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a b s t r a c t

In this paper, we remove the bounded total variation condition on the initial
data and the restriction of the concentration of a fixed background charge being
a constant in the paper “Relaxation of the Isothermal Euler–Poisson System to
the Drift-Di!usion Equations,” (Quart. Appl. Math., 58 (2000), 511–521), and
obtain the zero relaxation time limits to isothermal hydrodynamic model for
semiconductor by using the varying viscosity method.
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1. Introduction

In this paper, we study the relaxation limit of the one-dimensional isothermal Euler–Poisson model for
semiconductor devices: )

[]

[⌊

ωt + (ωu)x = 0,

(ωu)t + (ωu
2 + P (ω))x = ωE → ωu

ε ,

Ex = ω → n(x),
(1.1)

in the region (→↑, +↑) ↓ (0, ↑), with bounded initial data

(ω, u)|t=0 = (ω0(x), u0(x)), lim
|x|→↑

(ω0(x), u0(x)) = (0, 0), ω0(x) ↔ 0 (1.2)

and a condition at →↑ for the electric field

lim
x→↓↑

E(x, t) = E↓, for a.e. t ↗ (0, ↑), (1.3)
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where T, E→ are fixed constants, ω → 0 denotes the electron density, the pressure–density relation is P (ω) = ω,
u the (average) particle velocity and E the electric field, which is generated by the Coulomb force of the
particles. The given function n(x) represents the concentration of a fixed background charge [1,2] and ε > 0
is the momentum relaxation time. From the physical and engineering point of view, the isothermal case
P (ω) = ω is very important. The global existence of entropy solutions of (1.1) with BV (R) initial data was
obtained in [2,3] by using the Glimm method [4,5], and with bounded L

↑(R) initial data or initial–boundary
values was well studied in [6,7] by using the compensated compactness method.

In this paper, we are concerned with the relaxation limit of the problem (1.1)–(1.3) when ε ↑ 0+. In the
isentropic case P (ω) = 1

ω ω
ω
, ϑ > 1, Marcati and Natalini introduced a “parabolic scaling” s := ε t, x := x, and

showed that in the new variables, the solution converges to the solution of the drift-di!usion system [8] (See
also [9,10] for the solutions in L

p
, 1 < p < ↓ space). In the isothermal case P (ω) = ω, under the bounded

total variation condition on the initial data and the restriction n(x) = N , where N → 0 is a constant, Junca
and Rascle [11] proved that the BV (R) solution (ωε

, E
ε ), obtained in [2] converges to the solution of the

drift–di!usion equations )
ϑϖ
ϑs + ϑ

ϑx (ωE ↔ ϑϖ
ϑx ) = 0

ϑE
ϑx = ω ↔ N

(1.4)

in the sense of distributions, where s := ε t and (ω, E) is the relaxation limit of (ωε
, E

ε ) as ε ↑ 0+. In this
paper, under the assumptions of the initial data u0(x) ↗ L

↑(R), ω0(x) ↗ L
↑(R) ↘ L

1(R) and n(x) ↗ L
1(R),

we obtain the similar zero-relaxation limit by using the varying viscosity method.
The classical viscosity method is to add the di!usion terms to the right-hand side of system (1.1) and to

study the following parabolic system
[
]⌊

]⌋

ωt + (ωu)x = ϖωxx,

(ωu)t + (ωu
2 + P (ω))x = (ωu)xx + ωE ↔ ϖu

ε ,

Ex = ω ↔ n(x).
(1.5)

If we consider the momentum m = ωu as an independent variable, we must first obtain the positive, lower
estimate of ω

ϱ since ωu
2 = m2

ϖ in the second equation of (1.5) is not well defined at ω = 0. However, if we
apply the third equation in (1.5) to resolve E

ϱ(x, t), the new problem arises of how to control the integral
of

⌈ x
→↑ ω

ϱ(x, t)dx.
To overcome the above di”culty, we construct the approximate solutions of (1.1) by adding the classical

viscosity coupled with the flux approximation
[
]⌊

]⌋

ωt + ((ω ↔ 2ϱ)u)x = ϖωxx,

(ωu)t + (ωu
2 ↔ ϱu

2 + ω ↔ 2ϱ ln ω)x = ϖ(ωu)xx + (ω ↔ 2ϱ)E ↔ 1
ε (ω ↔ 2ϱ)u,

Ex = (ω ↔ 2ϱ) ↔ n(x)
(1.6)

with the initial data
(ωϱ,ς(x, 0), u

ϱ,ς(x, 0)) = (ω0(x) + 2ϱ, u0(x)) ≃ G
ϱ
, (1.7)

where (ω0(x), u0(x)) are given in (1.2), ϱ > 0 denotes a regular perturbation constant, G
ϱ is a mollifier such

that (ωϱ,ς(x, 0), u
ϱ,ς(x, 0)) are smooth and

lim
|x|↓↑

(ωϱ,ς(x, 0), u
ϱ,ς(x, 0)) = (2ϱ, 0), lim

|x|↓↑
(ωϱ,ς

x (x, 0), u
ϱ,ς
x (x, 0)) = (0, 0). (1.8)

