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This paper considers the Cauchy problem for hyperbolic conservation laws arising in
chromatography:

with bounded measurable initial data, where the relaxation term g(5, u, v) converges to zero as
the parameter d > 0 tends to zero. We show that a solution of the equilibrium equation

(u + A{u)),+f(u)x = 0

is given by the limit of the solutions of the viscous approximation

A(u) - v
(u + v), + f(u)x = £(u + v)

g(<5, u, v)'

of the original system as the dissipation e and the relaxation 5 go to zero related by 5 = 0(e).
The proof of convergence is obtained by a simplified method of compensated compactness
[2] , avoiding Young measures by using the weak continuity theorem (3.3) of two by two
determinants.

1. Introduction

In this paper we consider the existence of global weak solutions for an extended
model of relaxation

x = 0, vt = ^ y (1.1)

with initial data

(«,»)l, = o = («o(*).»oW), (1-2)

where the positive constant 8 is referred to as relaxation time. We make the following
assumptions about f(u), A(u), g(8, u, v) and the initial data:

(Al) f(u), A(u) e C2 satisfying A'(u) ^ ct > 0, meas {u: (/'(«)/(1 + A'{u)))' = 0} = 0;
(A2) g(5, u, v) e C^R2) for any fixed d, cx(u, v)d ̂  g(5, u, v) ̂  c2(u, v)S,
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\gu\^c3(u,v)S, \gv\ f^c3(u,v)d, where ct(u,v) are positive, continuous func-
tions, i = 1, 2, 3;

(A3) uo(x), vo(x) are bounded in L°°(R) and JG|^(«o(x))-t)o(x)| dx^SM(G), for
any compact set G in R.

System (1.1) consists of a conservation law and an equation with relaxation term.
In [4, 7, 8] a similar model arising in combustion

(M + qz)t + f(u)x = 0, zt = kf{u)z,

was studied. Other models with relaxation terms, [1,9,10] , have been considered
by other authors. For g(3, u, v) = 5, the system (1.1) arises in chromatography, see [9] .

In a recent paper [10], Tveito and Winther study vanishing relaxation of (1.1),
(1.2) with g = d in the framework of BV solutions under the assumption of monoton-
icity of / . Note that our proof needs no such restriction on the initial data and on
/ by using a complete different technique.

In this paper, we study the zero relaxation limit g(S, u,v)-+0 as 6 -> 0 by using
compensated compactness. This method has been well used on models for combustion
[4 ,7] , for viscoelasticity and phase transitions [1] . We show that the solutions of
the viscous equations

A(u) - v
(u + v)t+f(u)x = s(u + v)xx, V, = EVXX+ u (1.3)

converge to the solutions of the equilibrium equation

(u + A(u))t+f(u)x = 0, (1.4)

when 5 and e tend to zero related by S = O(s).
This paper is structured as follows: in Section 2 we consider the existence of

viscosity solutions of system (1.3) with initial data

(«-, C)|r=o = («*&, »&), (1.5)

where u%, ve
0 are smooth functions obtained by smoothing uo(x), vo(x) with a mollifier,

satisfying

MO->MO(X), vB
0-+v0(x) when e->0,

where M is a positive constant depending only on the bound of |«o(x)lr°, |tfo(x)|L«
and is independent of e. We first prove local existence using the contraction mapping
principle. The next step is to show an a priori estimate in the L°° norm of the
solutions, which is obtained by using the maximum principle given in [5] . Section 3
constitutes the heart of our analysis. There it is proved that for a function pair
{t](ue's), q(u£-s)} which satisfies

rf(u)f'(u)
4(M) = T T ^ )

we have

n(utld)t + q(ue'% is compact in HfJ(R x R + ).
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This is proved mainly through energy estimates. In Section 4 the method of compen-
sated compactness given in [2, 4] is used to study the convergence of the viscosity
solutions {u£td, v£<d}. First the convergence of u£<d is shown and then, using Lemma 3.2,
the convergence of vf's. When taking 5 = O(e), the global weak solution of the
equilibrium (1.4) is obtained as <S->0.

