1. Introduction

1.1. Quantum Boltzmann equation for gas mixture. The quantum modification of the celebrated Boltzmann equation was made in \([61, 62]\) to incorporate the quantum effect that cannot be neglected for light molecules (such as Helium) in low temperature. Quantum Boltzmann equation is now fruitfully employed not just for low temperature gases, but in various circumstances such as the study of carrier mobility in various electronic devices. When the gas is composed of several different types of molecules (gas mixture), the quantum Boltzmann equation takes the form (For simplicity, we restricted our interest into two species case):

\[
\begin{align*}
\partial_t f_1 + \frac{p}{m_1} \cdot \nabla_x f_1 &= Q_{11}(f_1, f_1) + Q_{12}(f_1, f_2), \\
\partial_t f_2 + \frac{p}{m_2} \cdot \nabla_x f_2 &= Q_{22}(f_2, f_2) + Q_{21}(f_2, f_1).
\end{align*}
\] (1.1)

The momentum distribution function \(f_i(x, p, t)\) denotes the number density at the phase point \((x, p) \in \Omega_x \times \mathbb{R}^3_p\) at time \(t\). The collision operator \(Q_{ij} (i, j = 1, 2)\) takes the following form:

\[\int_{\mathbb{R}^3} f_1(x, p, t) \cdot d^3p \int_{\mathbb{R}^3} f_2(x', p', t) \cdot d^3p' \int_{\mathbb{R}^3} f_1(x + x', p + p', t) \cdot d^3p' = \int_{\mathbb{R}^3} f_1(x, p, t) \cdot d^3p \int_{\mathbb{R}^3} f_2(x', p', t) \cdot d^3p' \int_{\mathbb{R}^3} f_1(x + x', p + p', t) \cdot d^3p'.\]
The collision operator

\[Q_{ij}(f_i, f_j) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^2} B_{ij}[(p - p_*)|w|]\{f'_i f'_{j,*}(1 \pm f_i)(1 \pm f_{j,*}) - f_i f_{j,*}(1 \pm f'_i)(1 \pm f'_j)\} dw dp_* \]

- Fermion-Fermion (−), Boson-Boson (+).

\[Q_{ij}(f_i, f_j) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^2} B_{ij}[(p - p_*)|w|]\{f'_i f'_{j,*}(1 + \tau(i)f_i)(1 + \tau(j)f_{j,*}) - f_i f_{j,*}(1 + \tau(i)f'_i)(1 + \tau(j)f'_{j,*})\} dw dp_* . \]

where \(\tau(1) = -1\) and \(\tau(2) = 1\). We used the abbreviated notation:

\[f_i = f_i(x, p, t), \quad f_{i,*} = f_i(x, p_*, t), \quad f'_i = f_i(x, p', t), \quad f'_{i,*} = f_i(x, p'_*, t), \quad i = 1, 2. \]

The pre-collisional momenta \(p'\) and \(p'_*\) can be derived from the local conservation laws:

\[p' + p'_* = p + p_* , \]

in the following explicit forms:

\[p' = p - \frac{2m_1 m_2}{m_1 + m_2} w \left(\frac{p}{m_1} - \frac{p_*}{m_2} \right) \cdot w, \]

\[p'_* = p_* + \frac{2m_1 m_2}{m_1 + m_2} w \left(\frac{p}{m_1} - \frac{p_*}{m_2} \right) \cdot w . \]

The collision operator has 5 collision invariants: \(1, p, |p|^2\) (\(k = 1, 2\)):

\[\int_{\mathbb{R}^3} Q_{kk}(f_k, f_k) dp = 0, \quad \int_{\mathbb{R}^3} Q_{12}(f_1, f_2) dp = \int_{\mathbb{R}^3} Q_{21}(f_2, f_1) dp = 0, \]

\[\int_{\mathbb{R}^3} Q_{kk}(f_k, f_k) p dp = 0, \quad \int_{\mathbb{R}^3} \{Q_{12}(f_1, f_2)p + Q_{21}(f_2, f_1)\} p dp = 0, \]

\[\int_{\mathbb{R}^3} Q_{kk}(f_k, f_k) |p|^2 dp = 0, \quad \int_{\mathbb{R}^3} \{Q_{12}(f_1, f_2) + Q_{21}(f_2, f_1)\} |p|^2 dp = 0, \]

which leads to the conservation of total mass, momentum and energy:

\[\frac{d}{dt} \int_{T^3 \times \mathbb{R}^3} f_1 dx dp = 0, \quad \frac{d}{dt} \int_{T^3 \times \mathbb{R}^3} f_2 dx dp = 0, \]

\[\frac{d}{dt} \int_{T^3 \times \mathbb{R}^3} f_1 p dx dp + \int_{T^3 \times \mathbb{R}^3} f_2 p dx dp = 0, \]

\[\frac{d}{dt} \int_{T^3 \times \mathbb{R}^3} f_1 |p|^2 dx dp + \int_{T^3 \times \mathbb{R}^3} f_2 |p|^2 dx dp = 0. \]

The collision operator \(Q_{ii}, Q_{ij} (i, j \in \{1, 2\})\) also satisfies the following entropy dissipation property:

\[\int_{\mathbb{R}^3} \ln \frac{f_1}{1 + \tau(1)f_1} Q_{11}(f_1, f_1) dp \leq 0, \quad \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + \tau(2)f_2} Q_{22}(f_2, f_2) dp \leq 0, \]

\[\int_{\mathbb{R}^3} \ln \frac{f_1}{1 + \tau(1)f_1} Q_{12}(f_1, f_2) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + \tau(2)f_2} Q_{21}(f_2, f_1) dp \leq 0. \]

where \(\tau(i) = -1\) when \(f_i\) denotes distribution of fermion and \(\tau(i) = +1\) when \(f_i\) denotes distribution of boson.