One obvious advantage of the above viscosity-flux approximation is that we may obtain the bound ω
ϱ,ς →

2ϱ > 0 immediately, by applying the maximum principle to the first equation in (1.7), which guarantees that
both the term ωu

2 = m2
ϖ , and the function E

ϱ,ς(x, t) =
⌈ x

→↑ ω
ϱ,ς(x, t) ↔ 2ϱ ↔ n(x)dx are well defined. More

precisely, the following lemma was obtained in [10] by using the compensated compactness method [12]
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Lemma 1.1. Let (ω0(x), u0(x)) be bounded in L
→(R) and (ω0(x), n(x)) be bounded in L

1(R). Then,
for any fixed ε > 0, ϑ > 0, ϖ > 0, the problem (1.6)–(1.8) has a unique global smooth solution
(ωω,ε(x, t), u

ω,ε(x, t), E
ω,ε(x, t)) in R → (0, T ], satisfying

)
[]

[⌊

lim|x|↑→(ωω,ε(x, t), u
ω,ε(x, t)) = (2ϑ, 0), lim|x|↑→(ωω,ε

x (x, t), u
ω,ε
x (x, t)) = (0, 0),

ln ω
ω,ε(x, t) ↑ u

ω,ε(x, t) ↓ M1 + M2t, ln ω
ω,ε(x, t) + u

ω,ε(x, t) ↓ M1 + M2t,

0 < 2ϑ ↓ ω
ω,ε

, |ωω,ε(·, t) ↑ 2ϑ|L1(R) ↓ M3, |Eω,ε| ↓ M3,

(1.9)

where the constants Mi, i = 1, 2, 3 depend only on the bounds of the initial data, but are independent of ε, ϑ, ϖ .

In this paper, we are concerned with the zero-relaxation-time-limit of above viscosity solutions as ε, ϑ, ϖ

go to zero, without the uniformly time-independent estimates on (ωω,ε
, u

ω,ε).

Theorem 1.1. Let the conditions in Lemma 1.1 and u
2
0(x) ↔ L

1(R) be satisfied; let s = ϖ t, v
ϑ (x, s) =

v
ω,ε(x,

s
ϑ ) = v

ω,ε(x, t) for any function v. Then, there exists a subsequence (still labelled) ({ω
ϑ }, {E

ϑ }) such
that ω

ϑ (x, s) ↗ ω(x, s) weakly in L
1
loc(R → R+), E

ϑ (x, s) ↗ E(x, s) strongly in L
p
loc(R → R+), p ↘ 1 when

ε, ϑ, ϖ go to zero, and the limit (ω, E) is a solution of the drift–di!usion equations
ϱω

ϱs
+ ϱ

ϱx
(ωE ↑ ϱω

ϱx
) = 0,

ϱE

ϱx
= ω ↑ n(x) (1.10)

in the sense of distributions.

Remark 1.1. It is worthwhile to point out that the results in Theorem 1.1 can be easily extended to the
following Euler–Poisson equations of two-carrier types in one dimension

)
[]

[⌊

ωit + (ωiui)x = 0,

(ωiui)t + (ωi(ui)2 + ωi)x = ωiE ↑ ϖiui
ϑi

, i = 1, 2,

Ex = ω1 + ω2 ↑ n(x),
(1.11)

in the region (↑≃, +≃) → [0, T ], with suitable bounded initial data and the condition (1.3) at ↑≃ for the
electric potential E, where (ω1, u1) and (ω2, u2) are the (density, velocity) pairs for electrons (i = 1) and
holes (i = 2) respectively, and the given function n(x) represents the impurity doping profile.

