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General radiation magnetic hydrodynamics models include two main parts that are
coupled: one part is the macroscopic magnetic fluid part, which is governed by the ideal
compressible magnetohydrodynamic (MHD) equations with additional radiation terms;
another part is the radiation field, which is described by a transfer equation. It is well
known that in radiation hydrodynamics without a magnetic field there are two physical
approximations: one is the so-called P1 approximation and the other is the so-called
gray approximation. Starting out with a general radiation MHD model one can derive
the so-called MHD-P1 approximation model. In this paper, we study the non-relativistic
type limit for this MHD-P1 approximation model since the speed of light is much larger
than the speed of the macroscopic fluid. This way we achieve a rigorous derivation of a
widely used macroscopic model in radiation magnetohydrodynamics.

Keywords: Radiation magnetic hydrodynamics; ideal compressible MHD equations; P1
approximation; “gray” approximation; non-relativistic type limit.
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1. Introduction and Main Results

In this paper we consider a model that includes the effect of a magnetic field
and radiation transport on a fully ionized compressible inviscid fluid. The radi-
ation effects both the momentum and energy balance giving rise to the equations
of radiation magnetohydrodynamics (radiation MHD). Precisely speaking, if the
viscosity, heat-conductivity of macroscopic fluids and the magnetic diffusion are
ignored, the general radiation magnetic hydrodynamics equations can be written
as the following three-dimensional ideal compressible MHD system with additional
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radiation terms [16, 19, 21]:

∂tρ + div (ρu) = 0, (1.1)

∂t

(
ρu +

1
c2

Fr

)
+ div(ρu⊗ u + P I3 + Pr) =

1
4π

(∇× H) × H, (1.2)

∂tH −∇× (u × H) = 0, div H = 0, (1.3)

∂t

(
ρE +

|H |2
8π

+ Er

)
+ div(ρuE + Pu + Fr) =

1
4π

div((u × H) × H). (1.4)

Here the unknowns ρ,u = (u1, u2, u3) ∈ R
3, H = (H1, H2, H3) ∈ R

3, and θ denote
the density, the velocity, the magnetic field and the temperature of the fluid, respec-
tively; I3 is the 3 × 3 identity matrix. The pressure P = P (ρ, θ) and the internal
energy e = e(ρ, θ) are smooth functions of ρ and θ and satisfy the Gibbs relation

θdS = de + P d
(

1
ρ

)
(1.5)

for some smooth function (entropy) S = S(ρ, θ), which expresses the first law of
the thermodynamics. E = e + |u|2

2 denotes the total energy.
Now, we consider the radiation energy Er, the radiation flux Fr and the radiation

pressure Pr appearing in (1.1)–(1.3) which can be defined by

Er =
1
c

∫ ∞

0

dν

∫
S2

I(ν, ω)dω,

Fr =
∫ ∞

0

dν

∫
S2

ωI(ν, ω)dω,

Pr =
1
c

∫ ∞

0

dν

∫
S2

ω ⊗ ωI(ν, ω)dω.

Here the radiation intensity I(ν, ω) = I(t, x, ν, ω), depending on the direction vector
ω ∈ S2 and the frequency ν ≥ 0, is determined by solving the linear Boltzmann-type
equation:

1
c
∂tI + ω · ∇I = S(ν) − σa(ν)I

+
∫ ∞

0

dν′
∫

S2

[ ν

ν′ σs(ν′ → ν)I(ν′, ω′)

− σs(ν → ν′)I(ν, ω)
]
dω′. (1.6)

Here c denotes the speed of light. The emission term S(ν) can be chosen as the
well-known Planck function, i.e.

S(ν) = 2hν3c−2(ehν/kθ − 1)−1.

In general the absorbing coefficient σa and the scattering coefficient σs depend on
the frequency ν, the density ρ, and the temperature θ of the macroscopic fluid.
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In the present paper, we focus on the “gray” approximation case such that the
transport coefficients σa and σs are independent of the frequency ν. This hypothesis
is a very crude approximation, but is motivated by the mathematical analysis. In
fact, we can assume that the scattering kernel is diagonal in the following derivations
see [19, p. 54]

σs(ν′ → ν) = σsδ(ν − ν′).

For simplification, we only consider the case that σs = 0 below.
Following [14] (also see [1, pp. 394–395] for details), we study the asymptotic

regimes of the full system (1.1)–(1.6) by introducing the non-dimensional variables.
Then, the full system (1.1)–(1.6) in the non-dimensional variables introduced in
[1, 14] can be written as follows:

∂tρ + div(ρu) = 0, (1.7)

∂t(ρu) + div(ρu⊗ u + P I3) =
1
4π

(∇× H) × H − P 	SF , (1.8)

∂tH −∇× (u × H) = 0, div H = 0, (1.9)

∂t

(
ρE +

|H |2
8π

)
+ div(ρuE + Pu)

=
1
4π

div((u × H) × H) − CPSE, (1.10)

1
C ∂tI + ω · ∇I = L[B(ν, θ) − σaI] � Sa, (1.11)

with the same non-dimensional parameters as in [1, 13]

C =
c

a∞
, P =

arT
4∞

ρ∞a2∞
, L =

1
λa

.

