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Abstract
Finite volume schemes for hyperbolic conservation laws require a numerical intercell flux. In
one spatial dimension the numerical flux can be successfully obtained by solving (exactly or
approximately) Riemann problems that are introduced at cell interfaces. This is more chal-
lenging in multiple spatial dimensions. The active flux scheme is a finite volume scheme that
considers continuous reconstructions instead. The intercell flux is obtained using additional
degrees of freedom distributed along the cell boundary. For their time evolution an exact
evolution operator is employed, which naturally ensures the correct direction of information
propagation and provides stability. This paper presents an implementation of active flux for
the acoustic equations on two-dimensional Cartesian grids and demonstrates its ability to
simulate discontinuous solutions with an explicit time stepping in a stable manner. Addition-
ally, it is shown that the active flux scheme for linear acoustics is lowMach number compliant
without the need for any fix.
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1 Introduction

Conservation laws, such as the Euler equations of ideal hydrodynamics, express conservation
of density, momentum and energy of a compressible fluid. Numerical methods need to reflect
the conservation property, as by the Lax–Wendroff theorem only conservative numerical
schemes are able to converge to a (weak) solution of the equations. Cell-based methods
consider a partition of space into computational cells. A natural class of numerical schemes
for conservation laws are finite volume schemes. They interpret the discrete degree of freedom
in a computational cell as the average of the dependent variable. Numerical fluxes assigned
to the cell boundaries automatically ensure conservativity of the method.

In one spatial dimension the numerical flux can be successfully obtained from a so-called
Riemann solver. The dependent variables are reconstructed in a piecewise constant manner
allowing for jumps at the locations of cell interfaces. The Riemann problems that arise at cell
interfaces are then solved (see e.g. [24]). It is often possible to solve the Riemann problem
exactly, but an approximate solution can lead to a similarly accurate scheme while requiring
less computations. Therefore approximate Riemann solvers are very popular (e.g. [10,37]).
Among others, relaxation (e.g. [30]) can be a successful strategy to construct them.

In multiple spatial dimensions one faces additional challenges. First of all, even
approximate Riemann solvers are complicated (see e.g. [8,42] for exact solutions to multi-
dimensional Riemann problems and e.g. [3,12] for approximate solvers). This explains why
dimensionally split methods are so popular: they consider the Riemann problems arising at
the edges of the computational cell independently. The multi-dimensional problem is thus
replaced by several one-dimensional ones.

Additionally, the solutions to Euler equations in multiple spatial dimensions exhibit a
number of phenomena absent in one dimension. Particularly prominent features are vortices,
that strongly dominate realistic multi-dimensional flows. In the limit of low Mach numbers,
the solutions of compressible Euler equations tend to those of incompressible Euler equations.
This is a multi-dimensional feature as well, because incompressible flows are trivial in one
spatial dimension. Many finite volume methods suffer from artefacts when applied e.g. to
the regime of low Mach number (see e.g. [25]). While Riemann solvers seem to yield very
good results in one spatial dimension it is unclear whether this is true in multiple spatial
dimensions, or whether numerical methods based on different concepts are more adequate. It
has been, for instance, noticed that the failure in the regime of lowMach number is observed
even when using exact multi-dimensional Riemann solvers [8,22].

It thus seems relevant to investigate alternative ways how multi-dimensional numerical
methods can be constructed. Recently, such a method has been proposed by [17], as an
extension of a method from [40] for linear advection. It has been given the name active flux.
It involves a continuous reconstruction, together with pointwise degrees of freedom along
the cell boundary. It thus does not require the solution of any Riemann problem. Continuous
reconstructions are found not to stand in the way of computing discontinuous solutions.
Indeed, even schemes that employ reconstructions with jumps across cell interfaces are
mostly unable to resolve a shock wave sharply. They resolve a shock wave by a succession
of jumps. Instead, a method with a continuous reconstruction resolves the discontinuity by a
continuous functionwith a sharp gradient (see Fig. 1). The details of themethod are discussed
in Sect. 3 below.

This paper aims at contributing to a deeper understanding of the active flux method. First,
a very general formulation of the method is given, that is independent of the grid or the
equations (Sect. 3). It thus highlights the most important features that distinguish the method
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Fig. 1 Illustration of the continuous reconstruction in the context of discontinuous solutions. The figures show
the solution to a Riemann problem of linear acoustics with the active flux scheme in one spatial dimension
on a grid of 100 cells. The exact solution consists of two discontinuities moving with speeds ±1. Left: initial
data and the numerical solution at time t = 0.1. The overshoots are due to the scheme being higher order, but
no limiting employed. Right: close-up of the solution at the location of the right discontinuity. The solid line
is the continuous reconstruction; additionally the averages and the point values at cell boundaries are shown

from conventional finite volume schemes. Active flux in multiple spatial dimensions has
so far been introduced for triangular computational cells. For certain applications triangles
might be too complicated a mesh. This paper for the first time presents an implementation
on two-dimensional Cartesian grids (Sect. 4).

One of the objectives behind the development of the active fluxmethod is to improvemulti-
dimensional simulations by including more multi-dimensional information in the scheme.
Following [17], in this paper the active flux method is applied to the equations of linear
acoustics. Linear acoustics is obtained when the Euler equations are linearized around a
constant background with no velocity. In multiple spatial dimensions, linear acoustics cannot
be reduced to some kind of multi-dimensional advection. This makes it a valuable system
in order to investigate the performance of numerical methods in multiple spatial dimensions
(as e.g. also in [14]).

The active flux scheme pursues a strategy alternative to discontinuous reconstructions. The
fact that the method does not use a Riemann solver raises the question whether maybe it is
better suited for the low Mach number limit than Riemann solvers. Linear acoustics exhibits
a low Mach number limit similar to that of the Euler equations and there exists an efficient
methodology to study the behaviour of numerical schemes in this limit on Cartesian grids
(introduced in [4,6]). Here, this methodology is extended to take into account the additional
degrees of freedom along the cell boundary and is applied to the active flux scheme in Sect. 6.
It is shown that indeed, active flux is able to resolve the low Mach number limit of linear
acoustics.

The presence of point values along the boundary makes it easy to evaluate the fluxes
necessary for the update of the cell average. These point values, however, also require a time
evolution. Here, following [17], the exact solution operator of linear acoustics is applied onto
reconstructed initial data. However, this represents only one possible choice of an evolution
operator for the point values and other evolutions are possible. The presentation of the general
philosophy of active flux in Sect. 3 therefore does not insist on a particular way of evolving the
point values. This becomes particularly important for nonlinear equationswithout an available
exact evolution operator. Recent work on approximate evolution operators for nonlinear
equations is [27].
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2 Acoustic Equations

This paper considers numerical methods for n × n systems of conservation laws in d = 2
spatial dimensions:

∂t q + ∇ · f(q) = 0 (2.1)

q : R+
0 × Rd → Rn (2.2)

f = ( f x , f y) f x , f y : Rn → Rn (2.3)

Only vectors with d components are set in boldface symbols. Additionally, indices are
never denoting a derivative.

