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A B S T R A C T 

Magnetohydrodynamic (MHD) simulations of subsonic (Mach number < 1) turbulence are crucial to our understanding of 
several processes including oceanic and atmospheric flows, the amplification of magnetic fields in the early universe, accretion 

discs and stratified flows in stars. In this work, we demonstrate that conventional numerical schemes are excessively dissipative 
in this low-Mach regime. We demonstrate that a new numerical scheme (termed ‘USM-BK’ and implemented in the FLASH 

MHD code) reduces the dissipation of kinetic and magnetic energy, constrains the divergence of magnetic field to zero close to 

machine precision, and resolves smaller-scale structure than other, more conventional schemes, and hence, is the most accurate 
for simulations of low-Mach turbulent flows among the schemes compared in this work. We first compare several numerical 
schemes/solvers, including Split-Roe, Split-Bouchut, USM-Roe, USM-HLLC, USM-HLLD, and the new USM-BK, on a simple 
vortex problem. We then compare the schemes/solvers in simulations of the turbulent dynamo and show that the choice of 
scheme affects the growth rate, saturation level, and viscous and resistive dissipation scale of the dynamo. We also measure the 
numerical kinematic Reynolds number (Re) and magnetic Reynolds number (Rm) of our otherwise ideal MHD flows, and show 

that the new USM-BK scheme provides the highest Re and comparable Rm among all the schemes compared. 

Key words: magnetic fields – MHD – turbulence – methods: numerical. 
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 I N T RO D U C T I O N  

ubsonic flows are ubiquitous in a wide range of physical systems,
anging from terrestrial applications to astrophysics. They appear
n the study of turbine blade performance (J. Leggett, Y. Zhao &
. D. Sandberg 2022 ), fusion and fission systems (M. Min et al.
024 ), rotorcraft fuselages and ship airwakes (H. Park, D. Linton
 B. Thornber 2022 ), ocean modelling (G. Tissot, É. Mémin & Q.

amet 2024 ), stratified systems like stars (F. Kupka & H. J. Muthsam
017 ), and the amplification of primordial magnetic fields (J. M.
agstaff et al. 2014 ; R. Achikanath Chirakkara et al. 2021 ). Such

ubsonic flows are characterized by fluid velocities smaller than the
peed of sound (also referred to as the low-Mach regime, where
ach number M = v/cs < 1 and v and cs are flow velocity and

ound speed, respectively). Being inherently non-linear and three-
imensional, these turbulent, complex systems are impossible to
ackle via analytic calculations. Hence, they are studied through
umerical simulations, a large class of which use finite-volume
iscretization and Godunov-based methods. While such methods
re highly successful in modelling the transonic and the supersonic
egime, they are subject to limitations in terms of efficiency in the
ubsonic regime. The artificial discontinuity created by the finite-
olume method (FV method) at each cell interface creates spurious
aves that lead to an overestimate of pressure, overwhelming the
 E-mail: James.Watt@anu.edu.au (JW); christoph.federrath@anu.edu.au 
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hysical fluxes (see H. Guillard & A. Murrone 2004 ), leading to
xcessive dissipation in the low-Mach regime. Apart from this, the
iscretization of the magnetohydrodynamic (MHD) equations in-
roduces viscous terms as well (see L. Malvadi Shivakumar & C.
ederrath 2023 ). Both of these effects combined operate similar

o physical viscosity ( ν) and resistivity ( η), and are referred to as
rtificial and numerical viscosity and resistivity. 

These types of numerical/artificial viscosity and resistivity must
e significantly lower than the physical viscosity and resistivity
imulations aiming to resolve down to the physical dissipation scale.
therwise, small-scale features of the flow are smeared out. Flow
roperties in MHD are determined primarily by the hydrodynamic
nd the magnetic Reynolds numbers, labelled Re and Rm, respec-
ively. They are defined as 

e = u� 

ν
, and (1) 

m = u� 

η
, (2) 

here u and � are the characteristic velocity and length scales of the
ow, respectively. To accurately model a flow, the numerical Re and
m must be larger than the physical Re and Rm of the flows being
odelled. 
Numerical dissipation arising from discretization can be reduced

y increasing the grid resolution and special techniques, like Adap-
ive Mesh Refinement (M. J. Berger & P. Colella 1989 ). The effect
f grid resolution on numerical viscosity and resistivity has been
horoughly studied by L. Malvadi Shivakumar & C. Federrath ( 2023 ).
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y. This is an Open Access article distributed under the terms of the Creative
ch permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

http://orcid.org/0009-0000-0418-8571
http://orcid.org/0000-0002-0706-2306
mailto:James.Watt@anu.edu.au
mailto:christoph.federrath@anu.edu.au
https://creativecommons.org/licenses/by/4.0/


Overcoming numerical dissipation at low Mach 4257

I
a
s
&  

(
 

o
o  

K
s  

L  

a  

o  

t
S  

s
a
t  

s
m
M  

i

2

T

H  

|  

s
e
k
t  

p

g

∇
 

η

t

w

U

a

ρ

ρ

ρ

3

3

E  

T
v
e
F
a
s  

h
r
t
R
i  

i
t  

D  

o  

(

3

D
i
c  

o
a  

w
t  

p  

fl  

l
h
t  

d  

d  

M  

T  

C  

o
o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/staf1973/8321673 by guest on 02 D

ecem
ber 2025
n this work, we focus on the dissipation originating from the 
rtificial discontinuities created by the FV method in simulating 
ubsonic flows. We test an extension of K. Waagan, C. Federrath 
 C. Klingenberg ( 2011 ) introduced in C. Birke & C. Klingenberg

 2023 ), which significantly reduces this dissipation. 
In Section 2 , we introduce the MHD equations. Section 3 describes

ur numerical methods and briefly summarizes why simulations 
f subsonic flows are more dissipative and how C. Birke & C.
lingenberg ( 2023 ) overcome this difficulty. Section 4 presents 

imulations of the Balsara vortex (D. S. Balsara 2004 , see also G.
eidi et al. 2022 ) as a test case for a variety of numerical schemes,
ll at the same grid resolution, to demonstrate the effect of the choice
f numerical scheme on artificial viscosity and resistivity and test if
he new scheme provides an improvement over previous methods. In 
ection 5 , we test the various numerical schemes on simulations of
ubsonic turbulent dynamos, which also have important astrophysical 
pplications. We compare the effect of the numerical scheme on 
he time evolution and saturation of the dynamo, as well as the
tructure and turbulent MHD statistics of the system. We also 
easure the numerical Reynolds numbers of these otherwise ideal 
HD (Re → ∞ , Rm → ∞ ) simulations. We summarize our results

n Section 6 . 