Here a∞, ρ∞ and T∞ are the characteristic values of the velocity, density and tem-
perature of fluid, λa is the total mean free path of photons, and the non-dimensional
quantity ar is defined by

ar =
8π5k4

15c3h3
.

The first parameter C is a large parameter for a flow no-relativistic. The second
parameter P measures the ratio of the radiative energy over the internal energy.

By using Eq. (1.6) with σs = 0 and the definitions of Er, Fr and Pr, we have

SE =
∫∫

Sadνdω, 	SF =
1
c

∫∫
ωSadνdω.

We ignore the relativistic effect in the frequency variable ν, that is, ν0 = ν′ = ν in
[1, p. 395], which is consistent with the following non-relativistic limit considered
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in this work. Then, we obtain

B(ν, θ) =
15ν3

4π5
(eν/θ − 1)−1.

Consequently, the radiation quantities both I and B can be integrated on frequency.
For B, we have ∫ ∞

0

B(ν, θ)dν =
∫ ∞

0

15ν3

4π5
(eν/θ − 1)−1dν = C̄θ4

for some uniform positive constant C̄. In this way, the equation for the integration
of I with respect to frequency ν, still denoted by I, can be written as

1
C ∂tI + ω · ∇I = L[C̄θ4 − σaI]. (1.12)

In addition, when the distribution of photons is almost isotropic, one can take the
P1 hypothesis by choosing the ansatz

I = I0 + I1 · ω, (1.13)

where I0 and I1 do not depend on ω, I1 · ω is regarded as a correction term of the
main term I0. Inserting the ansatz (1.13) into (1.12) yields

1
C ∂t(I0 + I1 · ω) + ω · ∇(I0 + I1 · ω) = L[C̄θ4 − σa(I0 + I1 · ω)]. (1.14)

Then integrating both Eq. (1.14) and the resulting equation of (1.14) ·ω with respect
to ω over S2 lead to

1
C ∂tI0 +

1
3|S2|div xI1 = L[C̄θ4 − σaI0], (1.15)

1
C ∂tI1 + ∇xI0 = −LσaI1. (1.16)

Moreover, we have

SE = L|S2|[C̄θ4 − σaI0], 	SF =
−L
Ca∞

σa

3
I1. (1.17)

If we take C = 1
ε ,P = ε,L = 1 and ignore the influence of other constants, we

obtain the following ideal compressible MHD-P1 approximation model via the sys-
tem (1.1)–(1.3), (1.15)–(1.17):

∂tρ + div(ρu) = 0, (1.18)

∂t(ρu) + div(ρu ⊗ u + P I3) =
1
4π

(∇× H) × H + ε2I1, (1.19)

∂tH −∇× (u × H) = 0, div H = 0, (1.20)

∂t

(
ρE +

|H |2
8π

)
+ div(ρuE + Pu) =

1
4π

div((u × H) × H) + I0 − θ4, (1.21)

ε∂tI0 + div I1 = θ4 − I0, (1.22)

ε∂tI1 + ∇I0 = −I1. (1.23)
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In this paper we consider the non-relativistic type limit ε → 0 for the system
(1.18)–(1.23). Formally, letting ε = 0 in (1.22) and (1.23), we obtain that

div I1 = θ4 − I0, −I1 = ∇I0.

Hence we have

− ∆I0 = θ4 − I0. (1.24)

Taking gradient to (1.24), one gets

−∇div(∇I0) = ∇θ4 −∇I0. (1.25)

Setting q = −∇I0, we can rewrite (1.25) as

−∇div q + q + ∇θ4 = 0.

Therefore, we can formally obtain the following limit system from (1.18)–(1.23) as
ε → 0:

∂tρ + div(ρu) = 0, (1.26)

∂t(ρu) + div(ρu ⊗ u + P I3) =
1
4π

(∇× H) × H, (1.27)

∂tH −∇× (u × H) = 0, div H = 0, (1.28)

∂t

(
ρE +

|H |2
8π

)
+ div(ρuE + Pu) =

1
4π

div((u × H) × H) − div q, (1.29)

−∇divq + q + ∇θ4 = 0. (1.30)

The system (1.26)–(1.30) without magnetic fields are widely studied in [7, 8, 11–13,
18, 20, 25] to describe the dynamics of the fluid in radiation hydrodynamics. For
the case that viscosity and heat-conductivity are included, one can refer to [24, 26]
and references cited therein.

The purpose of this paper is to give a rigorous derivation of the system (1.26)–
(1.30) from the MHD-P1 approximation model (1.18)–(1.23) as ε tends to zero.
For the sake of simplicity and clarity of presentation, we shall focus on the fluids
obeying the perfect gas relations

P = Rρθ, e = cV θ, (1.31)

where the parameters R > 0 and cV >0 are the gas constant and the heat capacity
at constant volume. We consider the system (1.18)–(1.23) in the whole space R

3 or
the torus T

3 = (R/(2πZ))3, which will be denoted by Ω.
In what follows, for simplicity of presentation, we take the physical constants R

and cV to be one. To emphasize the unknowns depending on the small parameter
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ε, we rewrite the system (1.18)–(1.23), (1.5), (1.31) as

∂tρ
ε + div(ρεuε) = 0, (1.32)