Such dissipation implies the celebrated H-theorem for quantum mixture:
Quantum BGK model for gas mixture.

The r.h.s of (1.1) vanishes if and only if

- Fermion-Fermion (-), Boson-Boson (+):

\[
\frac{d}{dt} H(f_1, f_2) = \int_{\mathbb{R}^3} \ln \frac{f_1}{1 \pm f_1} Q_{11}(f_1, f_1) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 \pm f_2} Q_{22}(f_2, f_2) dp \\
+ \int_{\mathbb{R}^3} \ln \frac{f_1}{1 \pm f_1} Q_{12}(f_1, f_2) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 \pm f_2} Q_{21}(f_2, f_1) dp \leq 0,
\]

- Fermion \(f_1\)-Boson \(f_2\):

\[
\frac{d}{dt} H(f_1, f_2) = \int_{\mathbb{R}^3} \ln \frac{f_1}{1 - f_1} Q_{11}(f_1, f_1) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + f_2} Q_{22}(f_2, f_2) dp \\
+ \int_{\mathbb{R}^3} \ln \frac{f_1}{1 - f_1} Q_{12}(f_1, f_2) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + f_2} Q_{21}(f_2, f_1) dp \leq 0,
\]

where \(H(f_1, f_2)\) denotes the \(H\)-functional:

- Fermion-Fermion interaction:

\[
H(f_1, f_2) = \int_{\mathbb{R}^3} f_1 \ln f_1 + (1 - f_1) \ln(1 - f_1) dp + \int_{\mathbb{R}^3} f_2 \ln f_2 + (1 - f_2) \ln(1 - f_2) dp.
\]

- Boson-Boson interaction:

\[
H(f_1, f_2) = \int_{\mathbb{R}^3} f_1 \ln f_1 - (1 + f_1) \ln(1 + f_1) dp + \int_{\mathbb{R}^3} f_2 \ln f_2 - (1 + f_2) \ln(1 + f_2) dp.
\]

- Fermion \(f_1\)-Boson \(f_2\) interaction:

\[
H_{FB}(f_1, f_2) = \int_{\mathbb{R}^3} f_1 \ln f_1 + (1 - f_1) \ln(1 - f_1) dp + \int_{\mathbb{R}^3} f_2 \ln f_2 - (1 + f_2) \ln(1 + f_2) dp.
\]

The r.h.s of (1.1) vanishes if and only if \(f_1\) and \(f_2\) are quantum equilibrium:

- Fermion-Fermion (+), Boson-Boson interaction (-):

\[
f_1 = \frac{1}{e^{a|p - b|^2 + c_1} + 1}, \quad f_2 = \frac{1}{e^{a|p - b|^2 + c_2} + 1}.
\]

- Fermion \(f_1\)-Boson \(f_2\) interaction

\[
f_1 = \frac{1}{e^{a|p - b|^2 + c_1} + 1}, \quad f_2 = \frac{1}{e^{a|p - b|^2 + c_2} - 1}.
\]

1.2. Quantum BGK model for gas mixture. In this paper, we propose the BGK type relaxation model of (1.6):

\[
\begin{align*}
\partial_t f_i + p \cdot \nabla_x f_i &= \mathcal{R}_{1i} + \mathcal{R}_{12}, \\
\partial_t f_j + p \cdot \nabla_x f_j &= \mathcal{R}_{21} + \mathcal{R}_{22},
\end{align*}
\]

where \(\mathcal{R}_{ij}\) denotes the relaxation operator for the interactions of \(i\)th and \(j\)th component. More explicitly, they are defined as follows:

- Fermion-Fermion interaction \((i \neq j)\):

\[
\mathcal{R}_{ii} = \mathcal{F}_{ii} - f_i, \quad \mathcal{R}_{ij} = \mathcal{F}_{ij} - f_i, \quad (i = 1, 2)
\]

where \(\mathcal{F}_{ii}\) denotes the Fermi-Dirac distribution for same-species interaction:

\[
\mathcal{F}_{11} = \frac{1}{e^{a_1|p - b_1|^2 + c_1} + 1}, \quad \mathcal{F}_{22} = \frac{1}{e^{a_2|p - b_2|^2 + c_2} + 1},
\]

and \(\mathcal{F}_{ij}\) denote Fermi-Dirac distribution for inter-species interactions:

\[
\mathcal{F}_{12} = \frac{1}{e^{a_1|p - b_1|^2 + c_{12}} + 1}, \quad \mathcal{F}_{21} = \frac{1}{e^{a_1|p - b_2|^2 + c_{21}} + 1}.
\]
• Boson-Boson interaction \((i \neq j)\):
\[
\mathcal{R}_{ii} = B_{ii} - f_i, \quad \mathcal{R}_{ij} = B_{ij} - f_i, \quad (i = 1, 2)
\]
where \(B_{ii}\) denotes the Bose-Einstein distribution for same-species interaction:
\[
B_{11} = \frac{1}{e^{a_1|p-b_1|^2+c_1}-1}, \quad B_{22} = \frac{1}{e^{a_2|p-b_2|^2+c_2}-1},
\]
while \(B_{ij}\) denote Bose-Einstein distribution for inter-species interactions:
\[
B_{12} = \frac{1}{e^{a_1|p-b|^2+c_{12}}-1}, \quad B_{21} = \frac{1}{e^{a_2|p-b|^2+c_{21}}-1}.
\]