 E QUAT I O N S  O F  M H D  

he MHD equations are given as follows: 

∂ ρ

∂ t 
+ ∇ · ( ρu ) = 0 , (3) 

∂ 

∂ t 
( ρu ) + ∇ ·

(
ρu ⊗u − 1 

4 π
B ⊗B 

)
+ ∇ptot 

= ∇ · (2 νρS ) + ρ F , (4) 

∂ e 

∂ t 
+ ∇ ·

[
( e + ptot ) u − 1 

4 π
( B · u ) B 

]
= (5) 

∇ ·
[

2 νρu · S + 1 

4 π
ηB × ( ∇ × B )

]
, 

∂ 

∂ t 
B = ∇ × (u × B ) + η∇2 B . (6) 

ere, ρ, u , ptot = pth + |B |2 / (8 π ), B , e = ρeint + ρ|u |2 / 2 +
B |2 / (8 π ), Sij = (∂ i uj + ∂ j ui ) / 2 − ( δij ∇ · u ) / 3, ν, η denote the den-
ity, velocity, pressure (thermal plus magnetic), magnetic field, 
nergy density (internal plus kinetic, plus magnetic), strain tensor, 
inematic viscosity, and magnetic resistivity, respectively. The sys- 
em of equations is closed by an equation of state relating the thermal
ressure ( pth ) to the density ( ρ). 
The magnetic field also satisfies the divergence free constraint 

iven by 

 · B = 0 . (7) 

In the absence of physical viscosity and resistivity ( ν = 0 and
= 0), the system of partial differential equations described above 

akes the general conservative form 

∂ U 

∂ t 
+ ∂ F 

∂ x 
+ ∂ G 

∂ y 
+ ∂ H 

∂ z 
= 0 , (8) 

here U is a vector of conservative variables given by 

 = [
ρ, ρux , ρuy , ρuz , e, Bx , By , Bz 

]
, (9) 

nd F , G , and H are the fluxes given by 
F = [ ρvx , ρv2 
x + pth + |B |2 / 8 π − B2 

x / 4 π, ρvx vy − Bx By / 4 π, 

vx vz − Bx Bz / 4 π,
(
e + pth + |B |2 / 8 π)

vx − Bx (v · B ) / 4 π, 0 , 

( vx By − vy Bx ) , −( vz Bx − vx Bz )] , 

(10) 

G = [ ρvy , ρvx vy − Bx By / 4 π, ρv2 
y + pth + |B |2 / 8 π − B2 

y / 4 π, 

vy vz − By Bz / 4 π,
(
e + pth + |B |2 / 8 π)

vy − By (v · B ) / 4 π, 0 , 

( vy Bz − vz By ) , −( vx By − vy Bx )] , and 

(11) 

H = [ ρvz , ρvx vz − Bx Bz / 4 π, ρvy vz − By Bz / 4 π, 

v2 
z + pth + |B |2 / 8 π − B2 

z / 4 π,
(
e + pth + |B |2 / 8 π)

vz − Bz (v · B ) / 4 π, 

0 , ( vx Bz − vz Bx ) , −( vy Bz − vz By )] . 

(12) 

 N U M E R I C A L  M E T H O D S  

.1 Finite volume method 

quation ( 8 ) can be solved using the finite-volume (FV) method.
he FV method divides the computational domain into control 
olumes (grid cells) and integrates the governing equations over 
ach volume, ensuring conservation of fluxes across cell boundaries. 
luxes at the interfaces are computed using Riemann solvers (such 
s Roe, HLLD, HLLC, etc). To improve accuracy, the physical 
tate variables are reconstructed at the cell faces via linear or even
igher-order reconstruction. Slope limiters are used to ensure that the 
econstruction step does not introduce artificial maxima/minima. The 
emporal discretization is performed using schemes such as Euler or 
unge–Kutta methods and the time-stepping can be implemented 

n a split or unsplit fashion. The divergence of the magnetic field
s constrained to zero up to machine precision using constrained 
ransport (CT) (K. Yee 1966 ; C. R. Evans & J. F. Hawley 1988 ; W.
ai & P. R. Woodward 1998 ; T. A. Gardiner & J. M. Stone 2008 ),
r kept at reasonably low levels by a divergence cleaning technique
A. Dedner et al. 2002 ). 

.2 Numerical dissipation 

iscretization of MHD equations gives rise to viscous terms that 
ntroduce numerical dissipation. This kind of numerical dissipation 
an be reduced by choosing a reconstruction method or a time stepper
f higher order. However, finite-volume methods also create an 
rtificial discontinuity at each grid interface that gives rise to spurious
aves. Since these artificial waves create pressure fluctuations of 

he order of the sonic Mach number M , they can overwhelm the
hysical flux in the simulations of low-Mach flows that have pressure
uctuations of the order M2 (H. Guillard & A. Murrone 2004 ). This

eads to excessive dissipation in low-Mach flows. Various methods 
ave been explored to mitigate this issue, like pre-conditioning 
he Riemann problem at each interface to reduce the effect of
iscontinuities (E. Turkel 1999 ; S. Clerc 2000 ), or rescaling the
issipation term in the numerical flux to make it independent of the
ach number (F. Miczek, F. K. Röpke & P. V. F. Edelmann 2015 ;

. Minoshima & T. Miyoshi 2021 ; G. Leidi et al. 2022 ; C. Birke,
. Chalons & C. Klingenberg 2023 ). Another approach is the use
f implicit–explicit methods, which apply the Godunov-type scheme 
nly to the slow dynamics in the PDE, thereby avoiding dissipation
MNRAS 544, 4256–4270 (2025)
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erms that scale with O(1 /M) (R. Klein 1995 ; M. Dumbser et al.
018 ; F. Fambri 2021 ; W. Chen, K. Wu & T. Xiong 2023 ; C. Birke,
. Boscheri & C. Klingenberg 2024 ; W. Boscheri & A. Thomann

024 ). Building on this idea, F. Fambri & E. Sonnendrücker ( 2024 )
mploy implicit–explicit methods in combination with the Finite
lement method for solving the magneto-acoustic parts, ensuring
nergy stability, magnetic-helicity conservation, and a divergence-
ree magnetic field. Alternatively, J.-M. Teissier, R. Mäusle & W.-
. Müller ( 2024 ) reduce artificial and numerical viscosity through
ery high-order reconstruction methods, and improve efficiency
y reconstructing separately in each spatial dimension rather than
sing multidimensional polynomials. In this work, we focus on the
elaxation scheme by C. Birke & C. Klingenberg ( 2023 ) (referred to
s the BK method), which resorts on rescaling the numerical flux in
he low-Mach-number regime. 