The most prominent example of a system of conservation laws are the Euler equations

∂tρ + ∇ · (ρv) = 0

∂t (ρv) + ∇ · (ρv ⊗ v + p1) = 0
(2.4)

with velocity v = (u, v)T , pressure p and density ρ.
As a stepping stone towards a detailed understanding of numerical methods for the Euler

equations in multiple spatial dimensions the acoustic equations are studied first. They are
obtained as a linearization of the Euler equations around the state of constant density and
pressure and vanishing velocity (see also e.g. [8]). Their symmetrized version reads

∂t p + c∇ · v = 0,

∂tv + c∇ p = 0.
(2.5)

with c > 0 the speed of sound of the background state. This system is strongly hyperbolic
in two spatial dimensions with eigenvalues {±c, 0}. It has to be augmented by initial data

p(0, x) = p0(x) v(0, x) = v0(x) (2.6)

and possibly boundary conditions.
The curl of the velocity is called vorticity. In the context of Euler equations, there is great

interest in methods that are able to compute reliably flows that contain vorticity, so that the
appearance of vortical structures is caused by physics and affected as little as possible by
numerical error.

For the acoustic equations vorticity is stationary:

∂t (∇ × v) = 0 (2.7)

Thus, for acoustics, an interesting class of methods are those that keep a discrete version of
the vorticity exactly stationary (vorticity preserving), see e.g. [6,29,33,34].

The low Mach number limit for the equations of linear acoustics is the limit ε → 0 of

∂t p + c

ε
∇ · v = 0,

∂tv + c

ε
∇ p = 0.

(2.8)

It is obtained by analogy from the low Mach number limit of the Euler equations. There, the
pressure gradient ∇ p is rescaled as ∇ p

ε2
. The same is done here for acoustics, which after

symmetrization yields (2.8). The interpretation of the Mach number ε as the ratio between
advective and acoustic speeds in the setting of the Euler equations, however, is not applicable
to the acoustic equations. Nevertheless this limit is useful in the design and understanding of
low Mach number compliant schemes.
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The low Mach number limit in (2.8) is the same as the limit t → ∞ of the initial
value problem (2.5)–(2.6). With appropriate boundary conditions, the long time solution is
governed by the stationary states (for more details see [6]).

Note that system (2.5) can be reduced to awave equation for p, and a vector wave equation

∂2t v − c2∇(∇ · v) = 0 (2.9)

for v. This latter, however, cannot generally be reduced to several scalar wave equations for
the components of v, because ∇(∇ · v) − Δv = ∇ × (∇ × v).

The numerical method will make use of the exact solution to the initial value problem
(2.5)–(2.6) for non-differentiable initial data. The required (distributional) solution operator
for initial data of such low regularity has been derived in detail in [8]. The solution formulae
contain spherical means, that also appear in the solution of the scalar wave equation [28]. It
is helpful to first consider three spatial dimensions:

Definition 1 (Spherical mean) The spherical mean M [ f ] (x, r) of an integrable function f
that depends on x = (x, y, z) ∈ R3 is given by

M [ f ] (x, r) = 1

4π

∮
S2
dy f (x + ry) = 1

4π

2π∫

0

dϕ

π∫

0

dϑ sin ϑ f (x + r · n) (2.10)

with the outward normal vector given by

n =
⎛
⎝sin ϑ cosϕ

sin ϑ sin ϕ

cosϑ

⎞
⎠

This paper concentrates on the two-dimensional case, though. If f does not depend on z,
then, with s := r sin ϑ , it is possible to rewrite Eq. 2.10 as

M 2D [ f ] (x, y, r) = 1

2πr

2π∫

0

dϕ

r∫

0

ds f (x + s cosϕ, y + s sin ϕ)
s√

r2 − s2
(2.11)

In both cases, if f is polynomial, the sphericalmeans can be evaluated analytically. Indeed,
by shifting the point of integration one is left with

M 2D
[
x p yq

]
(0, 0, r) = 1

2πr

2π∫

0

dϕ cosp ϕ sinq ϕ

r∫

0

ds
s1+p+q

√
r2 − s2

(2.12)

Both integrals can easily be evaluated analytically because the angular integration bounds
here are multiples of π

2 . The second integral is

r∫

0

ds
sm√

r2 − s2
=

⎧⎪⎪⎨
⎪⎪⎩
r2m

′ π

4m′

(
2m′ − 1

m′

)
m = 2m′,m′ ∈ N

r2m
′+1 (m′)!24m′

(2m′ + 1)! m = 2m′ + 1,m′ ∈ N

(2.13)

In [17] for the initial value problem (2.5)–(2.6) the following solution formula appears:

p(t, x) = p0(x) +
ct∫

0

dr r · M[
div grad p0

]
(x, r) − ct · M[

div v0
]
(x, ct) (2.14)
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v(t, x) = v0(x) +
ct∫

0

dr r · M[
grad div v0

]
(x, r) − ct · M[

grad p0
]
(x, ct) (2.15)

These formulas are derived from the classical Poisson formula for the scalar wave equation
in second-order form [41], which was used in [1,26] to derive high-order finite-difference
methods for the scalar problem. For the acoustic equations in first-order form, and for the
linearized Euler equations, (2.14) was applied to the pressure, and a similar equation to the
velocity components, and employed in [17] to create an active flux scheme, with vortic-
ity treated as a source term. The full extension to vortical flows (2.14)–(2.15) appears in
[21], together with investigations of the active flux method on unstructured grids, including
boundary conditions and nonlinearity. Finite-volume schemes based on the full extension are
reported in [20].

For the numerical method it will be necessary to consider initial data that are continuous,
but possess discontinuous first derivatives, such that terms like ∇ · ∇ p0 require clarification.
The interpretation of this formula in the sense of distributions has been achieved in [8]. At
the same time it has been shown that the formula can be rewritten as follows:

Theorem 1 (Solution operator) The solution to the initial value problem (2.5)–(2.6) is given
by

p(t, x) = ∂r

(
r · M [p0] (x, r)

)∣∣∣
r=ct

− 1

ct
∂r

(
r2M [v0 · n] (x, r)

)∣∣∣
r=ct

(2.16)

v(t, x) = v0(x) − 1

ct
∂r

(
r2M [p0n] (x, r)

)∣∣∣
r=ct

+
ct∫

0

1

r
∂r

(
1

r
∂r

(
r3M [(v0 · n) n] (x, r)

) − rM [v0] (x, r)
)
dr (2.17)

The derivatives are to be interpreted in the sense of distributions, if necessary.

For the proof of the theorem, and more details on its distributional version, see [8]. Below
it is shown that for the reconstructions considered here all the derivatives in (2.16)–(2.17)
exist in the strong sense and it is not necessary to consider anything distributionally. When
trying to use formula (2.14)–(2.15), one would be forced to interpret them in the sense of
distributions in order to compute the second derivatives correctly. Nothing seems to be gained
when using (2.16)–(2.17), because they also contain second derivatives. However this time,
the derivatives are all expressed with respect to r and the initial data in the particular setup
of this paper will turn out to have continuous derivatives with respect to r (Sect. 4.3). Thus
when using formulae (2.16)–(2.17) it is possible to avoid dealingwith distributional solutions,
which is a substantial advantage.

It should be noted, that the exact solution may be expressed in various representations,
which differ by the way they can be used. In this respect the above formulae are very dif-
ferent from those obtained, for example, in [31,35] using bicharacteristics. There, analytical
relations are derived, which connect the solution at time t > 0 with the data at initial time
via a so called mantle integral. This latter involves the solution at all intermediate times.
Therefore, the knowledge of the data at initial time does not allow to immediately compute
the solution at a later time exactly. With the above formulae (2.14)–(2.15) or (2.16)–(2.17),
on other hand, the solution at time t is given as a functional of the data at initial time only
and thus can be determined immediately.
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3 General Structure of the Active FluxMethod

This section outlines the idea of the active flux method on general polygonal (unstructured)
meshes and without specifying the hyperbolic system of PDEs that is to be solved. Several
references to implementations of active flux for particular equations that appear in the lit-
erature are given in Sect. 3.3. In Sect. 4 finally, Cartesian meshes with rectangular cells are
introduced, on which the active flux method is used to solve the acoustic equations (2.5).

