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KINETIC/FLUID MICRO-MACRO NUMERICAL SCHEME FOR A
TWO COMPONENT PLASMA

ANATS CRESTETTO*, CHRISTIAN KLINGENBERG!, AND MARLIES PIRNER?!

Abstract. This work is devoted to the numerical simulation of the Vlasov-BGK equation for two
species in the fluid limit using a particle method. Thus, we are interested in a plasma consisting of
electrons and one species of ions without chemical reactions assuming that the number of particles of
each species remains constant. We consider the kinetic two species model proposed by Klingenberg,
Pirner and Puppo in [17], which separates the intra and interspecies collisions. Then, we propose
a new model based on a micro-macro decomposition (see Bennoune, Lemou and Mieussens[3] and
Crestetto, Crouseilles and Lemou[7]). The kinetic micro part is solved by a particle method, whereas
the fluid macro part is discretized by a standard finite volume scheme. Main advantages of this
approach are: (i) the noise inherent to the particle method is reduced compared to a standard
(without micro-macro decomposition) particle method, (ii) the computational cost of the method is
reduced in the fluid limit since a small number of particles is then sufficient.

Key words. Two species mixture, kinetic model, plasma flow, Vlasov equation, BGK equation,
micro-macro decomposition, particles method.

AMS subject classifications. 65M75, 82C40, 82D10, 35B40.

1. Introduction. We want to model a plasma consisting of two species, elec-
trons and one species of ions. The kinetic description of a plasma is based on the
Vlasov equation. In [7], Crestetto, Crouseilles and Lemou developed a numerical sim-
ulation of the Vlasov-BGK equation in the fluid limit using particles. They consider a
Vlasov-BGK equation for the electrons and treat the ions as a background charge. In
[7] a micro-macro decomposition is used as in [3] where asymptotic preserving schemes
have been derived in the fluid limit. In [7], the approach in [3] is modified by using a
particle approximation for the kinetic part, the fluid part being always discretized by
standard finite volume schemes. Other approaches where kinetic description of one
species is written in a micro-macro decomposition can be seen in [8, 9].

In this paper, we want to model both the electrons and the ions by a Vlasov-BGK
equation instead of treating one only as a background charge. Such a two compo-
nent kinetic description of the gas mixture has for example importance in a tokamak
plasma. In regions nest to the wall of the tokamak, the plasma is close to a fluid, but
the kinetic description is mandatory in the core plasma so that a hybrid fluid/kinetic
description is adequate. For this, we want to use the approach in [7], since it has the
following advantages: the presented scheme has a much less level of noise compared to
the standard particle method and the computational cost of the micro-macro model
is reduced in the fluid regime since a small number of particles is needed for the micro
part.

From the modelling point of view, we want to describe this gas mixture using two dis-
tribution functions via the Vlasov equation with interaction terms on the right-hand
side. For the interactions we use the BGK approach. BGK models give rise to efficient
numerical computations, see for example [19, 13, 12, 3, 11, 4, 7]. In the literature one

*University of Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3, France & INRIA Rennes -

Bretagne Atlantique (anais.crestetto@univ-nantes.fr).

TUniversity of Wiirzburg,  Emil-Fischer-Str. 40, 97074 Wirzburg, Germany
(klingen@mathematik.uni-wuerzburg.de).
fUniversity of Wiirzburg, Emil-Fischer-Str. 40, 97074 Wirzburg, Germany

(marlies.pirner@mathematik.uni-wuerzburg.de).

This manuscript is for review purposes only.


mailto:anais.crestetto@univ-nantes.fr
mailto:klingen@mathematik.uni-wuerzburg.de
mailto:marlies.pirner@mathematik.uni-wuerzburg.de

S S G S e e L T
O © 0 N O Ut ke W N

ot

Y O s W N =

J

ARG )|
(e}

T

78

79

2 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

can find two types of models for gas mixtures. Just like the Boltzmann equation for
gas mixtures contains a sum of collision terms on the right-hand side, one type of
model also has a sum collision terms in the relaxation operator. One example is the
model of Klingenberg, Pirner and Puppo [17] which we will consider in this paper.
It contains the often used models of Gross and Krook [14] and Hamel [15] as special
cases. The other type of model contains only one collision term on the right-hand
side. Example of this is the well-known model of Andries, Aoki and Perthame in [1].
In this paper we are interested in the first type of models, and use the model developed
n [17]. In this type of model the two different types of interactions, interactions of a
species with itself and interactions of a species with the other one, are kept separated.
Therefore we can see how these different types of interactions influence the trend to
equilibrium. From the physical point of view, we expect two different types of trends
to equilibrium. For example, if the collision frequencies of the particles of each species
with itself are larger compared to the collision frequencies related to interspecies col-
lisions, we expect that we first observe that the relaxation of the two distribution
functions to its own equilibrium distribution is faster compared to the relaxation to-
wards a common velocity and a common temperature. This effect is clearly seen in
the model presented in [17] since the two types of interactions are separated.

The outline of the paper is as follows: In section 2 we present the model for a
plasma consisting of electrons and one species of ions and write it in dimensionless
form. In section 3 we derive the micro-macro decomposition of the model presented
in section 2. In section 4 we prove some convergence rates in the space-homogeneous
case of the distribution function to a Maxwellian distribution and of the two velocities
and temperatures to a common value which we will verify numerically later on. In
section 5, we briefly present the numerical approximation, based on a particle method
for the micro equation and a finite volume scheme for the macro one. In section 6, we
present some numerical examples.First, we verify numerically the convergence rates
obtained in section 4. Then, in the general case, we are interested in the evolution in
time of the system. We consider different possibilities for the values of the collision
frequencies. When the collision frequencies are very small we obtain the effect of
Landau damping. When the collision frequencies are very large we observe relaxations
towards Maxwellian distributions. Finally, if we vary the relationships between the
different collision frequencies, we observe a corresponding variation in the speed of
relaxation towards Maxwellians and the relaxation towards a common value of the
mean velocities and temperatures. Finally, section 7 presents a brief conclusion.

2. The two-species model. In this section we present in 1D the Vlasov-BGK
model for a mixture of two species developed in [17] and mention its fundamental
properties like the conservation properties. Then, we present its dimensionless form.

2.1. 1D Vlasov-BGK model for a mixture of two species. We consider a
plasma consisting of electrons denoted by the index e and one species of ions denoted
by the index ¢. Thus, our kinetic model has two distribution functions f.(z,v,t) > 0
and f;(z,v,t) > 0 where x € [0, L,], L, > 0, v € R are the phase space variables and
t > 0 the time.

Furthermore, for any f;, fe : [0, L,] x R x R — R¥ with (1 + |v|?)fi,

(1 + [v]?)f. € LY (R), we relate the distribution functions to macroscopic quantities
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KINETIC/FLUID MICRO-MACRO NUMERICAL SCHEME FOR TWO COMPONENT PLASM &

by mean-values of fi, k =1i,e

1 ng

(1) /fk(v) v dv=: | ngug |, k=1ie,

mk|v — uk|2 ’I’Lka

where my, is the mass, nj the number density, u; the mean velocity and T} the mean
temperature of species k, k = i,e. Note that in this paper we shall write T} instead
of kpT}, where kp is Boltzmann’s constant.