.3 BK method 

he core idea of the BK method is to construct an enlarged system
f equations, including a relaxation term on the right-hand side, such
hat the new system is an approximation of the original system given
n Section 2 . Then the left-hand side of the relaxation system is solved
sing a Riemann solver followed by a projection of the solution back
n to the original variables. Since there is some freedom in how the
elaxation system is constructed, it is possible to tweak the solution
f the pressure variable in the Riemann fan and fix the incorrect
caling of the pressure, while ensuring that the resulting Riemann
olver satisfies a discrete entropy inequality. We point the reader to C.
irke & C. Klingenberg ( 2023 ) for further details on their relaxation

cheme. 
The fastest wave-speed in the Riemann fan of the BK relaxation

cheme can be closely approximated by 

fastest = u + 1 

2 

√ √ √ √ 

(
c2 

s 

M2 
BK 

+ c2 
A 

)
+

√ (
c2 

s 

M2 
BK 

+ c2 
A 

)2 

− 4 c2 
s c

2 
A;x , 

(13) 

here u is the fluid velocity, cs is the sound speed, cA is the
lfvén speed, cA;x is the Alfvén speed in the x -direction (direction

long which the MHD equations are one-dimensionalized before
olving the Riemann problem) and MBK (the equivalent of φ in
quations ( 14 )–( 16 ) in C. Birke & C. Klingenberg 2023 ) is defined
s 

BK = min 

{
max 

{
Mcut ,

u 

cs 

}
, 1

}
. (14) 

he parameter Mcut < 1 is used to set a local cut-off Mach number
elow which the scheme does not reduce dissipation any longer by
ncreasing the scheme-specific speed, thereby preventing division by
mall numbers in regions where the velocity is close to 0, which
ould lead to λfastest → ∞ and the time-step �t → 0. In this work,
e set Mcut equal to 2 times the reference Mach number ( M = 0.1
r 0.01) that we are simulating – the reference Mach number is
 statistical (global) quantity describing the characteristic ratio of
ypical flow velocities to the sound speed in a given problem. 1 The
eason for our choice of Mcut = 2 M is explained in Appendix A .
ote that for a conventional Riemann solver, like Roe or HLLD,
NRAS 544, 4256–4270 (2025)

 For instance, in turbulent flows, M is the standard deviation of the local 
ach number ( M). 

w
d  

H  

l  
BK = 1 , and λfastest is a close approximation of the fastest wave
peed in the Riemann fan of these conventional solvers. 

The time-step restriction for stability is given by the Courant–
riedrichs–Lewy (CFL) condition, 

t = CFL 

�x 

λfastest 
, (15) 

here �x is the cell size. We use CFL = 0 . 5 throughout this work. 

.4 Numerical schemes in FLASH 

e perform our simulations using a modified version of the FLASH

ode (B. Fryxell et al. 2000 ; A. Dubey et al. 2008 ) and compare
everal numerical schemes with different Riemann solvers. Some
chemes utilize split time-stepping combined with Dedner-Marder
leaning (B. Marder 1987 ; A. Dedner et al. 2002 ) for magnetic
eld divergence control (Split-Roe and Split-Bouchut), while others
dopt unsplit time-stepping on a staggered mesh with an upwind
ersion of Lee’s constrained transport scheme (D. Lee 2006 ) (USM-
oe, USM-HLLD, USM-HLLC, and USM-BK, where ‘USM’ stands

or ‘unsplit-staggered mesh’). All our schemes use the 2nd-order
VD (total variation diminishing) interpolation of data in space and

ime using the Hancock method (B. Leer 1984 ). The details of the
umerical schemes are summarized in Table 1 . 

 BA LSARA  VO RTEX  

he Balsara vortex (D. S. Balsara 2004 ) is an exact stationary solution
f the ideal MHD equations in two dimensions, where the centrifugal
orce, magnetic tension, thermal pressure gradient, and magnetic
ressure gradient are perfectly balanced. This configuration, which
onserves kinetic and magnetic energies independently in the absence
f dissipative forces, serves as an excellent test problem for evaluat-
ng energy conservation in MHD simulations. Discretization errors
nd artificial discontinuities in finite-volume methods introduce
umerical dissipation, leading to a loss of rotational and magnetic
nergy. Here we use the Balsara vortex to compare the energy
onservation performance of various split and unsplit MHD solvers
cross different numerical schemes. While the dissipation we observe
rises from a combination of numerical discretization and the choice
f numerical technique (like reconstruction method, Riemann solver,
tc.) as well as the presence of artificial discontinuities, we use the
ame resolution for all the different schemes in Table 1 , such that we
an compare the dissipation arising from the latter. 

.1 Initial conditions 

he initial conditions for the Balsara vortex are given by 

 = ˜ v ( −y ˆ x + x ˆ y ) exp 

(
1 − r2 

2 

)
, (16) 

B = 

˜ B ( −y ˆ x + x ˆ y ) exp 

(
1 − r2 

2 

)
, (17) 

th = 1 +
[ ˜ B2 

2 
(1 − r2 ) − ˜ v2 

2 

]
exp 

(
1 − r2 

)
, (18) 

= 1 , (19) 

here r2 = x2 + y2 , and ˆ x and ˆ y are unit vectors in the x and y 
irections, respectively. We use ˜ v = 0 . 01, ˜ B = 0 . 01, and γ = 5 / 3.
ere we define the reference Mach number ( M ) as the maximum

ocal Mach number ( M) in the simulation domain. Our choice
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Table 1. Numerical schemes used in this work. 

Scheme name Split/unsplit Riemann solver ∇ · B Method Electric field reconstruction 
(1) (2) (3) (4) (5) 

Split-Roe Split Roe Dedner-Marder cleaning N/A 

Split-Bouchut Split Bouchut Dedner-Marder cleaning N/A 

USM-Roe Unsplit Roe Constrained transport Lee-upwind 
USM-HLLD Unsplit HLLD Constrained transport Lee-upwind 
USM-HLLC Unsplit HLLC Constrained transport Lee-upwind 
USM-BK Unsplit BK Constrained transport Lee-upwind 

Note. Column (1): name of numerical scheme, (2): whether the scheme uses directionally split or unsplit updates, (3): Riemann solver—Roe (P. Roe 1981 ), 
Bouchut (K. Waagan et al. 2011 ), HLLD (T. Miyoshi & K. Kusano 2005 ), HLLC (S. Li 2005 ) or BK (C. Birke & C. Klingenberg 2023 ), (4): whether 
Dedner-Marder cleaning (B. Marder 1987 ; A. Dedner et al. 2002 ) or constrained transport (CT) (K. Yee 1966 ; C. R. Evans & J. F. Hawley 1988 ; W. Dai & P. R. 
Woodward 1998 ; T. A. Gardiner & J. M. Stone 2008 ) was used to handle the magnetic field divergence constraint, (5): Lee-upwind (D. Lee 2006 ) electric field 
reconstruction method, if applicable. All schemes use the 2nd-order Hancock (B. Leer 1984 ) method for interpolation of data in space and time. 