In the above case, the drift–di!usion equations (1.10) are replaced by

ϱωi

ϱs
+ ϱ

ϱx
(ωiE ↑ ϱωi

ϱx
) = 0,

ϱE

ϱx
= ω1 + ω2 ↑ n(x), i = 1, 2. (1.12)

2. The proof of Theorem 1.1

Let s = ϖ t and v
ω,ε(x, t) = v

ω,ε(x,
s
ϑ ) = v

ϑ (x, s). Then

ϱv
ω,ε

ϱt
= ϱv

ϑ

ϱs

ϱs

ϱt
= ϖ

ϱv
ϑ

ϱs
,

ϱv
ω,ε

ϱx
= ϱv

ϑ

ϱx
(2.1)

and
)
[[]

[[⌊

ϖ
ϱϖω

ϱs + ϱ
ϱx ((ωϑ ↑ 2ϑ)uϑ ) = ε

ϱ2ϖω

ϱx2 ,

ϖ
ϱ(ϖω uω )

ϱs + ϱ
ϱx ((ωϑ ↑ ϑ)(uϑ )2 + ω

ϑ ↑ 2ϑ ln ω
ϑ ) = (ωϑ ↑ 2ϑ)Eϑ ↑ 1

ϑ (ωϑ ↑ 2ϑ)uϑ + ε
ϱ2(ϖω uω )

ϱx2 ,

ϱEω

ϱx = ω
ϑ ↑ b(x)

(2.2)

due to (1.6).
We shall prove Theorem 1.1 by the following several lemmas.
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Lemma 2.1. We have the estimates
) L

0

)

R

1
ω2 (εω → 2ϑ)(uω )2

dxds ↑ M(L) and
) L

0

)

R

ϖ

ωεω
(εω

x)2 ↑ M(L). (2.3)

Proof of Lemma 2.1. Multiplying the first equation in (2.2) by εϑω

εϖ , and the second by εϑω

εm , then adding
the result, we have

ωϱ
ϱ
s (εω

, m
ω ) + q

ϱ
x(εω

, m
ω ) = ϖϱ

ϱ
xx(εω

, m
ω ) + (εω → 2ϑ)uω

E
ω → 1

ω (εω → 2ϑ)(uω )2

→ϖ(εω
x, m

ω
x) · ↓2

ϱ
ϱ(εω

, m
ω ) · (εω

x, m
ω
x)T

,
(2.4)

where [
]

⌊
ϱ

ϱ(ε, m) = m2
2ϖ + ε(ln ε → ln 2ϑ) ↔ 0,

q
ϱ(ε, m) = m3

2ϖ2 + εu(ln ε → ln 2ϑ) + εu → 1
3 ϑu

3 → 2ϑu → 2ϑu(ln ε → ln 2ϑ),
(2.5)

(εω → 2ϑ)uω
E

ω → 1
ω (εω → 2ϑ)(uω )2 ↑ → 1

2ω (εω → 2ϑ)(uω )2 + 1
2 ω(εω → 2ϑ)(Eω )2 (2.6)

and
→ϖ(εx, mx) · ↓2

ϱ
ϱ(ε, m) · (εx, mx)T = →ϖ

⌋
( m2

ϖ3 + 1
ϖ )ε2

x → 2 m
ϖ2 εxmx + 1

ϖ m
2
x

⌈
↑ →ϖ

1
ϖ ε

2
x. (2.7)

Since
ϱ

ϱ(ε, m)|s=0 = 1
2 ε

ς,φ(x, 0)(uς,φ(x, 0))2 + ε
ς,φ(x, 0)(ln ε

ς,φ(x, 0) → ln 2ϑ)
= 1

2 (ε0(x) + 2ϑ)u2
0(x) + (ε0(x) + 2ϑ)(ln(ε0(x) + 2ϑ) → ln 2ϑ) ↑ M(u2

0(x) + ε0(x)),
(2.8)

which is integrable in L
1(R) by the conditions in Theorem 1.1, and

)

R

1
2ω(εω → 2ϑ)(Eω )2

dx ↑ ωM (2.9)

due to the estimates in (1.9), thus, we may obtain the estimates (2.3) in Lemma 2.1 immediately by using
(2.5)–(2.8), if we integrate both sides of (2.4) on R ↗ [0, L].

Lemma 2.2. There exists a subsequence (still labelled) {E
ω } such that E

ω (x, s) ↘ E(x, s) strongly in
L

p
loc(R ↗ R+), for any p ↔ 1, when ϖ, ϑ, ω go to zero.