We want to model the time evolution of the distribution functions by Vlasov-BGK
equations. Each distribution function is determined by one Vlasov-BGK equation to
describe its time evolution. The two equations are coupled through a term which
describes the interaction of the two species. We consider binary interactions. So the
particles of one species can interact with either themselves or with particles of the
other species. In the model this is accounted for introducing two interaction terms in
both equations. Here, we choose the collision terms as BGK operators, so that the
model writes

L

Ocfi +vOifi + Fi

m;
FL
8tfe + 'Uaxfe + TT: avfe — Veene(Me - fe) + Veini(Mei - fe);

€

Ov fi = visni(M; — fi) + Viene(Mie — fi),
(2)

with the mean-field forces F%' and FF specified later and the Maxwell distributions

2
ng v — U )
Mk(fﬂ,’l},t) = T eXp(7| 9 T ‘ )a k=ie,
®) Tkj v — uyj|? o .
Mkj(.T,U,t) = T exp(— Th; )a ka] :Zve?k‘#.])
i 2

where v;;n; and v..n. are the collision frequencies of the particles of each species
with itself, while v;en. and ve;n; are related to interspecies collisions. To be flexible
in choosing the relationship between the collision frequencies, we now assume the
relationship

Vie = EVei, 0<e<l,

(4) Be

Vi = ﬁiyie» Vee = Bel/ei = ?Viev Bivﬂe > 0.

The restriction € < 1 is without loss of generality. If ¢ > 1, exchange the notation ¢ and
e and choose % We assume that all collision frequencies are positive. In addition, we
take into account an acceleration due to interactions using mean-field Lorentz forces
FE FE. We assume that the magnetic field is negligible compared to the electric
field. Therefore the Lorentz forces are given by

(5) FF(z,t) =e E(z,t) and Fl(x,t) = —e E(x,t),

where e denotes the elementary charge. For simplicity, we assumed that the ions have
the charge e. The electric field is given by the Maxwell equation

(6) 9o E(x,1) = plx, 1),
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4 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

(7) part)=e [ T (i 0,t) — fula,v,0)dv

— 00

describes the charge density.
The functions f; and E are submitted to the following periodic condition

fx(0,v,t) = fr(Ly,v,t), forevery veR,t>0,
E(0,t) = E(Lg,t), for every t > 0.

In order to get a well-posed problem, a zero-mean electrostatic condition has to be
added,

L.T
/ E(z,t)dx =0, forevery t>0,
0
together with an initial condition
fu(x,v,0) = f)(x,v), forevery z€0,L,],veR.

From the initial condition on fj, we can compute an initial condition of the charge
density p given by (7). From this we can compute the initial data of E using (6).

The Maxwell distributions M; and M, in (3) have the same moments as f; and f,
respectively. With this choice, we guarantee the conservation of mass, momentum and
energy in interactions of one species with itself (see section 2.2 in [17]). The remaining
parameters Nje, Ne;, Uje, Uei, Lie and Tp; will be determined using conservation of total
momentum and energy, together with some symmetry considerations.

If we assume that

(8) Nje =n; and  Ne; = N,
9) Uje = 0u; + (1 — S)ue, 6 €R,
(10) Tie = oT; + (1 — a)Te + ylui — u?, 0<a<1,9>0,

we have conservation of the number of particles, of total momentum and total energy
provided that

(11) Uei = Ue — :Zie(l —6)(ue —u;), and

e

Tei = {smz(l — 5) (WE((g — 1) + 0+ 1> — €’Y:| |U1 — Ue 2

Me

(12)
+e(l—a)T;+ (1 —e(1 —a))T,
see theorem 2.1, theorem 2.2 and theorem 2.3 in [17].

In order to ensure the positivity of all temperatures, we need to impose restrictions
on ¢ and ~ given by

(13) ogygnml—a[u+jm@5+1—”“%, and
Me Me
14 mf sy

see theorem 2.5 in [17].
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2.2. Dimensionless form. We want to write the BGK model presented in sub-
section 2.1 in dimensionless form. The principle of non-dimensionalization can also
be found in chapter 2.2.1 in [20] for the Boltzmann equation and in [5] for macro-
scopic equations. First, we define dimensionless variables of the time ¢t € Rg , the
length x € [0, L,], the velocity v € R, the distribution functions f;, f., the number
densities n;, n., the mean velocities u;, ue, the temperatures T;, T, the electric field F
and of the collision frequency v;.. Then, dimensionless variables of the other collision
frequencies Vi, Vee, Vei; can be derived by using the relationships (4). We start with
choosing typical scales denoted by a bar.

t'=t/t, '=z/z, VvV =0v/v,

T T
f{(x’,v’,t’) = ﬁfi(xvvat% fé(xlﬁvlvt/) = ﬁfe(l‘,’l},t),

where N; is the total number of ions and N, the total number of electrons in the
volume . We assume N; = N, =: N. This assumption is in accordance with the
typical values in a plasma described in [5]. Further, we choose

/ — / _ — —
ng =N/, Mg =NeNe, N =Ne = —,

N
T
E' =E/E
up = uift, UL =ue/le, U= U; =0,
Tzl :Ti/Ti7 Té :Te/T67 Te :ﬂ :mif}Qa
Vz{e = Vie/Die~
Now we want to write equations (2) in dimensionless variables. We start with the

Maxwellians (3) and with (9)-(12). We replace the macroscopic quantities n;,u; and
T; in M; by their dimensionless expressions and obtain

nin; [0 — ;| *m;
15 My = — 0 exp(— D ikl Ty
(15) = o)
T
If we assume that ©2 = |u;]? = mT, we obtain
= !/ / 72 -
n; [v" — | ni .,
16 M; = — L — exp(— L) = — M.
( ) T 7 /7271_1-,1, ( 2/]11/ ) O T

The relationship on @; and T} used here is in accordance with the typical values in a
plasma described in [5]. In the Maxwellian M, we assume T; = T, =: T and obtain
in the same way as for M;

1
e (Me\2 N [v" — |2 m, e
17 M, = e (Me ¢ Y MelT ey Ty,
(17) = <m) el e ) = B,
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6 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

Now, we consider the Maxwellian M;. in (3), its velocity u;. in (9) and its temperature

Tie in (10). Again we use ¥ = @; = @, and 7> = - = T — %% and obtain

m; m;

Uie = 0wty + (1 — 6 ugtie = (Ouj + (1 — 0)ue)v =: vu;
Tie = o} T; + (1 — )T Te + 0% |uj — u|?

i€

(18) = mifoP o} + (1 = )T, + L = ul’) = [oPmiT,,
nin; |v" —l |? i
M;. = L' exp(— = —Mj,.
Vamet P e )T

With the same assumptions we obtain for wue;, Te; and M,; in a similar way the
expressions

m; m;

=1 - —e(1 - L —e(l=6)ul]v =:ul,v
Uei [(1 meg( 6))ue + meg( 6)U,L]U UiV,
Tei=[1-e(l-a)T.+e(l—a)T]|T

+ (emi(1 = 6)(e(5 — 1) + 6 + 1) — ey)[u] — ul[*[o]?