• Fermion \((f_1)\)-Boson \((f_2)\) interaction:
\[
\mathcal{R}_{11} = \mathcal{F}_{11} - f_1, \quad \mathcal{R}_{22} = B_{22} - f_2,
\]
and
\[
\mathcal{R}_{12} = \mathcal{F}_{12} - f_1, \quad \mathcal{R}_{21} = B_{21} - f_2,
\]
where \(\mathcal{F}_{ii}\) denotes the Fermi-Dirac distribution and \(B_{22}\) denotes the Bose-Einstein distribution for \(i-i\) interaction:
\[
\mathcal{F}_{11} = \frac{1}{e^{a_1|p-b_1|^2+c_1}+1}, \quad B_{22} = \frac{1}{e^{a_2|p-b_2|^2+c_2}-1}.
\]
while \(\mathcal{F}_{12}\) denotes Fermi-Dirac distribution and \(B_{21}\) denotes Bose-Einstein distribution for inter-species interactions:
\[
\mathcal{F}_{12} = \frac{1}{e^{a_1|p-b|^2+c_{12}}+1}, \quad B_{21} = \frac{1}{e^{a_2|p-b|^2+c_{21}}-1}.
\]

For later convenience, and for unified proof, we introduce the following notation for quantum equilibriums:

- **The quantum equilibrium** \(\mathcal{M}_{ij}\)
Next, we will make statements on the equilibrium distributions in the relaxation operators that correspond to \(\mathcal{F}_{ij}\) in the fermion case and \(B_{ij}\) in the boson case. In order not to list all different cases separately, we denote the equilibrium distribution by \(\mathcal{M}_{ij}\) which is equal to a Fermi-Dirac or a Bose-Einstein distribution depending on the case we consider:

1. Fermion-Fermion interaction
\[
\mathcal{M}_{ij} = \mathcal{F}_{ij}, \quad (i, j = 1, 2)
\]

2. Boson-Boson interaction
\[
\mathcal{M}_{ij} = B_{ij}, \quad (i, j = 1, 2)
\]

3. Fermion \((f_1)\) - Boson \((f_2)\) interaction
\[
\mathcal{M}_{1j} = \mathcal{F}_{1j}, \quad \mathcal{M}_{2j} = B_{2j}, \quad (j = 1, 2)
\]

The excessive computational cost has already been a very serious obstacles even for the classical Boltzmann equation. Since the difficulty mostly lies in the computation of the collision operator, various efforts to approximate the complicated collision process with a numerically more amenable model have been made. The BGK model is introduced in [9] as a result of such efforts, and now become the most popular approximate model of the Boltzmann equation because it provide a very reliable results in wide range of kinetic-fluid regime covering much of the practical problems at relatively low computational costs.

As in the classical case, the quantum BGK models are widely used in place of the quantum Boltzmann equation. However, the quantum BGK model for mixture are not rigorously studied yet. More precisely, whether the relaxation operator can be soundly defined in a rigorous manner so that it satisfies the same conservation laws and the \(H\)-theorem as the quantum Boltzmann does has never been rigorously verified in the literature. (For the relevant result for one-species quantum BGK, see [3, 4, 22, 43, ?]), which is the main motivation of the current work.
1.3. Determination of \mathcal{M}_{ij} ($i, j = 1, 2$). The quantum BGK model may be far more amenable in terms of numerical computation, but the highly non-linear nature of the QBGK model gives rise to various difficulties in the analysis of the model. As such, it turns out that the requirement that the QBGK model must share the conservation laws and H-theorem with the quantum Boltzmann equation, leads to a set of very complicated nonlinear relations for the equilibrium coefficients (See Section 2.2). Moreover, they involves different conditions of solvability according to the nature of the interactions: Fermion-Fermion interaction, Fermion-Boson interaction, Boson-Boson interaction.

In this paper, we explicitly derive the nonlinear relations among the equilibrium coefficients M_{11}, M_{22}, M_{12}, M_{21} that arise from the physical requirement of the equation, and verify in a unified way that those nonlinear relations uniquely determined the coefficients under certain conditions.

First, we note that we need to determine the mixture local equilibrium M_{ij} in such way that the relaxation operator in the r.h.s of (1.6) satisfies the same cancellation properties in (1.3) and the entropy dissipation in (1.5) are determined by following conservation laws.

To be more specific, let N_i, P_i and E_i ($i = 1, 2$) denotes

$$N_i = \int_{\mathbb{R}^3} f_i dp, \quad P_i = \int_{\mathbb{R}^3} f_i p dp, \quad E_i = \int_{\mathbb{R}^3} f_i |p|^2 dp.$$

Assuming that the r.h.s of (1.6) satisfies the same identities in (1.3), we arrive at the following identities:

$$\int_{\mathbb{R}^3} \mathcal{M}_{ii} dp = N_i, \quad \int_{\mathbb{R}^3} \mathcal{M}_{ii} p dp = P_i, \quad \int_{\mathbb{R}^3} \mathcal{M}_{ii} |p|^2 dp = E_i, \quad (i = 1, 2) \tag{1.7}$$

and

$$\int_{\mathbb{R}^3} \mathcal{M}_{12} dp = N_1, \quad \int_{\mathbb{R}^3} \mathcal{M}_{21} dp = N_2,$$

$$\int_{\mathbb{R}^3} \mathcal{M}_{12} p dp + \int_{\mathbb{R}^3} \mathcal{M}_{21} p dp = P_1 + P_2,$$

$$\int_{\mathbb{R}^3} \mathcal{M}_{12} |p|^2 dp + \int_{\mathbb{R}^3} \mathcal{M}_{21} |p|^2 dp = E_1 + E_2. \tag{1.8}$$

Our goal is to show that, for each fixed N_i, P_i, E_i ($i = 1, 2$), the relations in (1.7) and (1.8) completely and uniquely determine \mathcal{M}_{ij}, which is stated in Theorem 2.1.