Figure 1. Top panel shows the radial profiles of velocity, magnetic field and 
pressure for the Balsara vortex, following equations ( 16 )–( 18 ) for a sonic 
Mach number of M = 0 . 01 and the ratio of the magnetic to the rotational 
kinetic energy βk = 1. Note that the velocity and magnetic pressure profiles 
have been scaled by a factor of 100 for the sake of clarity. The scaled 
velocity profile touches the thermal pressure profile ( pth ≈ 1) at r = 1 since 
M = 0 . 01. The bottom panel shows that the centrifugal term −(v · ∇)v 
is balanced by the magnetic tension (B · ∇)B , and the gradients of the 
thermal pressure ( ∇pth ) and the magnetic pressure ( ∇pB ) balance each 
other. 

o
v

4

W  

6
0
h
p
c
i  

Figure 2. Rotational energy of the vortex after one advection diago- 
nally through the computational domain for the six different numerical 
solver/scheme combinations (from left to right and top to bottom): Split- 
Roe, Split-Bouchut, USM-Roe, USM-HLLD, USM-HLLC, and USM-BK. 
The rotational energy has been normalized by the maximum rotational energy 
(at r = 1) at the beginning of the simulation ( t = 0). The value in the top 
left corner of each panel shows the fraction of the total rotational energy 
left in the system compared to t = 0. We see that USM-BK outperforms 
all other schemes by retaining 88 per cent of the rotational kinetic 
energy. 
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f parameters ˜ v , ̃  B and γ gives M ≈ 0 . 01. The radial profiles of 
elocity, magnetic field and pressure are shown in Fig. 1 . 

.2 Set-up 

e use a computational domain of ( x , y ) ∈ [ −5 , 5] × [ −5 , 5] and
4 × 64 grid cells with periodic boundary conditions and Mcut = 

 . 02 for our simulations. The problem is made computationally 
arder by advecting the vortex along the diagonal of the com- 
utational grid with speed ˜ v . We run our simulations for one 
omplete advection of the vortex across the diagonal, such that 
t ends up exactly at the starting position, i.e. at the coordi-
ate origin. In this time interval, the vortex turns around 2.25
imes. 

.3 Results and comparison of solvers 

n order to quantify the amount of kinetic and magnetic energy
issipation, we calculate and compare the fraction of rotational 
nd magnetic energy that the vortex has retained compared to 
heir respective initial values. The rotational kinetic energy ( Erot ) 
s calculated as 

rot = 1 

2 
ρ

[ (
vx − ˜ v √ 

2 

)2 

+
(

vy − ˜ v √ 

2 

)2 
] 

, (20) 

hile the magnetic energy ( Emag ) is calculated as 

mag = 1 

2 
|B |2 . (21) 

ig. 2 shows the fraction of the rotational energy retained in the
ystem at the end of one complete advection of the vortex. The
nergy has been normalized by the maximum local rotational energy 
MNRAS 544, 4256–4270 (2025)
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M

Figure 3. Same as Fig. 2 , but for the magnetic energy. The value in the top 
left corner of each panel shows the fraction of the total magnetic energy left 
in the system after one complete box advection compared to t = 0. We find 
that the USM-BK scheme is also the best-performing scheme with respect 
to the magnetic energy, with only 4 per cent of the initial energy dissipated. 
The Split schemes dissipate magnetic energy while damping the magnetic 
monopoles, while the 3-wave USM-HLLC scheme has dissipated almost all 
of the magnetic energy in the system. 
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Figure 4. Same as Fig. 2 , but for the divergence of the magnetic field, 
defined in a normalized fashion via equation ( 22 ), such that its magnitude can 
be compared to order unity. The inset on the top left in each panel shows the 
root-mean-squared value of ∇ · ˆ B . The split schemes keep the value of ∇ · B 

at reasonably low levels while the USM schemes maintain ∇ · B = 0 close 
to machine precision. 
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at r = 1) present in the system at the beginning of the evolution.
e find that the split schemes (Split-Roe and Split-Bouchut) retain

round 65 per cent of the kinetic energy, while the unsplit schemes
USM), except for the USM-BK, retain only 39 per cent of the initial
otational kinetic energy. The new scheme (USM-BK; bottom right
anel) performs the best, conserving 88 per cent of the rotational
nergy. 

Fig. 3 shows the same as Fig. 2 , but for the magnetic energy. Split-
oe and Split-Bouchut lose more than half of their initial magnetic
nergy and significantly distort the vortex into a nearly square-
haped form. The increased dissipation is a consequence of the
ivergence-cleaning method, which also dissipates magnetic energy
hile damping the magnetic monopoles. USM-Roe, USM-HLLD,

nd USM-BK perform similarly well in conserving the magnetic
nergy, with USM-BK retaining 96 per cent of the initial magnetic
nergy. At the same time, USM-HLLC, which considers only 3 waves
n the Riemann solution, dissipates almost all the magnetic energy
n the system. All schemes introduce minor distortions in the shape
f the vortex. These are much more visible in the split schemes and
SM-HLLC, but are minor in USM-Roe, USM-HLLD and USM-
K. 
Finally, we look at the divergence of the magnetic field. We define

 normalized version of ∇ · B , as 

 · ˆ B = ∇ · B �x 

Brms 
, (22) 

here Brms is the root-mean-squared magnetic field integrated over
he entire volume, and �x is the side length of each grid cell. Fig. 4
hows |∇ · ˆ B | . The choice of Riemann solver does not play any
ignificant role in constraining the divergence of the magnetic field
o zero, however, all simulations using constrained transport (USM)
erform much better compared to the divergence cleaning used in the
plit schemes. This is expected since divergence cleaning schemes
o not enforce any particular discretization of ∇ · B to zero. They
nstead rely on diffusing and damping numerical magnetic mono-
oles. On the other hand, constrained transport is designed such that
 · B = 0 to machine precision by the construction of a particular

tencil chosen to construct B from the electric field and to calculate
 · B . 
NRAS 544, 4256–4270 (2025)
 APPLI CATI ON  TO  MAGNETI C  FIELD  

MPLI FI CATI ON  IN  LOW-MACH  

U R BU L E N C E  

.1 Introduction to the turbulent dynamo 

agnetic fields play an important role in a wide variety of astro-
hysical systems, including accretion discs (R. F. Penna et al. 2010 ;
oneva, D. V. et al. 2021 ), star formation (A. R. Choudhari 2015 ; C.
ederrath 2015 ; P. Sharda et al. 2021 ), galaxies (A. A. Ruzmaikin,
. D. Sokolov & A. M. Shukurov 1988 ; R. Beck & R. Wielebinski
013 ), and the interstellar medium (A. Fletcher et al. 2011 ; A. Seta
 C. Federrath 2022 ). The presence of strong magnetic fields is

ttributed to the amplification of seed fields by turbulent dynamos .
urbulent dynamos amplify magnetic fields exponentially over short

ime-scales. This amplification is caused by a sequence of ‘stretching,
wisting, folding, and merging’ (A. A. Schekochihin et al. 2004 ;
. Brandenburg & K. Subramanian 2005 ; C. Federrath 2016 ) of
agnetic field lines induced by turbulent motions in the plasma,

eading to an increase in the density of magnetic field lines in a fluid
acket. 