Me

= [(1 = (1 = )T/ + (1 = Q)] [om. -
+emi(1 = 8)(e(d = 1) +6 -+ 1) — el — i Plof? = [oPPme T

Tle Me Mg [v Mey %M

e exp(——  eil
oo oy P o,
Now we replace all quantities in (2) by their non-dimensionalized expressions. For the
left-hand side of the equation for the ions we obtain

/ /|2
—u |

€1
Mg; =

Oufi +v0y fi + — Edy f;
-

vmZ

(19)

and for the right-hand side using that 1y = %, k=1,e, (4), (16) and (18), we get
Vi (M — fi) + Viene(Mie — [i) = VieBini(M; — [fi) + Viene(Mie — f;)

(20) NN N N
:ﬁipie__ — Vi ’L(M’L/ f'/)—"_ljie—— - 'Ze e( ie f)
v rv T

v

Multiplying by =%/ L7 and dropping the primes in the variables leads to

E
Ouf; + —va fi +t—iEa fi

_N _N
- /BZVZE anz(M fz) + Vze 7 Viene(Mie - fz)

In a similar way we obtain for electrons
tv _E e
6tfe + Tvaa:fe - tf

. _N
B Dzet VieNe (M fe) + Z/’LC — Vel ( et fe) )
3 T x
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and the non-dimensionalized Maxwellians given by

v — u;|?

ng
e _
vV 27TT,L Xp( 2T1

Ne Me 3 [v — uel? me
Melw, o) = e <m) N T

n;
Mie(z,v,t) = \/Wexp(

1
Ne me \ 2 |V — Uei|? M
M., - Me N9 el Me
@0, t) = o (m) exp(— o )

with the non-dimensionalized macroscopic quantities

M;(x,v,t) = )s

(21)

3 [ — wie |?
275

(22) Uje = 0u; + (1 — )u,,
(23) T = T} + (1 — )T, + %|ui—ue\2,
m;

(24) Uei = (1 —

m;
1— M (1= 6)u
ea( 0))ue + ezs( 8)ug,

T, =[1—-c(1—-a)T.+e(1 —a)T}]
T (e(1 - 5)(%5(5 )46+ 1) 5%)|ui — w2

Defining dimensionless parameters

tv _E _E
A:tfv7 Bi:tfia Be:tfi7
(26) T v m; U Me
N 1 N 1 . N 1 1
- = Biﬁzetfv = =Vpet—, — = E_Zet y =T = —liel—,
Ej x & x Ee 9 Ee 3
we get
1 1
Ofi + Aduvfi + BiEO, fi = —vieni(M; — fi) + = Viene(Mie — fi),
@7 1 B
8tfe + Avaxfe - BeEavfe = ;Viene(Me - fe) + gyieni(Mei - fe)~
e e

In addition, we want to write the moments (1) in non-dimensionalized form. We can
compute this in a similar way as for (2) and obtain after dropping the primes

/fkd’l):nk, /UfkdvznkUk, k:ivea

(28)
e 1

m —/|v—ue|2fedv:Te.

m; Ne

1
—/|v - ui|2fidv =T,
n;

For the non-dimensionalized form of the Maxwell equation (6) we obtain after drop-
ping the primes

E

E _
We assume that N = 1.
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8 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

Remark 2.1. According to [2] there are the following relationships between the
collision frequencies in the case of ions and electrons

mg m;
Vee = Vei = Vi = Vie,
Me e
which means
Me m;
€= ’ /88 = 15 ﬂz =
my; Me

3. Micro-Macro decomposition. In this section, we derive the micro-macro
model equivalent to (27).
First, we take the dimensionless equations (27) and choose A = B, = T B; = 1.

The choice A = 1 means v = % The choice B, = 1 means that the reciprocal unit
time scales are given by the cyclotron frequency of electrons in the %f field, that is
l_ = E €

t U me”

Now, we propose to adapt the micro-macro decomposition presented in [3] and
[7]. It is used for numerical methods to solve Boltzmann-like equations for mixtures
to capture the right compressible Navier-Stokes dynamics at small Knudsen numbers.
The idea is to write each distribution function as the sum of its own equilibrium part
(verifying a fluid equation) and a rest (of kinetic-type). So, we decompose f; and f.
as

(30) fi=M;+ gii,  fe=Me+ gee-
1
Let us introduce m(v) := [ v | and the notation (-) := [ - dv. Since f; and M;
o]

(resp. fe and M,.) have the same moments: (m(v)f;) = (m(v)M;) (resp. (m(v)f.) =
(m(v)M,)), then the moments of g;; (resp. ge.) are zero:

(31) /m(v)giidv = /m(v)geedv =0.
With this decomposition we get from equation (27) of ions in dimensionless form

0y M; + 04gii + vO, M; + v0, 94 + ™ B, M; + %E&,gii
m; m;
(32) 1 1
= ——VieNiGii + = VieNe(Mie — M; — gii),
E; E;
and a similar equation for electrons.
_1
Now we consider the Hilbert spaces L2 . = {¢such that oM, > € L2(R)}, k =1i,e,

with the weighted inner product (M, Y. We consider the subspace N} =span
{My,vMy, |v]*My}, k = i,e. Let Iy, the orthogonal projection in L?wk on this
subspace N}. This subspace has the orthonormal basis

. 1 (v—u) 1 v — ug|?

1
Bk:{m mmﬁ ks ( -3)

1
= My} =: {b}, b5, b5}
2Tkmz/mk 2 \/@ k} {17 2 3}

This manuscript is for review purposes only.



249
250

261

262

263
264
265
266
267
268
269
270

271

[N \)
~ I
W N

274

279
280

KINETIC/FLUID MICRO-MACRO NUMERICAL SCHEME FOR TWO COMPONENT PLASMA

Using this orthonormal basis of N, one finds for any function ¢ € wak the following
expression of Iy, (¢)

2 1 (v —up) - {(v — ug)9)
M, (6) = D (@, 00)0n = ColU6) + =
|fufuk|2 71 |’ufu;€|2 71
(33) F (o — 2{(s——— — 2)$)| M.