1.4. literature review: Quantum BGK models. The quantum modification of the celebrated Boltzmann equation, which is often called Uehling-Uhlenbeck equation or Nordheim equation in the literature, was made in [26, 37, 61, 62] and soon recognized as a fundamental equation to describe quantum particles at mesoscopic level. But due to the complexity of the collision operator, which is a serious obstacle to practical application of the equation, and relaxation time approximations, or quantum BGK models are widely used to understand the transport phenomena and compute transport coefficients for semi-conductor device and crystal lattice [2, 21, 34, 35, 36, 45, 51] and various flow problems involving quantum effects [16, 24, 23, 53, 57, 63, 64]. For the development of numerical methods for quantum BGK model, we refer to [16, 23, 24, 47, 53, 56, 57, 63, 64, 65]. We mention that The prototype of relaxation type models in quantum theory can be traced back to the Drude model [19, 20] which successfully explained the fundamental transport property of electrons such as the Ohm’s law or Hall effect.

Mathematical results on the quantum BGK model is Nouri studied the existence of weak solutions for a stationary quantum BGK model with a discretized condensation term in [48]. Braukhoff [13, 14] established the existence of analytic solutions and studied its asymptotic behaviour for a quantum BGK type model describing the dynamics of the ultra-cold atoms in an optical lattice. Bae et al considered the existence and asymptotic stability of a fermionic quantum BGK model near a global Fermi-Dirac distribution.
1.5. BGK models for gas mixtures: There are many BGK models for gas mixtures proposed in the literature. Examples include the model of Gross and Krook [30], the model of Hamel [32], the model of Garzo, Santos and Brey [27], the model of Greene [28], the model of Sofonea and Sekerka [58], the model of Klingenberg, Pirner and Puppo [39], the model of Haack, Hauck, Murillo [31], the model of Bobylev, Bisi, Groppi, Spiga [12], the model by Andries, Aoki and Perthame [1]. BGK models have also been extended to ES-BGK models, polyatomic molecules or chemical reactions; see for example [40, 60, 29, 41, 50, 10, 11]. BGK models are often used in applications because they give rise to efficient numerical computations as compared to models with Boltzmann collision terms [49, 25, 18, 7, 17, 8].

In the following Section 2.1, we state our main result. In Section 2.2, we derive a set of nonlinear functional relations and show that the equilibirum coefficients can be uniquely determined to satisfy the conservation laws of mass, momentum and energy. In Section 2.3, the BGK model defined with the equilibrium coefficients derived in Section 2.2, also satisfies the H-theorem.

2. Determination of the relaxation operators for quantum mixture

2.1. Main result for general quantum-quantum interaction. We now state our main result stating that the equilibrium coefficients, under appropriate assumptions on N_i, P_i and E_i, can be uniquely determined. To simplify the presentation, we introduce $h_{\pm 1}, j_{\pm 1}, k$ by

$$h_{\pm 1}(x) = \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x \pm 1}} dp, \quad j_{\pm 1}(x) = \frac{\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x \pm 1}} dp}{\left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x \pm 1}} dp \right)^{3/5}},$$

and

$$k_{\tau, \tau'}(x, y) = \frac{\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x + \tau}} dp}{\left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x + \tau}} dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x) + \tau}} dp \right)^{3/5}},$$

where the pair (τ, τ') is chosen as follows:

$$(\tau, \tau') = \begin{cases} (+1, +1) & \text{(fermion-fermion)} \\ (-1, -1) & \text{(boson-boson)} \\ (+1, -1) & \text{(fermion-boson)} \end{cases}$$

Using h and k, we define g, which is defined as a composite function of k and h^{-1}, as follows:

$$(2.1) \quad g_{\tau, \tau'}(x) = k_{\tau, \tau'}(x, y(x)) = \frac{\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x + \tau}} dp}{\left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x + \tau}} dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x) + \tau}} dp \right)^{3/5}},$$

where $y(x)$ denotes

$$y(x) = h^{-1}_\tau \left(\frac{N_2}{N_1} h_\tau(x) \right),$$

Note that h^{-1}_\pm always exist since h_\pm is strictly decreasing. For simplicity of notation, we define $l : \{+1, -1\} \to \mathbb{R}$ by

$$l(x) = \begin{cases} l(+1) = -\infty \\ l(-1) = 0 \end{cases}$$

Theorem 2.1. (1) Assume,

$$\frac{N_1}{(E_1 - P_1^2/N_1)^{3/5}} \leq j_\tau(l(\tau)), \quad \frac{N_2}{(E_2 - P_2^2/N_2)^{3/5}} \leq j_{\tau'}(l(\tau')).$$
Then, we can define c_i $(i = 1, 2)$ as the unique solution of

\[
 j_\tau(c_1) = \frac{N_1}{(E_1 - |P_1|^2/N_1)^{\frac{3}{2}}}, \quad j_\tau(c_2) = \frac{N_2}{(E_2 - |P_2|^2/N_1)^{\frac{3}{2}}}
\]

With c_1, c_2 obtained above, we then define a_i $(i = 1, 2)$ by

\[
a_1 = \left(\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + c_1 + \tau}} dp \right)^{\frac{2}{3}} N_1^{-\frac{4}{3}}, \quad a_2 = \left(\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + c_2 + \tau}} dp \right)^{\frac{2}{3}} N_2^{-\frac{4}{3}},
\]

and

\[
b_1 = \frac{P_1}{N_1}, \quad b_2 = \frac{P_2}{N_2}.
\]

Then, with such choice of a_i, b_i and c_i, M_{11} and M_{22} satisfies (1.7).