ρε(∂tuε + uε · ∇uε) + ∇(ρεθε) =
1
4π

(∇× Hε) × Hε + ε2Iε
1, (1.33)

∂tH
ε −∇× (uε × Hε) = 0, div Hε = 0, (1.34)

ρε(∂tθ
ε + uε · ∇θε) + ρεθεdiv uε = Iε

0 − (θε)4 − εIε
1 · uε, (1.35)

ε∂tI
ε
0 + div Iε

1 = (θε)4 − Iε
0, (1.36)

ε∂tIε
1 + ∇Iε

0 = −Iε
1, (1.37)

the following identity is used to derive (1.35) from (1.19)–(1.21):

div((uε × Hε) × Hε) = (∇× Hε) × Hε · uε + ∇× (uε × Hε) · Hε. (1.38)

The system (1.32)–(1.37) is supplemented with initial data

(ρε,uε, Hε, θε, Iε
0, I

ε
1)|t=0

= (ρε
0(x),uε

0(x), Hε
0(x), θε

0(x), Iε
00(x), Iε

10(x)), x ∈ Ω. (1.39)

We also rewrite the limit equations (1.26)–(1.30), (1.5), (1.31) (recall that R =
cV = 1) as

∂tρ
0 + div(ρ0u0) = 0, (1.40)

ρ0(∂tu0 + u0 · ∇u0) + ∇(ρ0θ0) =
1
4π

(∇× H0) × H0, (1.41)

∂tH
0 −∇× (u0 × H0) = 0, div H0 = 0, (1.42)

ρ0(∂tθ
0 + u0 · ∇θ0) + ρ0θ0div u0 = −div q0, (1.43)

−∇div q0 + q0 + ∇(θ0)4 = 0. (1.44)

The system (1.40)–(1.44) is equipped with initial data

(ρ0,u0, H0, θ0)|t=0 = (ρ0
0(x),u0

0(x), H0
0 (x), θ0

0(x)), x ∈ Ω. (1.45)

It is noted that the initial data of q0 can be determined by θ0
0(x) through the

equation (1.44).
We first state a result on the local existence of smooth solutions to the problem

(1.40)–(1.45), one can refer to [7, 8] for a similar proof in details.

Proposition 1.1. Let s > 7/2 be an integer and assume that the initial data
(ρ0

0,u
0
0, H

0
0 , θ0

0) satisfy

ρ0
0,u

0
0, H

0
0 , θ0

0 ∈ Hs+2(Ω),

0 < ρ̄ = inf
x∈Ω

ρ0
0(x) ≤ ρ0

0(x) ≤ =
ρ = sup

x∈Ω
ρ0
0(x) < +∞,

0 < θ̄ = inf
x∈Ω

θ0
0(x) ≤ θ0

0(x) ≤ =

θ = sup
x∈Ω

θ0
0(x) < +∞
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for some positive constants ρ̄,
=
ρ, θ̄, and

=

θ. Then there exist positive constants T∗(the
maximal time interval, 0 < T∗ ≤ +∞), and ρ̂, ρ̃, θ̂, θ̃, such that the problem (1.40)–
(1.45) has a unique classical solution (ρ0,u0, H0, θ0,q0) satisfying

ρ0,u0, H0, θ0 ∈ Cl([0, T∗), Hs+2−l(Ω)), l = 0, 1;

q0 ∈ C0([0, T∗), Hs+3(Ω));

0 < ρ̂ = inf
(x,t)∈Ω×[0,T∗)

ρ0(x, t) ≤ ρ0(x, t) ≤ ρ̃ = sup
(x,t)∈Ω×[0,T∗)

ρ0(x, t) < +∞,

0 < θ̂ = inf
(x,t)∈Ω×[0,T∗)

θ0(x, t) ≤ θ0(x, t) ≤ θ̃ = sup
(x,t)∈Ω×[0,T∗)

θ0(x, t) < +∞.

Our convergence results can be stated as follows.

Theorem 1.2. Let s > 7/2 be an integer and (ρ0,u0, H0, θ0,q0) be the unique
classical solution to the problem (1.40)–(1.45) given in Proposition 1.1. Suppose
that the initial data (ρε

0,u
ε
0, H

ε
0, θ

ε
0, I

ε
00, I

ε
10) satisfies

ρε
0,u

ε
0, H

ε
0, θ

ε
0, I

ε
00, I

ε
10 ∈ Hs(Ω), inf

x∈Ω
ρε
0(x) > 0, inf

x∈Ω
θε
0(x) > 0,

and

‖(ρε
0 − ρ0

0,u
ε
0 − u0

0, H
ε
0 − H0

0 , θε
0 − θ0

0)‖s

+
√

ε‖(Iε
00 − (−∆)−1div q0

0, I
ε
10 − q0

0)‖s ≤ L0ε (1.46)

for some constant L0 > 0. Then, for any T0 ∈ (0, T∗), there exist a constant L > 0,

and a sufficient small constant ε0 > 0, such that for any ε ∈ (0, ε0], the problem
(1.32)–(1.39) has a unique smooth solution (ρε,uε, Hε, θε, Iε

0, I
ε
1) on [0, T0] satisfying

‖(ρε − ρ0,uε − u0, Hε − H0, θε − θ0)‖s

+
√

ε‖(Iε
0 − (−∆)−1div q0, Iε

1 − q0)‖s ≤ Lε, t ∈ [0, T0]. (1.47)

Here q0
0 is defined via the initial datum θ0

0 in the following way:

q0
0 =

( −∆
I − ∆

− I

)
∇(θ0

0)
4

and ‖ · ‖s denotes the norm of Sobolev space Hs(Ω).