.2 Numerical method and set-up 

e solve equations ( 3 )–( 7 ) in a periodic 3D box of length L ,
niformly discretized with a grid of 2563 cells. Turbulence is driven
tochastically by the Ornstein-Uhlenbeck process (V. Eswaran &
. B. Pope 1988 ; C. Federrath et al. 2010 ) implemented in the
ublicly available code TurbGen (C. Federrath et al. 2022 ). The
urbulence driving field is constructed here to be purely solenoidal
divergence free), using a Helmholtz decomposition in Fourier space,
here we measure wave numbers ( k) in units of 2 π/L . The driving

s constrained to large scales, i.e. k = [1 , 3], following a parabolic
ourier spectrum, where the peak injection is at kturb = 2 and the
riving amplitude falls off smoothly to zero at k = 1 and k = 3, re-
pectively, as in previous works (e.g. C. Federrath et al. 2021 ). Using
his turbulence driving method, we adjust the overall amplitude of the
river such that the turbulence reaches a target velocity dispersion
v = Mcs on scale �turb = L/kturb = L/ 2, where cs is the sound
peed and M is the target turbulence Mach number. This defines
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Figure 5. Time evolution of the sonic Mach number (top panel) and the 
ratio of magnetic to kinetic (turbulent) energy (bottom panel). The Mach 
number reaches the target value of ≈ 0 . 1 within 2 tturb , and during 3 and 
10 − 30 tturb (depending on the solver; labelled in the legend), the magnetic 
energy grows exponentially (see fitted solid lines in the bottom panel). Finally, 
once Emag /Ekin � 0 . 5, the field saturates and the growth stops, coinciding 
with a ≈ 20 per cent drop in the Mach number (see the top panel), due to 
the enhanced back-reaction of the field onto the flow. USM-HLLD, USM- 
Roe, and USM-BK have the highest growth rate (see Table 2 ) since they are 
less dissipative. On the other hand, the 3-wave USM-HLLC has the smallest 
growth rate, and it shows the weakest dip in Mach number owing to its 
excessive dissipation of the magnetic energy. 
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he turbulence turnover time-scale as tturb = �turb /σv = L/ (2 Mcs ). 
ere, we study sonic Mach numbers of M = 0 . 1 and 0.01. 
The box is initialized with a uniform density of fluid at rest and the

ound speed is set to cs = 1, i.e. all speeds are measured relative to the
ound speed. The strength and statistical properties of the turbulent 
ynamo are independent of the structure of the initial magnetic field 
A. Seta & C. Federrath 2020 ), so we initialize a uniform magnetic
eld in the z-direction of the computational domain to obtain a 
eference Alfvén Mach number of MA = σv /cA = 109 when the 
urbulence is fully developed. This corresponds to a very weak initial 
eed field that is subsequently amplified by the turbulent dynamo. 

Finally, for the runs with the USM-BK scheme, we set the cut-off
ach number (see equation 14 ) to Mcut = M . Using Mcut / M = 1

s acceptable for chaotic problems like turbulence, where, unlike the 
alsara vortex, there is no strict structural symmetry to be preserved. 

.3 Results for Mach 0.1 

n ideal-MHD, we set ν and η in equations ( 3 )–( 7 ) to 0. However, as
hown earlier, numerical dissipation is always present owing to finite 
ell discretization (L. Malvadi Shivakumar & C. Federrath 2023 ) 
nd due to the numerical scheme. Consequently, for excessively 
issipative solvers, the results from numerical simulations can 
eviate significantly from the physical setting. In the following 
ections, we compare the effect of MHD solvers on the time evolution
nd morphology of the system and calculate the characteristic wave- 
umbers associated with numerical viscosity and resistivity at Mach 
.1. We run our simulations for a period of 100 tturb to allow the
agnetic field to saturate. However, we focus most of our analyses on

he so-called ‘kinematic phase’, where the field does not have a strong 
ack-reaction on the flow yet, and the field grows exponentially 
ast. 

.3.1 Time evolution 

ig. 5 shows the growth of the sonic Mach number ( M ) in the top
anel and the ratio of the magnetic energy to the kinetic energy
 Emag /Ekin ) in the bottom panel. We see that the Mach number
eaches the target value of 0.1 within 2 tturb . It is followed by the
inematic phase, where the magnetic energy increases exponentially 
up to 10 − 30 tturb , depending on the numerical scheme used). This
s attributed to the turbulent motions of the fluid, which stretch, twist,
old, and merge the magnetic field lines, leading to an increase in
heir concentration. Finally, as the magnetic field strength increases, 
he Lorentz force back-reacts on the turbulent motion, suppressing 
urther amplification and saturating the magnetic field. This back- 
eaction also lowers the Mach number by about 20 per cent. 

In order to measure the magnetic field dynamo growth rate, we fit
he exponential model 

Emag 

Ekin 
= Ae�t , (23) 

n the kinematic phase, which we define as 5 × 10−6 ≤ Emag /Ekin ≤
 × 10−3 (i.e. Emag 
 Ekin ), and � is the growth rate measured in 
nits of t−1 

turb . The growth rates measured from the fits are listed in
able 2 . 
The USM-HLLC scheme exhibits an abnormally low growth 

ate. Consequently, the magnetic field and the Lorentz force is 
eaker compared to the other solvers and the sonic Mach number 

s higher. It also has a lower saturation level (see column 3 in
able 2 ). This behaviour is attributed to the excessive dissipation
f magnetic energy by the HLLC solver (see bottom-middle panel in 
ig. 3 ). In contrast, USM-HLLD, USM-Roe and USM-BK achieve 
he highest growth rates due to their reduced numerical dissipation. 
t is important to note that the growth rate depends on the magnetic
randtl number (see C. Federrath et al. 2014 ), which, in turn, is
etermined by the ratio of the resistive to viscous dissipation wave-
umbers (see Appendix B ). Therefore, the growth rate is not a
niversal indicator of solver performance. For instance, USM-HLLD 

nd UMS-Roe simulations exhibit higher effective Prandtl numbers 
see Table 5 ), resulting in a slightly higher growth rate than that of
SM-BK. 