The active flux method is an extension of the finite volume method. Therefore finite
volume methods are first reviewed in Sect. 3.1, before the active flux method is introduced
in Sect. 3.2.

3.1 Finite VolumeMethods

For the finite volumemethod the discrete degree of freedom qC is interpreted as the average of
q over the polygonal numerical cell C ⊂ Rd . For Cartesian grids, also the notation qCi j =: qi j
is standard. However, our presentation of the method for the moment does not depend on the
nature of the grid. In order to construct the method one first integrates the conservation law
(2.1) over the cell and applies Gauss’ law. This gives rise to fluxes through the cell boundary:

∂t

∫
C
dx q +

∫
∂C

dx n · f(q) = 0 (3.1)

Here n is the outward normal on the cell boundary ∂C of cell C.
The finite volumemethod now replaces the exact expression (3.1) by a (yet undetermined)

numerical approximation f̄e of the flux through an edge e ⊂ ∂C:

∂t qC + 1

|C|
∑
e⊂∂C

|e| f̄e = 0 (3.2)

Here |e| is the length of the edge e and |C| the area of the cell C.
One way to obtain a numerical flux is by using a Riemann solver: One considers the initial

value problem (2.1) with initial data qrecon : Rd → Rn that are piecewise constant

qrecon(x) = qC if x ∈ C (3.3)

This step is called reconstruction. The resulting Riemann problems across the cell boundaries
are solved exactly or approximately in time. The numerical flux is then taken to be the time
average of the flux of this solution through the cell boundary.

Alternatively, one might consider an initial value problem given by more complicated
reconstructions inside the cells, which is referred to as generalized Riemann problem (see e.g.
[2,9,23,38,39] and many others). This leads to schemes that are higher order discretizations
of the original PDE. In this case the reconstruction qrecon in cell C does not only depend
on qC , but also on the values in neighbouring cells. Conservation still requires the average
1

|C|
∫
C dx qrecon(x)of the reconstructionover any cellC tomatch the discrete degree of freedom

qC in this cell.

3.2 Active Flux Method

Now the active flux scheme is introduced. Its presentation in this section again is given
without specifying the type of grid. In Sect. 3.3 a brief overview of an implementation on one-
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dimensional grids and on triangles is given, before Sect. 4 presents the novel implementation
on Cartesian grids.

The active flux method differs from usual finite volume methods in how the numerical
flux is obtained. Additional degrees of freedom1 qp, p ∈ ∂C are introduced, which are given
the interpretation of point values and are distributed at a finite number of locations p along
the cell boundary ∂C. This immediately allows to use them in a quadrature formula in order
to approximate the flux through the cell boundary. The update formula for the cell average
qC remains Eq. (3.2) just as for usual finite volume methods.

The additional degrees of freedom require an update procedure which shall be detailed
next. Here, a reconstruction qrecon : Rd → Rn is used as initial data. The resulting initial value
problem (2.1) is then solved (exactly or approximately) at the location p ∈ ∂C of the point
value at the cell boundary. In the implementation of active flux for the acoustic equations
below, an exact solution of the initial value problem is used [Eqs. (2.16)–(2.17)].

The reconstruction qrecon has to fulfill both

1

|C|
∫
C
dx qrecon(x) = qC (3.4)

and

qrecon(p) = qp at finitely many p ∈ ∂C (3.5)

The latter condition implies that the reconstruction is continuous across the cell boundary at
least in all points p. In fact, in this paper the reconstructions will be continuous across all of
∂C. The increased number of conditions makes the appearance of high order interpolation
polynomials natural, which make the scheme high order in space. High order temporal accu-
racy is obtained by using one or several substeps during the time integration (as discussed in
Sect. 4.4).

To summarize, the active flux method promotes the solution along the cell boundary (and
thus in a sense the cell boundary flux) to the status of an independent degree of freedom
(hence the name active flux). In usual finite volume methods on the other hand the cell
boundary flux is a derived quantity. Another difference to usual finite volume methods is
that the reconstruction is used to evolve the point values along the cell boundary (which
are then used to compute the flux), rather than to obtain a flux directly by e.g. solving a
Riemann problem. The algorithmic structure of the active flux method is shown in Fig.2 and
in Algorithm 1.

Algorithm 1 Active flux algorithm
1: procedure ActiveFlux(numberO f T imeSteps)
2: while t < t f inal do
3: for cells do
4: build reconstruction for the cell
5: for cellboundaries do
6: time evolution of the point values at cell boundaries
7: for cellboundaries do
8: calculate numerical flux at the cell boundary
9: for cells do
10: calculate new average for the cell
11: t+=Δt

1 Recall that throughout the paper indices never denote a derivative.
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Fig. 2 The active flux algorithm

3.3 The Standard Active Flux Method

The active flux method as formulated in Sect. 3.2 is very general. It is not restricted to a
particular grid, nor to a particular form of the conservation law (2.1). At the same time it
leaves a lot of freedom concerning its design, as neither the precise locations of the point
values along the cell boundary nor the reconstruction have been specified in Sect. 3.2.

Two particular designs appear in the literature and shall be briefly discussed here for the
sake of an overview. The first goes back to [40] and considers a one-dimensional grid. The
cell boundaries are points, and an additional degree of freedom is located at each one. The
reconstruction is piecewise parabolic, which is the lowest degree polynomial that fulfills
conditions (3.4) and (3.5) in this setting. The reconstruction is continuous across the cell
boundaries due to (3.5), but has discontinuous derivative there. [40] discusses the application
to linear advection; Burgers’ equation has been considered in [15,36], nonlinear hyperbolic
systems in [16].

An extension to two-dimensional triangular grids has been introduced in [17,18]. Inspired
by P2 interpolations the point values are located at vertices and edge midpoints of the trian-
gles. (3.4) and (3.5) are 7 equations in this case. The reconstruction is taken to be a subset
of the biparabolic polynomials (see [17], Table 2 for details). In [17] the method is used to
numerically solve both linear advection and linear acoustics. Extensions to nonlinear prob-
lems are discussed in [19,32].

In both cases the reconstructions are piecewise parabolic, thus yielding third order accuracy
in space. In order to reach the same accuracy for the temporal discretization, the point values
along the cell boundary are evolved with half time steps from the same data. The quadrature
formula for the numerical flux then is a space–time Simpson rule.

4 Active Flux on a CartesianMesh for the Acoustic Equations

In this chapter, an implementation of the active flux scheme on rectangular meshes is con-
sidered for the first time for the acoustic equations. Acoustic equations in multiple spatial
dimensions are an important stepping stone in the development of the active flux method for

123



Journal of Scientific Computing (2019) 81:594–622 603

Fig. 3 The point values
q1,i j , . . . , q8,i j located along the
cell boundary and the cell
average qi j for a rectangular cell
Ci j with width Δx and height Δy

x

y

q1 q2 q3

q4

q5q6q7

q8
qij

the Euler equations. At the same time Cartesian grids are easy to implement and are used in
a variety of applications.

