the degrees
of the individual basis functions has to be equal or smaller than the degree k of
the DG scheme. Thus, the vector space of all polynomials up to degree k has the
dimensionality

N(k) =
k

∑
u=0

k−u

∑
v=0

k−u−v

∑
w=0

1 =
1
6
(k+1)(k+2)(k+3). (5)

2.2 Initial conditions

To obtain the initial conditions, we have to find weight vectors wK
l at t = 0 corre-

sponding to the initial conditions q(x,0). The polynomial representation of a scalar

Simulating turbulence using the astrophysical DG code TENET 5

quantity described by the weight vector is

qK
i (x,0) =

N(k)

∑
l=1

wK
i,l(0)φ

K
l (x). (6)

The difference between the prescribed actual initial condition and the polynomial
representation should be minimal, which can be achieved by varying the weight
vectors wK

l in each cell for each hydrodynamical component i individually:

min{
wK

i,l(0)
}

l

∫
K

(
qK

i (x,0)−qi(x,0)
)2

dV, (7)

Thus, the l-th component of the initial weights wK
l is given by

wK
l (0) =

1
|K|

∫
K

q(x,0)φ K
l (x)dV. (8)

Transformed into the ξ coordinate system, the equation becomes

wK
l (0) =

1
8

∫
[−1,1]3

q(ξ ,0)φl(ξ)dξ . (9)

In principle, the integral can be computed analytically for known analytical initial
conditions. Alternatively, it can be computed numerically using a Gauss quadrature
rule:

wK
l (0) =

1
8

(k+1)3

∑
q=1

q(xq,0)φl(ξ q)ωq, (10)

using (k+ 1)3 sampling points xq and corresponding quadrature weights ωq. With
k+ 1 integration points polynomials of degree ≤ 2k+ 1 are integrated exactly by
the Gauss quadrature rule. Therefore, the projection integral is exact for initial con-
ditions in the form of polynomials of degree ≤ k.

2.3 Time evolution equations

The solution is discretized using time dependent weight vectors wK
l (t). The time

evolution equations for these weights can be derived from the Euler equation,

∂q
∂ t

+
3

∑
α=1

∂Fα(q)
∂xα

= 0. (11)

6 A. Bauer et al.

To obtain an evolution equation for the l-th weight, the Euler equation is multiplied
with φl and integrated over the the volume of cell K,

d
dt

∫
K

qK
φ

K
l dV −

3

∑
α=1

∫
K

∂Fα(q)
∂xα

φ
K
l dV = 0. (12)

Integrating the second term by parts and applying Gauss’s theorem leads to a volume
integral over the interior of the cell and a surface integral with surface normal vector
n:

d
dt

∫
K

qK
φ

K
l dV −

3

∑
α=1

∫
K

Fα

∂φ K
l

∂xα

dV +
3

∑
α=1

∫
∂K

Fα φ
K
l nα dA = 0. (13)

We will now discuss the three terms in turn, starting with the first one. Insert-
ing the definition of qK and using the orthogonality relation of the basis functions
simplifies this term to the time derivative of the l-th weight:

d
dt

∫
K

qK
φ

K
l dV = |K|

dwK
l

dt
. (14)

We transform the next term into the ξ -coordinate system. The term involves a
volume integral, which is solved using a Gauss quadrature rule:

3

∑
α=1

∫
K

Fα

(
qK (x, t)

) ∂φ K
l (x)

∂xα

dV

=

(
∆xK

)2

4

3

∑
α=1

∫
[−1,1]3

Fα

(
qK (ξ , t)

) ∂φl(ξ)

∂ξα

dξ

=

(
∆xK

)2

4

3

∑
α=1

(k+1)3

∑
q=1

Fα

(
qK (ξ q, t)

) ∂φl

∂ξα

∣∣∣∣
ξ q

ωq. (15)

The flux vector Fα can be easily evaluated at the (k+1)3 quadrature points ξ q using
the polynomial representation qK(ξ q, t). An analytical expression can be obtained
for the derivatives of the basis functions.

Finally, the last term is a surface integral over the cell boundary. Again, we trans-
form the equation into the ξ -coordinate system and apply a Gauss quadrature rule
to compute the integral:

Simulating turbulence using the astrophysical DG code TENET 7

3

∑
α=1

∫
∂K

Fα φ
K
l (x)nα dA

=

(
∆xK

)2

4

∫
∂ [−1,1]3

F
(
qK

L (ξ , t),q
K
R (ξ , t)

)
φl(ξ)nα dA′

=

(
∆xK

)2

4 ∑
a∈∂ [−1,1]3

(k+1)2

∑
q=1

F
(
qK

L (ξ a,q, t),qK
R (ξ a,q, t)

)
φl(ξ q)ωa,q. (16)

Each of the interface elements a is sampled using (k+ 1)2 quadrature points ξ a,q.
The numerical flux F between the discontinuous states at both sides of the interface
is computed using an exact or approximative HLLC Riemann solver. Note that only
this term couples the individual cells with each other.