Proof of Lemma 2.2. Since |Eω (x, s)|L→ ↑ M, |Eω
x(x, s)|L1

loc
(R→R+) ↑ M , then εc

εs + εEε

εx are compact in
H

↑1
loc (R ↗ R

+) by using the Murat’s lemma [13], where c is an arbitrary constant. Furthermore, by using the
third and first equations in (2.2), we have

ςE
ω

ςs
=

) x

↑↓

ςε
ω (x, s)
ςs

dx = → (εω → 2ϑ)uω

ω
+ ϖ

ω

ςε
ω (x, s)
ςx

, (2.10)

which is bounded in L
1
loc(R ↗ R+) because

) L

0

)

R
(εω → 2ϑ)|uω |dxds ↑

⌉) L

0

)

R
(εω → 2ϑ)dxds

{ 1
2 ·

⌉) L

0

)

R
(εω → 2ϑ)(uω )2

dxds

{ 1
2 ↑ Mω (2.11)

from the first estimate in (2.3); and for any fixed N > 0,

} L
0

} N
↑N

ς
ω | εϖε (x,s)

εx |dxds ↑
⌉} L

0
} N

↑N
ς

ωϖε (εω
x)2

dxds

{ 1
2 ·

⌉} L
0

} N
↑N

ς
ω ε

ω
dxds

{ 1
2

↑ M(L)
⌉} L

0
} N

↑N
ς
ω e

M1+M2 s
ε dxds

{ 1
2 ↑ M(L)(LN) 1

2 ,

(2.12)
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from the second estimate in (2.3), if we choose ω to be much smaller than ε such that 2ω → εe
→M1→M2 L

ω .
Thus, ωEω

ωs + ωc
ωx are also compact in H

→1
loc (R ↑ R

+) for any constant c. If we apply the Div–Curl lemma [14]
to the pairs of functions

(c, E
ε ), (Eε

, c), (2.13)

we may obtain
Eε · Eε = (Eε )2, (2.14)

which deduces the pointwise convergence of E
ε and the proof of Lemma 2.2.

Proof of Theorem 1.1. Eliminating 1
ε (ϑε ↓ 2ϖ)uε in the first two equations in (2.2), we obtain

ωϑω

ωs + ω
ωx (ϑε

E
ε ↓ ωϑω

ωx ) = ϖ
ε

ω2ϑω

ωx2 + ω
ω2(ϑω uω )

ωx2 ↓ 2ϖE
ε

↓ε
ω(ϑω uω )

ωs ↓ ω
ωx ((ϑε ↓ ϖ)(uε )2 ↓ 2ϖ ln ϑ

ε )

= ϖ
ε

ω2ϑω

ωx2 + ω
ω2(ϑω uω )

ωx2 ↓ 2ϖE
ε ↓ 2ϖε

ωuω

ωs ↓ ϖ
ω

ωx (uε )2 + 2ϖ
ω

ωx (ln ϑ
ε )

↓ε
ω
ωs ((ϑε ↓ 2ϖ)uε ) ↓ ω

ωx ((ϑε ↓ 2ϖ)(uε )2).

(2.15)

Using the estimates in (1.9), we have

2ϖ → ϑ
ε → e

M1+M2t → e
M1+M2 L

ω , |uε | → M1 + M2
L

ε
+ | ln(2ϖ)| (2.16)

for s ↔ (0, L). Thus for fixed L,

ω

ε

ϱ
2
ϑ

ε

ϱx2 + ω
ϱ

2(ϑε
u

ε )
ϱx2 ↓ 2ϖE

ε ↓ 2ϖε
ϱu

ε

ϱs
↓ ϖ

ϱ

ϱx
(uε )2 + 2ϖ

ϱ

ϱx
(ln ϑ

ε ) ↗ 0, (2.17)

in the sense of distributions, if we choose ω, ϖ to go zero much faster than ε ; and

↓ ε
ϱ

ϱs
((ϑε ↓ 2ϖ)uε ) ↓ ϱ

ϱx
((ϑε ↓ 2ϖ)(uε )2) ↗ 0, (2.18)

in the sense of distributions, due to (2.11) and the first estimate in (2.3).

Suppose ϑ
ε ↗ ϑ weakly in L

1
loc(R↑R+), E

ε (x, s) ↗ E(x, s) strongly in L
p
loc(R↑R+), p ↘ 1 when ω, ϖ, ε

go to zero. Then the limit (ϑ, E) satisfies the drift–di!usion equations (1.10), in the sense of distributions,
if we let ω, ϖ, ε go to zero in (2.15), and the third equation in (2.2). Theorem 1.1 is proved.
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