.3.2 Magnetic field structure 

umerical dissipation also affects the morphology of the system. 
o get a qualitative idea of this in turbulent flows, we investigate

he spatial distribution of the magnetic energy. Fig. 6 shows a slice
f the magnetic energy normalized by the mean magnetic energy 
uring the kinematic phase of the dynamo, when Emag /Ekin = 10−4 . 
e see random fluctuations in the magnetic energy field with all

he solvers, however, the morphology is markedly different in USM- 
LLC (bottom-middle panel) and slightly different for Split-Roe 

nd Split-Bouchut (first two panels). They smear the over-densities 
nd the under-densities in the field over larger regions. As mentioned
MNRAS 544, 4256–4270 (2025)
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M

Table 2. Mach 0.1 turbulent dynamo measurements. 

Name �( t−1 
turb ) ( Emag /Ekin )sat pbn kbn ˜ kν pν kν kη

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Split-Roe 1 . 43+ 0 . 01 
−0 . 01 0 . 48+ 0 . 07 

−0 . 07 0 . 92+ 0 . 09 
−0 . 07 5 . 5+ 0 . 3 

−0 . 3 5 . 9+ 0 . 1 
−0 . 2 1 . 0+ 0 . 1 

−0 . 1 6 . 3+ 0 . 1 
−0 . 2 31+ 1 

−1 

Split-Bouchut 1 . 39+ 0 . 01 
−0 . 01 0 . 40+ 0 . 06 

−0 . 06 1 . 01+ 0 . 10 
−0 . 08 5 . 8+ 0 . 3 

−0 . 3 5 . 9+ 0 . 1 
−0 . 2 1 . 0+ 0 . 1 

−0 . 1 6 . 3+ 0 . 1 
−0 . 2 31+ 1 

−2 

USM-Roe 2 . 20+ 0 . 01 
−0 . 01 0 . 66+ 0 . 13 

−0 . 13 0 . 42+ 0 . 28 
−0 . 24 4 . 0+ 0 . 8 

−0 . 7 6 . 8+ 1 . 7 
−1 . 9 1 . 0+ 0 . 1 

−0 . 1 6 . 4+ 0 . 6 
−0 . 9 44+ 2 

−1 

USM-HLLD 2 . 48+ 0 . 01 
−0 . 01 0 . 69+ 0 . 09 

−0 . 09 0 . 35+ 0 . 35 
−0 . 29 3 . 9+ 0 . 7 

−0 . 6 7 . 1+ 2 . 2 
−2 . 7 1 . 0+ 0 . 1 

−0 . 1 6 . 5+ 0 . 6 
−1 . 2 45+ 1 

−2 

USM-HLLC 0 . 54+ 0 . 01 
−0 . 01 0 . 21+ 0 . 04 

−0 . 04 0 . 36+ 0 . 38 
−0 . 29 4 . 1+ 1 . 0 

−0 . 7 7 . 4+ 2 . 1 
−2 . 5 1 . 1+ 0 . 1 

−0 . 1 6 . 5+ 0 . 7 
−1 . 0 21+ 1 

−2 

USM-BK 2 . 00+ 0 . 01 
−0 . 01 0 . 58+ 0 . 10 

−0 . 10 −0 . 13+ 0 . 37 
−0 . 30 4 . 5+ 1 . 5 

−1 . 0 8 . 8+ 2 . 4 
−2 . 8 1 . 1+ 0 . 1 

−0 . 1 7 . 6+ 1 . 0 
−1 . 1 40+ 1 

−0 

Note. All parameters except the saturation value of the ratio of the magnetic energy to the kinetic energy (column 3) were measured/derived by averaging over 
the kinematic phase of the dynamo when 5 × 10−6 ≤ Emag /Ekin ≤ 5 × 10−3 . Columns: (1) Name of the numerical scheme as described in Table 1 . (2) Growth 
rate in units of t−1 

turb . (3) Average value of the ratio of the magnetic energy to the kinetic energy in the saturation phase of the dynamo ( t > 60 tturb ). (4) Exponent 
of the bottleneck effect in the kinetic spectrum. (5) Scaling wave-number of the bottleneck effect. (6) Viscous dissipation wave-number if pν = 1. (7) Exponent 
of the dissipation term of Pkin . (8) Viscous dissipation wave-number. (9) Resistive dissipation wave-number. 

Figure 6. A slice of the magnetic energy normalized by the mean magnetic energy during the kinematic phase of the dynamo, when Emag /Ekin = 10−4 , 
emphasizing its spatial distribution. The more dissipative Split schemes and USM-HLLC smear features over large-length scales while USM-Roe, USM-HLLD 

and USM-BK capture finer structures. 
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arlier, the dissipation in the Split schemes is attributed to divergence-
leaning, while that in USM-HLLC is a result of its consideration
f fewer waves in the Riemann solution. In contrast, USM-HLLD
nd USM-BK display fine, small-scale structures. We quantitatively
nalyse the differences between the various schemes in the next
ection. 

.3.3 Spectral analysis 

n subsonic turbulence, energy cascades from larger scales to smaller
cales until it reaches a scale where it is dissipated due to the effects
NRAS 544, 4256–4270 (2025)
f viscosity and resistivity (e.g. U. Frisch 1995 ). This takes place
hrough the breaking-up of large eddies into smaller eddies. The
ave-numbers where viscosity and resistivity act are called viscous
issipation wave-number kν , and resistive dissipation wave-number
η, respectively. 

We calculate the power spectrum of the kinetic energy averaged
ver the kinematic phase (as defined in Section 5.3.1 ) to mea-
ure the viscous dissipation wave-number. We follow the power
pectrum model used in L. Malvadi Shivakumar & C. Federrath
 2023 ) and fit the kinetic spectrum from k ≥ 3 to exclude the
urbulence driving scales. The upper limit of the fit is set to
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Figure 7. Time-averaged kinetic power spectra (top panel), magnetic power 
spectra (middle panel), and current power spectra (bottom panel) for various 
solvers. The spectra are multiplied for every solver except Split-Roe by a 
factor of 0.1 relative to the next solver in the legends. The black lines in the 
kinetic power spectra are the fits to the model given in equation ( 24 ). The 
viscous dissipation scale and resistive dissipation scale are marked on the 
x -axis. The viscous dissipation scales are clustered around each other for all 
solvers; however, the resistive dissipation scale measurements clearly show 

that HLLC is not suitable for MHD simulations since it is dissipative at very 
large length scales. 

Table 3. Mach 0.1 turbulent dynamo effective Reynolds numbers. 