2Tkmi/mk 2 2Tkmi/mk 2
This orthogonal projection Iy, (¢) has some elementary properties.
LEMMA 3.1 (Properties of ITy;, ). We have, for k =1i,e,
(1 —Iag, ) (M) = (1 = Ipg, ) (9 My ) = 0,
Mg, (grr) = Mar, (Oegir) = (1 — g, ) (EO, My) = 0,

and
Moy, (Mie) = (1 + (v— U)(Tu ;)

(34) + (“’;;2 _ %)(7;; |uieTZuz| o
Mg, (M) = (1+ (v _Tlf?;(z;m e ue)

(35) + (;;em?;'; — %)(% n ;:ﬂz/l:;lj o

Proof. The proof of the first five equalities is analogue to the one species case and
is given in [3]. Besides, using the explicit expression of Iy, , k = 4, e, given by (33)
we obtain (34)-(35) by direct computations. d
Now we apply the orthogonal projection 1 — ITps, to (32), use lemma 3.1 and
obtain
m
Orgii + (1 — Iy, ) (00 M) + (1 — ag, ) (vDegii) + (1 — HMi)(ﬁEaugm‘)
1 1 1
= —VieNe(Mie — pg, (Mie)) — (= Vieni + = Viene)Gii-
i =3 E;
Again with lemma 3.1 we replace I, (M;.) by its explicit expression

Me

01gis + (1 — Iy, ) (00 M;) + (1 — s, ) (00 gss) + (1 — HMi)(m- Edyg:;)
(2
1 V — Ui ) Uje — Uj
(36) = zvienc(Mic—(1+ ( ):(F )
o —wif® 1) Tie 1 2 1 1
Pl Oy 4 e — wil? = 1)M;) — (—vieni + —viene)gii-
+ ( 2T, 2)( T, + T |Uze Ul| )) z) (Ei VieNi + B ywne)g”

We take the moments of equation (32), use (31), and we get
O (m(v) M) + 0y (m(v)vM;) + Oy (Mm(v)vgis)

+<m(U)%jE8vMi> + <m(U)%Eavgii> = él}iene«m(v)(Mie - Ml)>)

2
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10 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

Using partial integration and the fact that the moments of g;; are zero we get that
the term (mFEd,g;;) vanishes and so we have

O (m(v)M;) + 0z (m(v)vM;) + Ox (m(v)vgs;) + (m(v)— E0, M;)
= Zvien. (m(v) (M. — M;)).

7

(37)

In a similar way, we get an analogous coupled system for the electrons which is
coupled with the system of the ions

OtGee + (]l - HMC)(UazMe) + (]l - HME)(Uazgee) - (]1 - HMC)(Eavgee)

1 (U — Ue) (Ues — Ue) Me
= —Vieni(Me; — (1 —
gel/ n< ( + Te m;
(38) v —uel?me 1., Ty Me

+(

2T, my 2)(Te m; T,

1
- (*Viene + Tl/ieni)geev
Ee €e

O(mM.) + 0y (m(vMe)) 4+ Ox(m(vgee)) — (MEO, M)

(39) 1

= gl/ieni“m(Mei — M.))).

Now we have obtained a system of two microscopic equations (36), (38) and two

macroscopic equations (37), (39). One can show that this system is an equivalent

formulation of the BGK equations for ions and electrons. This is analogous to what
is done in [7].

4. Space-homogeneous case without electric field. In this section, we con-
sider our model in the space-homogeneous case, without electric field, where we can
prove an estimation of the decay rate of ||fx(t) — My(t)|[L1(av)s [ui(t) — ue(t)]? and
ITy(t) — T.()]2.

In the space-homogeneous case without electric field, the BGK model for mixtures
(2) simplifies to

1 1
Oufi = —vieni(M; — fi) + = viene(Mie — fi),
g &
(40) 1 1
atfe = ;Viene(Me - fe) + gyieni(Mei - fe)a

e

and we let the reader adapt the micro-macro decomposition (36)-(37)-(38)-(39) to this
case.

4.1. Decay rate for the BGK model for mixtures in the space-homo-
geneous case. We denote by H(f) = [ fIn fdv the entropy of a function f and by
H(flg)=[fln %du the relative entropy of f and g.

THEOREM 4.1. In the space homogeneous case without electric field (40), we have
the following decay rate of the distribution functions f; and f.

i — Mil|pi(any < 4 2CUH(FOIMP) + H(fOIMO))Z, k=1i,e,

where C is a constant.
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Proof. We consider the entropy production of species ¢ defined by
Dilfinfo) == [ Zviensln i(Ms = f)dv = [ ZviemeIn fi (0t — fi)do
Define ¢ : RT — R, ¢(z) := xlnx. Then ¢'(z) =Inz + 1, so we can deduce
Di(fi, fe) = — / éVienM/(fi)(Mi — fi)dv — / 61 Viened' (fi)(Mie — fi)dv

since [(f; — M;)dv = [(fi — M;c)dv = 0. Moreover, we have ¢"(z) = 2. So ¢ is

convex and we obtaln
Dilfif) 2 [ Zvien(9() = 604 dv + [ Zvieme(9() ~ 60 ))do
= Einenz(H(fz) — H(M;)) + él/iene( (f)) — H(M,.)).

7 7

(41)

In the same way we get a similar expression for D, (fe, f;) just exchanging the indices
i and e.

If we use that In}M; is a linear combination of 1,v and |v|?, we see that [(M; —
fi)In M;dv = 0 since f; and M; have the same moments. With this we can compute
that

(42) H(fi|M;) = H(fi) — H(M;).
Moreover in the proof of theorem 2.7 in [17], we see that
1 1 1 1
(43) gl/ieneH(Mie) + gyieniH(Mei) S gl/ieneH(Mi) + gl/ieniH(Me)-

With (42) and (43), we can deduce from (41) that

(fzvfe)+D (feafz) Z ( 1Vzen1+éyiene)H(fi‘Mi)
(44) ) € 11
—I—(E—ane + = z —Vieni ) H(fe| M.).

e e

We want to relate the time derivative of the relative entropies

d d fi Je
G+ HEM) = 5[ i oot [ 5o d )

to the entropy production in the following. First we use product rule and obtain

(7ML + H(fM,)) /atfz dv—/ EYS
(45) dt f
+/3tfe( )dv — ]\/.; O Medv.

By using the explicit expression of 0;M;, we can compute that f i: OUMy gy = §ymy, =
0,k = i, e, since ny is constant in the space-homogeneous case. In the first term on
the right-hand side of (45), we insert 9, f; and 0, f. from equation (40) and obtain

d

dt( (filM;) + H(fe|Me)) = /(elil’ieni(Mi — fi) + éyiene(Mie — fi))In fidv

?

+ /(iyie”e(Me - fe) + élyieni(Mei - fe)) In fedv.

€
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Indeed, the terms with In M; (resp. In M) vanish since In M; (resp. In M,) is a linear
combination of 1,v and |v]? and our model satisfies the conservation of the number
of particles, total momentum and total energy (see section 2.2 in [17]). All in all, we
obtain

d

(46) o H (il Mi) + H(fe|Me)) = —(Dilfi, fe) + De(fe, fi).