2. Viscosity solutions

In this section, we consider the existence of the Cauchy problem for the parabolic
system (1.3) with initial data (1.5). The local existence of solutions can be obtained
by applying the general contraction mapping principle to an integral representation
of (1.3). To extend the local solution to the global one, the a priori estimate in the
following lemma is essential:

LEMMA 2.1. / / \A(u£
0(x))\ ^ M, \ve

0(x)\ ̂  M, A'(u) ̂  ct > 0 and for any fixed e, d > 0,
the solution (ue, vc) e C2 of the Cauchy problem (1.3), (1.5) exists in (— co, oo) + [0, T].
Then the following estimates hold:

\A(uc{x,t))\^M, for(x, t ) e ( - o o , oo)x [0, T]. (2.1)

Proof. Substituting the second equation of (1.3) into the first, we get

A(u) - v
+ f{u)* + g^u7v) = eU-

v - A(u)
+ -7i : = ™xx.

g(5, u, v)

Multiplying the first equation in (2.2) by A'(u), we have

(2.2)

(A(u))t + f(u)(A(u))x + A'(u) = eA(u)xx - e ;(A(u)x)
2. (2.3)

We are going to use the maximum principle [5] for the system

A(u)-v _ A"(u)
(A(u))t + f'(u)(A(u))x + A'(u)

g(5, u, v)

v - A(u)

' g{$, U, V)

• (A'(u))2

with initial data

Make the transformation

(2.4)

(2.5)

A(u) = w + M
N(x2 + cLe') N(x2 + cLef)

(2.6)



824 C. Klingenberg and Yun-guang Lu

where c, N, and L are positive constants, N is the upper bound of A(u), v on
R x [0, 7 ] . The functions w and z, as easily seen, satisfy the equations

EA'(U) \ ( A"(u) \N{u) + (AW A{U)X) W* + \cLet+m + £ d k m* ~2e) e
(w-z) = ewxx, (2.7)

g
N z — w

zt + (cLe' -2e)-^ + = szx

resulting from (2.4). Moreover,

N(x2 + cL)

(2-8)

N(x + cL)
wo(x) = A(uo(x)) -M- —2 < 0,

zo(x) = vo{x) — M — —2 < 0,

w(L,t)<0, w(-L,t)<0, z(L,t)<0, z(-L,t)<0.

Then, similar to the proof of [5, Lemma 2.2], we can obtain from (2.7), (2.8)

w(x,t)<0, z(x,t)<0 on(-L,L)x [0, T].

Letting L->oo in (2.6), we have A(u)^M, vfS,M on (—oo, oo) x [0, T] . Similarly

From Lemma 2.1, the solutions of the Cauchy problem (1.3), (1.5) have an a priori
estimate

\uE(x, t)\ ^ M, \vc(x, t)\ :g M, (2.9)

where M is a positive constant which depends only on the initial data. Therefore
the following global existence theorem is obtained:

THEOREM 2.2. Let uo(x), vo(x) be bounded measurable, A(u) e C1, A'(u) 5; ct > 0,
g(5, u, v) satisfy the condition (A2). Then for any fixed d, e > 0, the Cauchy problem
(1.3), (1.5) has a unique classical solution (u£i6(x, t), ve'd(x, t)) satisfying (2.9).

3. Compactness in Z/,",.1 {R x R +)

In this section, we mainly obtain the following lemma:

LEMMA 3.1. For any C2 pair of functions (n(ue>3), q(u£<s)), let S = O(e), then

n(u£)t + q{u£)x are compact in H^(R x R + ) , (3.1)

where {n(u), q(u)) satisfies

n'{u)f\u)

Lemma 3.1 is the core of this paper, which guarantees the div-curl lemma of the
theory of compensated compactness to be true, namely:

n1(u
£)q2(u

E) — ri2(u
s)q1u

£) = »/1(w
E) ̂ (w') ~~ ^(w*) f̂i(uE)» (3-3)
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for any C2 pair of functions (rjh qt) (i = 1, 2) satisfying (3.2), where ' •' means weak
limit.

Before giving the proof of Lemma 3.1, we first study some estimates of the
solutions (u\ v£).

LEMMA 3.2. If A'(u) ^ ct > 0, then

e((i4) , s(vE
x)

2),

are bounded in Lloc(R x R + ).

Proof. Multiplying the first equation in (2.2) by A(u) and the second one by v and
adding the result, we obtain

\ / f \ ( v \ ( A ( u ) ~ v
A { u ) d u ) + { A ( u ) f ' ( u ) d u ) + ( \ y K> '2 A g(S,u,v)

= e( I A(u)du+V-j -sA'(u)u2
x-sv2

x. (3.4)

Since

g(8, u, v) = 0(5),

We can end the proof of Lemma 3.2 by multiplying a suitable test function to
(3.4). •

LEMMA 3.3. If the assumptions (AJ, (A2), (A3) are satisfied, then 5e2(uxx)
2, 5(u8,)2 are

bounded in Lloc(R xR + )if5 = 0(e).