Equations (15) and (16) can be combined into a function RK
l

(
w1, . . . ,wN(k)

)
.

Combining this with Equation (14) gives the following system of coupled ordinary
differential equations for the weight vectors wK

l :

dwK
l

dt
+RK

l
(
w1, . . . ,wN(k)

)
= 0. (17)

We integrate equation (17) with an explicit strong stability preserving (SSP) Runge-
Kutta scheme [23]. We define y =

(
w1, . . . ,wN(k)

)
and thus we have to solve

dy
dt

+R(y) = 0. (18)

A third order SSP Runge-Kutta scheme used in our implementation is given by

y(0) = yn (19)

y(1) = y(0)−∆ tnR(y(0)) (20)

y(2) =
3
4

y(0)+
1
4

(
y(1)−∆ tnR(y(1))

)
(21)

y(3) =
1
3

y(0)+
2
3

(
y(2)−∆ tnR(y(2))

)
(22)

yn+1 = y(3). (23)

with initial value yn, final value yn+1, intermediate states y(0),y(1),y(2), and time
step size ∆ tn.

2.4 Time-step calculation

The time step has to fulfill the following Courant criterium [6]:

8 A. Bauer et al.

∆ tK =
C

2k+1

(
|vK

1 |+ cK

∆xK
1

+
|vK

2 |+ cK

∆xK
2

+
|vK

3 |+ cK

∆xK
3

)−1

, (24)

with Courant factor C and sound speed cK . The minimum over all cells is deter-
mined and taken as the global maximum allowed time step. Note the (2k + 1)−1

dependence of the time step, which leads to a reduction of the timestep for high
order schemes.

2.5 Positivity limiter

For our set of turbulence simulations we have decided to limit the solution as little
as possible and adopt only a positivity limiter. This choice may lead to some oscil-
lations in the solution and reduce its visual quality, however, it achieves the most
accurate result in terms of error measurements. At all times, the density ρ , pressure
P and energy e should remain positive throughout the entire computational domain.
However, the higher order polynomial approximation could violate this physical
constraint in some parts of the solution. This in turn can produce a numerical stabil-
ity problem for the DG solver if the positivity is violated at a quadrature point inside
the cell or an interface. To avoid this problem, we use a so-called positivity limiter
[24]. This limiter strictly guarantees positivity only on a set of discrete points within
a cell, but if they are spaced densely enough, the solution can be expected to remain
positive everywhere. In addition, a strong stability preserving Runge-Kutta scheme
and a positivity preserving Riemann solver is needed to guarantee positivity. By ap-
plying this limiter at the beginning of each Runge-Kutta stage, it is guaranteed that
the density and pressure values entering the flux calculation are positive, as well as
the mean cell values at the end of each RK stage.

The set of points where positivity is enforced has to include the cell interfaces,
because fluxes are computed there as well. A possible choice of integration points,
which include the integration edges, are the Gauss-Lobatto-Legendre (GLL) points.
In the following, we will be using tensorial products of GLL and Gauss points,
where one coordinate is chosen from the set of GLL points and the remaining two
are taken from the set of Gauss points:

Sx = {(ξ̂r,ξs,ξt) : 1≤ r ≤ m,1≤ s≤ k+1,1≤ t ≤ k+1} (25)

Sy = {(ξr, ξ̂s,ξt) : 1≤ r ≤ k+1,1≤ s≤ m,1≤ t ≤ k+1}

Sz = {(ξr,ξs, ξ̂t) : 1≤ r ≤ k+1,1≤ s≤ k+1,1≤ t ≤ m} (26)

The full set of integration points is S = Sx∪Sy∪Sz, which includes all points where
fluxes are evaluated in the integration step.

