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ABSTRACT

Magnetohydrodynamic (MHD) simulations of subsonic (Mach number < 1) turbulence are crucial to our understanding of
several processes including oceanic and atmospheric flows, the amplification of magnetic fields in the early universe, accretion
discs and stratified flows in stars. In this work, we demonstrate that conventional numerical schemes are excessively dissipative
in this low-Mach regime. We demonstrate that a new numerical scheme (termed ‘USM-BK’ and implemented in the FLASH
MHD code) reduces the dissipation of kinetic and magnetic energy, constrains the divergence of magnetic field to zero close to
machine precision, and resolves smaller-scale structure than other, more conventional schemes, and hence, is the most accurate
for simulations of low-Mach turbulent flows among the schemes compared in this work. We first compare several numerical
schemes/solvers, including Split-Roe, Split-Bouchut, USM-Roe, USM-HLLC, USM-HLLD, and the new USM-BK, on a simple
vortex problem. We then compare the schemes/solvers in simulations of the turbulent dynamo and show that the choice of
scheme affects the growth rate, saturation level, and viscous and resistive dissipation scale of the dynamo. We also measure the
numerical kinematic Reynolds number (Re) and magnetic Reynolds number (Rm) of our otherwise ideal MHD flows, and show

that the new USM-BK scheme provides the highest Re and comparable Rm among all the schemes compared.
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1 INTRODUCTION

Subsonic flows are ubiquitous in a wide range of physical systems,
ranging from terrestrial applications to astrophysics. They appear
in the study of turbine blade performance (J. Leggett, Y. Zhao &
R. D. Sandberg 2022), fusion and fission systems (M. Min et al.
2024), rotorcraft fuselages and ship airwakes (H. Park, D. Linton
& B. Thornber 2022), ocean modelling (G. Tissot, E. Mémin & Q.
Jamet 2024), stratified systems like stars (F. Kupka & H. J. Muthsam
2017), and the amplification of primordial magnetic fields (J. M.
Wagstaft et al. 2014; R. Achikanath Chirakkara et al. 2021). Such
subsonic flows are characterized by fluid velocities smaller than the
speed of sound (also referred to as the low-Mach regime, where
Mach number M = v/cs < 1 and v and ¢, are flow velocity and
sound speed, respectively). Being inherently non-linear and three-
dimensional, these turbulent, complex systems are impossible to
tackle via analytic calculations. Hence, they are studied through
numerical simulations, a large class of which use finite-volume
discretization and Godunov-based methods. While such methods
are highly successful in modelling the transonic and the supersonic
regime, they are subject to limitations in terms of efficiency in the
subsonic regime. The artificial discontinuity created by the finite-
volume method (FV method) at each cell interface creates spurious
waves that lead to an overestimate of pressure, overwhelming the
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physical fluxes (see H. Guillard & A. Murrone 2004), leading to
excessive dissipation in the low-Mach regime. Apart from this, the
discretization of the magnetohydrodynamic (MHD) equations in-
troduces viscous terms as well (see L. Malvadi Shivakumar & C.
Federrath 2023). Both of these effects combined operate similar
to physical viscosity (v) and resistivity (), and are referred to as
artificial and numerical viscosity and resistivity.

These types of numerical/artificial viscosity and resistivity must
be significantly lower than the physical viscosity and resistivity
simulations aiming to resolve down to the physical dissipation scale.
Otherwise, small-scale features of the flow are smeared out. Flow
properties in MHD are determined primarily by the hydrodynamic
and the magnetic Reynolds numbers, labelled Re and Rm, respec-
tively. They are defined as

ul
Re = —, and (1)
v
ul
Rm = “£. @)
n

where u and £ are the characteristic velocity and length scales of the
flow, respectively. To accurately model a flow, the numerical Re and
Rm must be larger than the physical Re and Rm of the flows being
modelled.

Numerical dissipation arising from discretization can be reduced
by increasing the grid resolution and special techniques, like Adap-
tive Mesh Refinement (M. J. Berger & P. Colella 1989). The effect
of grid resolution on numerical viscosity and resistivity has been
thoroughly studied by L. Malvadi Shivakumar & C. Federrath (2023).
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Overcoming numerical dissipation at low Mach

In this work, we focus on the dissipation originating from the
artificial discontinuities created by the FV method in simulating
subsonic flows. We test an extension of K. Waagan, C. Federrath
& C. Klingenberg (2011) introduced in C. Birke & C. Klingenberg
(2023), which significantly reduces this dissipation.

In Section 2, we introduce the MHD equations. Section 3 describes
our numerical methods and briefly summarizes why simulations
of subsonic flows are more dissipative and how C. Birke & C.
Klingenberg (2023) overcome this difficulty. Section 4 presents
simulations of the Balsara vortex (D. S. Balsara 2004, see also G.
Leidi et al. 2022) as a test case for a variety of numerical schemes,
all at the same grid resolution, to demonstrate the effect of the choice
of numerical scheme on artificial viscosity and resistivity and test if
the new scheme provides an improvement over previous methods. In
Section 5, we test the various numerical schemes on simulations of
subsonic turbulent dynamos, which also have important astrophysical
applications. We compare the effect of the numerical scheme on
the time evolution and saturation of the dynamo, as well as the
structure and turbulent MHD statistics of the system. We also
measure the numerical Reynolds numbers of these otherwise ideal
MHD (Re — oo, Rm — 00) simulations. We summarize our results
in Section 6.

2 EQUATIONS OF MHD

The MHD equations are given as follows:
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Here, p, u, po = pn+ |B|2/(87T)7 B, e=pepn+ p|u|2/2+
|B|2/(87T), Sij = (aiuj + E)jui)/Z - (SijV . u)/3, v, n denote the den-
sity, velocity, pressure (thermal plus magnetic), magnetic field,
energy density (internal plus kinetic, plus magnetic), strain tensor,
kinematic viscosity, and magnetic resistivity, respectively. The sys-
tem of equations is closed by an equation of state relating the thermal
pressure (py,) to the density (p).

The magnetic field also satisfies the divergence free constraint
given by

V.B=0. 0)

In the absence of physical viscosity and resistivity (v = 0 and
n = 0), the system of partial differential equations described above
takes the general conservative form

oU 0oF 0G OH
— 4+ —+—+——=0, 8
at+ax+6y+az ®)

where U is a vector of conservative variables given by

U= [,0, PUx, PUy, PU, €, Bxa By7 Bz] B (9)
and F, G, and H are the fluxes given by
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F = [pvy, pv} + pm + |BI*/87 — B} /4w, pvcvy — BBy /4w,
pvxv, — BxB, /4, (e + pw + |BI*/87) vy — By(v - B)/47, 0,
(UXBy - vyBx), _(szx - vaz)]a

(10)

G = [pvy. puxvy — ByBy/4m, pv] + pu + |BI*/8m — B} /4m,
pvyv, — ByB,/Am, (e + pw + |BI*/87) vy — By(v - B)/4m, 0,
(vsz - Usz)s _(vay - vyBx)]’ and
(11)

H = [pv,, pvxv, — BxB,/4m, pvyv, — ByB, /4,
ov2 + pu + |BI*/87 — B2 /4w, (e + pw + |BI*/87) v, — B,(v - B)/4m,
0, (vxB, — v, By), —(vyB, — v, By)].