(2) Assume further that

\[
 \frac{N_1}{(E_1 + E_2 - \frac{|P_1 + P_2|^2}{N_1 + N_2})^{\frac{3}{2}}} \leq g \left(\max \left\{ \ell(\tau), h_\tau^{-1} \left(\frac{N_1}{N_2} h_\tau^{-1}(\ell(\tau')) \right) \right\} \right).
\]

Then c_{12}, c_{21} are defined as a unique solution of the following relations:

\[
h_\tau(c_{12}) = \frac{N_1}{N_2}, \quad k_{\tau'}(c_{12}, c_{21}) = \frac{N_1}{(E_1 + E_2 - \frac{|P_1 + P_2|^2}{N_1 + N_2})^{\frac{3}{2}}}.
\]

With such c_{12} and c_{21}, we define a and b by

\[
a = \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + c_{12} + \tau}} dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + c_{21} + \tau}} dp \right)^{\frac{2}{3}} \frac{1}{E_1 + E_2 - \frac{|P_1 + P_2|^2}{N_1 + N_2}}, \quad b = \frac{P_1 + P_2}{N_1 + N_2},
\]

Then, with these choice our equilibrium coefficients, our quantum BGK model for gas mixture (1.6) satisfies (1.8).

(3) With the choice of equilibrium coefficients as in (1), (2), the quantum BGK model for gas mixture (1.6) satisfies the H-theorem. The equality in the H-Theorem is characterized by f_1 and f_2 being two Fermion distributions in the Fermion-Fermion case, two Bose distributions in the Boson-Boson case and a Fermion distribution and a Bose distribution in the Fermion-Boson case. In all cases these equilibrium distributions have the same a and b.

2.2. Proof of Theorem 2.1 (1), (2). The proof for (1) can be found in [3]. Therefore, we start with the proof of (2). An explicit computation from (1.8) gives

\[
P_1(x, t) + P_2(x, t) = \int_{\mathbb{R}^3} \frac{p}{e^{a|p|^2 + c_{12} + \tau}} dp + \int_{\mathbb{R}^3} \frac{p}{e^{a|p|^2 + c_{21} + \tau}} dp = \int_{\mathbb{R}^3} \frac{p + b}{e^{a|p|^2 + c_{12} + \tau}} dp + \int_{\mathbb{R}^3} \frac{p + b}{e^{a|p|^2 + c_{21} + \tau}} dp = b(N_1(x, t) + N_2(x, t)).
\]

This gives the explicit presentation of b:

\[
b(x, t) = \frac{P_1(x, t) + P_2(x, t)}{N_1(x, t) + N_2(x, t)}.
\]
On the other hand, we have from (1.8)1 that:

\[N_1(x, t) = \int_{\mathbb{R}^3} e^{\frac{|p|}{|p|^2 + c_{12} + \tau}} \, dp = a^{-\frac{3}{2}} \int_{\mathbb{R}^3} e^{\frac{1}{|p|^2 + c_{12} + \tau}} \, dp, \]

\[N_2(x, t) = \int_{\mathbb{R}^3} e^{\frac{|p|}{|p|^2 + c_{21} + \tau'}} \, dp = a^{-\frac{3}{2}} \int_{\mathbb{R}^3} e^{\frac{1}{|p|^2 + c_{21} + \tau'}} \, dp, \]

and from (1.8)3:

\[E_1(x, t) + E_2(x, t) = \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{12} + \tau}}} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{21} + \tau'}}} \, dp = a^{-\frac{3}{2}} \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{12} + \tau}}} \, dp + a^{-\frac{3}{2}} \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{21} + \tau'}}} \, dp = (N_1 + N_2)b^2(x, t), \]

Plugging (2.2) into (2.4), we get

\[E_1(x, t) + E_2(x, t) = \frac{|p_1 + p_2|^2}{N_1 + N_2} = a^{-\frac{3}{2}} \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{12} + \tau}}} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{21} + \tau'}}} \, dp \right), \]

We then deduce from (2.5) and (2.3)1 that

\[\frac{N_1}{E_1 + E_2 - \frac{|p_1 + p_2|^2}{N_1 + N_2}} = \frac{\int_{\mathbb{R}^3} \frac{1}{e^{\frac{|p|}{|p|^2 + c_{12} + \tau}}} \, dp}{\left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{12} + \tau}}} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + c_{21} + \tau'}}} \, dp \right)^{\frac{3}{2}}}. \]

On the other hand, we can factor out \(a\) by dividing the two relations in (2.3):

\[\frac{N_1}{N_2} = \frac{\int_{\mathbb{R}^3} \frac{1}{e^{\frac{|p|}{|p|^2 + c_{12} + \tau}}} \, dp}{\int_{\mathbb{R}^3} \frac{1}{e^{\frac{|p|}{|p|^2 + c_{21} + \tau'}}} \, dp}, \]

and hence:

\[c_{21} = h_{\tau'}^{-1} \left(\frac{N_2}{N_1} h_{\tau}(c_{12}) \right), \]

from the monotonicity of \(h_{\tau}\). Now, considering that \(a\) is obtained from (2.5) once \(c_{12}\) and \(c_{21}\) are chosen, it remains, under the assumption of Theorem 2.1, that (2.6) and (2.7) uniquely determine \(c_{12}\) and \(c_{21}\). In turn, in view of (2.6) and (2.8), we see that \(c_{12}\) and \(c_{21}\) can be uniquely determined once we prove the monotonicity of \(g\), which is stated in the following lemma.