Remark 1.3. The purpose of this paper is to give a rigorous derivation of the
system (1.26)–(1.30) from the general radiation magnetichydrodynamics models
(1.1)–(1.4) and (1.6), based on two physical approximations: “gray” approximation
and P1 (Eddington or Diffusion) approximation.

Remark 1.4. If the domain Ω in the Proposition 1.1 is the whole space R
3, then the

conditions ρ0
0,u

0
0, H

0
0 , θ0

0 ∈ Hs+2(Ω) should be replaced by ρ0
0−ρ̌,u0

0, H
0
0−Ȟ, θ0

0−θ̌ ∈
Hs+2(Ω) for some positive constant states ρ̌, Ȟ and θ̌. At the same time, the
conditions ρε

0,u
ε
0, H

ε
0, θ

ε
0, I

ε
00, I

ε
10 ∈ Hs(Ω) in Theorem 1.2 are required to be changed
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into ρε
0− ρ̌,uε

0, H
ε
0− Ȟ, θε

0− θ̌, Iε
00− θ̌4, Iε

10 ∈ Hs(Ω) accordingly. The corresponding
proof is essentially unchanged and can be modified in a direct way.

Remark 1.5. As a consequence of our result, we obtain the local existence of
solutions to the primitive system (1.32)–(1.37), and the life-span of which is
independent of ε. Furthermore, the inequality (1.47) implies that the sequences
(ρε,uε, Hε, θε) converge strongly to (ρ0,u0, H0, θ0) in L∞(0, T ; Hs(Ω)) and (Iε

0 , I
ε
1)

converge strongly to ((−∆)−1div q0,q0) in L∞(0, T ; Hs(Ω)) but with different con-
vergence rates.

Remark 1.6. In the local existence for the problem (1.40)–(1.45), the regularity
requirement on initial data (ρ0

0,u
0
0, H

0
0 , θ0

0,q
0
0) ∈ Hs(Ω) for s > 7/2 is in fact

sufficient. Here we have added more regularity assumption in Proposition 1.1 in
order to obtain more regular solutions which are needed in the proof of Theorem 1.2.

Remark 1.7. Proposition 1.1 and Theorem 1.2 also hold true for n-dimensional
cases (n ≥ 2). We only deal with three-dimensional case for simplicity clarity of
presentation in this paper.

Remark 1.8. The divergence free conditions in (1.34) and (1.42) can be guar-
anteed automatically by the equations and the divergence free conditions on the
corresponding initial datum. Consequently, these two divergence free conditions will
not be specified below.

It is necessary for us to give some comments on the proof of Theorem 1.2 and
some known results for the related topics. The main difficulty in dealing with our
non-relativistic type limit is to control the oscillatory behavior of Iε

0 and Iε
1. The

time derivatives of Iε
0 and Iε

1 in (1.36)–(1.37) are multiplied by a small parameter,
hence the uniform energy estimates are obtained from the relaxation terms rather
than from the time-derivative terms. Besides the singularity in (1.36)–(1.37), there
exists an extra singularity caused by the coupling of Iε

0 and Iε
1 in the momentum

and temperature equations. In this paper, we shall overcome all these difficulties by
adopting and modifying the elaborate nonlinear energy method developed in [4–6].
First, we derive the error system (2.1)–(2.6) by utilizing the original system (1.32)–
(1.37) and the limit system (1.40)–(1.44). In this step, we need to find the suitable
quantities from the limit system, which are related to Iε

0 and Iε
1. Next, we study the

estimates of Hs-norm to the error system. To do so, we shall make full use of the
special structure of the error system, the Sobolev imbedding and the Moser-type
inequalities, and the regularity of the limit equations. In particular, a very refined
analysis is carried out to deal with the higher order nonlinear terms in the system
(2.1)–(2.6). It is noted that the damping terms in Eqs. (2.5)–(2.6) also play a crucial
role in controlling the nonlinear coupled terms, which are so-called good properties
from radiation fields. However, compared with the limit problem considered in
[6], there is no any diffusion effect in the systems (1.32)–(1.39) and (1.40)–(1.45).
Consequently, the symmetrizers of the systems (1.32)–(1.39) and (1.40)–(1.45) are
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essentially used to overcome the difficulties caused by the flux terms. Finally, we
combine these obtained estimates and apply the Gronwall inequality to get the
desired results. In addition, we should remark that for fixed ε, the global-in-time
existence of solutions to the barotropic case without magnetic fields of Eqs. (1.32)–
(1.37) is achieved in the critical Besov spaces by Danchin and Ducomet recently in
[2]. As is pointed out in [16, 19] that the energy exchange between the hydrodynam-
ics and the radiation field sometime plays a leading role. This is the key reason why
we include the energy equation into the system (1.32)–(1.37). Moreover, (1.26)–
(1.30) without radiation hydrodynamics has been successfully calculated numeri-
cally in [10] with applications in astrophysics [23]. Before extending this numerical
method to include radiation, studying the validity of this system of equations is
achieved in this paper. In addition, in the case of high temperature hydrodynam-
ics, the magnetic fields effect is an important factor, which cannot ignored in such
physical situations. An example of this is the magnetic confinement fusion process.
Here one needs to consider both radiation and magnetic effects in the motion of
fluids at the same time. This case will greatly increase difficulties of mathematical
analysis. By assuming that there is no any interaction between the radiation field
and the magnetic field, we obtain the case shown in the system (1.1)–(1.4). To our
knowledge, for fixed ε the global existence of strong solutions or blowup phenomena
to Eqs. (1.32)–(1.37) is still open, which is left for our future study.