Using (44) we obtain

d
%(H(]‘”Mz) + H(fe‘Me))
1 1 1 1
S _[(;Vieni + gl/iene)H(f”Mi) + (;Viene + gl/ieni)H(fe‘Me)]
1 1 1 1
< —min{ —vien; + = VieNe, —VieNe + —Vieni } (H (fi| M;) + H(fe|M.)).
& & €e Ee

Define C := min{éuieni + é%yiene, éyiene + él/ieni}, then we can deduce an expo-
nential decay with Gronwall’s identity
H(fx|Mg) < H(fi|M;) + H(fe| M)
< e CH(FIMD) + H(f2IMD)), k=i

With the Ciszar-Kullback inequality (see proposition 1.1 in [18]) we get

[ fe — Myl 21wy < fi = Mill L1 (aw) + 1fe = Mell 21 (aw)
< e sCUH(fRMP) + H(f2|MD)]?. 0

4.2. Decay rate for the velocities and temperatures in the space-homo-
geneous case. In this subsection we prove decay rates for the velocities u;, ue (resp.
temperatures T;,T.) to a common values in the space-homogeneous case. We start
with a decay of |u; — u|*.

THEOREM 4.2. Suppose that v;. is constant in time. In the space-homogeneous
case without electric field (40), we have the following decay rate of the velocities

m;
L.

—zVje —4 %ne = i
s () — e ()2 = e 2= (Fner &) 0) — g (0)2

Proof. If we multiply the equations (40) by v and integrate with respect to v, we
obtain by using (22), (24) and (26)

1 1
Or(niu;) = gwenem(uie —u;) = gwenem(l —6)(ue — u;),
(2 T
my;
Or(nee) = gl/ienem(uei —Ue) = gl/ienemm—ee(l —0)(u; — ue).

Since in the space-homogeneous case the densities n; and n. are constant, we actually
have

1 1 my;

Opt; = —Viene(1 — 8)(ue — u;),  Otte = —Vien;—e(1 — §)(u; — ue).
g; Ee Me
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With this we get
1d

§%|Uz - ue|2 = (uz - ue)at(ui - Ue)

From this, we deduce

i) = () = ¢ OO R ) — ) :
We continue with a decay rate of |T;(t) — T.(t)|.

THEOREM 4.3. Suppose v is constant in time. In the space-homogeneous case
without electric field (40), we have the following decay rate of the temperatures

|Ca|

I Ti(t) = Te()|* < e |:|Ti(0) —TO+ 5~

(€0~ Dus(0) = . O)F]
where the constants are defined by

1
Cr=(1-a)ve <~”e + f”l) )
.

7 56

1
(b=%<~mcywy+7>_fmo_y_v))
€ m; Ee my;

1 .
Cg = 2Vie(1 — (5) <~_7’Le =+ fwnz) .

&4 Ee Me

Proof. If we multiply the first equation of (40) by ni|v — u;|? and integrate with
respect to v, we obtain

1 1 1
(47) /—|v w20, fidv = ~vien,— / v — ws2(Mio — f3)dv.
n; = n;

Indeed, the first relaxation term vanishes since M; and f; have the same temperature.
We simplify the left-hand side of (47) to

/i|v — w20 fidv = / iat(lv — ;i f;)dv + 2/ ifi(v — ;) - Opuidv
n; n; ng

= 0y(T;) + 0,
since the density n; is constant. The right-hand side of (47) simplifies to
1 1 9 1 9
Z Vielle — ‘U - ui| (Mie - fi)d’U = TViene(Tie + |uie - ui‘ - T’z)
€i n; €i

_ éV¢ene ((1 —o)(T. - T) + ((1 -0+ nz) [te — Ui2> )

? T

For the second species we multiply the second equation of (40) by Ze L |y —u,|?. For
the left-hand side, we obtain by using (28)

Me

1
o ;‘U - Ue|2atfedv = 8tTea

This manuscript is for review purposes only.



413

414

415

417
418

419

420

421
422

424

126

431
432

440
441
442
443
444
445

14 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

and for the right-hand side using (24), (25) and (26)

1 me 1 1 m
~— Viellj £ / ‘U - ue|2(Mei - fe)dv = = Vieni(Tei + £ ‘uei - ue|2 - Te)
Ee m; Ne 5 m;

€ (2

1
= gyieni [e(1 = a)(Ti - T¢)

e

# (-0 (Zeo - ++1) — el 420022 ) fus -l

Me mg Me

1 Y
= —Vien; | e(1 — P T +e(l—6% — —)|ui —uel” ).
= Viel (5( a)(1 T.)+e(l—46 m)|u U |)

€ (3
So, we obtain

1
ot = Lvin, (=)@ =1 + (-7 + 1) - i)

7 7

1
0T, = —Vien; (E(l —a)(T; —Te) +e¢ (1 — 52— 7;:) lu; — ue|2> .

e 7

We deduce

(T —T) = —(1 - a)vie (jn + jn) (T -T.)

1
+ Ve <~ne ((1 —0)%+ 7) - inl (1 S 7)) |u; — ue)?,
E; m; Ee m;
or with the constants defined in this theorem 4.3
3t(Ti - Te) = —O1(Ti — Te) + CQ|U1 — Ue 2,

Duhamel’s formula gives

Ti(t) — T.(t) = e~ C1Y(T;(0) — T (0)) + Coe~C1t /Ot eC1% u(s) — ue(s)|*ds.
So we have the following inequality

I T3(t) = Te(t)] < e |T3(0) — To(0)] + |Cale™ /Ot e lu;(s) — ue(s)Pds,
and by using theorem 4.2, we have

t
I T5(t) = Te(t)] < e M| T3(0) = Te(0)] + |C2|€_C1t/ 1% e dslu(0) — ue (0],
0

10 - 70| < O (IT:0) = TO) + 5 P (@O = D]us(0) - w (0 ) B

5. Numerical approximation. This section is devoted to the numerical ap-
proximation of the two-species micro-macro system (36)-(37)-(38)-(39). Following
the idea of [7], we propose to use a particle method to discretize both microscopic
equations (36)-(38), in order to reduce the cost of the method when approaching the
Maxwellian equilibrium. Macroscopic equations (37)-(39) are solved by a classical
Finite Volume method.
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In this paper, we only present the big steps of the method and refer to [7] for the
details.

For the microscopic parts, we use a Particle-In-Cell method (see for example [6]):
we approach ¢;; (resp. gee) by a set of N, (resp. N, ) particles, with position z;, (¢)
(resp. ., (t)), velocity v;, (t) (resp. wve, (t)) and weight w;, (t) (resp. we, (1)), k =
1,...,N,, (resp. k=1,...,N,, ). Then we assume that the microscopic distribution
functions have the following expression:

Ny,
gii(x7 v, t) = Z Wi, (t)5($ = Ly, (t))5(1] — Uiy, (t))7
k=1

Np.
gee(m,v,t) = Zwek (t>5($ — Zey (t))é(v = Ve, (t)),
k=1

with § the Dirac mass. Moreover, we have the following relations:

L,L
wik(t) = gii(xik(t)avik(t),t) ;] U, k= 1, .. "Npm
pi
L,L,
wek(t) :gee(xek(t)?vek<t)’t) N k= 1)"'7Npe7
pe

where L, € R (resp. L, € R) denotes the length of the domain in the space (resp.
velocity) direction.