(12)

3 NUMERICAL METHODS

3.1 Finite volume method

Equation (8) can be solved using the finite-volume (FV) method.
The FV method divides the computational domain into control
volumes (grid cells) and integrates the governing equations over
each volume, ensuring conservation of fluxes across cell boundaries.
Fluxes at the interfaces are computed using Riemann solvers (such
as Roe, HLLD, HLLC, etc). To improve accuracy, the physical
state variables are reconstructed at the cell faces via linear or even
higher-order reconstruction. Slope limiters are used to ensure that the
reconstruction step does not introduce artificial maxima/minima. The
temporal discretization is performed using schemes such as Euler or
Runge—Kutta methods and the time-stepping can be implemented
in a split or unsplit fashion. The divergence of the magnetic field
is constrained to zero up to machine precision using constrained
transport (CT) (K. Yee 1966; C. R. Evans & J. F. Hawley 1988; W.
Dai & P. R. Woodward 1998; T. A. Gardiner & J. M. Stone 2008),
or kept at reasonably low levels by a divergence cleaning technique
(A. Dedner et al. 2002).

3.2 Numerical dissipation

Discretization of MHD equations gives rise to viscous terms that
introduce numerical dissipation. This kind of numerical dissipation
can be reduced by choosing a reconstruction method or a time stepper
of higher order. However, finite-volume methods also create an
artificial discontinuity at each grid interface that gives rise to spurious
waves. Since these artificial waves create pressure fluctuations of
the order of the sonic Mach number M, they can overwhelm the
physical flux in the simulations of low-Mach flows that have pressure
fluctuations of the order M? (H. Guillard & A. Murrone 2004). This
leads to excessive dissipation in low-Mach flows. Various methods
have been explored to mitigate this issue, like pre-conditioning
the Riemann problem at each interface to reduce the effect of
discontinuities (E. Turkel 1999; S. Clerc 2000), or rescaling the
dissipation term in the numerical flux to make it independent of the
Mach number (F. Miczek, F. K. Ropke & P. V. F. Edelmann 2015;
T. Minoshima & T. Miyoshi 2021; G. Leidi et al. 2022; C. Birke,
C. Chalons & C. Klingenberg 2023). Another approach is the use
of implicit—explicit methods, which apply the Godunov-type scheme
only to the slow dynamics in the PDE, thereby avoiding dissipation
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terms that scale with O(1/M) (R. Klein 1995; M. Dumbser et al.
2018; F. Fambri 2021; W. Chen, K. Wu & T. Xiong 2023; C. Birke,
W. Boscheri & C. Klingenberg 2024; W. Boscheri & A. Thomann
2024). Building on this idea, F. Fambri & E. Sonnendriicker (2024)
employ implicit—explicit methods in combination with the Finite
Element method for solving the magneto-acoustic parts, ensuring
energy stability, magnetic-helicity conservation, and a divergence-
free magnetic field. Alternatively, J.-M. Teissier, R. Méusle & W.-
C. Miiller (2024) reduce artificial and numerical viscosity through
very high-order reconstruction methods, and improve efficiency
by reconstructing separately in each spatial dimension rather than
using multidimensional polynomials. In this work, we focus on the
relaxation scheme by C. Birke & C. Klingenberg (2023) (referred to
as the BK method), which resorts on rescaling the numerical flux in
the low-Mach-number regime.

3.3 BK method

The core idea of the BK method is to construct an enlarged system
of equations, including a relaxation term on the right-hand side, such
that the new system is an approximation of the original system given
in Section 2. Then the left-hand side of the relaxation system is solved
using a Riemann solver followed by a projection of the solution back
on to the original variables. Since there is some freedom in how the
relaxation system is constructed, it is possible to tweak the solution
of the pressure variable in the Riemann fan and fix the incorrect
scaling of the pressure, while ensuring that the resulting Riemann
solver satisfies a discrete entropy inequality. We point the reader to C.
Birke & C. Klingenberg (2023) for further details on their relaxation
scheme.

The fastest wave-speed in the Riemann fan of the BK relaxation
scheme can be closely approximated by

2
s

1 c c? 2
A =u+ - +c )+ S+ 2 ) —4e23 .,
fastest 2 <M]§K A> <M]%K A s AX

13)

where u is the fluid velocity, ¢, is the sound speed, cs is the
Alfvén speed, cax is the Alfvén speed in the x-direction (direction
along which the MHD equations are one-dimensionalized before
solving the Riemann problem) and Mgk (the equivalent of ¢ in
equations (14)—(16) in C. Birke & C. Klingenberg 2023) is defined
as

Mpx = min {max {Mcm, i} R 1} . (14)
Cs

The parameter M., < 1 is used to set a local cut-off Mach number
below which the scheme does not reduce dissipation any longer by
increasing the scheme-specific speed, thereby preventing division by
small numbers in regions where the velocity is close to 0, which
would lead to Agygess — 00 and the time-step At — 0. In this work,
we set M., equal to 2 times the reference Mach number (M =0.1
or 0.01) that we are simulating — the reference Mach number is
a statistical (global) quantity describing the characteristic ratio of
typical flow velocities to the sound speed in a given problem.! The
reason for our choice of M., = 2 M is explained in Appendix A.
Note that for a conventional Riemann solver, like Roe or HLLD,

For instance, in turbulent flows, M is the standard deviation of the local
Mach number (M).
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Mgk = 1, and Apgeq 1S a close approximation of the fastest wave
speed in the Riemann fan of these conventional solvers.

The time-step restriction for stability is given by the Courant—
Friedrichs-Lewy (CFL) condition,

A
At = CFL=2 (15)

fastest

where Ax is the cell size. We use CFL = 0.5 throughout this work.

3.4 Numerical schemes in FLASH

We perform our simulations using a modified version of the FLASH
code (B. Fryxell et al. 2000; A. Dubey et al. 2008) and compare
several numerical schemes with different Riemann solvers. Some
schemes utilize split time-stepping combined with Dedner-Marder
cleaning (B. Marder 1987; A. Dedner et al. 2002) for magnetic
field divergence control (Split-Roe and Split-Bouchut), while others
adopt unsplit time-stepping on a staggered mesh with an upwind
version of Lee’s constrained transport scheme (D. Lee 2006) (USM-
Roe, USM-HLLD, USM-HLLC, and USM-BK, where ‘USM’ stands
for ‘unsplit-staggered mesh’). All our schemes use the 2nd-order
TVD (total variation diminishing) interpolation of data in space and
time using the Hancock method (B. Leer 1984). The details of the
numerical schemes are summarized in Table 1.

4 BALSARA VORTEX

The Balsara vortex (D. S. Balsara2004) is an exact stationary solution
of the ideal MHD equations in two dimensions, where the centrifugal
force, magnetic tension, thermal pressure gradient, and magnetic
pressure gradient are perfectly balanced. This configuration, which
conserves kinetic and magnetic energies independently in the absence
of dissipative forces, serves as an excellent test problem for evaluat-
ing energy conservation in MHD simulations. Discretization errors
and artificial discontinuities in finite-volume methods introduce
numerical dissipation, leading to a loss of rotational and magnetic
energy. Here we use the Balsara vortex to compare the energy
conservation performance of various split and unsplit MHD solvers
across different numerical schemes. While the dissipation we observe
arises from a combination of numerical discretization and the choice
of numerical technique (like reconstruction method, Riemann solver,
etc.) as well as the presence of artificial discontinuities, we use the
same resolution for all the different schemes in Table 1, such that we
can compare the dissipation arising from the latter.