Lemma 2.2. Recall the definition of \(g\) given in (2.1):

\[g_{\tau, \tau'}(x) = \frac{\int_{\mathbb{R}^3} \frac{1}{e^{\frac{|p|}{|p|^2 + x + \tau}}} \, dp}{\left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + x + \tau}}} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + y(x) + \tau'}}} \, dp \right)^{\frac{3}{2}}}, \]

where

\[y(x) = h_{\tau}^{-1} \left(\frac{N_2}{N_1} h_{\tau}(x) \right), \]

Then \(g_{\tau, \tau'}(x)\) is monotone decreasing function when \(x \geq \max \left\{ l(\tau), h_{\tau}^{-1} \left(\frac{N_2}{N_1} h_{\tau}(l(\tau')) \right) \right\}\).

Proof. Claim : We claim that establishing the following identity finishes the proof.

\[g'_{\tau, \tau'}(x) = 8\pi^2 \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + x + \tau}}} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{\frac{|p|}{|p|^2 + y(x) + \tau'}}} \, dp \right)^{\frac{3}{2}} \]

\[\left(\int_{\mathbb{R}^3} \frac{1}{e^{\frac{|p|}{|p|^2 + x + \tau}}} \, dp + \int_{\mathbb{R}^3} \frac{1}{e^{\frac{|p|}{|p|^2 + y(x) + \tau'}}} \, dp \right)^{\frac{3}{2}} \]
where
\[D_\tau(x) = \frac{9}{5} \int_0^\infty \frac{r^2}{e^{r^2+x} + \tau} \, dr \int_0^\infty \frac{r^2}{e^{r^2+x} + \tau} \, dr - \int_0^\infty \frac{r^4}{e^{r^2+x} + \tau} \, dr \int_0^\infty \frac{1}{e^{r^2+x} + \tau} \, dr. \]

To see this, we first observe that \(h(x) \) is strictly decreasing function on \(x \in [0, \infty) \) for \(\tau = -1 \) and \(x \in (-\infty, \infty) \) for \(\tau = +1 \):

\[h_\tau'(x) = - \int_{\mathbb{R}^3} \frac{|p|^2 + x}{(e^{p^2+x} + \tau)^2} \, dp < 0. \]

Therefore, our restriction on \(x \): \(x \geq h_{\tau}^{-1} \left(\frac{N_2}{N_1} h_{\tau'}(l(\tau')) \right) \) combined with the definition of \(y \) given in (2.9), leads to

\[y(x) \equiv h_{\tau}^{-1} \left(\frac{N_2}{N_1} h_{\tau}(x) \right) \geq h_{\tau}^{-1} \left(\frac{N_2}{N_1} h_{\tau} \left(h_{\tau}^{-1} \left(\frac{N_2}{N_1} h_{\tau'}(l(\tau')) \right) \right) \right) = l(\tau'). \]

In conclusion, we have

\[x \geq l(\tau), \quad \text{and} \quad y(x) \geq l(\tau'). \]

Therefore, we have

\[D_\tau(x) < 0 \quad \text{and} \quad D_\tau(y(x)) < 0. \]

Since we already know
\[D_{+1}(x) < 0 \quad \text{on} \quad x \in (-\infty, \infty), \quad D_{-1}(x) < 0 \quad \text{on} \quad x \in [0, \infty). \]

(See [43] for boson case (+1) and [3, 44] for fermion case (-1)). In conclusion, we are all set if we established the identity (2.10):

\[\text{• Proof of (2.10): By an explicit computation, we have} \]

\[\frac{\partial g(x)}{\partial x} = \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right)^{-\frac{1}{2}} \]

\[\times \left[\left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right)^{\frac{1}{2}} \partial_x \int_{\mathbb{R}^3} \frac{1}{e^{p^2+x} + \tau} \, dp \right. \]

\[- \frac{3}{5} \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right)^{-\frac{3}{2}} \]

\[\times \left. \partial_x \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right) \int_{\mathbb{R}^3} \frac{1}{e^{p^2+x} + \tau} \, dp \right]. \]

We then multiply 2/5 power of
\[\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \]

on numerator and denominator:

\[\frac{\partial g(x)}{\partial x} = \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right)^{-\frac{1}{2}} \]

\[\times \left[\left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right)^{\frac{1}{2}} \partial_x \int_{\mathbb{R}^3} \frac{1}{e^{p^2+x} + \tau} \, dp \right. \]

\[- \frac{3}{5} \partial_x \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right) \int_{\mathbb{R}^3} \frac{1}{e^{p^2+x} + \tau} \, dp \right]. \]

We then set the denominator to be \(I \) to write

\[\frac{\partial g(x)}{\partial x} = \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2+y(x)} + \tau} \, dp \right)^{-\frac{1}{2}} \times I, \]
where
\[
I = \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2 + x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2 + y(x)} + \tau} \, dp \right) \partial_x \int_{\mathbb{R}^3} \frac{1}{e^{p^2 + x} + \tau} \, dp
- \frac{3}{5} \partial_x \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2 + x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2 + y(x)} + \tau} \, dp \right) \int_{\mathbb{R}^3} \frac{1}{e^{p^2 + x} + \tau} \, dp.
\]

We then carry out the following two integrations
\[
\partial_x \int_{\mathbb{R}^3} \frac{1}{e^{p^2 + x} + \tau} \, dp = \int_{\mathbb{R}^3} \frac{-e^{p^2 + x}}{(e^{p^2 + x} + \tau)^2} \, dp
\]
(2.11)
\[
= 4\pi \int_0^\infty \frac{-r^2 e^{p^2 + x}}{(e^{p^2 + x} + \tau)^2} \, dr
\]
\[
= -2\pi \int_0^\infty \frac{1}{e^{p^2 + x} + \tau} \, dr.
\]