The method consists now in splitting the transport and the source parts of (36)
(resp.(38)). Let us consider (36), the steps being the same for (38). The transport
part

(48) 0t9is + 10294 + E0ygi = 0,

is solved by pushing the particles, that is evolving the positions and velocities thanks
to the equations of motion:

dtwik (t) = Uiy, (t)7 dtvik (t) = E(xik (t)7t)7 Vik= 1., pr

i

The source part

(49)
Orgii = — (1 —Tpy, ) (00, M) + Tz, (002 i) + Mg, (Eygii)
1 U — U ) (Uje — U;
+ gil/iene(Mie - (1 + ( 1)1(—,1 - 7,)
& 1 1

v —w;]? 1 9 1
T 5 | Uie — ui|” — 1)) M;) — (—Vien; + —VieNe)ii,
Tl = D + e =l = D)M) = (Sviens + Tvien)g

+(

is solved by evolving the weights. Let us denote by S(x,v,t) the right-hand side such
that 0;g;; = S(x,v,t). We compute the weight corresponding to S using the relation
s, (1) = S(ws, (1), 03, (1), t) L2 k=1,...,N,, and then solve

drw,, (t) = Siy, (t)

The strategy is the same as in paragraph 4.1.2 of [7], where only one species is con-
sidered (and so there is no coupling terms). The supplementary terms coming from

This manuscript is for review purposes only.



A72
473
474
475
476
477
178
479
480
481

482
183
484
485
486
487
188
489
490
491

492
193
494
495
496
497
498
199
500
501
502

16 A. CRESTETTO, C. KLINGENBERG, AND M. PIRNER

the coupling of both species are treated in the source part as the other source terms.
They do not add particular difficulty.

A projection step, similar to the matching procedure of [10], ensures the preser-
vation of the micro-macro structure (30) and in particular the property (31) on the
moments of g;; (resp. ge.). Details are given in subsection 4.2 of [7].

Finally, macroscopic equations (37)-(39) are discretized on a grid in space and
solved by a classical Finite Volume method. For the one species case, this is detailed
in subsection 4.3 of [7]. The electric field is discretized on the same grid and computed
at each time step by solving the Maxwell equation (6) with Finite Differences or Fast
Fourier Transform.

6. Numerical results. We present in this section some numerical experiments
obtained by the numerical approximation presented in section 5. A first series of tests
aims at verifying numerically the decay rates of velocities and temperatures proved in
subsection 4.2 in the space-homogeneous case without electric field. In a second series
of tests, we are interested in the evolution in time of distribution functions, velocities,
temperatures and electric energy in the general case. In particular, we want to see
the influence of the collision frequencies.

In all this section, we consider the phase-space domain (z,v) € [0, 4] x [—10, 10]
(assuming that physical particles of velocity v such that |v| > 10 can be negligible),
so that L, = 4x and L, = 20.

6.1. Decay rates in the space-homogeneous case. We first propose to val-
idate our model in the space-homogeneous case, without electric field, where we have
an estimation of the decay rate of |u;(t) — u.(t)|? and of |T;(t) — T.(t)| (see section 4).
Note that as in section 4, we simplify the notations: w;(x,t) = u;(t), ue(z,t) = u.(t),
TZ‘(LL',t) = Ti(t), Te(l‘,f) = Te(t).

We apply a simplified version of the numerical approximation presented in sec-
tion 5, adapted to the space-homogeneous system (40) in its micro-macro form. For
different initial conditions, we plot the evolution in time of |u;(t) — u.(t)|? (resp.
|T;(t) — Te(t)]) and compare it to the estimates given in theorem 4.2 (resp. theorem
4.3). For all of these tests, we take N, = N,, = 10* and At =10"%.

The first initial condition we consider corresponds to two Maxwellian functions:

(50) filvt=0)= (vu(tO)lz

=\ e )
B _ Ne |U_ue(t:0)|2 e
60 A== e ().

e

with the following parameters: n; = 1, u;(t = 0) = 0.5, T;(t = 0) = 1, m; = 1,
ne = 1.2, ue(t = 0) = 0.1, T,(t = 0) = 0.1, me = 1.5, chosen as in subsection
5.1 of [16]. Results for g; = ¢, = &; = . = 0.05 are given in figure 1 and results for
g; = €. = &; = £, = 0.01 are given in figure 2. In these two cases, we plot |u;(t) —u.(t)]
t0o. As in [16], we remark that when the Knudsen numbers are smaller, the velocities,
as well as the temperatures, converge faster to the equilibrium.
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F1G. 1. Space-homogeneous case. Mazwellians initial conditions. Evolution in time of |u;(t) —
ue(®)], |ui(t) —ue(t)|? (left) and |Ti(t) — Te(t)| (right). Comparison to the estimated decay rates.
Knudsen numbers: €; = €. = &; = €. = 0.05
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F1G. 2. Space-homogeneous case. Mazwellians initial conditions. Evolution in time of |u;(t) —
ue(t)], |wi(t) —ue(t)|? (left) and |Ti(t) — Te(t)| (right). Comparison to the estimated decay rates.
Knudsen numbers: ¢; = . = €; = € = 0.01.

We propose now to consider T;(t = 0) = 0.08 (other parameters are unchanged)
and to study two other sets of Knudsen numbers. Results for ¢;, = e, =&, =&, =1
are given in figure 3 and results for ¢; = e, = &; = 1, €. = 0.05 are given in figure 4.

Convergence in time

Convergence in time

0.16 T T T Iui—ﬁel R 035 - T T T [ U ——
\ i —a— PR i a—
0.14 i Estimate 1 003 } 1\\ Estimate |
Kl : N
012 025 [ "\ ]
o1t b / N\
Y 0.02¢ \ E
0.08F \
K\ 015} AN 1
0.06 - | \\
004 N 0oLy . ]
LN .
0.02f . 005 S 1
\M h“‘m.“ -
L e S VOS e L L L It 8 bt 2o0satve 4
06 i 2 3 7 5 9 i 5 3 i 5

F1G. 3. Space-homogeneous case. Mazwellians initial conditions. Evolution in time of |u;(t) —
ue(t)|? (left) and |T;(t) —Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:

i =€ =& =Ec=1
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Convergence in time Convergence in time
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F1G. 4. Space-homogeneous case. Mazwellians initial conditions. Evolution in time of |u;(t) —
ue(t)|? (left) and |T;(t) —Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:
€ =¢ce=6&; =1, € = 0.05.