4.1 Initial conditions

The initial conditions for the Balsara vortex are given by

- . . 1 —r2
v=v(—yx+xy)exp( 5 ), (16)
- . R 1—r?
B:B(—yx+xy)exp< . ) (17)
n2 ~2
- [Ea —y— 'L} exp (1 17). (18)
2 2
p=1, (19)

where 2 = x> 4+ y?, and & and J are unit vectors in the x and y
directions, respectively. We use # = 0.01, B = 0.01, and y = 5/3.
Here we define the reference Mach number (M) as the maximum
local Mach number (M) in the simulation domain. Our choice
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Overcoming numerical dissipation at low Mach

Table 1. Numerical schemes used in this work.
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Scheme name Split/unsplit Riemann solver V - B Method Electric field reconstruction
)] @ 3 “ (6))

Split-Roe Split Roe Dedner-Marder cleaning N/A
Split-Bouchut Split Bouchut Dedner-Marder cleaning N/A

USM-Roe Unsplit Roe Constrained transport Lee-upwind
USM-HLLD Unsplit HLLD Constrained transport Lee-upwind
USM-HLLC Unsplit HLLC Constrained transport Lee-upwind
USM-BK Unsplit BK Constrained transport Lee-upwind

Note. Column (1): name of numerical scheme, (2): whether the scheme uses directionally split or unsplit updates, (3): Riemann solver—Roe (P. Roe 1981),

Bouchut (K. Waagan et al. 2011), HLLD (T. Miyoshi & K. Kusano 2005), HLLC (S. Li 2005) or BK (C. Birke & C. Klingenberg 2023), (4): whether

Dedner-Marder cleaning (B. Marder 1987; A. Dedner et al. 2002) or constrained transport (CT) (K. Yee 1966; C. R. Evans & J. F. Hawley 1988; W. Dai & P. R.

Woodward 1998; T. A. Gardiner & J. M. Stone 2008) was used to handle the magnetic field divergence constraint, (5): Lee-upwind (D. Lee 20006) electric field

reconstruction method, if applicable. All schemes use the 2nd-order Hancock (B. Leer 1984) method for interpolation of data in space and time.
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Figure 1. Top panel shows the radial profiles of velocity, magnetic field and
pressure for the Balsara vortex, following equations (16)—(18) for a sonic
Mach number of M = 0.01 and the ratio of the magnetic to the rotational
kinetic energy Sx = 1. Note that the velocity and magnetic pressure profiles
have been scaled by a factor of 100 for the sake of clarity. The scaled
velocity profile touches the thermal pressure profile (p ~ 1) at r = 1 since
M =0.01. The bottom panel shows that the centrifugal term —(v - V)v
is balanced by the magnetic tension (B - V)B, and the gradients of the
thermal pressure (Vpp) and the magnetic pressure (Vpp) balance each
other.

of parameters #,Bandy gives M = 0.01. The radial profiles of
velocity, magnetic field and pressure are shown in Fig. 1.

4.2 Set-up

We use a computational domain of (x, y) € [-5,5] x [-5, 5] and
64 x 64 grid cells with periodic boundary conditions and M.y =
0.02 for our simulations. The problem is made computationally
harder by advecting the vortex along the diagonal of the com-
putational grid with speed ©. We run our simulations for one
complete advection of the vortex across the diagonal, such that
it ends up exactly at the starting position, i.e. at the coordi-

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 1o
0.25 No.: ]
2 00 08
= i B
I
0.25 0.6 =
"
0.25 04 Z
<
E
- ! &
s 00) 0.2
025 8 T -
N N W 0.0
025 00 025 -025 00 025 025 00 025
xz/L /L x/L

Figure 2. Rotational energy of the vortex after one advection diago-
nally through the computational domain for the six different numerical
solver/scheme combinations (from left to right and top to bottom): Split-
Roe, Split-Bouchut, USM-Roe, USM-HLLD, USM-HLLC, and USM-BK.
The rotational energy has been normalized by the maximum rotational energy
(at r = 1) at the beginning of the simulation (+ = 0). The value in the top
left corner of each panel shows the fraction of the total rotational energy
left in the system compared to r = 0. We see that USM-BK outperforms
all other schemes by retaining 88 per cent of the rotational kinetic
energy.

nate origin. In this time interval, the vortex turns around 2.25
times.

4.3 Results and comparison of solvers

In order to quantify the amount of kinetic and magnetic energy
dissipation, we calculate and compare the fraction of rotational
and magnetic energy that the vortex has retained compared to
their respective initial values. The rotational kinetic energy (E.o)
is calculated as

=g | (- 35) + (- 75) @)
rot =— & Ux — —= Vy — —(= s

t 2,0 \/E Yy \/i

while the magnetic energy (En,g) is calculated as

L

Emag = ~|B|". (21)
2

Fig. 2 shows the fraction of the rotational energy retained in the

system at the end of one complete advection of the vortex. The
energy has been normalized by the maximum local rotational energy
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Figure 3. Same as Fig. 2, but for the magnetic energy. The value in the top
left corner of each panel shows the fraction of the total magnetic energy left
in the system after one complete box advection compared to t = 0. We find
that the USM-BK scheme is also the best-performing scheme with respect
to the magnetic energy, with only 4 per cent of the initial energy dissipated.
The Split schemes dissipate magnetic energy while damping the magnetic
monopoles, while the 3-wave USM-HLLC scheme has dissipated almost all
of the magnetic energy in the system.

(at r = 1) present in the system at the beginning of the evolution.
We find that the split schemes (Split-Roe and Split-Bouchut) retain
around 65 per cent of the kinetic energy, while the unsplit schemes
(USM), except for the USM-BK, retain only 39 per cent of the initial
rotational kinetic energy. The new scheme (USM-BK; bottom right
panel) performs the best, conserving 88 per cent of the rotational
energy.

Fig. 3 shows the same as Fig. 2, but for the magnetic energy. Split-
Roe and Split-Bouchut lose more than half of their initial magnetic
energy and significantly distort the vortex into a nearly square-
shaped form. The increased dissipation is a consequence of the
divergence-cleaning method, which also dissipates magnetic energy
while damping the magnetic monopoles. USM-Roe, USM-HLLD,
and USM-BK perform similarly well in conserving the magnetic
energy, with USM-BK retaining 96 per cent of the initial magnetic
energy. At the same time, USM-HLLC, which considers only 3 waves
in the Riemann solution, dissipates almost all the magnetic energy
in the system. All schemes introduce minor distortions in the shape
of the vortex. These are much more visible in the split schemes and
USM-HLLC, but are minor in USM-Roe, USM-HLLD and USM-
BK.