First, the minimum density at all points in the set S is computed:

ρ
K
min = min

ξ∈S
ρ

K(ξ). (27)

Simulating turbulence using the astrophysical DG code TENET 9

We define a reduction factor θ K
1 as

θ
K
1 = min

{∣∣∣∣ ρ̄K− ε

ρ̄K−ρK
min

∣∣∣∣ ,1} , (28)

with the mean density in the cell ρ̄K (the 0-th density weight) and the minimum
target density ε . All high order weights of the density are reduced by this factor

wK
j,1← θ

K
1 wK

j,1, j = 2, ...,N(k). (29)

To guarantee a positive pressure P, a similar approach is taken:

θ
K
2 = min

ξ∈S
τ

K(ξ), (30)

with

τ
K(ξ) =

{
1 if PK(ξ)≥ ε

τ∗ such that P(qK(ξ)+ τ∗(qK(ξ)− q̄K)) = ε.
(31)

The equation for τ can not be solved analytically and has to be solved numerically.
To this end we employ a Newton-Raphson method. Now, the higher order weights
of all quantities are reduced by θ2

wK
j,i← θ

K
2 wK

j,i, j = 2, ...,N(k), i = 1, ...,5. (32)

Additionally the timestep has to be modified slightly to

∆ tK = C min
(

1
2k+1

,
ŵ1

2

)(
|vK

1 |+ cK

∆xK
1

+
|vK

2 |+ cK

∆xK
2

+
|vK

3 |+ cK

∆xK
3

)−1

, (33)

with the first GLL weight ŵ1. For a second order DG scheme the first weight is
ŵ1 = 1, and ŵ1 = 1/3 for a third and fourth order method.

3 Turbulence simulations

We shall consider an effectively isothermal gas in which we drive subsonic tur-
bulence through a forcing on large scales. The imposed isothermality prevents the
buildup of internal energy and pressure through the turbulent cascade over time.
Technically, we simulate an ideal gas but reset slight deviations from isothermality
back to to the imposed temperature level after every timestep, allowing us to directly
measure the dissipated internal energy.

We consider a 3D simulation domain of size L = 1. In the following, we will
compare runs with a finite volume scheme and runs using our new DG hydro solver
on a fixed Cartesian mesh. In the case of DG simulations we vary the resolution as

10 A. Bauer et al.

well as the convergence order of the code. A summary of all of our runs is given in
Table 1.

Note that we always state the convergence order, i.e. O = k+ 1 instead of k for
our DG runs. At a fixed convergence order of 3, we vary the resolution from 323 up
to 2563, and at a fixed resolution of 1283 we change the convergence order from 1
up to 4. This allows us to asses the impact of both parameters against each other.
The number of basis functions is N(0) = 1 for a first order method, N(1) = 4 for a
second order method, N(2) = 10 for a third order, and N(3) = 20 for a forth order
method. In Table 1 we also state the approximate number of degrees of freedom per
dimension to better compare the impact of increasing the order versus increasing
the resolution level. We compare against a second order MUSCL type finite volume
method, using an exact Riemann solver.

Overview over our turbulence simulations
Label Numerical method Conv. order O Resolution (d.o.f./cell)1/3

FV X 1 finite volume 1 323 . . . 5123 1
FV X 2 finite volume 2 323 . . . 5123 1
DG X 1 discontinuous Galerkin 1 1283 1
DG X 2 discontinuous Galerkin 2 1283 1.59
DG X 3 discontinuous Galerkin 3 323 . . .2563 2.15
DG X 4 discontinuous Galerkin 4 1283 2.71

Table 1 Summary of the turbulence simulations discussed in this article. The X in the name is a
placeholder for the resolution level. As a reference solution we consider ordinary finite volume
simulations with up to 5123 resolution elements. In case of DG, we vary the resolution from 323

up to 2563 for the third order code, as well as the convergence order from 1 up to 4 at a resolution
of 1283 cells. To better asses the impact of a higher order method, we state the number of degrees
of freedom per cell per dimension. The number of degrees of freedom per cell are 1,4,10 and 20
(from 1 order up to 4 order) in the case of DG.

3.1 Turbulence driving

We use the same driving method as in [15], which is based on [25, 26, 27, 28] and
[29]. We generate a turbulent acceleration field in Fourier space containing power
in a small range of modes between kmin = 6.27 and kmax = 12.57. The amplitude of
the modes is described by a paraboloid centered around (kmin+kmax)/2. The phases
are drawn from an Ornstein–Uhlenbeck (OU) process. This random process is given
by

θ t = f θ t−∆ t +σ

√
(1− f 2)zn, (34)

with random variable zn and decay factor f , given by f = exp(−∆ t/ts), with corre-
lation length ts. The phases are updated after a time interval of ∆ t. The variance of

Simulating turbulence using the astrophysical DG code TENET 11

the process is set by σ . The expected mean value of the sequence is zero, 〈θ t〉= 0,
and the correlations between random numbers over time are 〈θ t θ t+∆ t〉= σ2 f . This
guarantees a smooth, but frequent change of the turbulent driving field.