A Cartesian mesh consists of rectangular cells Ci j with width Δx and height Δy

Ci j =
[(

i − 1

2

)
Δx,

(
i + 1

2

)
Δx

]
×

[(
j − 1

2

)
Δy,

(
j + 1

2

)
Δy

]
⊂ R2 (4.1)

indexed by (i, j) ∈ Z2. Therefore |C| = ΔxΔy. The cell average qCi j is denoted by qi j .
The algorithmconsists of the four stepsmentioned in Sect. 3.2. The distribution of the point

values along the cell boundary is presented in Sect. 4.1. The reconstruction on rectangular
cells is discussed in Sect. 4.2. It is used as initial data in order to advance the point values at
the cell boundaries forward in time. The corresponding solution operator for the equations of
linear acoustics is presented in Sect. 4.3. A quadrature rule is then applied to the point values
along the cell boundaries in order to determine the numerical flux (Sect. 4.4), and the fluxes
are used to update the cell average.

4.1 Distribution of Point Values Along the Cell Boundary

In this and the next section, the reconstruction is adapted to a rectangular cell. As on triangular
grids mentioned in Sect. 3.3, the point values are taken to be located at the corners of the
cell (node values) and at edge centers (edge values). These locations are indexed as in Fig. 3.
Each cell Ci j has eight point values along the cell boundary: four node and four edge values.
These degrees of freedom are correspondingly denoted by qm,i j , m = 1, . . . , 8. They are
shared by the adjacent cells, i.e. for example q4,i j = q8,i+1, j .

For usual finite volume methods, the cell average is the only degree of freedom per cell.
Now additionally to the cell average there are 8 degrees of freedom distributed as point values
along the cell boundary: There are four node values, each shared by four cells. Similarly,
there are four edge values, which are shared by two cells each. Therefore per cell one is left
with

– 1 cell average
– 1 node value
– 2 edge values (horizontal and vertical)
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Fig. 4 The grid for the nodes (red
circles), the vertical edges (blue
crosses), the horizontal edges
(green diamonds) and the
averages (orange squares) (Color
figure online)

qAVG,ij

qN,ij

qEV,ij

qEH,ij

In Fig. 4 these degrees of freedom are shown in different colors. Indeed, each of them forms
a lattice with spacings Δx and Δy in x and y direction, respectively. When solving linear
acoustics with the active flux method, there are thus 12 variables per cell, i.e. 4 degrees of
freedom per cell with 3 variables per degree of freedom.

4.2 Reconstruction

The reconstruction is subject to the constraints (3.4) and (3.5) from Sect. 3: it has to be exact
in the eight point values along the cell boundary and the average of the reconstruction over
the cell has to yield the cell average. These are nine conditions. It is helpful to define the
reconstruction qrecon,i j in any cell to refer to the cell midpoint as x = 0. Therefore denote by

qrecon,i j :
[
−Δx

2
,
Δx

2

]
×

[
−Δy

2
,
Δy

2

]
→ Rn (4.2)

the reconstruction of any quantity q in cell Ci j and by

qrecon(x) = qrecon,i j (x − xi j ) x ∈ Ci j (4.3)

the reconstruction on the entire grid as introduced at the end of Sect. 3.1.
In this coordinate frame, the locations of the point values at the cell boundary are denoted

by xm , m = 1, . . . , 8. E.g. x4 = (Δx/2, 0).
To simplify notation it is also helpful to define a mapping to a reference cell. Consider

coordinates x = (x, y) aligned with the cell edges and centered at a given cell. They can
be transformed to reference coordinates ξ = (ξ, η) of a square cell with dimensions Δx =
Δy = 2. The edges of the square are located at ξ = −1, ξ = 1, η = −1 and η = 1. The
transformation between the coordinates is

ξ = J−1x with J−1 =
(

2
Δx 0
0 2

Δy

)
(4.4)

ξm are the locations of the point values at the cell boundaries in the reference cell. They
correspond to xm = Jξm . The reconstruction qrecon,i j (x(ξ)) will be denoted by the same
symbol qrecon,i j (ξ) whenever there is no confusion possible.
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A straightforward derivation of the reconstruction polynomial is to solve the linear system
that arises by inserting a general biquadratic polynomial

a00 + a10ξ + a20ξ
2 + a01η + a11ξη + a21ξ

2η + a02η
2 + a12ξη2 + a22ξ

2η2 (4.5)

into the 9 equations that arise from (3.4) and (3.5). The polynomial consists of all possible
combinations of ξ and η each up to second degree. It has 9 free parameters. Hence, the
solution of the linear system is unique.

This reconstruction can be obtained in a more elegant way, reminiscent of Lagrange
polynomials. This representation of the interpolation will also be useful later. In every cell,
one seeks a reconstruction in the form

qrecon,i j (ξ) =
9∑

m=1

cm,i j bm(ξ) (4.6)

with basis functions bm(ξ) and coefficients cm,i j ∈ Rn . The expressions for bm are the same
for every cell while the coefficients cm,i j vary, as they depend on the average value in the
cell and the point values at the cell boundaries.

The reconstruction can be organized nicely by choosing the basis functions at most
biquadratic with

bm(ξ) =
{
1 ξ = ξm

0 else
m = 1, . . . , 8 (4.7)

b9(ξm) = 0 ∀m ∈ {1, . . . , 8} (4.8)

1

|C|
∫
C
dx qrecon(ξ(x)) = qC (4.9)

This implies that

cm,i j = qm,i j ∀m ∈ {1, . . . , 8} (4.10)

The value of c9,i j is to be determined after the basis functions have been obtained explicitly.

Theorem 2 (Interpolation basis) The following polynomials fulfill (4.7)–(4.8)

b1 = −1

4
(ξ − 1)(η − 1)(η + ξ + 1) (4.11)

b2 = 1

2
(ξ − 1)(η − 1)(ξ + 1) (4.12)

b3 = 1

4
(ξ + 1)(η − 1)(η − ξ + 1) (4.13)

b4 = −1

2
(η − 1)(ξ + 1)(η + 1) (4.14)

b5 = 1

4
(ξ + 1)(η + 1)(η + ξ − 1) (4.15)

b6 = −1

2
(ξ − 1)(η + 1)(ξ + 1) (4.16)

b7 = −1

4
(ξ − 1)(η + 1)(η − ξ − 1) (4.17)

b8 = 1

2
(η − 1)(ξ − 1)(η + 1) (4.18)

b9 = (η − 1)(η + 1)(ξ − 1)(ξ + 1) (4.19)
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Fig. 5 The linear terms for the
reconstruction polynomials for
the location of an edge value (red
point) (Color figure online)

Fig. 6 The linear terms for the
reconstruction polynomials for
the location of a node value (red
point) (Color figure online)

Proof The result is verified by explicit calculation. ��

Note: These products are polynomials that vanish along straight lines in ξ–η-plane, as shown
in Figs. 5 and 6 for b1 and b2.

Additionally, using (4.10) and computing (4.9) one obtains

c9,i j = 9

16

(
4qi j + 1

3
(q1,i j − 4q2,i j + q3,i j − 4q4,i j + q5,i j − 4q6,i j + q7,i j − 4q8,i j )

)
(4.20)

(4.6) becomes a biquadratic polynomial upon inserting the basis functions b1, . . . b9. With
the coefficients (4.10) and (4.20) it must be Eq. (4.5) because the interpolation polynomial
in this case is unique.

Theorem 3 (Continuous reconstruction) The biparabolic reconstruction (4.6) with basis
functions from Theorem 2 and coefficients from (4.10) and (4.20) is continuous across cell
interfaces.