Finally, we look at the divergence of the magnetic field. We define
a normalized version of V - B, as

N BAx
V-B=V.
Brms

; (22)

where By is the root-mean-squared magnetic field integrated over
the entire volume, and Ax is the side length of each grid cell. Fig. 4
shows |V - B|. The choice of Riemann solver does not play any
significant role in constraining the divergence of the magnetic field
to zero, however, all simulations using constrained transport (USM)
perform much better compared to the divergence cleaning used in the
split schemes. This is expected since divergence cleaning schemes
do not enforce any particular discretization of V - B to zero. They
instead rely on diffusing and damping numerical magnetic mono-
poles. On the other hand, constrained transport is designed such that
V - B = 0 to machine precision by the construction of a particular
stencil chosen to construct B from the electric field and to calculate
V- B.
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Figure 4. Same as Fig. 2, but for the divergence of the magnetic field,
defined in a normalized fashion via equation (22), such that its magnitude can
be compared to order unity. The inset on the top left in each panel shows the
root-mean-squared value of V - B. The split schemes keep the value of V - B
at reasonably low levels while the USM schemes maintain V - B = 0 close
to machine precision.

5 APPLICATION TO MAGNETIC FIELD
AMPLIFICATION IN LOW-MACH
TURBULENCE

5.1 Introduction to the turbulent dynamo

Magnetic fields play an important role in a wide variety of astro-
physical systems, including accretion discs (R. F. Penna et al. 2010;
Boneva, D. V. et al. 2021), star formation (A. R. Choudhari 2015; C.
Federrath 2015; P. Sharda et al. 2021), galaxies (A. A. Ruzmaikin,
D. D. Sokolov & A. M. Shukurov 1988; R. Beck & R. Wielebinski
2013), and the interstellar medium (A. Fletcher et al. 2011; A. Seta
& C. Federrath 2022). The presence of strong magnetic fields is
attributed to the amplification of seed fields by turbulent dynamos.
Turbulent dynamos amplify magnetic fields exponentially over short
time-scales. This amplification is caused by a sequence of ‘stretching,
twisting, folding, and merging’ (A. A. Schekochihin et al. 2004;
A. Brandenburg & K. Subramanian 2005; C. Federrath 2016) of
magnetic field lines induced by turbulent motions in the plasma,
leading to an increase in the density of magnetic field lines in a fluid
packet.

5.2 Numerical method and set-up

We solve equations (3)—(7) in a periodic 3D box of length L,
uniformly discretized with a grid of 2563 cells. Turbulence is driven
stochastically by the Ornstein-Uhlenbeck process (V. Eswaran &
S. B. Pope 1988; C. Federrath et al. 2010) implemented in the
publicly available code TurbGen (C. Federrath et al. 2022). The
turbulence driving field is constructed here to be purely solenoidal
(divergence free), using a Helmholtz decomposition in Fourier space,
where we measure wave numbers (k) in units of 277 /L. The driving
is constrained to large scales, i.e. k = [1, 3], following a parabolic
Fourier spectrum, where the peak injection is at ky, = 2 and the
driving amplitude falls off smoothly to zero at k = 1 and k = 3, re-
spectively, as in previous works (e.g. C. Federrath et al. 2021). Using
this turbulence driving method, we adjust the overall amplitude of the
driver such that the turbulence reaches a target velocity dispersion
0, = Mcs on scale €y, = L/kww = L/2, where ¢, is the sound
speed and M is the target turbulence Mach number. This defines
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the turbulence turnover time-scale as fuyw = Lun/0y = L/(2Mcy).
Here, we study sonic Mach numbers of M = 0.1 and 0.01.

The box is initialized with a uniform density of fluid at rest and the
sound speed is setto ¢; = 1, i.e. all speeds are measured relative to the
sound speed. The strength and statistical properties of the turbulent
dynamo are independent of the structure of the initial magnetic field
(A. Seta & C. Federrath 2020), so we initialize a uniform magnetic
field in the z-direction of the computational domain to obtain a
reference Alfvén Mach number of My = 0,/ca = 10° when the
turbulence is fully developed. This corresponds to a very weak initial
seed field that is subsequently amplified by the turbulent dynamo.

Finally, for the runs with the USM-BK scheme, we set the cut-off
Mach number (see equation 14) to M, = M. Using Mcut/ M = 1
is acceptable for chaotic problems like turbulence, where, unlike the
Balsara vortex, there is no strict structural symmetry to be preserved.

5.3 Results for Mach 0.1

In ideal-MHD, we set v and 1 in equations (3)—(7) to 0. However, as
shown earlier, numerical dissipation is always present owing to finite
cell discretization (L. Malvadi Shivakumar & C. Federrath 2023)
and due to the numerical scheme. Consequently, for excessively
dissipative solvers, the results from numerical simulations can
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deviate significantly from the physical setting. In the following
sections, we compare the effect of MHD solvers on the time evolution
and morphology of the system and calculate the characteristic wave-
numbers associated with numerical viscosity and resistivity at Mach
0.1. We run our simulations for a period of 100 #y to allow the
magnetic field to saturate. However, we focus most of our analyses on
the so-called ‘kinematic phase’, where the field does not have a strong
back-reaction on the flow yet, and the field grows exponentially
fast.

5.3.1 Time evolution

Fig. 5 shows the growth of the sonic Mach number (M) in the top
panel and the ratio of the magnetic energy to the kinetic energy
(Emag/ Exin) in the bottom panel. We see that the Mach number
reaches the target value of 0.1 within 2 #. It is followed by the
kinematic phase, where the magnetic energy increases exponentially
(up to 10 — 30 t,y1, depending on the numerical scheme used). This
is attributed to the turbulent motions of the fluid, which stretch, twist,
fold, and merge the magnetic field lines, leading to an increase in
their concentration. Finally, as the magnetic field strength increases,
the Lorentz force back-reacts on the turbulent motion, suppressing
further amplification and saturating the magnetic field. This back-
reaction also lowers the Mach number by about 20 per cent.

In order to measure the magnetic field dynamo growth rate, we fit
the exponential model

E mag

= Ae", (23)
Eyin

in the kinematic phase, which we define as 5 x 107% < Emag/Exin <
5% 1073 (i e. Enge < Eyjn), and T is the growth rate measured in
units of #4. The growth rates measured from the fits are listed in
Table 2.

The USM-HLLC scheme exhibits an abnormally low growth
rate. Consequently, the magnetic field and the Lorentz force is
weaker compared to the other solvers and the sonic Mach number
is higher. It also has a lower saturation level (see column 3 in
Table 2). This behaviour is attributed to the excessive dissipation
of magnetic energy by the HLLC solver (see bottom-middle panel in

t/tturl)

Figure 5. Time evolution of the sonic Mach number (top panel) and the
ratio of magnetic to kinetic (turbulent) energy (bottom panel). The Mach
number reaches the target value of ~ 0.1 within 2fym, and during 3 and
10 — 30t (depending on the solver; labelled in the legend), the magnetic
energy grows exponentially (see fitted solid lines in the bottom panel). Finally,
once Enmag/Exin & 0.5, the field saturates and the growth stops, coinciding
with a & 20 per cent drop in the Mach number (see the top panel), due to
the enhanced back-reaction of the field onto the flow. USM-HLLD, USM-
Roe, and USM-BK have the highest growth rate (see Table 2) since they are
less dissipative. On the other hand, the 3-wave USM-HLLC has the smallest
growth rate, and it shows the weakest dip in Mach number owing to its
excessive dissipation of the magnetic energy.

Fig. 3). In contrast, USM-HLLD, USM-Roe and USM-BK achieve
the highest growth rates due to their reduced numerical dissipation.
It is important to note that the growth rate depends on the magnetic
Prandtl number (see C. Federrath et al. 2014), which, in turn, is
determined by the ratio of the resistive to viscous dissipation wave-
numbers (see Appendix B). Therefore, the growth rate is not a
universal indicator of solver performance. For instance, USM-HLLD
and UMS-Roe simulations exhibit higher effective Prandtl numbers
(see Table 5), resulting in a slightly higher growth rate than that of
USM-BK.