We want a purely solenoidal driving field, because we are interested in smooth
subsonic turbulence in this study. A compressive part would only excite sound
waves, which would eventually steepen to shocks if the driving is strong enough.
These compressive modes are filtered out through a Helmholtz decomposition in
Fourier space:

â(k)i =

(
δi j−

kik j

|k|2

)
â0(k) j. (35)

The acceleration field is incorporated as an external source term in the DG equa-
tions. The formalism is similar to adding an external gravitational field. We need to
compute the following DG integrals for aK

l :

aK
l (t) =

∫
K

a(x, t)φ K
l (x)dV

=
|K|
8

∫
[−1,1]3

a(ξ , t)φl(ξ)dξ

=
|K|
8

(k+1)3

∑
q=1

a(ξ q, t)φl(ξ q)ωq, (36)

thus we have to evaluate the driving field for (k + 1)3 inner quadrature points ξ

for each Runge-Kutta stage. An additional evaluation at the cell centre is required
to compute the allowed time step size. A corresponding term is used to update the
energy equation as well. The evaluation is done with a discrete Fourier sum over the
few non-zero modes of the driving field. If the update frequency of the driving field
is smaller than the typical timestep size, storing the acceleration field for each inner
quadrature point can speed up the computations. In case of the finite volume runs,
we add the driving field through two half step kick operators at the beginning and
end of a time step, like for ordinary gravity.

The overall amplitude of the acceleration field is rescaled such that a given Mach
number is reached. Our target Mach number is M ∼ 0.2. The decay time scale
is chosen as half the eddy turnover time scale, ts = 1

2
L

M c = 2.5 in our case. The
acceleration field is updated 10 times per decay time scale, ∆ t = 0.1ts = 0.25.

3.2 Dissipation measurement

We use an adiabatic index of γ = 1.01 instead of the isothermal index γ = 1. The
slight deviation from γ = 1 allows us to measure the dissipated energy while the
dynamics of the fluid is essentially isothermal. After each timestep, the expected
specific internal energy is computed as

12 A. Bauer et al.

Fig. 1 A thin slice through the
middle of our best resolved
DG simulation at third order
showing the density field.
The field uses the sub-cell
information given by the high
order DG weights. Every cell
is sub-sampled four times.

DG 256 3

0.96

0.98

1.00

1.02

1.04

ρ

ε =
c2

γ−1
ργ−1

ρ
γ−1
0

, (37)

with sound speed c and reference density ρ0 = 1. This specific internal energy is
enforced at all quadrature points within a cell. Thus, the weights associated with
the total energy density using the kinetic momentum and density field have to be
adjusted:

wK
e,l(t) =

∫
K

(
1
2

p(x, t)2

ρ(x, t)
+ρ(x, t)ε(x, t)

)
φ

K
l (x)dV

=
|K|
8

∫
[−1,1]3

(
1
2

p(ξ , t)2

ρ(ξ , t)
+ρ(ξ , t)ε(ξ , t)

)
φl(ξ)dξ

=
|K|
8

(k+1)3

∑
q=1

(
1
2

p(ξ q, t)2

ρ(ξ q, t)
+ρ(ξ q, t)ε(ξ q, t)

)
φl(ξ q)ωq. (38)

Afterwards, the average internal energy density in the cell can be recomputed as

ρε = wK
e,0−

1
2

wK
p,0

2

wK
ρ,0

. (39)

The dissipated energy is given by the difference between the average internal energy
before and after adjusting the weights of the total energy density. Afterwards the
positivity limiter is applied to guarantee non-negative values in our DG simulations.

Simulating turbulence using the astrophysical DG code TENET 13

3.3 Power spectrum measurement

FV 128 2 DG 128 2 DG 128 3 DG 128 4

FV 128 2 DG 128 2 DG 128 3 DG 128 4
0.0

0.2

0.4

0.6

0.8

1.0

|v|

0.96

0.98

1.00

1.02

1.04

ρ

Fig. 2 Thin slices through the density and velocity field at t = 30. We compare the finite volume
simulations against DG simulations of order 2 up to 4. Already 2nd order DG shows features which
are finer than in the 2nd order finite volume run. The higher moments available in 3rd and 4th order
DG allow a representation of finer features without increasing the spatial resolution. The thin lines
of zero velocity are much more pronounced in case of DG than in the finite volume case.