Proof From (4.5) it is obvious that the reconstruction is parabolic along the coordinate axes.
Consider an edge common to two cells. The two reconstructions on both sides of the edge
both reduce to quadratic functions along the edge. Moreover, they agree in three points (at
the two vertices and at the edge midpoint). This information specifies the quadratic function
uniquely, and the two quadratic parabolas must agree. ��

Note that the derivatives perpendicular to the common cell edge in general are different.
An example of a reconstruction for an arbitrary cell is sketched in Fig. 7.
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Fig. 7 The point values of q at
cell boundaries (black dots) and
the according reconstruction of q

x y

q

Fig. 8 The blue circles represent
the time evolutions with the
method of spherical means for the
half time step; the green circles
represent the time evolution with
the method of spherical means
for one time step. They show the
domain of dependence of the
solution (Color figure online)

x y

t

Cij

4.3 Updating the Point Values at Cell Boundaries

In order to advance in time the point values located at cell boundaries, one solves the initial
value problem (2.1) with initial data

q(0, x) = qrecon(x) (4.21)

at the location of the degree of freedom.
The exact solution of the acoustic equations on a rectangular mesh is given by Eqs. (2.16)–

(2.17). The reconstruction qrecon is defined piecewise according to (4.3). The evolution of the
point values at the cell boundaries therefore involves the reconstruction in several adjacent
cells.

For example, the integration for the spherical mean of an edge value is split up into
integrations over two hemispheres: The integration bounds for a vertical (x = const) edge
are ϕ ∈ {π

2 , 3π
2 } and ϕ ∈ {0, π} for a horizontal (y = const) edge. It is convenient to define

the partial spherical mean

Mϕ2
ϕ1

[ f ] (x, r) = 1

4π

ϕ2∫

ϕ1

dϕ

π∫

0

dϑ sin ϑ f (x + r · n) (4.22)

and M2π
0 ≡ M . Thus for a vertical edge, the spherical mean is computed as
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Fig. 9 The nomenclature for the
required edge and node of
quantity q at different times to
calculate the average flux for one
side of the rectangle x y

t

Cij

R
M

L

n

n+ 1
2

n+ 1

M2π
0 [qrecon]

((
xi+ 1

2

y j

)
, r

)
= M3π/2

π/2

[
qrecon,i j

] ((
Δx/2
0

)
, r

)
(4.23)

+ Mπ/2
−π/2

[
qrecon,i+1, j

] ((−Δx/2
0

)
, r

)
(4.24)

Analogously the integration for the spherical mean of a node value is divided into four
different integrals with integration bounds ϕ ∈ {0, π

2 , π, 3π
2 }.

In a practical implementation the computational cost can be reduced by precomputing
(analytically)

Mϕ2
ϕ1

[
x�ym

]
(x, r)

for all relevant values of �,m, at all relevant locations xm , m = 1, . . . , 8 and for all relevant
angular domains. The spherical means are then obtained as linear combinations of these
precomputed values. As Eq. (2.13) shows, they are polynomials in r , and this even allows to
compute the derivatives and integrals with respect to r in (2.16)–(2.17) analytically. All the
operations like spherical means and the exact evolution operator thus can be precomputed in
such a way that the final formula is merely a linear combination of the values in neighbouring
cells. Thus, the evolution operator can be programmed in a way that makes its evaluation
inexpensive as compared to the evaluation of an approximate Riemann solver for a standard
finite volume scheme.

4.4 Time Integration and Numerical Flux

In order to advance the cell average in time the fluxes through the cell boundaries are required.
The strategy proposed here follows closely that of [17,18] on triangular grids.

Consider notation of Fig. 9, where an arbitrary edge is depicted and the edge value is
denoted by M and the two node values by L and R.

The biparabolic reconstruction implies formally third order accuracy of the evolution of
point values along the cell boundary. It is natural to strive for the same order of accuracy in
other parts of the scheme, thus making it overall third order.

For the approximation of the average flux through a cell edge e

1

|e|Δt

∫ tn+1

tn
dt

∫
e
dx ne · f (4.25)
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two node values and one edge value are available. As the solution is thought of as continuous
across cell boundaries, these values can be immediately used in the flux function f(q). Then
Simpson’s rule as a quadrature formula leads to a scheme of third order.

In order to achieve the same accuracy in time, it is necessary to introduce an intermediate
time step n + 1

2 . The point values at cell boundaries are computed at two time steps n + 1
2

and n + 1. Both go back to the initial data at time step n, see the green an blue regions in
Fig. 8. All fluxes are obtained by applying the flux function of the PDE to the point values

along the boundary of the cell. Thus f n only depends on qn , f n+ 1
2 only on qn+ 1

2 , f n+1 only
on qn+1, which, themselves, have been computed from the values qn during the update of
the point values.

The space–time Simpson’s rule approximating (4.25) is then given by

f̄e = 1

6

(
1

6
fnL + 2

3
fnM + 1

6
fnR

)
· ne + 2

3

(
1

6
f
n+ 1

2
L + 2

3
f
n+ 1

2
M + 1

6
f
n+ 1

2
R

)
· ne

+ 1

6

(
1

6
fn+1
L + 2

3
fn+1
M + 1

6
fn+1
R

)
· ne

(4.26)

The numerical flux for a rectangular cell is visually presented in Fig. 9. The cell average
for tn+1 is calculated with the finite volume method (3.2).

As the time integration amounts to an explicit scheme, there is a CFL-type time step
restriction. All spherical means involved in the evolution of point values at cell boundaries
have to remain inside the cell. The strongest constraint comes from the edge midpoint: the
radius of the corresponding spherical mean has to be smaller than

dmin = min

(
Δx

2
,
Δy

2

)
(4.27)

Thus the largest possible time step of the active flux method for the acoustic equations on
a rectangular mesh is

Δtmax = min

(
Δx

2c
,
Δy

2c

)
(4.28)

Experimentally, the active flux method was observed to be stable with time steps very close
to this bound, suggesting that the bound is sharp.

Fig. 10 The spheres for the
spherical means, which are
necessary to calculate the time
update of the i j-th cell average
qi j

qij
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Fig. 11 The cell average q n and
the numerical fluxes f̄x1 , f̄x2 , f̄ y1 ,
and f̄ y2 required to calculate the
new cell average q n + 1

x y

t

q n

f̄x2

f̄x1

f̄y2

f̄y1

q n+ 1

As can be seen from Fig. 10, the update of a cell average thus involves the reconstruction
inside the cell and the reconstruction in all its 8 neighbours. The numerical fluxes and the
cell average for an arbitrary cell are sketched in Fig. 11.

5 Numerical Results

In this section numerical results of the active flux scheme for the acoustic equations are
presented. Given analytical expressions for the initial data, the point values at cell boundaries
are initialized by evaluating these expressions at the corresponding locations. The initial cell
average is computed with a quadrature formula following Simpson’s rule.

5.1 Stationary Vortex

The first setup is the stationary vortex (r = √
x2 + y2)

v(r) = nϕ ·

⎧⎪⎨
⎪⎩
5r for 0 ≤ r ≤ 0.2

2 − 5r for 0.2 < r ≤ 0.4

0 for r > 0.4

p(r) = p0 (5.1)

with nϕ = (− sin(ϕ), cos(ϕ))T . The simulation has been performed on a 50 × 50 Cartesian
mesh with Δx = Δy = 0.03. Here, p0 = 0 and the CFL number is 0.45.

Contour plots of the cell averages of the absolute value of the velocity |v| = √
u2 + v2

for this setup are shown in Figs. 12 and 13 for the times t = 0 and t = 100.
Additionally, the radial plot of the cell averages of the absolute value of the velocity |u|

at t = 100 and the exact solution are shown in Fig. 14. The radial plots in Fig. 14 suggest
that the presented method is able to preserve stationary states to very high accuracy. This
is not just due to the high order of the scheme. As is shown in the next section, the active
flux method on rectangular grids is stationarity preserving. This is a property introduced in
[6] which means that the stationary states of the scheme discretize all the analytic stationary
states.