5.3.2 Magnetic field structure

Numerical dissipation also affects the morphology of the system.
To get a qualitative idea of this in turbulent flows, we investigate
the spatial distribution of the magnetic energy. Fig. 6 shows a slice
of the magnetic energy normalized by the mean magnetic energy
during the kinematic phase of the dynamo, when E 55/ Evin = 1074,
We see random fluctuations in the magnetic energy field with all
the solvers, however, the morphology is markedly different in USM-
HLLC (bottom-middle panel) and slightly different for Split-Roe
and Split-Bouchut (first two panels). They smear the over-densities
and the under-densities in the field over larger regions. As mentioned
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Table 2. Mach 0.1 turbulent dynamo measurements.

Name Tty (Emag/ Exin)sa Pon kon Ky Py ky ky

@ (@) 3 (€] ©)] 6 ) ®) ®

Split-Roe 1.43+001 0.48+07 0.92+09 5.5103 59101 1051 6.3%07 314!
Split-Bouchut 1394001 0.40+0:96 1017910 5.8103 5910 1051 6.3%07 31+)
USM-Roe 2.20790! 0.667013 0.421028 4.0%08 6.8t 10791 6.470% 4412
USM-HLLD 2.487001 0.6979%9 0.357533 3.9707 71732 10751 6.579% 45%)
USM-HLLC 0.547501 0.2175% 0.367538 41739 74134 L1750 6.5797 211}
USM-BK 2.001001 0.587010 ~0.13+07 45t13 8.8124 11701 7.6+ 40+)

Note. All parameters except the saturation value of the ratio of the magnetic energy to the kinetic energy (column 3) were measured/derived by averaging over

the kinematic phase of the dynamo when 5 x 1076 < Enag/Exin <5 X 1073, Columns: (1) Name of the numerical scheme as described in Table 1. (2) Growth

. - -1
rate in units of 7 .

(3) Average value of the ratio of the magnetic energy to the kinetic energy in the saturation phase of the dynamo (¢ > 60t). (4) Exponent

of the bottleneck effect in the kinetic spectrum. (5) Scaling wave-number of the bottleneck effect. (6) Viscous dissipation wave-number if p, = 1. (7) Exponent
of the dissipation term of Pyi,. (8) Viscous dissipation wave-number. (9) Resistive dissipation wave-number.
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Figure 6. A slice of the magnetic energy normalized by the mean magnetic energy during the kinematic phase of the dynamo, when Epag/Exin = 1074,
emphasizing its spatial distribution. The more dissipative Split schemes and USM-HLLC smear features over large-length scales while USM-Roe, USM-HLLD

and USM-BK capture finer structures.

earlier, the dissipation in the Split schemes is attributed to divergence-
cleaning, while that in USM-HLLC is a result of its consideration
of fewer waves in the Riemann solution. In contrast, USM-HLLD
and USM-BK display fine, small-scale structures. We quantitatively
analyse the differences between the various schemes in the next
section.

5.3.3 Spectral analysis

In subsonic turbulence, energy cascades from larger scales to smaller
scales until it reaches a scale where it is dissipated due to the effects

MNRAS 544, 4256-4270 (2025)

of viscosity and resistivity (e.g. U. Frisch 1995). This takes place
through the breaking-up of large eddies into smaller eddies. The
wave-numbers where viscosity and resistivity act are called viscous
dissipation wave-number k,, and resistive dissipation wave-number
k,, respectively.

We calculate the power spectrum of the kinetic energy averaged
over the kinematic phase (as defined in Section 5.3.1) to mea-
sure the viscous dissipation wave-number. We follow the power
spectrum model used in L. Malvadi Shivakumar & C. Federrath
(2023) and fit the kinetic spectrum from k > 3 to exclude the
turbulence driving scales. The upper limit of the fit is set to
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Overcoming numerical dissipation at low Mach

kmax = N/8 =32, where N is the number of grid cells, to ex-
clude spurious effects that arise on scales smaller than a few grid
cells.

The kinetic energy power spectrum (Pyj,) in the subsonic regime
is modelled as

k —1.7 k Pbn k Pv
Piin(k) = Agin (K) + (E) exp {— (I?) } , (24

where Ay, is the amplitude, ky, is the scale of energy accumulation
due to the bottleneck effect (G. Falkovich 1994; U. Frisch 1995; W.
Schmidt, W. Hillebrandt & J. C. Niemeyer 2006; M. K. Verma & D.
Donzis 2007), py, characterizes the strength of the bottleneck effect,
and p, characterizes the sharpness of the transition into dissipation.
The viscous dissipation wave-number as defined in N. Kriel et al.
(2022) is related to &, and py, by

k, = R/, (25)

We point the reader to L. Malvadi Shivakumar & C. Federrath (2023)
and references therein for the motivation behind this model.

To find the characteristic resistive dissipation wave-number (k,),
we follow the definition in N. Kriel et al. (2025), using the electric
current (~ V x B) power spectrum. Since Ohmic dissipation is
proportional to current, k, is defined as the wave-number where
the current attains a maximum.

The power spectra of kinetic energy, magnetic energy and current
are shown in Fig. 7, and the fit parameters and the measured charac-
teristic dissipation wave-numbers (k, and k,)) are given in Table 2. For
the kinetic spectra, the dissipation scales are similar for all solvers ex-
cept USM-BK, which shows dissipation at larger wave-numbers (an
~ 17 per cent difference compared to USM-HLLD). For the current
spectra, we see that USM-HLLD marginally outperforms USM-BK
(an & 12 per cent difference). We also see that the dissipation scale
for HLLC lies at very small wave-numbers, i.e. it induces numerical
dissipation effects at much larger lengths scales, smearing out small-
scale features. Thus, it is particularly unsuitable for modelling MHD
flows.

5.3.4 Numerical Reynolds numbers

Since numerical dissipation is always present in MHD simulations,
the simulated flows have a finite numerical hydrodynamic Reynolds
number (Re) and magnetic Reynolds number (Rm), in contrast to a
perfectly ideal setting, where these would be infinite, because v =
n = 0 in the MHD equations. Appendix B describes the procedure
for obtaining Re and Rm from the characteristic dissipation scales,
using the key relations,

k 4/3
Re= | —— , (26)
(CRekdriving >
k 2
Pm = 1 . and 27
CPmkv
Rm = Re x Pm, (28)

where cge = 0.02570002 and cpp = 2.370%.

Table 3 lists the values of the effective Re, Rm, and Pm for the
Mach 0.1 simulations, for each numerical scheme. The measured
values of Re range between 630f%§8 and 8107550 (an ~ 30 per cent
variation), while Rm values vary between 14007330° and 63003500
(a striking & 350 per cent variation attributable to the choice of the
numerical scheme). The Pm values (which can be calculated from
Re and Rm) vary between 2.17}§ and 9.9770 (an ~ 370 per cent
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Figure 7. Time-averaged kinetic power spectra (top panel), magnetic power
spectra (middle panel), and current power spectra (bottom panel) for various
solvers. The spectra are multiplied for every solver except Split-Roe by a
factor of 0.1 relative to the next solver in the legends. The black lines in the
kinetic power spectra are the fits to the model given in equation (24). The
viscous dissipation scale and resistive dissipation scale are marked on the
x-axis. The viscous dissipation scales are clustered around each other for all
solvers; however, the resistive dissipation scale measurements clearly show
that HLLC is not suitable for MHD simulations since it is dissipative at very
large length scales.