Proof. Differentiating the first equation in (2.2) with respect to x, we have

(ux)t + (f'(u)ux)x + -j~~ = B{UXX)X. (3.5)

\g(d, u, v)Jx

Multiplying (3.5) by ux, we have

u2
x\ , (A{u)-v \ A(u)-v (u2

x

~z + (f'(u)u2
x)x-f'(u)uxuxx + — -ux - — uxx = e\ —

2 / , \g{5,u,v) ) x g(5,u,v) \2

(3.6)

Multiplying (3.6) by any test function (p e C*(R x R + ), <p ^ 0, we haved x \ E U 2
x x f d t ^ C [ | dx I £Ux\<pxx\ + U2

x(\<pt\ + \ < p x \ ) + [ -
n I n +

\A(u)-v\
5 JR

\ux\\<px\dt+ [ (ulx)
2<p(x,0)dx). (3.7)

So the estimates in Lemma 3.2 give us the boundedness of 5e2uxx in L\OC(R x R+) if
<5 = O(e).
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To estimate du2, we have from the first equation of (2.2)

(A(u)-v)*
• <= C I E2U2 + U2UXX + UX

So the boundedness of Suf in Lioc(R x R + ) is proved if 5 = O(s). •

Proof of Lemma 3.1. We rewrite the first equation of (1.3) as

(u — 4̂(w))( / ' (M) (M + f )x;c

1 + A'(u) 1 + ^4'(M) X 1 + A'(u)

Then, for any pair of C2 functions (rj, q) satisfying (3.2), we have

1 + A'(u) 1 + A'(u) u,

-s(M + » L I ^ U V
We write

(3.8)

(3.9)

(3.10)

where

h = eUu + v)x

I2 = (v-A(u))

Since, for any <p e CQ(R X R + ) ,

e ( (« + y)x 1 ? 1 . .

1 + A'(u)

A'{u)
ut - e(u + v)x

A'{u)

RXR

G / J JRXR-1

2
j
dxdt

M( - e(w

<c
(v-A(u))2

dxdt

1 + ^'(")
i

ux\ <p dx dt

/2{v-A{u)f

\vo(x)-A(uo(x))\dx,

where G is the compactly supported set of <p. Thus Jt is compact in H^iR x R+).
Since for any p e C0(R x X + )

duj dx dt
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I2 is bounded in Q(R x R + ) if 5 = O(s). So / 2 is compact in W\£(R x R+) for some
1 < q < 2. Therefore n, + qx is compact in W{,£(R x R+). Moreover, the boundedness
of if gives us that n(uE)t + q{uE)x is bounded in W~1<r(R x R + ) for any r > 2. By an
embedding theorem ([11, Lemma 28], also used in [3, Theorem 3]) compactness of
nt + qx in W^'2(R x R +) follows. •

4. Zero relaxation limit

In this section, we are going to consider the convergence of the solutions for the
Cauchy problem (1.3), (1.5) as the dissipation e and the relaxation S tends to zero
at the same rate. Our technique is to apply the method of compensated compactness.
Our analysis is based on first showing the convergence of u£-s and, through coupling
given by the third term in Lemma 3.2, the convergence of v£>s.

Since (3.1) in Lemma 3.1 holds and thus the div-curl lemma (3.1) holds, we chose
particular entropy pairs

{mW, «iW) = (A - fc, h(l) - h(k)), (ti2(k), q2(X)) = (h(X) - h(k), J h'\s) d*

(4.1)

where k is an arbitrary constant,

and get from (3.3),

(uE-k) h'2(s)ds-{h{ue)-h(k))2={u°-k) h'{s)ds - (h{u£) - h{k))2.
Jk jk

(4.2)

Let if ^u(U°(R)) (-*> represents weak star convergence). It is shown in [2,
Theorem 1] and also in [4, Lemma 3.3] that

uB

{us-u) | h'2{s)ds-{h(u£)~h(u))2+{h(ue)-h(u))2 = O. (4.3)

Since

(ue-u) | h'2(s) ds - (h(uc) - h(u))2 ̂  0. (4.4)

then from (4.3)

u8

,2"

h(u£) - h(u) = 0

and

(uE-u) h'2(s)ds-(h(ue)-h{u))2=0. (4.5)
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Therefore

; - ( % E ) - % ) ) 4lim <{uE-u) \ h'2(s)ds-(h{u")-h(u))2\dxdt = O, (4.6)

«-*« Jn I J» J

fi being any bounded region in R x R + . From this and the condition

meas
we may get ([2], or [4, Lemma 3.3]) the strong convergence of u£-*u a.e. on fi.
Moreover, the boundedness of

(A(u°)-v°)2 .
in Lloc(R xR + )

o

gives us the strong convergence of vc -> v a.e. on Q. So we end the paper with the
following main theorem:

THEOREM 4.1. The solutions of {uc'd, ve-d)(x, t) of (1.3), (1.5) with the assumptions
(A^—(A3) converge to bounded measurable functions (u, v)(x, t) as e and 5 tend to zero
related by S = O(s). Moreover, u = u(x, t) is a weak solution of the Cauchy problem

(u + A(u))t + f(u)x = 0, u\t=0 = uo(x)

and v(x, t) = A(u(x, t)).
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