The power spectrum of a scalar or vector field w(x) is proportional to the Fourier
transformed of the two point correlation function:

Cw(l) = 〈w(x+ l)w(x)〉x. (40)

Thus

Ew(k) = (2π)3/2F (Cw(l)) =
∫

V
Cw(l)exp(−ikl)d3l (41)

= |ŵ(k)|2 , (42)

where ŵ is the Fourier transform of w1. Here, we are only interested in the 1D power
spectrum, thus we average Ew(k) over spherical shells:

Ew(k) = 4πk2〈Ew(k)〉, (43)

where k = |k|. The overall normalization of the Fourier transformation is chosen
such that the integral over the power spectrum is equivalent to the total energy:

σ
2 =

∫
w(x)dx =

∫
Ew(k)dk =

1
(2π)3N3

N−1

∑
i, j,k=0

|ŵi jk|2, (44)

1 We are using the convention of normalizing the Fourier transform symmetrically with (2π)−3/2.

14 A. Bauer et al.

with ŵi jk being the discrete Fourier transformation of the discretized continuous
field w. Usually we show kE(k) instead of E(k) directly in log-log plots. This means
a horizontal line in a log-log plot represents equal energy per decade and makes
interpreting the area under a curve easier.

4 Results

In Figure 2 we show a first visual overview of our simulation results at a resolution of
1283 cells. The panels show the state at the final output time t = 30 for the magnitude
of the velocity and the density in a thin slice through the middle of the box. Each
cell is subsampled four times for this plot using the full sub-cell information present
for each DG or finite volume cell. In the case of the finite volume scheme, we used
the estimated gradients in sub-sampling the cells.

The finite volume and DG results are similar at second order accuracy. However,
already the second order DG run visually shows more small scale structure than the
finite volume run. By increasing the order of accuracy and therefore allowing for
more degrees of freedom within a cell, DG is able to represent considerably more
structure at the same number of cells. Interestingly, the velocity field has regions of
(almost) zero velocity. These thin stripes can be well represented in DG. The finite
volume run shows the same features, but they are not as pronounced. Additionally,
Figure 1 shows a thin density slice for our highest resolution DG run DG 256 3. The
high resolution and third order accuracy allows for more small scale details than in
any other of our simulations.

4.1 Mach number evolution

All of our runs with a convergence order larger or equal to second order reach an
average Mach number of M ∼ 0.21 after t = 12. The detailed history of the Mach
number varies a bit from run to run. The differences between the different DG runs
and finite volume runs are however insignificant. The same holds true for the other
runs not shown in Figure 3. Interestingly, both, the first order finite volume and DG
runs fall substantially behind and can only reach a steady state Mach number of
about M ∼ 0.17. The low numerical accuracy leads to a too high numerical dissi-
pation rate in this case, preventing a fully established turbulent cascade. A similar
problem was found in [15] for simulations with standard SPH even at comparatively
high resolution, caused by a high numerical viscosity the noisy character of SPH.

Simulating turbulence using the astrophysical DG code TENET 15

Fig. 3 Time evolution of the
root mean square Mach num-
ber M . The runs with a higher
than first order convergence
order agree well with each
other and establish a Mach
number of about M ∼ 0.2 at
t = 12 in the quasi-stationary
phase. However, the first order
finite volume and DG runs do
not manage to reach the same
Mach number and fall sub-
stantially short of achieving
a comparable kinetic energy
throughout the entire run time.

0 5 10 15 20 25 30
t

0.00

0.05

0.10

0.15

0.20

0.25

rm
s
M

FV 128 1
FV 128 2
DG 128 1
DG 128 2
DG 128 3
DG 128 4

Fig. 4 The dashed lines show
the injected energy, while the
solid lines give the dissipated
energy over time. Dissipation
becomes only relevant after
an initial start-up phase.
Thereafter, a quasi-stationary
state is established.

0 5 10 15 20 25 30
t

0.00

0.05

0.10

0.15

E
in

j,
E

di
ss

FV 128 2 dis
FV 128 2 inj
DG 128 2 dis
DG 128 2 inj

DG 128 3 dis
DG 128 3 inj
DG 128 4 dis
DG 128 4 inj

4.2 Injected and dissipated energy

The globally injected and dissipated energy in our turbulence simulations is shown
in Figure 4 as a function of time. The rate of energy injection through the driving
forces stays almost constant over time. At around t = 12, the variations start to in-
crease slightly. At this point the fluctuations between individual runs start to grow as
well. Initially, the dissipation is negligible, but at around t = 8 dissipation suddenly
kicks in at a high rate, and then quickly transitions to a lower level at around t = 12,
where a quasi stationary state is reached that persists until the end of our runs. The
difference between both curves – the kinetic energy – remains rather constant after
t = 12. Thus, in the following we only use outputs after t = 12 for our analysis.