Before ending this introduction, we give some notations and recall some basic
facts which will be frequently used throughout this paper.

(1) We denote by 〈·, ·〉 the standard inner product in L2(Ω) with 〈f, f〉 = ‖f‖2,
by Hk the standard Sobolev space W k,2 with norm ‖ · ‖k. The notation
‖(A1, A2, . . . , Al)‖k means the summation of ‖Ai‖k from i = 1 to i = l.
For a multi-index α = (α1, α2, α3), we denote ∂α

x = ∂α1
x1

∂α2
x2

∂α3
x3

and |α| =
|α1|+ |α2|+ |α3|. For an integer m, the symbol Dm

x denotes the summation of
all terms ∂α

x with the multi-index α satisfying |α| = m. We use Ci, δi, Ki, and
K to denote the constants which are independent of ε and may change from
line to line. We also omit the spatial domain Ω in integrals for convenience.

(2) We shall frequently use the following Moser-type calculus inequalities (see [9]):

(i) For f, g ∈ Hs(Ω) ∩ L∞(Ω) and |α| ≤ s, s > n/2, it holds that

‖∂α
x (fg)‖ ≤ Cs(‖f‖L∞‖Ds

xg‖ + ‖g‖L∞‖Ds
xf‖). (1.48)

(ii) For f ∈ Hs(Ω), D1
xf ∈ L∞(Ω), g ∈ Hs−1(Ω) ∩ L∞(Ω) and |α| ≤ s, s >

n/2 + 1, it holds that

‖∂α
x (fg) − f∂α

x g‖ ≤ Cs(‖D1
xf‖L∞‖Ds−1

x g‖ + ‖g‖L∞‖Ds
xf‖). (1.49)

(3) Let s > n/2, f ∈ Cs(Ω), and u ∈ Hs(Ω); then for each multi-index α, 1 ≤
|α| ≤ s, we have (see [9, 17]):

‖∂α
x (f(u))‖ ≤ C(1 + ‖u‖|α|−1

L∞ )‖u‖|α|. (1.50)
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Moreover, if f(0) = 0, then (see [3])

‖∂α
x (f(u))‖ ≤ C(‖u‖s)‖u‖s. (1.51)

This paper is organized as follows. In Sec. 2, we utilize the primitive system (1.32)–
(1.37) and the target system (1.40)–(1.44) to derive the error system and state the
local existence of the solution. In Sec. 3 we give the a priori energy estimates of
the error system and present the proof of Theorem 1.2.

2. Derivation of the Error System

In this section we first derive the error system from the original system (1.32)–
(1.37) and the limiting equations (1.40)–(1.44), then we state the local existence of
solution to this error system.

Setting N ε = ρε − ρ0,Uε = uε − u0, Bε = Hε − H0, Θε = θε − θ0, Jε
0 = Iε

0 −
(−∆)−1div q0, and Jε

1 = Iε
1 − q0, and utilizing the system (1.32)–(1.37) and the

system (1.40)–(1.44), we obtain that

∂tN
ε + (N ε + ρ0)div Uε + (Uε + u0) · ∇N ε = −N εdiv u0 −∇ρ0 ·Uε, (2.1)

∂tUε + [(Uε + u0) · ∇]Uε + ∇Θε +
Θε + θ0

N ε + ρ0
∇N ε

− 1
4π(N ε + ρ0)

(∇× Bε) × (Bε + H0)

= −(Uε · ∇)u0 −
[

Θε + θ0

N ε + ρ0
− θ0

ρ0

]
∇ρ0 +

1
4π(N ε + ρ0)

(∇× H0) × Bε

+
1
4π

[
1

N ε + ρ0
− 1

ρ0

]
(∇× H0) × H0 +

ε2

N ε + ρ0
(Jε

1 + q0), (2.2)

∂tB
ε + (Uε + u0)∇Bε + (Bε + H0)div Uε − (Bε + H0)∇Uε

= −Bεdiv u0 + Bε∇u0 − Uε∇H0, (2.3)

∂tΘε + [(Uε + u0) · ∇]Θε + (Θε + θ0) div Uε

= −(Uε · ∇)θ0 − Θεdiv u0 −
[

1
N ε + ρ0

− 1
ρ0

]
div q0

− ε(q0 + Jε
1)(u0 + Uε)

N ε + ρ0
+

1
N ε + ρ0

×{Jε
0 − (Θε)4 − 4(Θε)3θ0 − 6(Θε)2(θ0)2 − 4Θε(θ0)3

}
, (2.4)

ε∂tJ
ε
0 + div Jε

1 + Jε
0 = (Θε)4 + 4(Θε)3θ0 + 6(Θε)2(θ0)2 + 4Θε(θ0)3

−ε∂t(−∆)−1div q0, (2.5)

ε∂tJε
1 + ∇Jε

0 + Jε
1 = −ε∂tq0; (2.6)
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here we used the following identity in (2.3).