Name Re Rm Pm 

(1) (2) (3) (4) 

Split-Roe 6 . 3+ 2 . 9 
−1 . 5 × 102 3 . 0+ 2 . 5 

−1 . 5 × 103 4 . 7+ 2 . 9 
−2 . 2 

Split-Bouchut 6 . 4+ 2 . 7 
−1 . 5 × 102 3 . 0+ 2 . 5 

−1 . 4 × 103 4 . 6+ 2 . 9 
−2 . 0 

USM-Roe 6 . 4+ 2 . 9 
−1 . 8 × 102 6 . 3+ 5 . 4 

−3 . 0 × 103 9 . 9+ 7 . 0 
−4 . 6 

USM-HLLD 6 . 4+ 3 . 3 
−2 . 0 × 102 6 . 1+ 5 . 1 

−3 . 0 × 103 9 . 4+ 7 . 3 
−4 . 4 

USM-HLLC 6 . 5+ 3 . 2 
−1 . 9 × 102 1 . 4+ 1 . 2 

−0 . 7 × 103 2 . 1+ 1 . 6 
−1 . 0 

USM-BK 8 . 1+ 4 . 0 
−2 . 4 × 102 4 . 6+ 3 . 7 

−2 . 2 × 103 5 . 6+ 4 . 2 
−2 . 6 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/staf1973/8321673 by guest on 02 D

ecem
ber 2025
max = N/ 8 = 32, where N is the number of grid cells, to ex-
lude spurious effects that arise on scales smaller than a few grid
ells. 

The kinetic energy power spectrum ( Pkin ) in the subsonic regime 
s modelled as 

kin ( k) = Akin 

[ (
k 

kbn 

)−1 . 7 

+
(

k 

kbn 

)pbn 
] 

exp 

[
−

(
k 

˜ kν

)pν
]

, (24) 

here Akin is the amplitude, kbn is the scale of energy accumulation 
ue to the bottleneck effect (G. Falkovich 1994 ; U. Frisch 1995 ; W.
chmidt, W. Hillebrandt & J. C. Niemeyer 2006 ; M. K. Verma & D.
onzis 2007 ), pbn characterizes the strength of the bottleneck effect, 

nd pν characterizes the sharpness of the transition into dissipation. 
he viscous dissipation wave-number as defined in N. Kriel et al. 
 2022 ) is related to ˜ kν and pbn by 

ν = ˜ k1 /pν
ν . (25) 

e point the reader to L. Malvadi Shivakumar & C. Federrath ( 2023 )
nd references therein for the motivation behind this model. 

To find the characteristic resistive dissipation wave-number ( kη), 
e follow the definition in N. Kriel et al. ( 2025 ), using the electric

urrent ( ∼ ∇ × B ) power spectrum. Since Ohmic dissipation is 
roportional to current, kη is defined as the wave-number where 
he current attains a maximum. 

The power spectra of kinetic energy, magnetic energy and current 
re shown in Fig. 7 , and the fit parameters and the measured charac-
eristic dissipation wave-numbers ( kν and kη) are given in Table 2 . For
he kinetic spectra, the dissipation scales are similar for all solvers ex-
ept USM-BK, which shows dissipation at larger wave-numbers (an 

17 per cent difference compared to USM-HLLD). For the current 
pectra, we see that USM-HLLD marginally outperforms USM-BK 

an ≈ 12 per cent difference). We also see that the dissipation scale 
or HLLC lies at very small wave-numbers, i.e. it induces numerical 
issipation effects at much larger lengths scales, smearing out small- 
cale features. Thus, it is particularly unsuitable for modelling MHD 

ows. 

.3.4 Numerical Reynolds numbers 

ince numerical dissipation is always present in MHD simulations, 
he simulated flows have a finite numerical hydrodynamic Reynolds 
umber (Re) and magnetic Reynolds number (Rm), in contrast to a 
erfectly ideal setting, where these would be infinite, because ν = 

= 0 in the MHD equations. Appendix B describes the procedure 
or obtaining Re and Rm from the characteristic dissipation scales, 
sing the key relations, 

e =
(

kν

cRe kdriving 

)4 / 3 

, (26) 

m =
(

kη

cPm 

kν

)2 

, and (27) 

m = Re × Pm , (28) 

here cRe = 0 . 025+ 0 . 005 
−0 . 006 and cPm 

= 2 . 3+ 0 . 8 
−0 . 5 . 

Table 3 lists the values of the effective Re, Rm, and Pm for the
ach 0.1 simulations, for each numerical scheme. The measured 

alues of Re range between 630+ 290 
−150 and 810+ 400 

−240 (an ≈ 30 per cent 
ariation), while Rm values vary between 1400+ 1200 

−700 and 6300+ 5400 
−3000 

a striking ≈ 350 per cent variation attributable to the choice of the 
umerical scheme). The Pm values (which can be calculated from 

e and Rm) vary between 2 . 1+ 1 . 6 
−1 . 0 and 9 . 9+ 7 . 0 

−4 . 6 (an ≈ 370 per cent
MNRAS 544, 4256–4270 (2025)
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M

Figure 8. Similar to Fig. 5 , but for Mach 0.01, comparing the best- 
performing solvers from the previous comparison at Mach 0.1, namely USM- 
BK and USM-HLLD. Note that the x -axis shows ( t − t0 ) /tturb , where t0 is 
chosen such that both runs start at the same Emag /Ekin to facilitate the 
comparison. 
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Table 5. Same as Table 3 , but for Mach 0.01. 

Name Re Rm Pm 

(1) (2) (3) (4) 

USM-HLLD 2 . 4+ 1 . 4 
−0 . 8 × 102 5 . 5+ 6 . 8 

−3 . 1 × 103 21+ 31 
−12 

USM-BK 8 . 0+ 3 . 8 
−2 . 2 × 102 5 . 2+ 5 . 7 

−2 . 7 × 103 6 . 5+ 6 . 1 
−3 . 3 
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ariation). We see that the USM-BK scheme shows the highest Re
810+ 400 

−240 compared to 640+ 330 
−200 for USM-HLLD, the next-highest

alue). This suggests that USM-BK has the least dissipation of
inetic energy in the low-Mach regime among the solvers/schemes
ompared; however, the large error bars show that the difference
etween the dissipation properties of the USM-HLLD and USM-BK
s not statistically significant at Mach 0.1. We further find that USM-
LLD and USM-Roe have a higher Pm than USM-BK (9 . 4+ 7 . 3 

−4 . 4 and
 . 9+ 7 . 0 

−4 . 6 for USM-HLLD and USM-BK, respectively, compared to
 . 6+ 4 . 2 

−2 . 6 for USM-BK). As the dynamo growth rate depends on Re
s well as Pm (see C. Federrath et al. 2014 ), these measurements of
m explain why USM-BK has a somewhat smaller growth rate (c.f.,
ig. 5 and Table 2 ) compared to USM-HLLD, despite being the least
issipative solver. 