16 A. Bauer et al.

4.3 Velocity power spectra

Fig. 5 Comparison of the
velocity power spectra of
our second order finite vol-
ume runs against our third
order DG runs. Interestingly,
the spectra of the DG runs
match with the ones obtained
from the finite volume runs
at a quarter of the resolution.
Thus, DG obtains similar re-
sults using only about half as
many degrees of freedom per
dimension as finite volume
schemes. For comparison,
the grey line shows the k−5/3

Kolmogorov scaling. 101 102 103

k

10−5

10−4

10−3

10−2

10−1

kE
v(

k)

FV 128 2
FV 256 2
FV 512 2
DG 032 3
DG 064 3
DG 128 3
DG 256 3

In Figures 5 and 6, we show velocity power spectra of our runs. First, we focus on
a resolution study of our third order DG and second order finite volume simulations
in Figure 5. In case of the finite volume runs, we show the power spectra up to the
Nyquist frequency kn = 2πN/2L, with N being the number of cells per dimension.
For our DG runs we show the full power spectrum instead, obtained from the grid
used in the Fourier transformation up to kg = 2π4N/2L = 4kn. The finite volume
runs have a second peak not shown here at modes above kn, induced by noise result-
ing from the discontinuities across cell boundaries. The third and higher order DG
methods show a still declining power spectrum at kn and only at even higher modes
close to kg start to show a noise induced rise. This is due to the available sub-cell
information encoded in the DG weights.

All runs show an inertial range at scales smaller than the driving range on large
scales. The inertial range is followed by a numerical dissipation bottleneck. This
bottleneck is similar to the experimentally observed physical bottleneck effect, but
appears to be somewhat stronger. The energy transfered to smaller scales can not be
dissipated fast enough at the resolution scale and piles up there before it is eventually
transformed to heat. The bottleneck feature moves to ever smaller scales as the nu-
merical resolution is increased. Especially our highest resolution DG run DG 256 3
shows a quite large inertial range. However, the slope of the inertial range is mea-
sured slightly steeper than the expected k−5/3 Kolmogorov scaling. We think a Mach
number of M ∼ 0.21 and the associated density fluctuations are maybe already too
high for a purely Kolmogorov-like turbulence cascade, which is only expected for
incompressible gas.

Interestingly, the power spectra of our finite volume runs match those of our
third order DG simulations, except that the finite volume scheme requires four times
higher spatial resolution per dimension. Considering the 10 degrees of freedom per

Simulating turbulence using the astrophysical DG code TENET 17

cell for third order DG, the effective number of degrees of freedom is still lower
by a factor of 6.4 in the case of DG, which corresponds to a factor of 1.86 per
dimension. This underlines the power of higher order numerical methods, especially
if comparatively smooth problems such as subsonic turbulence are studied.

Fig. 6 Velocity power spec-
trum for our DG runs at
different convergence order
at a resolution of 1283 cells.
Already second order DG
shows a large inertial range
and a dissipation bottleneck at
small scales. For comparison,
the grey line shows the k−5/3

Kolmogorov scaling.

101 102 103

k

10−5

10−4

10−3

10−2

10−1

kE
v(

k)

FV 128 2
DG 128 2
DG 128 3
DG 128 4

In Figure 6 we compare the impact of the numerical convergence order on the
power spectrum of our DG runs. As a comparison we include a second order finite
volume run as well. All simulations have a numerical resolution of 1283. Already
the second order DG method shows a more extended inertial range than the second
order finite volume run. But the second order DG method already uses four degrees
of freedom per cell. Increasing the convergence order alone improves the inertial
range considerably. The change in going from second to third order is a bit larger
than the change from third to fourth order.

4.4 Density PDFs

In Figure 7, we show the probability density function (PDF) of the density field for
some of our runs. The PDF is averaged from t = 12 up to t = 30 and sub-sampled 43

times for each cell. We take the estimated density gradients into account for the fi-
nite volume runs. The finite volume run shows the smallest range of realized density
values at the sampling points. Slightly more sampling points pile up at the extreme
density values. This is due to the slope limited gradients used here, preventing more
extreme density values. The DG runs show a more extended range of density values,
with the range increasing with convergence order, because the higher order polyno-
mial representations allow for a more detailed structure with more extrema within a
cell. If only the mean values within the cells are considered, the PDFs are all rather
similar to each other and not so different from the finite volume run shown.