We propose then to study the convergence for an other initial condition, consid-
ering

’1)4 v 2
B2 =0 = e (<),

n v — U = 2m
(53)  fu(v,t=0) ‘ o= )

VT = i < S 2T(t=0) m

with the following parameters: n. = 1.2, u.(t = 0) = 0.1, T.(t = 0) = 0.1, m, = 1.5.
Here, the initial distribution of ions is not a Maxwellian, and then g;;(v,t = 0) # 0.
The estimates of theorems 4.2 and 4.3 are still verified, as we can see on figure 5 for
€ = €. = & = €. = 1. By taking now T.(t = 0) = 5 (the other parameters being
unchanged), we obtain results presented on figure 6.

Convergence in time Convergence in time
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0.0+ Estimate -—+-—1 451 Estimate -—*-—
009 f I AR |
A i A
.008 4 35 @ 1
007 F 3 ] A
\ 3 1
006 4 1 a5k M 1
0051 A I A\
oty 1 2r \\ 1
003 \\ I \ 1
002+ " 1 Ir \\ 1
001 \‘M 1 o5t S, |
0 ‘ 0 ‘ R T
0 1 2 3 4 5 0 1 2 3 4 5

FIG. 5. Space-homogeneous case. Mized initial conditions. Evolution in time of |u;(t) — ue(t)|?
(left) and |T;(t) — Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:

€ =€c =E; =€ = 1.
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Convergence in time

Convergence in time
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FIG. 6. Space-homogeneous case. Mized initial conditions. Evolution in time of |u;(t) — ue(t)|?
(left) and |T;(t) — Te(t)| (right). Comparison to the estimated decay rates. Knudsen numbers:
6118615115611.

6.2. Relaxation towards a global equilibrium. We present here numerical
results in the general (non homogeneous) case. We consider micro-macro equations
(36)-(37)-(38)-(39) and discretize them as explained in section 5.

We are interested in the evolution in time of the distribution functions f;, f.
and other quantities such as the electric energy E(t) := /[ E(x,t)?dz, the differ-
ence of ions and electrons velocities (resp. temperatures) in uniform norm ||u;(x,t) —
Ue(x,t)||oo (resp. ||Ti(x,t) — Te(x,t)||oo). Different values of ¢;, e., &; and €, are con-
sidered in order to see the influence of the intra and interspecies collision frequencies.

In the following tests, electrons and ions are initialized following

o vt _|U‘2
(54) fe(z,u,t=0) = (1 + acos(x/2)) 3mexp( 5 )7
S B AN U V2 &
(55) fi(z,0,t=0) = —= p( 5 )

So, for a # 0, electrons have initially a space dependent distribution. From the com-
putation of (m(v)f.), we obtain n.(x,0) = 1 + acos(kx), u.(z,0) =0 and T,(z,0) =
5(1+ acos(kx)). Ions have initially a Maxwellian distribution with n;(z,0) = 1,
u;(x,0) = 1/2 and T;(x,0) = 1. Here, we have taken m, = m; = 1.

For o = 0.1, we illustrate the initial distribution functions on figure 7, f.(x,v,t =
0) is presented on the left, f;(z,v,t = 0) on the middle and a side view of them on
the right.

fo(x,v,T=0) Side view at T=0
v 04

-10 -5 0 5 10 135 fo ——

03 fi —
)25
0.2
)15
0.1
).05

108

005 0 005 0.1 0.15 0.2 025 0.3 035

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F1G. 7. General case. Initial distribution functions for o = 0.1: fe(z,v,t = 0) in phase-space
(left), fi(z,v,t =0) in phase-space (middle), side view of fe(x,v,t =0) and f;(x,v,t =0) (right).

First, we propose two testcases with the following parameters: a = 0.1, N, =
N,, =5-10°, N, = 128 and At = 10~2. The first one consists in the kinetic regime
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546 g = €. = €; = €, = 1000, collision frequencies are small and particles do not interact
547 a lot with each other. Distribution functions are plotted at time 7" = 6 on figure 8

548 and at time T' = 60 on figure 9.
£,(x,v,T=6) fi(x,v,T=6) Side view at T=6
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Fic. 8. General case, a = 0.1, ¢; = €. = €; = €. = 1000. Distribution functions at time
T =6: fe(xz,v,T) in phase-space (left), fi(z,v,T) in phase-space (middle), side view of fe(z,v,T)
and fi(z,v,T) (right).

fo(x,v,T=60) £i(x,v, T=60) Side view at T=60
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Fic. 9. General case, a« = 0.1, ¢; = €. = &; = €. = 1000. Distribution functions at time

T =60: fe(z,v,T) in phase-space (left), fi(x,v,T) in phase-space (middle), side view of fe(x,v,T)
and fi(z,v,T) (right).

549 For these values of collision frequencies, the convergence of f. towards its equi-
550 librium M, is slow. Moreover, even at time T" = 60, the convergence towards a global
551 equilibrium f, = M, = M; = f; can not be seen. To see the difference on macroscopic
552 quantities, we present on figure 10 (left) the evolution in time of ||u;(z,t) —ue(x, t)|] oo
553 and ||T;(x,t) — Te (2, t)||co. Moreover, we present on figure 10 (right) the evolution in
554 time of the electric energy £(t).
Difference of velocities and temperatures Electric energy
45 0 ‘ ‘ ‘
W« log(IE(x,Dll, 2) ——
4] L
e v s -1
35| I
3| L 2]
25 | I
3
2| I
1.5 L 4
lhu;(x,0)-ue(x,Oll,) ———
1 ITOTx0l) —— F 5 |
05 I
0 -6
F1G. 10. General case, a« = 0.1, g; = €e = &; = €. = 1000. Ewvolution in time of ||u;(z,t) —
te(z,t)||co and ||Ti(z,t) — Te(z,t)||o (left), and of E(t) (right).
555 Even at time T' = 60, the velocities (resp. temperatures) of electrons and ions are
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very different. There is no global equilibrium.

Otherwise, these figures show that the results are affected by some numerical
noise. This is a classical effect of particle methods, due to the probabilistic character
of the initialisation. This noise affects macroscopic quantities because of the coupling
between micro and macro equations. At fixed parameters (o, collision frequencies,
N,, etc.), the noise can be reduced by increasing the number of particles. In fact, the
noise means that we have not enough particles per cell to represent the distribution
function (gee or g;; here). But thanks to the micro-macro decomposition, we only
represent the perturbations g.. and g;; with particles, and not the whole functions
fe and f;. So when g (resp. gi;) becomes smaller, fewer particles are necessary. It
means that if f. (resp. f;) goes towards its equilibrium M, (resp. M;), the required
number of particles diminishes. This is the main reason for using a micro-macro
scheme with a particle method for the micro part.

The second testcase consists in an intermediate regime withe; = e, =¢; =€, = 1.
Collisions are enough frequent to bring the system towards a global equilibrium, as
we can see on figure 11 at time 7' = 0.5 and then on figure 12 at time 7" = 6.