Additionally, Fig. 15 shows the same setup on a grid with a similar number of triangular
elements. Average values for every element are shown.
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Fig. 12 The vortex setup for the acoustic equations at t = 0. Contour plots of the cell averages of |v| are
shown
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Fig. 13 The vortex setup for the acoustic equations at t = 100. Contour plots of the cell averages of |v| are
shown

5.2 AcousticWaves

A second test case is that of smooth acoustic waves propagating obliquely to the grid direc-
tions:

v = 0 p(x) =
2∑

i=−2

exp

(
− (x · b − iδ)2

w2

)
(5.2)
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Fig. 14 Radial plot of the cell averages at time t = 100 and the initial data (solid line) of the absolute value of
the velocity |v|. The depicted numerical solution represents the discrete stationary state which is maintained
to machine precision (as shown in Sect. 6 by applying the theory from [6])

Fig. 15 The vortex setup for the acoustic equations solved using the active fluxmethod from [17] on a triangular
grid (see Sect. 3.3). One observes a behaviour comparable to the one on Cartesian grid

b =
(

cosα

sin α

)
(5.3)

Here δ = 0.1, w = 0.5 cosα and α = arctan 1
2 is used. The initial setup on a 50 × 50 grid

covering [0, 1]2 with periodic boundaries is shown in Fig. 16 (upper left). This problem can
be transformed into a one-dimensional setup along bwhich allows to derive an exact solution
by the method of characteristics. Figure16 (upper right) shows the error of the numerical
solution at the midpoints of the vertical edges on M × M grids for different values of M .
For this instationary setup a CFL number of 0.45 has been used. One observes a third order
convergence of the method.
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Fig. 16 Acoustic waves propagating obliquely to the grid directions. Upper row, left: pressure at t = 0 on a
50 × 50 grid. Upper row, right: L1 error of the solution at vertical edge midpoints at ct = 0.1 for different
M × M grids. A third order convergence is observed. Lower row: pressure (left) and the absolute value |v|
(right) of the velocity at ct = 0.1 on a 50 × 50 grid

5.3 Spherical Shock Tube

The last test case is that of a radial shock tube. The initial data are chosen

v = 0 p(r) =
{
2 for r ≤ 0.2

1 else
(5.4)

The simulation is performed on a 100 × 100 grid. The results are shown in Fig. 17. One
observes that despite a continuous reconstruction themethod is able to compute discontinuous
solutions. The radial scatter plot demonstrates the symmetry of the solution. The over- and
undershoots are due to the high order of the scheme and no limiting being employed.

6 LowMach Number Compliance and Vorticity Preservation

Low Mach number compliance of a numerical scheme for linear acoustics has been found
to be related to further concepts in [6]. In particular, it has been shown that stationarity
preserving schemes for the acoustic equations are just those that comply with the limit of
low Mach number.

123



614 Journal of Scientific Computing (2019) 81:594–622

Fig. 17 Radial Riemann problem solved with the active flux method on a 100 × 100 grid. The initial data
involve a symmetric discontinuity in the pressure p and v = 0 everywhere. Upper row: initial data in the
pressure (left) and the pressure at ct = 0.1 (right). Center row: absolute value |v| of the velocity at time
ct = 0.1 (left) and a scatter plot of the pressure (cell averages) at ct = 0.1 as a function of the radius
(right). The reference solution (solid line) has been computed by numerical quadrature of (2.16). Lower row:
analogous scatter plots showing the values at the nodes (left) and the edges (right)

Preserving stationary states is a challenge to numerical methods. Whereas in one spatial
dimension the stationary states of (2.1) are characterized by just an ODE, the multi-
dimensional stationary states themselves fulfill a PDE. In particular, stationary states of
(2.5) are characterized by a constant pressure and a divergencefree velocity. It is impossi-
ble to require a numerical method to keep stationary any sampling a divergencefree vector
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field. Thus, when treating stationary states numerically in multiple spatial dimensions it is
necessary to content oneself with less.

Barsukow [6] made the following observation: even though the stationary states of (2.5)
are all divergencefree vector fields, many schemes only keep trivial states stationary, such as
the constant state q = const. The stationary states of such numerical schemes thus are not
a discretization of all stationary states of the PDE. In [6] therefore, stationarity preserving
schemeswere introduced.Theypossess discrete stationary states that discretize all the analytic
stationary states. In view of what has been said above, such schemes of course do not keep
stationary any sampling of the analytic stationary states. However, for example in the case
of linear acoustics, they keep stationary a particular discretization of the divergence. Initial
data, sampled from a divergencefree vector field, evolve in time towards one of the discrete
stationary states, which then persists for an arbitrarily long time without being diffused away.
For a thorough presentation of these concepts the reader is referred to [4–6].

It turns out that for the acoustic equations stationarity preservation is equivalent to the
scheme being vorticity preserving, i.e. possessing a discrete vorticity that remains stationary.
Therefore a numerical scheme that is not vorticity preserving also fails to discretize all the
stationary states. It introduces so much diffusion that all but the most trivial stationary states
are decaying in time. Numerical results of Sect. 5 suggest that this is not the case for the
active flux scheme on Cartesian grids.

In this chapter, it is shown that the active flux method on a rectangular mesh is stationarity
preserving when used for numerically solving the two-dimensional acoustic equations. The
framework presented in [6] has to be generalized in order to take into account the point values
at cell boundaries that are present in the active flux scheme. The proof involves applying
the discrete Fourier transform to the numerical scheme, which is discussed in Sect. 6.1.
Stationarity preservation of the active flux scheme is proven in Corollary 1 in Sect. 6.2. The
discrete vorticity that is kept stationary by the scheme is discussed there as well.

6.1 The Active Flux Scheme in Fourier Space

Stationarity preservation can be most efficiently studied in Fourier space. A prerequisite is
that the scheme under consideration is linear. For the active flux scheme this is established
in the following

Theorem 4 The active flux scheme for the acoustic equations on Cartesian grids is linear in
the discrete degrees of freedom.

Proof The reconstruction 4.6 is linear in the cell average and the point values at cell bound-
aries. The spherical mean (Eq. 2.10) is a linear functional. Thus the update of the point values
at cell boundaries from time step n to the time step n + 1

2 or n + 1 is a linear function of
the quantities at time step n. The numerical flux obtained by the Simpson’s rule is a linear
functional of the involved point values at cell boundaries. Finally, the finite volume method
used to update the cell average is linear in the fluxes. ��

As the acoustic equations are a linear problem, and thus the active flux scheme is linear
as well, it is possible to consider it in Fourier space. This is analogous to the procedure
in [6], and switching to Fourier space allows to prove stationarity preservation easily. In
the following, the nomenclature from Fig. 4 in Sect. 4.1 is used to differentiate between the
different kinds of degrees of freedom. The additional point values at cell boundaries that are
present in the active flux scheme can be easily incorporated in the framework. The discrete
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Fourier transform with respect to the spatial variable can be applied to each of the lattices
qi j , qN

i j , q
EV
i j , q

EH
i j defined in Sect. 4.1: Any function qi j (t) is expressed as

qi j (t) = q̂(t) exp(iΔxkx i + iΔyky j) (6.1)

with the wave vector k = (kx , ky) and the imaginary unit i. The hat in q̂ denotes the discrete
spatial Fourier transform of q . The overall prefactor exp(iΔxkx i + iΔyky j) will appear in
all terms.