where we used the following integration by parts: \(u' = \frac{2r e^{p^2 + x}}{(e^{p^2 + x} + \tau)^2}, \quad v = \frac{1}{2}r \), and
\[
\partial_x \left(\int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2 + x} + \tau} \, dp + \int_{\mathbb{R}^3} \frac{|p|^2}{e^{p^2 + y(x)} + \tau} \, dp \right)
\]
(2.12)
\[
= \int_{\mathbb{R}^3} \frac{-|p|^2 e^{p^2 + x}}{(e^{p^2 + x} + \tau)^2} \, dp + \int_{\mathbb{R}^3} \frac{-|p|^2 e^{p^2 + y(x)}}{(e^{p^2 + y(x)} + \tau)^2} \, dp
\]
\[
= 4\pi \int_0^\infty \frac{-r^2 e^{p^2 + x}}{(e^{p^2 + x} + \tau)^2} \, dr + 4\pi \int_0^\infty \frac{\partial y(x)}{\partial x} \int_0^\infty \frac{-r^2 e^{p^2 + y(x)}}{(e^{p^2 + y(x)} + \tau)^2} \, dr
\]
\[
= -6\pi \int_0^\infty \frac{r^2}{e^{p^2 + x} + \tau} \, dr
\]
where we used similar integration by parts: \(u' = \frac{2r e^{p^2 + x}}{(e^{p^2 + x} + \tau)^2}, \quad v = \frac{1}{2}r \) for
\[
\int_0^\infty \frac{r^4 e^{p^2 + c}}{(e^{p^2 + c} + \tau)^2} \, dr = \frac{3}{2} \int_0^\infty \frac{r^2}{e^{p^2 + c} + \tau} \, dr.
\]

Using (2.11) and (2.12), we rewrite \(I \) as
\[
I = -8\pi^2 \left(\int_0^\infty \frac{r^4}{e^{p^2 + x} + \tau} \, dr + \int_0^\infty \frac{r^4}{e^{p^2 + y(x)} + \tau} \, dr \right) \int_0^\infty \frac{1}{e^{p^2 + x} + \tau} \, dr
+ \frac{72\pi^2}{5} \left(\int_0^\infty \frac{r^2}{e^{p^2 + x} + \tau} \, dr + \int_0^\infty \frac{r^2}{e^{p^2 + y(x)} + \tau} \, dr \right) \int_0^\infty \frac{r^2}{e^{p^2 + x} + \tau} \, dr
\]
(2.13)

We then recall
\[
D_\tau(x) = -\int_0^\infty \frac{r^4}{e^{p^2 + x} + \tau} \, dr \int_0^\infty \frac{1}{e^{p^2 + x} + \tau} \, dr + \frac{9}{5} \int_0^\infty \frac{r^2}{e^{p^2 + x} + \tau} \, dr \int_0^\infty \frac{r^2}{e^{p^2 + x} + \tau} \, dr < 0,
\]
and express (2.13) as follows: So subtracting \(D_\tau(x) \) on each sides gives
\[
\frac{I}{8\pi^2} - D_\tau(x) = -\int_0^\infty \frac{r^4}{e^{p^2 + y(x)} + \tau} \, dr \int_0^\infty \frac{1}{e^{p^2 + x} + \tau} \, dr
+ \frac{9}{5} \frac{\partial y(x)}{\partial x} \int_0^\infty \frac{r^2}{e^{p^2 + y(x)} + \tau} \, dr \int_0^\infty \frac{r^2}{e^{p^2 + x} + \tau} \, dr.
\]
(2.14)

Now we compute \(\partial y(x)/\partial x \). Recall
\[
y(x) = h^{-1}_x \left(\frac{N_2}{N_1} h_r(x) \right),
\]
and compute
\[
\frac{dy(x)}{dx} = (h_{1r}^{-1})' \left(\frac{N_2}{N_1} h_{1r}(x) \right) \times \frac{d}{dx} \frac{N_2}{N_1} h_{1r}(x).
\]

Then, since the differentiation rule for inverse function gives
\[
(h_{1r}^{-1})' \left(\frac{N_2}{N_1} h_{1r}(x) \right) = \frac{1}{h_{1r}'(y(x))},
\]
we get
\[
\frac{dy(x)}{dx} = \frac{N_2}{N_1} \frac{h_{1r}'(x)}{h_{1r}'(y(x))}.
\]

Finally, we use
\[
h_{1r}'(x) = \int_{\mathbb{R}^2} -\frac{e^{|p|^2 + x}}{(e^{|p|^2 + x})^2} dp = 4\pi \int_0^\infty \int_0^\infty -\frac{e^{r^2 + x}}{(e^{r^2 + x})^2} dr = -2\pi \int_0^\infty \frac{1}{e^{r^2 + x}} dr,
\]
to obtain the following expressions for \(\partial y/\partial x \):
\[
\frac{\partial y(x)}{\partial x} = \frac{N_2}{N_1} \int_0^\infty \frac{1}{e^{r^2 + x}} \frac{dr}{e^{r^2 + y(x)} + \tau}.
\]