18 A. Bauer et al.

Fig. 7 The density PDF for
our runs at a resolution of
1283 cells. The PDF is ob-
tained by subsampling each
cell 43 times. In the finite
volume case, we take the
estimated density gradients
into account. For DG, we use
the full polynomial informa-
tion present in each cell. The
shaded area represents the
standard deviation over time.
Interestingly, finite volume
schemes show a sharp drop
off at the low and high density
ends which is absent in this
form in the DG calculations. 0.7 0.8 0.9 1.0 1.1

ρ

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

PD
F(

ρ)

FV 128 2
DG 128 2
DG 128 3
DG 128 4

5 Discussion

We presented the ideas and equations behind a new implementation of discontin-
ues Galerkin hydrodynamics that we realized in the astrophysical simulation code
TENET [22]. Unlike traditional finite volume schemes, DG uses subcell expansion
into a set of basis functions, which leads to internal flux calculations in addition to
surface integrals that are solved by a Riemann solver. Importantly, the reconstruction
step needed in finite volume schemes is obsolete in DG. Instead, the coefficients of
the expansion are evolved independently, and no information is ‘thrown away’ at the
end of a timestep, unlike done by the implicit averaging in finite volume schemes at
the end of every step. This offers the prospect of a higher computational efficiency,
especially at higher order where correspondingly more information is retained from
step to step. Such higher order can be relatively easily achieved in DG approaches.
Furthermore, stencils only involve direct neighbours in DG, even for higher order,
thereby making parallelization on distributed memory systems comparatively easy
and efficient.

These advantages clearly make DG methods an interesting approach for dis-
cretizing the Euler equations. However, at shocks, the standard method may fall
back to first order accuracy unless sophisticated limiters are used. If the problem
at hand is dominated by shocks and discontinuities, this might be a drawback. Ul-
timately, only detailed application tests, like we have carried out here, can decide
which method proves better in practice.

In this regard, an important question for comparing numerical methods is their
computational efficiency for a given accuracy, or conversely, what is the best numer-
ical accuracy which can be obtained for a given invested total runtime. Obtaining a
fair comparison based on the run time of a code can be complicated in general. For
example, for the runs analyzed in this study, different numbers of CPUs had to be
used, as the memory requirements change by several orders of magnitude between

Simulating turbulence using the astrophysical DG code TENET 19

our smallest and largest runs. The comparison may be further influenced by the fact
that both hydro solver implementations investigated here are optimized to differ-
ent degrees (with much more tuning already done for the finite volume method),
which can distort simple comparisons of the run times. Nevertheless, we opted to
give a straightforward comparison of the total CPU time used as a first rough indi-
cator of the efficiency of our DG method compared to a corresponding finite volume
scheme. We note however that our new DG code is less optimized thus far compared
with the finite volume module, so we expect that there is certainly room for further
improving the performance ratio in favor of DG.

We have generally found that the DG results for subsonic turbulence are as good
as the finite volume ones, but only need slightly more than half as many degrees of
freedom for comparable accuracy. Both the finite volume method at second order
accuracy and the DG scheme at third order accuracy show very good weak scal-
ing when increasing the resolution for the range of resolutions studied here. If we
compare the run time for roughly equal turbulence power spectra, we find that the
DG 032 3 run is about 1.14 times faster than the corresponding FV 128 2 run. This
performance ratio increases if we improve the resolutions: The DG 064 3 is already
1.34 times faster than the FV 256 2 run. The DG 128 3 run is 1.53 times faster
than the FV 512 2 run, which comes close to the factor 1.86 more degrees of free-
dom needed in the finite volume run to achieve the same accuracy. Thus, DG does
not only need fewer degrees of freedom to obtain the same accuracy but also con-
siderably less run time. This combination makes DG a very interesting method for
solving the Euler equations.

Besides improving computational efficiency, DG has even more to offer. In par-
ticular, it can manifestly conserve angular momentum in smooth parts of the flow,
unlike traditional finite volume methods. In addition, the divB= 0 constraint of ideal
magnetohydrodynamics (MHD) can be enforced at the level of the basis function ex-
pansion, opening up new possibilities to robustly implement MHD [13]. Combined
with its computational speed, this reinforces the high potential of DG as an attractive
approach for future exascale application codes in astrophysics, potentially replacing
the traditional finite volume scheme that are still in widespread use today.

Acknowledgements We thank Gero Schnücke, Juan-Pablo Gallego, Johannes Löbbert, Federico
Marinacci, Christoph Pfrommer, and Christian Arnold for very helpful discussions. We acknowl-
edge financial support through subproject EXAMAG of the Priority Programme 1648 ‘SPPEXA’
of the German Science Foundation, and through the European Research Council through ERC-
StG grant EXAGAL-308037. The authors gratefully acknowledge the support of the Klaus Tschira
Foundation. KS and AB acknowledge support by the IMPRS for Astronomy and Cosmic Physics at
the Heidelberg University. PC was supported by the AIRBUS Group Corporate Foundation Chair
in Mathematics of Complex Systems established in TIFR/ICTS, Bangalore.