For linear acoustics solved with the active flux method, the Fourier transforms shall be
ordered as follows (see also Fig. 4)

Q̂ := (
p̂, û, v̂, p̂EH, ûEH, v̂EH, p̂EV, ûEV, v̂EV, p̂N, ûN, v̂N

) ∈ R12 (6.2)

The translation operators that convey shifts by one cell in x-direction and y-direction are
defined as

tx = exp(iΔxkx ) and ty = exp(iΔyky) (6.3)

such that Eq. 6.1 becomes

q n
i j = q̂ nt ix t

j
y (6.4)

The Fourier transform of any two-dimensional linear finite difference formula corresponds
to a Laurent polynomial in tx and ty . For example:

qi+1, j = q̂ tx · t ix t jy qi, j+1 = q̂ ty · t ix t jy (6.5)

A more complicated finite difference formula can be, for example, expressed as

qi−1 + 4qi + qi+1 = q̂
(
t−1
x + 4 + tx

) · t ix t jy = q̂
1 + 4tx + t2x

tx
· t ix t jy (6.6)

Also the reconstruction qrecon,i j (x) in cell Ci j is a linear function of the degrees of freedom
in Ci j which allows to apply the discrete Fourier transform to it:

qrecon,i j (x) = q̂recon(x) · t ix t jy (6.7)

Note that the spatial variable x is unaffected, because the origin x = 0 has been chosen to
be the cell midpoint of the corresponding cell, and the discrete Fourier transform only acts
on i, j . Then upon the discrete Fourier transform one can rewrite the reconstruction in any
other cell Ci+s, j+p as

qrecon,i+s, j+p(x) = t sx t
p
y q̂recon(x) · t ix t jy (6.8)

On the other hand, the evolution operator (2.16)–(2.17) only acts on x. It is thus possible
to construct a 12 × 12 matrix A which describes the evolution of the Fourier modes Q̂
introduced in (6.2):

Q̂(Δt) = A(Δt; tx , ty)Q̂(0) (6.9)

Theorem 5 The active flux scheme for linear acoustics in two spatial dimensions is station-

arity preserving iff det
(
A(Δt; tx , ty) − 112×12

)
= 0 ∀Δt, tx , ty .

Proof This is Theorem 2.11 from [6]. ��
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The matrix A can be constructed explicitly. However, this involves computations of con-
siderable length. Therefore in the following section a simpler strategy is applied. Its main
ingredient is the observation that the active flux scheme uses the exact evolution operator for
the point values at cell boundaries.

6.2 Stationarity Preserving Reconstruction

Clearly, at continuous level, if the initial data for (2.5) fulfill

∇ p0 = 0 div v0 = 0 (6.10)

then they remain stationary. (This statement needs to be understood in the sense of distribu-
tions, if necessary—see [8] for more details.) Therefore one path towards understanding the
stationary states of the active flux scheme is to study under which conditions the reconstruc-
tion fulfills

∇ precon = 0 div vrecon = 0 (6.11)

Assume this to be the case for some choice of the discrete values on the grid. Then at
least the point values at cell boundaries will remain precisely stationary over one time step.
This shall be studied now in more detail; the question of whether the cell averages remain
stationary is postponed and taken up at the end.

Theorem 5 states that a scheme is stationarity preserving (and thus vorticity preserving)
if there is a zero eigenvalue. The corresponding eigenvector can be seen as a non-zero choice
of

Q̂ = (
p̂, û, v̂, p̂EH, ûEH, v̂EH, p̂EV, ûEV, v̂EV, p̂N, ûN, v̂N

)
(6.12)

that implies that all the degrees of freedom remain stationary. Therefore

Theorem 6 The active flux scheme for linear acoustics is stationarity preserving, if there is
a non-zero choice of Q̂ that implies (6.11).

Note: As such a non-zero Q̂ spans an eigenspace, any multiple of it implies (6.11) as well.
Observe the tremendous simplification from Theorems 5 to 6. Whereas showing

det
(
A(tx , ty) − 112×12

)
= 0 requires writing down explicitly all the spherical means [like

in (4.24)] and evolution operators, the statement of Theorem 6 refers to a property of the
initial data only. This is only possible because the evolution operators are exact and one thus
can express in simple words which data they keep stationary.

Theorem 7 If Q̂ is such that

p̂ = p̂EH = p̂EV = p̂N = 0 (6.13)

û = −2

3

1 + 4tx + t2x
tx

· (ty − 1)(ty + 1)

Δyty
v̂ = 2

3

1 + 4ty + t2y
ty

· (tx − 1)(tx + 1)

Δxtx
(6.14)

ûEH = −1 + 6tx + t2x
tx

· ty − 1

Δy
v̂EH = 2

(tx − 1)(tx + 1)

Δxtx
(ty + 1) (6.15)
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ûEV = −2(tx + 1)
(ty − 1)(ty + 1)

Δyty
v̂EV = tx − 1

Δx
· 1 + 6ty + t2y

ty
(6.16)

ûN = −4(tx + 1)
ty − 1

Δy
v̂N = 4

tx − 1

Δx
(ty + 1) (6.17)

then precon = 0 and div vrecon = 0 uniformly.

Proof Consider the biparabolic reconstruction of Eq. (4.6) and Theorem 2 together with
Eq. (4.20). Applying the discrete Fourier transform one can rewrite

qrecon,i j (x) =
9∑

m=1

cm,i j bm(x) (6.18)

=
[
q̂N

(
1

tx ty

(
b1(x) + 3

16
b9(x)

)
+ 1

ty

(
b3(x) + 3

16
b9(x)

)

+ b5(x) + 3

16
b9(x) + 1

tx

(
b7(x) + 3

16
b9(x)

))

+ q̂EH

(
1

ty

(
b2(x) − 3

4
b9(x)

)
+

(
b6(x) − 3

4
b9(x)

))

+ q̂EV

((
b4(x) − 3

4
b9(x)

)
+ 1

tx

(
b8(x) − 3

4
b9(x)

))

+9

4
b9(x)q̂

]
· t ix t jy (6.19)

precon(x) = 0 is thus clear. Moreover, one easily can compute div vrecon(x) by differentiating
the basis functions bm as given in Theorem 2 and verify div vrecon = 0. The computation is
lengthy but uneventful, and is thus omitted. ��
Note 1: From (6.17), (6.14) it follows that

ûN
(tx − 1)(ty + 1)

Δx
+ v̂N

(tx + 1)(ty − 1)

Δy
= 0 (6.20)

û
1 + 4ty + t2y

ty

(tx − 1)(tx + 1)

Δxtx
+ v̂

1 + 4tx + t2x
tx

(ty − 1)(ty + 1)

Δyty
= 0 (6.21)

and from (6.15)–(6.16)

ûEV
tx − 1

Δxtx
+ v̂EH

ty − 1

Δyty
= 0 (6.22)

ûEH
1 + 6ty + t2y

ty

tx − 1

Δx
+ v̂EV

1 + 6tx + t2x
tx

ty − 1

Δy
= 0 (6.23)

These equations are discretizations of div v = 0.
Note 2:Having thus found one eigenvector that belongs to the eigenvalue 0 ofA(tx , ty)−

112×12 it is not a priori clear whether there are more. This can be checked by actually
computing the kernel of A(tx , ty) − 112×12. Due to the extreme length of the expressions,
the one-dimensionality of the kernel could so far only be verified using mathematica.

Corollary 1 The active flux scheme for linear acoustics in two spatial dimensions is station-
arity preserving.

123



Journal of Scientific Computing (2019) 81:594–622 619

Proof The proof consists of two parts. First, stationarity of the average values has to be
checked. Second, themulti-step integration procedure (Sect. 4.4) has to be taken into account.