Table 3. Mach 0.1 turbulent dynamo effective Reynolds numbers.

Name Re Rm Pm

1) (@) 3 “

Split-Roe 63712 x 10? 3.0073 x 10° 47433
Split-Bouchut 6.4721 x 10 3.0723 x 10 4.67%9
USM-Roe 6.4732 x 102 6.3135 x 10° 9.9779
USM-HLLD 6.4133 x 102 6.1754 x 10 9.4%73
USM-HLLC 6.5732 x 102 14702 % 10 21716
USM-BK 8.1130 x 102 4.6737 x 10° 5.6752
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Figure 8. Similar to Fig. 5, but for Mach 0.01, comparing the best-
performing solvers from the previous comparison at Mach 0.1, namely USM-
BK and USM-HLLD. Note that the x-axis shows (t — #))/twurb, Where 1y is
chosen such that both runs start at the same Emag/Exin to facilitate the
comparison.

variation). We see that the USM-BK scheme shows the highest Re
(810735 compared to 6407330 for USM-HLLD, the next-highest
value). This suggests that USM-BK has the least dissipation of
kinetic energy in the low-Mach regime among the solvers/schemes
compared; however, the large error bars show that the difference
between the dissipation properties of the USM-HLLD and USM-BK
is not statistically significant at Mach 0.1. We further find that USM-
HLLD and USM-Roe have a higher Pm than USM-BK (9.44:1:2 and
9.9779 for USM-HLLD and USM-BK, respectively, compared to
5.6752 for USM-BK). As the dynamo growth rate depends on Re
as well as Pm (see C. Federrath et al. 2014), these measurements of
Pm explain why USM-BK has a somewhat smaller growth rate (c.f.,
Fig. 5 and Table 2) compared to USM-HLLD, despite being the least
dissipative solver.

5.4 Results for Mach 0.01

We have already established in the Balsara vortex test (c.f., Section
4) that the schemes using Dedner-Marder cleaning do not perform
very well in constraining the divergence of the magnetic field to
zero. From our analysis of the electric current power spectra, it

Table 4. Same as Table 2, but for Mach 0.01.

Table 5. Same as Table 3, but for Mach 0.01.

Name Re Rm Pm
(1) (2) 3) 4)
1.4
24158 x 10?

3.8
8.0735 x 102

USM-HLLD
USM-BK

5.5188 x 10? 2143)
+5.7 3 +6.1
52457 %10 6.57%1

is quite clear that HLLC is not suitable for low-Mach simulations
due to its large resistive dissipation length scale. Based on our
study of energy conservation and the current power spectra, we
can conclude that USM-HLLD and USM-BK have been the best-
performing solvers so far, showing comparable results. Given that
many astrophysical processes, such as stratified stellar flows (see F.
Kupka & H. J. Muthsam 2017) and early-Universe turbulent dynamos
(see R. Achikanath Chirakkara et al. 2021), involve highly subsonic
flows with Mach numbers below 1072, we test these schemes further
by running a turbulent dynamo simulation at Mach 0.01. Since our
focus is on the kinematic stage of the dynamo (which we use to
obtain solver properties), we stop our simulations close to the onset
of saturation.

5.4.1 Time evolution

Fig. 8 shows the evolution of the Mach number and the ratio of
magnetic energy to kinetic energy with time. The plots have been
shifted so that both simulations have the same starting ratio of the
kinetic energy to the magnetic energy, facilitating the comparison,
as the initial conditions are not relevant for the turbulent dynamo (A.
Seta & C. Federrath 2020; J. R. Beattie et al. 2023). The features
are similar to what we see at Mach 0.1 (cf., Fig. 5). We define
the kinematic phase as in Section 5.3.1 (5§ x 10°° < Enag/ Exin <
5 x 1073), with the measured growth rate listed in Table 4. The
growth rate is slightly higher for USM-HLLD compared to USM-
BK, which is consistent with the higher Prandtl number of USM-
HLLD (see Table 5), similar to what we found for the Mach 0.1
comparison of the two solvers.

5.4.2 Morphology

Fig. 9 shows the kinetic energy, the magnetic energy, and the
vorticity, respectively, in a slice during the kinematic phase when
Enmag/ Exin = 10~*. We see that more small-scale kinetic structure is
captured in USM-BK compared to USM-HLLD. This is consistent
with the fact that USM-BK dissipates kinetic energy at smaller
length scales compared to USM-HLLD. The presence of small-
scale structures (left panel) shows that smaller eddies are present in
the USM-BK test case, whereas USM-HLLD dissipates energy into
heat before forming eddies of comparable sizes. A similar pattern
is hinted by the magnetic energy (middle panel), where USM-BK
captures somewhat more small-scale structure than USM-HLLD.

Name r(tl;rlb) Pon kbn ky Pv ky kn
(6] (@) 3) “ (5) Q) ) ®
USM-HLLD 2.0910:02 0.3793 2.0%07 2.679% 0.8 3.1108 3119
USM-BK 1.94+001 -0.2%03 47703 10.6+14 1.2*41 74550 4075
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Figure 9. Slices of kinetic energy (left), magnetic energy (middle), and vorticity, ® = V x v (right), through the simulation domain taken during the kinematic
phase of the turbulent dynamo at Mach 0.01 when Enag/Exin = 104, The presence of small-scale structure in USM-BK shows that it dissipates kinetic energy
at smaller length scales compared to USM-HLLD. Compared to the kinetic energy, the magnetic energy (middle panels) shows somewhat smaller qualitative
differences between the two solvers, but it appears that also here the USM-BK captures slightly more small-scale turbulent structure than USM-HLLD;
quantified in Section 5.4.3. Finally, the vorticity (right-hand panels) reinforces the finding that USM-BK captures more small-scale structure than USM-HLLD.
The inset labels on the vorticity panels show measurements of the mean vorticity in the entire system (not just the slice), demonstrating that USM-BK captures

~ 20 per cent more vorticity than USM-HLLD.

This difference is demonstrated quantitatively in the next section.
Our findings are further corroborated by the vorticity modulus (right
panel), where USM-BK captures ~ 20 per cent more vorticity (see
inset label) than USM-HLLD.

5.4.3 Spectral analysis

‘We repeat the analysis in Section 5.3.3 for the two Mach 0.01 runs.
Fig. 10 shows the kinetic energy, magnetic energy, current, and
vorticity power spectra. The kinetic spectra reveal that USM-HLLD
turns downwards (a sign of the onset of dissipation) on scales larger
(wave-numbers smaller) than USM-BK, implying that USM-BK
dissipates kinetic energy at smaller length scales compared to USM-
HLLD, and is therefore less dissipative. The current power spectrum
peaks at a larger wave-number for USM-BK than USM-HLLD, im-
plying that magnetic resistivity starts acting at smaller length scales
for USM-HLLD compared to USM-BK, i.e. USM-HLLD is some-
what more resistive than USM-BK. The sharp downward turn of the
vorticity power spectrum of USM-HLLD indicates that smaller ed-
dies have been dissipated into heat, a consequence of smaller viscous
dissipations wave-number. The fitted dissipation wave-numbers are

reported in Table 4. We find that USM-BK dissipates at significantly
smaller length scales both in terms of kinetics (58 per cent difference
in the wave-numbers) and magnetics (23 per cent difference in the
wave-numbers).