∇× (u × H) = u(div H) − H(div u) + H · ∇u − u · ∇H,

and the related initial data can be written as

(N ε,Uε, Bε, Θε, Jε
0 ,J

ε
1)|t=0 = (N ε

0 ,Uε
0, B

ε
0, Θ

ε
0, J

ε
00,J

ε
10)

=
(
ρε
0 − ρ0

0,u
ε
0 − u0

0, H
ε
0 − H0

0 , θε
0 − θ0

0 , I
ε
0

− (−∆)−1div q0
0, I

ε
10 − q0

0

)
. (2.7)

We remark that in (2.6) we have used the fact that

q0 = ∇div q0 −∇(θ0)4 =
( −∆

I − ∆
− I

)
∇(θ0)4 =

−∇
I − ∆

(θ0)4

is a gradient.
Denote

Wε =




N ε

Uε

Bε

Θε

Jε
0

Jε
1




, Wε
0 =




N ε
0

Uε
0

Bε
0

Θε
0

Jε
00

Jε
00




, Dε =




I8 0

0


ε 0

0 εI3




 ,

Aε
i =




Âi 0

0


0 eT

i

ei 0





 , i = 1, 2, 3, Mε =


08×8 0

0 I4


 ,

Sε(Wε) =




−N εdiv u0 −∇ρ0 · Uε

Rε
1

Rε
2

Rε
3

Rε
4

−ε∂tq0




,
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with

Âε
1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

uε
1 ρε 0 0 0 0 0 0

θε

ρε
uε

1 0 0 0
Hε

2

4πρε

Hε
3

4πρε
1

0 0 uε
1 0 0 − Hε

1

4πρε 0 0

0 0 0 uε
1 0 0 − Hε

1

4πρε 0

0 0 0 0 uε
1 0 0 0

0 Hε
2 −Hε

1 0 0 uε
1 0 0

0 Hε
3 0 −Hε

1 0 0 uε
1 0

0 θε 0 0 0 0 0 uε
1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

,

Âε
2 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

uε
2 0 ρε 0 0 0 0 0

0 uε
2 0 0 − Hε

2

4πρε 0 0 0

θε

ρε 0 uε
2 0

Hε
1

4πρε 0
Hε

3

4πρε 1

0 0 0 uε
2 0 0 − Hε

2

4πρε 0

0 −Hε
2 Hε

1 0 uε
2 0 0 0

0 0 0 0 0 uε
2 0 0

0 0 Hε
3 −Hε

2 0 0 uε
2 0

0 0 θε 0 0 0 0 uε
2

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

,

Âε
3 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

uε
3 0 0 ρε 0 0 0 0

0 uε
3 0 0 − Hε

3

4πρε 0 0 0

0 0 uε
3 0 0 − Hε

3

4πρε 0 0

θε

ρε 0 0 uε
3

Hε
1

4πρε

Hε
2

4πρε 0 1

0 −Hε
3 0 Hε

1 uε
3 0 0 0

0 0 −Hε
3 Hε

2 0 uε
3 0 0

0 0 0 0 0 0 uε
3 0

0 0 0 θε 0 0 0 uε
3

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

,
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where Rε
1,R

ε
2, R

ε
3, and Rε

4 denote the right-hand side of (2.2), (2.3), (2.4), and (2.5),
respectively; (e1, e2, e3) is the canonical basis of R

3.
Using these notations we can rewrite the problem (2.1)–(2.7) in the form:{

Dε∂tWε +
∑3

i=1 Aε
i∂xiW

ε + MWε = Sε(Wε),

Wε|t=0 = Wε
0.

(2.8)

It is not difficult to see that the system for Wε in (2.8) can be reduced to a
quasilinear symmetric hyperbolic–parabolic one. In fact, if we introduce

Aε =







Θε + θ0

(N ε + ρ0)2
0 0

0 D6 0

0 0
1

Θε + θ0


 0

0 I4




(2.9)

with

D6 = diag(1, 1, 1, 1/4πρε, 1/4πρε, 1/4πρε).

Aε is positively definite when ‖N ε‖L∞
T L∞

x
≤ ρ̂/2 and ‖Θε‖L∞

T L∞
x

≤ θ̂/2, then
Ãε

0 = AεDε is positive symmetric and Ãε
i = AεAε

i are symmetric on [0, T ] for
all 1 ≤ i ≤ 3. Thus, for fixed ε > 0, we can apply the result of multi-dimensional
symmetric quasi-linear hyperbolic conservation laws [15, 22] to obtain the following
local existence for the problem (2.8).