£, (x,v, T=0.5) f;(x,v,T=0.5) Side view at T=0.5
v v ).35
) -10 -5 0 5 l()l -10 -5 0 5 10 03 fo ——
).25 P
0.2
X ).15
0.1
).05
0l
V05

005 0 005 01 015 02 025 0 005 0.1 0.15 02 025 03 035

Fic. 11. General case, « = 0.1, g; = € = &; = €. = 1. Distribution functions at time T = 0.5:
fe(z,v,T) in phase-space (left), fi(x,v,T) in phase-space (middle), side view of fe(z,v,T) and
fi(z,v,T) (right).

Side view at T=6

).35
0.3 fo—
)25 i —
0.2
)15
0.1
).05
0l
108
[ T ]
o 0.05 0.1 0.15 0.2 025 0 0.05 0.1 0.15 0.2 0.25
Fic. 12. General case, a = 0.1, ¢; = €. = &; = € = 1. Distribution functions at time

T =6: fe(z,v,T) in phase-space (left), fi(x,v,T) in phase-space (middle), side view of fe(z,v,T)
and fi(z,v,T) (right).

The evolution in time of ||u;(z, t) —ue (2, t)||0o and ||T;(x, t)—Te(x, t)|| 0o, presented
on figure 13 (left), confirms the convergence towards a global equilibrium. On figure
13 (right), the evolution in time of the electric energy £(¢) is presented.
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Difference of velocities and temperatures Electric energy
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Fic. 13. General case, a« = 0.1, g; = €e = & = €. = 1. FEwvolution in time of ||u;(x,t) —

Ue(Z,t)||oo and ||T;(x,t) — Te(x,t)||o (left), and of E(t) (right).

75 We expect that the convergence towards a global equilibrium is faster when col-
76 lisions are more frequent. We will highlight this in the following test. For a conver-
77 gence of the densities in short time, we now take a = 1072 and N, = N,, =5 - 10%,
7

ot ot

ot

8 N, =128 and At = 1073. Other parameters are unchanged and particularly we still
9 have ne(x,0) = 1+ acos(kz), ue(x,0) =0, Te(x,0) = 5 (1 + acos(kx)), ni(z,0) = 1,

ot ot

580 wi(x,0) = 1/2 and Tj(x,0) = 1. For ¢; = ¢, = &; = £, = 1072, distribution functions
581 are plotted on figure 14 at time 7' = 0.01 and then on figure 15 at time T = 0.1.
fo(x.v.T=0.01) fix.v.T=0.01) Side view at T=0.01
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Fi1G. 14. General case, a = 1072, ¢; = €. = &; = €. = 1072. Distribution functions at

time T = 0.01: fe(z,v,T) in phase-space (left), fi(xz,v,T) in phase-space (middle), side view of
fe(z,v,T) and fi(z,v,T) (right).

fo(x,v.T=0.1) £(x,v.T=0.1) Side view at T=0.1
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Fi1G. 15. General case, a = 1072, ¢; = €. = &; = €. = 1072, Distribution functions at time
T =0.1: fe(z,v,T) in phase-space (left), fi(x,v,T) in phase-space (middle), side view of fe(z,v,T)
and fi(z,v,T) (right).

582 We can see that the distribution functions are very close from each other at
583 T = 0.1. The evolution in time of ||u;(x,t) — ue(x,t)||oo and ||T;(z,t) — Te(x,t)]|0os
584 presented on figure 16 (left), confirms the convergence of velocities and temperatures.
585  We can see the evolution of £(¢) on figure 16 (right).
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Difference of velocities and temperatures
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FIG. 16. General case, « = 1072, ¢; = ec = &; = €. = 1072, Ewolution in time of ||u;(z,t) —
Ue(z,t)||co and ||Ti(z,t) — Te(z,t)||o (left), and of E(t) (right).

586 Finally, we propose a testcase in which the collisions between particles of the same
587 species are frequent, whereas collisions between ions and electrons are infrequent.
588 More precisely, we take a = 1072, N,, = N,, = 5-103, N, = 128, At = 1072,
589 €; =€, = 1072 and &; = £, = 1000. Distribution functions are presented on figure 17
590 at time 7" = 0.01 and then on figure 18 at time 7" = 6.

f(x,v.T=0.01) fi(x,v,T=0.01) Side view at T=0.01
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F1G. 17. General case, o = 1072, g; = €. = 1072, &; = €. = 1000. Distribution functions
at time T = 0.01: fe(xz,v,T) in phase-space (left), fi(x,v,T) in phase-space (middle), side view of
fe(z,v,T) and fi(z,v,T) (right).

Side view at T=6
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[

FiG. 18. General case, o = 1072, g; = e. = 1072, & = €. = 1000. Distribution functions
at time T = 6: fe(x,v,T) in phase-space (left), fi(x,v,T) in phase-space (middle), side view of
fe(z,v,T) and fi(z,v,T) (right).

591 Electrons tend to have a Maxwellian distribution function, but collisions between
592 them and ions are to infrequent to bring the system to a global equilibrium, at least
593 at time T = 6. The evolution of ||u;(z,t) — ue(2,t)||co and ||Ti(z,t) — Te(z,t)||so is
| presented on figure 19 (left) and £(t) is presented on figure 19 (right).
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Difference of velocities and temperatures Electric energy
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F1G. 19. General case, a = 1072, g; = e, = 1072, § = €. = 1000. Ewolution in time of
[|ui(z,t) — ve(x,t)||oo and ||T;(z,t) — Te(z,t)||oo (left), and of E(t) (right).

The numerical noise that we see on figure 17 means that there is not enough
particles initially to represent in a good way ge.. Indeed, this quantity is big at T'=0
since f, is far from an equilibrium. But f. goes fast towards a Maxwellian, so that
gee becomes small and N,, = 5 x 10% particles is then sufficient. This explains why
this noise is no longer perceptible as time goes by.

Let us remark that in a full particle method on f. and f; (in a model without
micro-macro decomposition), many more particles are necessary, since the distribution
functions f. and f; keep the same order of magnitude as time goes by. So the cost
of a full particle method is constant with respect to the collision frequencies. On the
contrary, the cost of our micro-macro model is reduced when e, and ¢; decrease.

7. Conclusion. In this paper, we first present a new model for a two species
1D Vlasov-BGK system based on a micro-macro decomposition. This one, derived
from [17], separates the intra and interspecies collision frequencies. Thus, the con-
vergence of the system towards a global equilibrium can, depending on the values of
the collision frequencies, be separated into two steps: the convergence towards the
own equilibrium of each species and then towards the global one. Moreover, in the
space-homogeneous case without electric field, we estimate the convergence rate of
the distribution functions towards the equilibrium, as well as the convergence rate of
the velocities (resp. temperatures) towards the same value.

Then, we derive a scheme using a particle method for the kinetic micro part and
a standard finite volume method for the fluid macro part. In the space-homogeneous
case, we illustrate numerically the convergence rates of velocities and temperatures
and verify that it is in accordance with the estimations. Finally, in the general case,
we propose testcases to see the evolution in time of the distribution functions and
their convergence towards equilibrium. The main advantage of this particle micro-
macro approach is the reduction of the numerical cost, especially in the fuid limit,
where few particles are sufficient.
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