5.4.4 Numerical Reynolds numbers

Following the relations given in Appendix B, we measure the
numerical hydrodynamic and magnetic Reynolds numbers, and the
Prandtl number in Table 5. We find that USM-BK has Re = 8007350,
while USM-HLLD has Re = 24074, implying that the former is
less dissipative. We note that the Re for USM-HLLD has dropped by
a factor of 2.5, compared to the Mach 0.1 run, while USM-BK has
roughly the same value, demonstrating that the solver successfully
retains high values of Re even at low Mach number. The Pm
for USM-BK is lower (Pm = 6.5%}) compared to USM-HLLD
(Pm = 217}}), which explains why USM-BK has a lower growth
rate in Table 4. Since Pm is so much higher in USM-HLLD, the
product of Re and Pm, i.e. Rm, turns out to be similar for both
solvers.
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Figure 10. Time-averaged power spectra of the kinetic energy (top panel),
magnetic energy (second panel), electric current (third panel) and vorticity
(bottom panel), for USM-HLLD and USM-BK. USM-BK has been shifted
by a factor of 0.5 along the y-axis for clarity. The black lines are the fits to
the model given in equation (24). The viscous dissipation scale and resistive
dissipation scale are marked on the x-axis. Both the viscous and resistive
dissipation scales are significantly separated from each other, showing that
USM-BK is less dissipative than USM-HLLD, in both kinetics and magnetics.

5.5 Computational cost

Factoring out the sound speed (c;) in equation (13) and approximating
the Alfvén speed in the x-direction by the total Alfvén speed (ca.x &
ca), we can write the fastest wave-speed as

. 1 M2 1 M2\? M2
Aasest X M+ A (= + ) [ (o g )~ (29
et ZAHT S J (MgK M2 M M2 e @
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Figure 11. The effective numerical hydrodynamic Reynolds number (Re)
as a function of the turbulent Mach number (M). Re does not change with
M for USM-BK; however, it decreases with decreasing Mach number for
USM-HLLD.

where Mgk = 1 for conventional Riemann solvers, while Mgx ~ M
for the BK method, for our choice of M., = M. For our application
of turbulent dynamos where M ~ M « 1 <K Mj ~ M4 and ¢, &
1, this can be written as

1

)‘fastest ~ M+ MBK .

(30)

We can immediately see that for conventional Riemann solvers,
the fastest signal speed scales as (1 + M) ~ 1 while for the BK
method it scales as ~ 1/M. Therefore, the time-step (A7 o< cl.,) is
independent of the Mach number for conventional solvers, however,
At o M for the BK method (see equation 15).

Since the turbulent turnover time (f) also scales as ~ 1/ M
(c.f., Section 5.2), the number of time-steps required to achieve the
same amount of time evolution (i.e. the number of eddy-turnover
times of evolution) also scales as ~ 1/M. Therefore, the total cost
of a simulation with the BK method scales as 1/M?, while that
for conventional Riemann solvers goes as 1/M. If the end goal
is to achieve the highest numerical Re possible, either USM-BK
can be used at some resolution or USM-HLLD can be used at
a comparatively higher resolution. Fig. 11 shows the variation of
numerical Re with M at fixed resolution (N). For USM-BK, Re
does not change significantly with M; however, it scales as M%* for
USM-HLLD. L. Malvadi Shivakumar & C. Federrath (2023) have
shown that the effective numerical Re varies as N*/3, where N is the
number of grid cells in each direction.

Therefore, for a given Mach number and resolution, the effective
Re for the two solvers goes as

RCB]( ~ MON4/3 N
ReHLLD ~ M0‘4N4/3 . (31)

The ratio of computational cost (C) for the two solvers at a given
Mach number and resolution is given by
Cex M™2IN?

~— 32
Cap  M™IN* ©2)

To achieve a target Re = Regg = Repy1p at a fixed Mach number
by varying the resolution, we can use equations (31) and (32), and
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write the ratio of the computational cost as
Cgk - M72R63 - _/\/lo'z .

Cup M-I M-12Re?

Thus, we can say that USM-BK is marginally better than USM-

HLLD on the metric of computational cost. An implicit implemen-

tation of the BK method, which is less restrictive in the time-step
constraint is preferable and we leave it to future works.

(33)

6 CONCLUSIONS

We examined the impact of numerical schemes, particularly the
choice of Riemann solver, on numerical dissipation in low-Mach
MHD simulations. Using the Balsara vortex test problem, we
assessed the suitability of the new Riemann solver (USM-BK) and
explored its effectiveness in capturing structures in low-Mach tur-
bulent dynamo simulations. The following are the main conclusions
drawn from this work:

(i) Conventional Riemann solvers (Roe, HLLC, HLLD, and
Bouchut) exhibit excessive dissipation in the low-Mach regime.

(i) The new USM-BK solver demonstrates the least dissipation
of kinetic energy in the Balsara vortex tests at Mach 0.01, preserving
84 per cent of the kinetic energy after one complete advection of the
vortex across the computational grid. In constrast, USM-Roe, USM-
HLLC, and USM-HLLD show the highest dissipation, preserving
only 39 per cent of the kinetic energy.

(iii) The USM-BK solver also exhibits very little dissipation of
magnetic energy at Mach 0.01, retaining 96 per cent of the magnetic
energy after one complete advection of the Balsara vortex. It is
marginally outperformed by USM-HLLD and USM-Roe, which
retain 97 per cent of the magnetic energy.

(iv) An unsplit-staggered mesh (USM) implementation of the
BK Riemann solver is preferred over the usage of divergence
cleaning since divergence cleaning also diffuses the magnetic energy.
Furthermore, constrained transport keeps the divergence of magnetic
field close to zero up to machine precision, by construction.

(v) The time-step restriction for stability for USM-BK scales
as At~ O(M) (c.f., equation 15). Therefore, implicit time-
steppers are preferable for applications in the low Mach
regime.

(vi) As discussed in Section 5, the choice of Riemann solver
significantly influences both the growth rate and the saturation
level of the dynamo due to variations in the effective Reynolds
numbers between solvers. We measured the growth rates and the
corresponding effective Reynolds numbers for various solvers at
Mach 0.1 and Mach 0.01.

(vii) The new solver can resolve smaller length scales compared
to the other solvers, which is evident from the kinetic and electric
current spectra. While USM-HLLD marginally outperforms USM-
BK inresolving magnetic structures at Mach 0.1, USM-BK surpasses
USM-HLLD in performance as the Mach number is decreased.
This difference in dissipation length scales is also reflected in the
morphological features seen in snapshots taken during the kinematic
phase.

(viii) At a given energy ratio, USM-BK captures more vorticity
compared to USM-HLLD. The vorticity power spectra show that
USM-BK has more power at smaller wave-numbers than USM-
HLLD, indicating that USM-BK captures more small-scale struc-
tures since smaller eddies have not been dissipated into heat.