Proposition 2.1. Let s > 7/2 be an integer and (ρ0,u0, H0, θ0,q0) satisfy the
conditions in Proposition 1.1. Assume that the initial data (N ε

0 ,Uε
0, B

ε
0Θε

0, J
ε
00,J

ε
10)

satisfy

N ε
0 ,Uε

0, B
ε
0, Θ

ε
0, J

ε
00,J

ε
10 ∈ Hs(Ω) and ‖(N ε

0 ,Uε
0, B

ε
0, Θ

ε
0, J

ε
00,J

ε
10)‖s ≤ δ

for some small constant δ > 0. Then there exist positive constants T ε(0 < T ε ≤
+∞) and K, such that the Cauchy problem (2.8) has a unique classical solution
(N ε,Uε, Bε, Θε, Jε

0 ,J
ε
1) satisfying

N ε,Uε, Bε, Θε, Jε
0 ,J

ε
1 ∈ Cl([0, T ε), Hs−l), l = 0, 1;

‖(N ε(t), U ε(t), Bε, Θε(t), Jε
0(t),Jε

1(t))‖s ≤ Kδ, t ∈ [0, T ε).

Note that if ‖N ε‖L∞
T L∞

x
≤ ρ̂/2 and ‖Θε‖L∞

T L∞
x

≤ θ̂/2, then for smooth solutions,
the system (1.32)–(1.37) with initial data (1.39) are equivalent to (2.1)–(2.7) or
(2.8) on [0, T ], T < min{T ε, T∗}. Usually, the life-span T ε depends on ε and may
shrink to zero as ε → 0. Therefore, in order to avoid this situation and to obtain
the convergence of system (1.32)–(1.37) to the system (1.40)–(1.44), we only need
to establish the uniform decay estimates with respect to the parameter ε of the
solution to the error system (2.8). This will be achieved by the elaborate energy
method presented in next section.
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3. Uniform Energy Estimates and Proof of Theorem 1.2

In this section we derive the uniform a priori energy estimates with respect to
the parameter ε of the solution to the problem (2.8) and justify rigorously the
convergence of the system (1.32)–(1.37) to the system (1.40)–(1.44). Here we adopt
and modify some techniques developed in [4–6] and put main efforts on the estimates
of higher order nonlinear terms.

We first establish the convergence rate of the error system by establishing the
a priori estimates uniformly in ε. For conciseness of presentation, we define

‖Eε(t)‖2
s := ‖(N ε,Uε, Bε, Θε)(t)‖2

s,

�Eε(t)�2
s := ‖Eε(t)‖2

s + ε‖(Jε
0,J

ε
1)(t)‖2

s,

�Eε�s,T := sup
0<t<T

�Eε(t) �s .

The crucial estimate of this paper is the following decay result on the error
system (2.1)–(2.6).

Proposition 3.1. Let s > 7/2 be an integer and assume that the initial data
(N ε

0 ,Uε
0, B

ε
0, Θε

0, J
ε
00,J

ε
10) satisfy

‖(N ε
0 ,Uε

0, B
ε
0, Θ

ε
0)‖2

s + ε‖(Jε
00,J

ε
10)‖2

s = �Eε(t = 0)�2
s ≤ M0ε

2 (3.1)

for sufficiently small ε and some constant M0 > 0 independent of ε. Then, for any
T0 ∈ (0, T∗), there exist two constants M1 > 0 and ε1 > 0 depending only on T0, such
that for all ε ∈ (0, ε1], it holds that T ε ≥ T0 and the solution (N ε,Uε, Bε, Θε, Jε

0,J
ε
1)

of the problem (2.1)–(2.7), well-defined in [0, T0], satisfies that

� Eε�s,T0 ≤ M1ε. (3.2)

Once this proposition is established, the proof of Theorem 1.2 is a direct proce-
dure. In fact, we have the following proof.

Proof of Theorem 1.2. Suppose that Proposition 3.1 holds. According to the
definition of the error functions (N ε,Uε, Bε, Θε, Jε

0 ,J
ε
1) and the regularity of

(ρ0,u0, H0, θ0,q0), the error system (2.1)–(2.6) and the primitive system (1.32)–
(1.37) are equivalent on [0, T ] for some T > 0. Therefore, the assumption (1.46)
in Theorem 1.2 implies the assumption (3.1) in Proposition 3.1, and hence (3.2)
gives (1.47).

Therefore, our main goal next is to prove Proposition 3.1 which can be
approached by the following a priori estimates. For some given T̂ < 1 and any
T̃ < T̂ independent of ε, we denote T ≡ Tε = min{T̃ , T ε}.
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Lemma 3.2. Let the assumptions in Proposition 3.1 hold. Then, for all 0 < t < T

and sufficiently small ε, there exists a generic positive constant C, such that

�Eε(t) �2
s +

1
4

∫ t

0

{‖Jε
0‖2

s + ‖Jε
1‖2

s

}
(τ)dτ

≤ C � Eε(t = 0) �2
s +C

∫ t

0

{
(‖Eε‖2(s+1)

s + 1)‖Eε‖2
s

}
(τ)dτ + Cε2. (3.3)

Proof. For the simplicity of presentation, we denote

Φε = (N ε,Uε, Bε, Θε, Jε
0 ,J

ε
1), Ψε = (N ε,Uε, Bε, Θε), Πε = (Jε

0 ,J
ε
1),

Let 0 ≤ |α| ≤ s. In the following arguments, the commutators will disappear in the
case of |α| = 0.