(i) Assume the initial data to fulfill (6.14)–(6.17). By the above theorem this implies sta-
tionarity of the point values at cell boundaries and thus the three brackets in (4.26) are all
equal. The values of p are all zero, and thus the fluxes of u and v are zero. The change
of the cell average of the pressure is

[
1

6
ûN

(
1 + 1

ty

)
+ 4

6
ûEV

]
1

Δx

(
1 − 1

tx

)

+
[
1

6
v̂N

(
1 + 1

tx

)
+ 4

6
ûEH

]
1

Δy

(
1 − 1

ty

) (6.24)

Equations (6.20), (6.22) imply that (6.24) vanishes identically. Thus the cell averages are
stationary.

(ii) Assume again that the initial data fulfill (6.14)–(6.17). Then at time step n+ 1
2 and at time

step n + 1 they are equal to those at time step n. This is because they both are computed
from the same initial data at time step n. The update of the cell average happens only at
time step n + 1. Therefore stationarity preservation is valid independently of how many
steps are used for the integration in time.

This completes the proof. ��
Stationarity preservation has several consequences: The eigenvector Q̂ of Theorem 7 is

the Fourier transform of those data that the active flux scheme keeps exactly stationary. In
[6] it is shown that many numerical schemes add so much diffusion that only trivial (e.g.
constant) stationary states are stationary at the numerical level as well. The active flux scheme
on the other hand is stationarity preserving, i.e. it keeps stationary a discretization of all the
stationary states of the PDE. By inverting the Fourier transform one obtains from (6.20)–
(6.23) the following discrete relations that characterize the discrete stationary states:

{[uN]i+ 1
2
} j+ 1

2

Δx
+

[{vN}i+ 1
2
] j+ 1

2

Δy
= 0

〈[u]i±1〉(4)j

Δx
+ [〈v〉(4)i ] j±1

Δy
= 0 (6.25)

〈[uEH]i+ 1
2
〉(6)j

Δx
+

[〈vEV〉(6)i ] j+ 1
2

Δy
= 0

[uEV]i− 1
2 , j

Δx
+

[vEH
i ] j− 1

2

Δy
= 0 (6.26)

Here the following notation has been used:

[q]i+ 1
2

= qi+1 − qi {q}i+ 1
2

= qi+1 + qi (6.27)

[q]i±1 = qi+1 − qi−1 〈q〉(α)
i = qi−1 + αqi + qi+1 (6.28)

The notation is combined for different directions, e.g.

{[q]i+ 1
2
} j+ 1

2
= qi+1, j+1 − qi, j+1 + qi+1, j − qi j (6.29)

By [6] a stationarity preserving scheme is vorticity preserving. Thismeans that there exists
a discretization of ∇ × v that is kept stationary by the scheme (even if the solution itself is
not stationary). This is a discrete counterpart to Eq. (2.7). The discrete Fourier transform of
the discrete vorticity is given by the left eigenvector Ω belonging to eigenvalue zero. As A
depends on Δt , one is facing the slightly surprising situation that the discrete vorticity might
depend on Δt . Indeed, this might have occurred for the discrete stationary states already, but
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turns out not to be the case. Additionally, the amount of computations made it impossible to
determine the explicit shape of the discrete vorticity. However, its existence is clear by the
results of [6]. From the dimension of the kernel it is also clear that there is only one discrete
vorticity that is invariant. Only this particular discrete vorticity will be kept stationary while
other discretizations will undergo some evolution.

That the discrete vorticity depends on Δt can be shown as follows: consider an expansion
of A in powers of Δt :

A − 1 = ΔtA(1) + Δt2A(2) + Δt3A(3) (6.30)

Independently of Δt , the vector Q̂ from Theorem7 is a right eigenvector of A − 1 corre-
sponding to an eigenvalue 0. Therefore one concludes that A(1) Q̂ = A(2) Q̂ = A(3) Q̂ = 0.
It is possible to compute the left eigenvector Ω(1) of A(1):

Ω(1) =
(
0, 0, 0,− ty − 1

Δyty
, 0, 0, 0,

tx − 1

Δxtx
, 0, 0, 0, 0

)
(6.31)

This would correspond to a discrete vorticity

[vEV]i− 1
2 , j

Δx
−

[uEH
i ] j− 1

2

Δy
∼ ∂xv − ∂yu (6.32)

One can verify, however, that Ω(1)A(2) �= 0 and thus Ω �= Ω(1).
Finally, low Mach compliance is another consequence of stationarity preservation as dis-

cussed in [6]. Von Neumann stability of the method implies that no Fourier mode is growing.
Thus the long time solution is governed by the discrete stationary states, and stationarity
preserving schemes discretize all of the analytic stationary states (for more details see [6]).
As ε goes to zero, one thus observes that the numerical solution obtained with the active flux
scheme is a discretization of the limit solution.

In order for finite volume methods to be stable under explicit time integration upwinding
is introduced. Many numerical schemes then strongly diffuse stationary states, and equiv-
alently are unable to resolve the low Mach number limit. One remedy is to use implicit
time integration without upwinding (central discretizations) (e.g. [11] and many others). If
fully explicit time integration is required (e.g. if both low Mach number regions and shocks
are present in the flow), then many numerical schemes are made low Mach compliant by
introducing some kind of fix (e.g. [7,13]). For the active flux scheme presented here such a
fix is not needed: the exact evolution operators at the boundary use the correct directions of
information propagation while not spoiling the low Mach number limit.

7 Summary

The active flux scheme is a finite volume method with additional degrees of freedom located
on the cell boundary. Introduced in [40] for one-dimensional linear advection, it has since been
extended to triangular grids [17] and other systems of hyperbolic PDEs. This paper presents
an implementation for two-dimensional Cartesian grids. This underlines the viewpoint that
the active flux is a concept that can be used with considerable flexibility with respect to the
computational grid.

Cartesian grids have several advantages. Apart from the ease of implementation and low
computational cost, the limit of low Mach numbers can be studied very efficiently for linear
acoustics on Cartesian grids [6]. Low Mach compliance of a numerical scheme for linear
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acoustics is linked to it being stationarity preserving, i.e. to be able to keep stationary a
discretization of all the analytic stationary states. Here, the framework of [6] is used in order
to show that the active flux possesses this property, and thus is low Mach compliant. The
stationary states of the active flux scheme are obtained explicitly. They are closely linked to
the solutions of the active flux scheme in the limit of low Mach numbers.

Finally, as stationarity preservation is equivalent to vorticity preservation, it is thus possible
to show that the active flux scheme for linear acoustics is vorticity preserving. This can often
be checked easily if it is known which discretization of the vorticity remains stationary.
The approach via stationarity preservation, on the other hand, allows to check vorticity
preservation without having to know the discrete vorticity in advance. We expect analogous
results to hold true for the active flux scheme on three-dimensional Cartesian grids as well.

Several numerical examples show the good performance of the active flux scheme in
practice. In particular they show that active flux seems to be stable with the maximum CFL
condition. To study this theoretically is subject of future work. As the scheme is of high order
limiting is a further aspect of future investigation.

LowMach compliance is shown for the scheme endowed with an exact evolution operator
for the point values at cell boundaries. This is different from Riemann solver based schemes,
where even an exact Riemann solver does not in general lead to a low Mach compliant
scheme. This, therefore, is clearly an advantage of the active flux scheme. However, the
exact solution operator is generally unavailable for nonlinear systems of hyperbolic PDEs.
Therefore approximate evolutions will be necessary. With the results of this paper in mind,
future work shall focus on choosing them such that low Mach compliance is retained.
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