Inserting this into (2.14)
\[
\frac{I}{8\pi^2} - D_\tau(x) = -\int_0^\infty \frac{r^4}{e^{r^2 + y(x)} + \tau} dr \int_0^\infty \frac{1}{e^{r^2 + x} + \tau} dr
+ \frac{9}{5} \frac{N_2}{N_1} \int_0^\infty \frac{1}{e^{r^2 + y(x)} + \tau} dr \int_0^\infty \frac{r^2}{e^{r^2 + x} + \tau} dr \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} dr
= -\int_0^\infty \frac{1}{e^{r^2 + x} + \tau} \left(\int_0^\infty \frac{r^4}{e^{r^2 + y(x)} + \tau} dr - \frac{9}{5} \frac{N_2}{N_1} \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} dr \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} dr \right)
\]
Finally, we use
\[
\frac{N_2}{N_1} = \frac{h_{1r}'(y(x))}{h_{1r}(x)} = \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y(x)} + \tau} dp = \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x} + \tau} dp
\]
to derive
\[
\frac{I}{8\pi^2} - D_\tau(x)
= -\int_0^\infty \frac{1}{e^{r^2 + x} + \tau} \left(\int_0^\infty \frac{r^4}{e^{r^2 + y(x)} + \tau} dr - \frac{9}{5} \frac{N_2}{N_1} \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} dr \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} dr \right)
= \frac{1}{5} \int_0^\infty \frac{1}{e^{r^2 + x} + \tau} dr
\]
\[
\times \left(\frac{9}{5} \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} dr \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} dr - \int_0^\infty \frac{r^4}{e^{r^2 + y(x)} + \tau} dr \int_0^\infty \frac{r^4}{e^{r^2 + y(x)} + \tau} dr \right)
= \frac{1}{5} \int_0^\infty \frac{1}{e^{r^2 + x} + \tau} dr \int_0^\infty \frac{1}{e^{r^2 + y(x)} + \tau} dr \int_0^\infty \frac{1}{e^{r^2 + y(x)} + \tau} dr
\]
which complete the proof.
2.3. Proof of Theorem 2.1 (3). It remains to prove the H-theorem to conclude Theorem 2.1 (3).

Proposition 2.1. Let $f_i \leq 1$ only when f_i is the distribution function for fermion components, then we have

$$\ln \frac{f_1}{\tau f_1} \{(M_{11} - f_1) + (M_{12} - f_1)\} + \ln \frac{f_2}{\tau f_2} \{(M_{22} - f_2) + (M_{21} - f_2)\} \leq 0.$$

Proof. The proof for (2.15)

$$\int_{\mathbb{R}^3} \ln \frac{f_1}{\tau f_1} (M_{11} - f_1) \, dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{\tau f_2} (M_{22} - f_2) \, dp \leq 0,$$

can be found in [63]. So we only prove

$$S \equiv \int_{\mathbb{R}^3} \ln \frac{f_1}{\tau f_1} (M_{12} - f_1) \, dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{\tau f_2} (M_{21} - f_2) \, dp \leq 0.$$

First, we observe that

$$I = \int_{\mathbb{R}^3} \ln \frac{M_{12}}{\tau M_{12}} (M_{12} - f_1) \, dp + \int_{\mathbb{R}^3} \ln \frac{M_{21}}{\tau M_{21}} (M_{21} - f_2) \, dp = 0,$$

which follows from an explicit computation using the conservation laws (1.8):

$$I = -\int_{\mathbb{R}^3} (a|p - b|^2 + c_{12}) (M_{12} - f_1) \, dp - \int_{\mathbb{R}^3} (a|p - b|^2 + c_{21}) (M_{21} - f_2) \, dp$$

$$= a \int_{\mathbb{R}^3} |p|^2 (f_1 + f_2 - M_{12} - M_{21}) \, dp - 2ab \cdot \int_{\mathbb{R}^3} p (f_1 + f_2 - M_{12} - M_{21}) \, dp$$

$$= 0.$$

From this, we find

$$S - I = \int_{\mathbb{R}^3} \left(\ln \frac{f_1}{\tau f_1} - \ln \frac{M_{12}}{\tau M_{12}} \right) (M_{12} - f_1) \, dp$$

$$+ \int_{\mathbb{R}^3} \left(\ln \frac{f_2}{\tau f_2} - \ln \frac{M_{21}}{\tau M_{21}} \right) (M_{21} - f_2) \, dp \leq 0,$$

since $\ln \frac{x}{1 + x}$ is an increasing function for $x \in [0, \infty)$, and $\ln \frac{x}{1 - x}$ is an increasing function when $0 < x < 1$. Here, we have equality if and only if $f_1 = M_{12}$ and $f_2 = M_{21}$. This completes the proof. □

Remark 2.3. The equality in the H-Theorem is characterized by two distributions with the same value for a and b. Due to the fact that b is equal to pressure over the density, this leads to $P_1 = \frac{N_1}{N_2} P_2$.

Therefore, to complete the proof of Theorem 2.1 (3), it remains to prove that $f_i < 1$ in the case of fermions.

Lemma 2.4. Let f_i be a distribution function for fermions and $f_i(x, p, t) < 1$. Then we have $f_i(x, p, t) < 1$ for $t \geq 0$.

Proof. Integrating (1.6) along the characteristic, we get the mild form :

$$f_i(x, p, t) = e^{-2t} f_i(x - pt, p, 0) + \int_0^t e^{2(\tau - t)} (F_{ii} + F_{ij})(x + (\tau - t)p, p, \tau) \, d\tau,$$

for $j \neq i$. Since $F_{ii} < 1$ and $F_{ij} < 1$ for all (x, p, t) by definition, we have

$$f_i(x, p, t) \leq e^{-2t} f_i(x - pt, p, 0) + \int_0^t 2e^{2(\tau - t)} \, d\tau$$

$$= e^{-2t} f_i(x - pt, p, 0) + (1 - e^{-2t})$$

$$< 1.$$
Acknowledgement: The work of S.-B. Yun was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1801-02.

References

41. C. Klingenberg, M. Pirner, G. Puppo, A consistent kinetic model for a two-component mixture of polyatomic molecules, Communications in Mathematical Sciences, Vol 17, No. 1 (2019), pp. 149 - 173

Department of mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea
Email address: gcbae02@skku.edu

Department of mathematics, Würzburg University, Emil Fischer Str. 40, 97074 Würzburg, Germany
Email address: klingen@mathematik.uni-wuerzburg.de

Department of mathematics, Vienna University, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Email address: marlies.pirner@mathematik.uni-wuerzburg.de

Department of mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea
Email address: sbyun01@skku.edu