Applying the operator ∂α
x to the system (2.8), multiplying the resulting equa-

tions by ∂α
x ΦεAε and integrating over Ω, we obtain that

1
2

d
dt

〈∂α
x Φε, ∂α

x ΦεÃε
0〉 + 〈∂α

x Πε, ∂α
x Πε〉

=
1
2
〈∂α

x Φε, ∂α
x Φε∂tÃε

0〉 −
3∑

i=1

〈∂α
x Φε, ∂α

x ∂xiΦ
εÃε

i〉

+ 〈∂α
x Sε, ∂α

x ΦεAε〉 + R

=
1
2
〈∂α

x Φε, ∂α
x Φε∂tAε〉 +

3∑
i=1

〈∂α
x Φε, ∂α

x Φε∂xiÃ
ε
i〉

+ 〈∂α
x Sε, ∂α

x ΦεAε〉 + R. (3.4)

R stands for the commutators, which is defined as follows:

R = −
〈

Aε∂α
x

(
3∑

i=1

Aε
i∂xiΦ

ε

)
, ∂α

x Φε

〉
+

〈
3∑

i=1

Ãε
i∂

α
x ∂xiΦ

ε, ∂α
x Φε

〉
.

First, by the explicit formula of Aε, and Eqs. (1.40), (1.43), (2.1) and (2.4), we
obtain ∣∣∣∣12 〈∂α

x Φε, ∂α
x Φε∂tAε〉

∣∣∣∣ ≤ C〈∂α
x Ψε, ∂α

x Ψε〉. (3.5)

Here we used the a priori assumptions that

‖N ε,Uε, Θε, Jε
0 ,J

ε
1,∇N ε,∇Uε,∇Θε‖L∞ ≤ C (3.6)

and the facts that

‖ρ0,u0, θ0,∇ρ0,∇u0,∇θ0,q0, div q0‖L∞ ≤ C.
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It is not hard to find the a priori assumption (3.6) can be closed by proving the
inequality (3.2) provided s > 5/2. Similarly,∣∣∣∣∣

3∑
i=1

〈∂α
x Φε, ∂α

x Φε∂xiÃ
ε
i〉
∣∣∣∣∣ ≤ C〈∂α

x Ψε, ∂α
x Ψε〉. (3.7)

The estimates of the source terms 〈∂α
x Sε, ∂α

x ΦεAε〉 and the commutators R are the
same as those in Sec. 3 in [6], we only write down the related estimates as follows
for simplicity:

|〈∂α
x Sε, ∂α

x ΦεAε〉,R|
≤ Cη1,η2 [(‖Eε(t)‖2s+4

s + ‖Eε(t)‖2
s)] + η1‖Jε

0‖2
s + η2‖Jε

1‖2
s + Cε2. (3.8)

Summing (3.4) up α with 0 ≤ |α| ≤ s, using the estimates (3.5)–(3.8) and the fact
that N ε + ρ0 ≥ N̂ + ρ̂ > 0, choosing ηi (i = 1, 2) sufficiently small, and noticing
that s > 7/2 is an integer.

In addition, noticing the norms
∑

|α|≤s〈∂α
x Φε, ∂α

x ΦεÃε
0〉 and �Eε(t)�2

s are equiv-

alent provided that ‖N ε‖L∞
T L∞

x
≤ ρ̂/2 and ‖Θε‖L∞

T L∞
x

≤ θ̂/2. Consequently, (3.3)
holds true. This completes the proof of Lemma 3.2.

With the estimate (3.3) in hand, we can now prove Proposition 3.1.

Proof of Proposition 3.1. As in [4–6], we introduce an ε-weighted energy func-
tional

Γε(t) = �Eε(t) �2
s .

Then, it follows from (3.3) that there exists a constant ε1 > 0 depending only on
T , such that for any ε ∈ (0, ε1] and any t ∈ (0, T ],

Γε(t) ≤ CΓε(t = 0) + C

∫ t

0

{((Γε)2(s+1) + 1)Γε}(τ)dτ + Cε2. (3.9)

Thus, applying the Gronwall lemma to (3.9), and keeping in mind that Γε(t = 0) ≤
Cε2 and Proposition 3.1, we find that there exist a 0 < T1 < 1 and an ε > 0,
such that T ε ≥ T1 for all ε ∈ (0, ε1] and Γε(t) ≤ Cε2 for all t ∈ (0, T1]. Therefore,
the desired a priori estimate (3.2) holds. Moreover, by the standard continuation
induction argument, we can extend T ε ≥ T0 to any T0 < T∗.

Acknowledgments

Feng Xie is partially supported by NSFC (Grant No. 11171213, No. 11571231),
Alexander von Humboldt Foundation.

A
na

l. 
A

pp
l. 

20
18

.1
6:

85
-1

02
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
11

/0
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 21, 2017 8:32 WSPC/S0219-5305 176-AA 1650023

MHD-P1 approximation model 101

References

[1] C. Buet and B. Despres, Asymptotic analysis of fluids for the coupling of radiation
and hydrodynamics, J. Quant. Spectrosc. Radiat. Transf. 85 (2004) 385–418.

[2] R. Danchin and B. Ducomet, On a simplified model for radiating flows, J. Evol. Equ.
14(1) (2014) 155–195.
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