We conclude that the new USM-BK solver is the most suitable
for low-Mach MHD simulations, among the schemes compared, as
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it exhibits the least dissipation of kinetic and magnetic energy. The
solver is particularly effective in capturing small-scale structures of
the flow, making it a good choice for turbulent dynamo simulations
in the low-Mach regime.
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APPENDIX A: CHOICE OF THE CUT-OFF
MACH NUMBER (M)

Fluxes obtained from an approximate Riemann solvers have a
dissipation term in the momentum/pressure flux of the form

D~ p)\faslest(uL - uR)7 (Al)

where p and Apges are suitable approximations of density and the
fastest wave speed at the cell interfaces, and u" and uR are the
x-components (direction along which the MHD equations are one-
dimensionalized before solving the Riemann problem) of the fluid
speed on the left and right side of the cell interface, respectively.
This dissipation term adds artificial viscosity that dampens down
any spurious perturbation modes generated in the solution of the
discretized MHD equations. However, in the low-Mach regime, such
a dissipation term overwhelms the physical flux. This is clear from
the ratio of the advective flux to the dissipation term:

2
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Figure Al. Variation of the amount of rotational (top panel) and magnetic
energy (bottom panel) dissipated at the end of one advection as a function
of Mcy¢/ M at various Mach numbers (M=0.005, 0.01, 0.05) and resolutions
(M=0.01 at N=64, 128, 256). For M.,/ M < 1, there is a spurious increase
in the magnetic energy and the dissipation of rotational energy. Mcy /M 2 1
provides a fairly universal choice that provides stable, physical solutions with
low dissipation. We chose M/ M = 2 for our 64 x 64 test at Mach 0.01.
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Figure A2. Rotational (top panel) and magnetic energy (bottom panel) profile of the vortex at the end of one advection for My /M = 0.4,2and 8. My /M <1
shows a spurious increase in the magnetic energy and distorts the vortex. In contrast, M, /M 2 1 yields stable, low-dissipation solutions.

The advective flux is smaller compared to the dissipation term in
subsonic flows.

This incorrect scaling is fixed by rescaling the dissipation term by
a factor ¢ o« M. C. Birke & C. Klingenberg (2023) use ¢ = Mgk
defined in equation (14) as

Mgk = min {max {Mcm, 1} s 1} . (A3)
Cs

M.y sets a local cut-off Mach number below which dissipation is
no longer reduced. It also controls the fastest wave-speed in the
relaxation scheme (see equation (13)). Our relaxation scheme is less
diffusive as long as My < 1.

Here, we explore the effect of M.,. We run simulations of the
Balsara Vortex test problem at M = 0.01 at resolutions of 642,
1282 and 2567 for M, /M ranging from 0.4 to 8. We also run
additional tests, at M = 0.005 and M = 0.05 at 64” resolution. Fig.
Al shows the amount of rotational (top panel) and magnetic energy
(bottom panel) dissipated at the end of one complete advection of the
vortex. For M., /M < 1, there is an increase in the rotational energy
dissipation and a spurious increase in the magnetic energy is also
seen. This spurious increase in the magnetic energy corresponds to a
significant distortion of the vortex. An example of such a distortion
is shown in the left most panel of Fig. A2, which shows the profile
of the rotational (top panel) and the magnetic energy (bottom panel)

corresponding to M.,/ M = 0.4, 2 and 8 for the 64 x 64 run at Mach
0.01.

In Fig. A1, M., /M = 2 shows the least dissipation of rotational
kinetic energy and conserves the magnetic energy well. Therefore,
we choose this value for our vortex test. We also perform a resolution
test measuring the L, norm of the rotational kinetic energy and the
magnetic energy for USM-BK (at M,/ M = 2) and USM-HLLD.
The L, for energy E (rotational or magnetic) is calculated using
Li(E) = ZIE - E@t=0) ) (Ad)

YE(t =0)
The variation of the L; norm with the number of resolution elements
in the x/y direction (N) are shown in Fig. A3. USM-HLLD has
a higher value of L; norm compared to USM-BK and it decreases
with increasing resolution for both of them. This shows that USM-
BK performs better than USM-HLLD and there is no growth of
dispersive errors.

It is clear that the optimal choice of M., /M is Mach number-
dependent and may depend on the type of problem too. For a given
MHD problem, the optimal value can be inferred from low-resolution
runs before the solver is used in the corresponding high-resolution
production run. Nevertheless, the parameter variation tests in Fig. A1
suggest that M.,/M 2 1 provides a relatively universal choice that
yields stable and low-dissipation solutions with USM-BK.
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Figure A3. Variation of the L norm with increasing resolution. N is the
number of resolution elements in the x/y direction and Lg is calculated via
equation (A4). USM-BK performs better than USM-HLLD and the error
decreases with increasing resolution for both of them, implying that neither
show any growth of dispersive errors, with M, /M = 2 is a good choice for
USM-BK.

APPENDIX B: EFFECTIVE HYDRODYNAMIC
AND MAGNETIC REYNOLDS NUMBERS

The hydrodynamic Reynolds number (Re) is defined as

L
Re — UturbCturb ’ (Bl)
v

where uy, is the fluid turbulent velocity at the driving scale of
turbulence (L, = 27 /Kariving) and v is the kinematic viscosity of
the fluid. Similarly, the magnetic Reynolds number (Rm) is defined
as

ulurbzturb

Rm= ———, (B2)
n
where 7 is the magnetic resistivity of the fluid.
Numerical viscosity and resistivity must be lower than the explicit
viscosity and resistivity to avoid smearing of features and over-

damping of flows. Therefore, the numerical Reynolds numbers
associated with a numerical scheme must be greater than the explicit
Reynolds number being simulated. We can calculate the numerical
Hydrodynamic Reynolds number and Magnetic Prandtl number of
ideal MHD simulations from measurements of the characteristic

dissipation scales.
To calculate the hydrodynamic Reynolds number, we use the

following relation given in N. Kriel et al. (2022)

k 4/3
Re = <7> , (B3)
cvkdriving

where ¢, = 0.0257000; (referred to as cg, in the main text).

To measure the magnetic Reynolds number, we follow N. Kriel
et al. (2025). However, their definition of the resistive dissipation
scale (their definition will be referred to as k) is different from what
we have used in equation (24). They define the viscous dissipation
wave-number as the wave-number where the scale-dependent hydro-
dynamic Reynolds number equals one, i.e. Re(k]) = 1. This wave-
number marks the scale where the flow transitions from an inertial
force dominated one (kyn, < k < k) to a dissipation-dominated one
(k > k). N. Kriel et al. (2025) have shown that k|, and Re are related
by

k:) = C;kdrivingRGSM, (B4)

where ¢/, = 0.107091.
Using equation (B3) and equation (B4), we can write

PG
k, = . k. (BS)
Thus, if we have measured k, from spectral fitting in equation (24),
we can find k).

N. Kiriel et al. (2025) have also shown the resistive dissipation
wave-number (k) scales with the viscous dissipation wave-number
(k!, based on the alternative definition mentioned here) and the
Prandtl number as

k, = c,k,Pm'/?, (B6)

where ¢, = 0.537007.

Using equation (B5) and equation (B6), we can write
/

C
ky = ¢ <2k, PmY/2 = cppk,Pm!/2, (B7)

v

— / — +0.8
where cpm = ¢, /¢, = 2.175.

The Prandtl number (Pm) can be obtained using the above relation.
The Magnetic Reynolds number can then be calculated as

Rm = Re x Pm. (B8)

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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