References

1. R.S. Klessen, F. Heitsch, M.M. Mac Low, ApJ 535, 887 (2000). DOI 10.1086/308891

20 A. Bauer et al.

2. M.M. Mac Low, R.S. Klessen, Reviews of Modern Physics 76, 125 (2004). DOI
10.1103/RevModPhys.76.125

3. P. Schuecker, A. Finoguenov, F. Miniati, H. Böhringer, U.G. Briel, A&A 426, 387 (2004).
DOI 10.1051/0004-6361:20041039

4. P. Colella, P.R. Woodward, Journal of Computational Physics 54, 174 (1984). DOI
10.1016/0021-9991(84)90143-8

5. W.H. Reed, T. Hill, Los Alamos Report LA-UR-73-479 (1973)
6. B. Cockburn, C.W. Shu, Mathematics of Computation 52(186), 411 (1989)
7. B. Cockburn, S.Y. Lin, C.W. Shu, Journal of Computational Physics 84, 90 (1989). DOI

10.1016/0021-9991(89)90183-6
8. B. Cockburn, S. Hou, C.W. Shu, Mathematics of Computation 54, 545 (1990). DOI

10.1090/S0025-5718-1990-1010597-0
9. B. Cockburn, C.W. Shu, RAIRO-Modélisation mathématique et analyse numérique 25(3), 337

(1991)
10. B. Cockburn, C.W. Shu, Journal of Computational Physics 141, 199 (1998). DOI

10.1006/jcph.1998.5892
11. B. Cockburn, G. Karniadakis, C. Shu, Discontinuous Galerkin Methods: Theory, Computation

and Applications. Lecture Notes in Computational Science and Engineering (Springer Berlin
Heidelberg, 2011)

12. J.P. Gallego-Valencia, J. Löbbert, S. Müthing, P. Bastian, C. Klingenberg, Y. Xia, PAMM
14(1), 953 (2014). DOI 10.1002/pamm.201410457

13. P. Mocz, M. Vogelsberger, D. Sijacki, R. Pakmor, L. Hernquist, MNRAS 437, 397 (2014).
DOI 10.1093/mnras/stt1890

14. O. Zanotti, F. Fambri, M. Dumbser, MNRAS 452, 3010 (2015). DOI 10.1093/mnras/stv1510
15. A. Bauer, V. Springel, MNRAS 423, 2558 (2012). DOI 10.1111/j.1365-2966.2012.21058.x
16. J.W. Wadsley, G. Veeravalli, H.M.P. Couchman, MNRAS 387, 427 (2008). DOI

10.1111/j.1365-2966.2008.13260.x
17. D.J. Price, Journal of Computational Physics 227, 10040 (2008). DOI

10.1016/j.jcp.2008.08.011
18. S. Heß, V. Springel, MNRAS 406, 2289 (2010). DOI 10.1111/j.1365-2966.2010.16892.x
19. J.I. Read, T. Hayfield, O. Agertz, MNRAS 405, 1513 (2010). DOI 10.1111/j.1365-

2966.2010.16577.x
20. T. Abel, MNRAS 413, 271 (2011). DOI 10.1111/j.1365-2966.2010.18133.x
21. P.F. Hopkins, MNRAS 428, 2840 (2013). DOI 10.1093/mnras/sts210
22. K. Schaal, A. Bauer, P. Chandrashekar, R. Pakmor, C. Klingenberg, V. Springel, MNRAS 453,

4278 (2015). DOI 10.1093/mnras/stv1859
23. S. Gottlieb, C.W. Shu, E. Tadmor, SIAM review 43(1), 89 (2001)
24. X. Zhang, C.W. Shu, Journal of Computational Physics 229, 8918 (2010). DOI

10.1016/j.jcp.2010.08.016
25. W. Schmidt, W. Hillebrandt, J.C. Niemeyer, Computers & Fluids 35(4), 353 (2006). DOI

10.1016/j.compfluid.2005.03.002
26. C. Federrath, R.S. Klessen, W. Schmidt, ApJ 688, L79 (2008). DOI 10.1086/595280
27. C. Federrath, R.S. Klessen, W. Schmidt, ApJ 692, 364 (2009). DOI 10.1088/0004-

637X/692/1/364
28. C. Federrath, J. Roman-Duval, R.S. Klessen, W. Schmidt, M.M. Mac Low, A&A 512, A81

(2010). DOI 10.1051/0004-6361/200912437
29. D.J. Price, C. Federrath, MNRAS 406, 1659 (2010). DOI 10.1111/j.1365-2966.2010.16810.x