.4 Results for Mach 0.01 

e have already established in the Balsara vortex test (c.f., Section
 ) that the schemes using Dedner-Marder cleaning do not perform
ery well in constraining the divergence of the magnetic field to
ero. From our analysis of the electric current power spectra, it
NRAS 544, 4256–4270 (2025)

able 4. Same as Table 2 , but for Mach 0.01. 

ame �( t−1 
turb ) pbn kbn 

1) (2) (3) (4) 

SM-HLLD 2 . 09+ 0 . 02 
−0 . 02 0 . 3+ 0 . 2 

−0 . 2 2 . 0+ 0 . 7 
−0 . 4 

SM-BK 1 . 94+ 0 . 01 
−0 . 01 −0 . 2+ 0 . 2 

−0 . 2 4 . 7+ 0 . 5 
−0 . 5 
s quite clear that HLLC is not suitable for low-Mach simulations
ue to its large resistive dissipation length scale. Based on our
tudy of energy conservation and the current power spectra, we
an conclude that USM-HLLD and USM-BK have been the best-
erforming solvers so far, showing comparable results. Given that
any astrophysical processes, such as stratified stellar flows (see F.
upka & H. J. Muthsam 2017 ) and early-Universe turbulent dynamos

see R. Achikanath Chirakkara et al. 2021 ), involve highly subsonic
ows with Mach numbers below 10−2 , we test these schemes further
y running a turbulent dynamo simulation at Mach 0.01. Since our
ocus is on the kinematic stage of the dynamo (which we use to
btain solver properties), we stop our simulations close to the onset
f saturation. 

.4.1 Time evolution 

ig. 8 shows the evolution of the Mach number and the ratio of
agnetic energy to kinetic energy with time. The plots have been

hifted so that both simulations have the same starting ratio of the
inetic energy to the magnetic energy, facilitating the comparison,
s the initial conditions are not relevant for the turbulent dynamo (A.
eta & C. Federrath 2020 ; J. R. Beattie et al. 2023 ). The features
re similar to what we see at Mach 0.1 (cf., Fig. 5 ). We define
he kinematic phase as in Section 5.3.1 (5 × 10−6 ≤ Emag /Ekin ≤
 × 10−3 ), with the measured growth rate listed in Table 4 . The
rowth rate is slightly higher for USM-HLLD compared to USM-
K, which is consistent with the higher Prandtl number of USM-
LLD (see Table 5 ), similar to what we found for the Mach 0.1

omparison of the two solvers. 

.4.2 Morphology 

ig. 9 shows the kinetic energy, the magnetic energy, and the
orticity, respectively, in a slice during the kinematic phase when
mag /Ekin = 10−4 . We see that more small-scale kinetic structure is

aptured in USM-BK compared to USM-HLLD. This is consistent
ith the fact that USM-BK dissipates kinetic energy at smaller

ength scales compared to USM-HLLD. The presence of small-
cale structures (left panel) shows that smaller eddies are present in
he USM-BK test case, whereas USM-HLLD dissipates energy into
eat before forming eddies of comparable sizes. A similar pattern
s hinted by the magnetic energy (middle panel), where USM-BK
aptures somewhat more small-scale structure than USM-HLLD.
˜ kν pν kν kη

(5) (6) (7) (8) 

2 . 6+ 0 . 8 
−0 . 6 0 . 8+ 0 . 1 

−0 . 1 3 . 1+ 0 . 8 
−0 . 7 31+ 9 

−6 

10 . 6+ 1 . 4 
−1 . 4 1 . 2+ 0 . 1 

−0 . 1 7 . 4+ 1 . 0 
−0 . 6 40+ 5 

−3 
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Figure 9. Slices of kinetic energy (left), magnetic energy (middle), and vorticity, ω = ∇ × v (right), through the simulation domain taken during the kinematic 
phase of the turbulent dynamo at Mach 0.01 when Emag /Ekin = 10−4 . The presence of small-scale structure in USM-BK shows that it dissipates kinetic energy 
at smaller length scales compared to USM-HLLD. Compared to the kinetic energy, the magnetic energy (middle panels) shows somewhat smaller qualitative 
differences between the two solvers, but it appears that also here the USM-BK captures slightly more small-scale turbulent structure than USM-HLLD; 
quantified in Section 5.4.3 . Finally, the vorticity (right-hand panels) reinforces the finding that USM-BK captures more small-scale structure than USM-HLLD. 
The inset labels on the vorticity panels show measurements of the mean vorticity in the entire system (not just the slice), demonstrating that USM-BK captures 
∼ 20 per cent more vorticity than USM-HLLD. 
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his difference is demonstrated quantitatively in the next section. 
ur findings are further corroborated by the vorticity modulus (right 
anel), where USM-BK captures ∼ 20 per cent more vorticity (see 
nset label) than USM-HLLD. 

.4.3 Spectral analysis 

e repeat the analysis in Section 5.3.3 for the two Mach 0.01 runs.
ig. 10 shows the kinetic energy, magnetic energy, current, and 
orticity power spectra. The kinetic spectra reveal that USM-HLLD 

urns downwards (a sign of the onset of dissipation) on scales larger
wave-numbers smaller) than USM-BK, implying that USM-BK 

issipates kinetic energy at smaller length scales compared to USM- 
LLD, and is therefore less dissipative. The current power spectrum 

eaks at a larger wave-number for USM-BK than USM-HLLD, im- 
lying that magnetic resistivity starts acting at smaller length scales 
or USM-HLLD compared to USM-BK, i.e. USM-HLLD is some- 
hat more resistive than USM-BK. The sharp downward turn of the 
orticity power spectrum of USM-HLLD indicates that smaller ed- 
ies have been dissipated into heat, a consequence of smaller viscous
issipations wave-number. The fitted dissipation wave-numbers are 
eported in Table 4 . We find that USM-BK dissipates at significantly
maller length scales both in terms of kinetics (58 per cent difference
n the wave-numbers) and magnetics (23 per cent difference in the
ave-numbers). 

.4.4 Numerical Reynolds numbers 

ollowing the relations given in Appendix B , we measure the
umerical hydrodynamic and magnetic Reynolds numbers, and the 
randtl number in Table 5 . We find that USM-BK has Re = 800+ 380 

−220 ,
hile USM-HLLD has Re = 240+ 140 

−80 , implying that the former is 
ess dissipative. We note that the Re for USM-HLLD has dropped by
 factor of 2.5, compared to the Mach 0.1 run, while USM-BK has
oughly the same value, demonstrating that the solver successfully 
etains high values of Re even at low Mach number. The Pm
or USM-BK is lower

(
Pm = 6 . 5+ 6 . 1 

−3 . 3 

)
compared to USM-HLLD 

Pm = 21+ 31 
−12 

)
, which explains why USM-BK has a lower growth 

ate in Table 4 . Since Pm is so much higher in USM-HLLD, the
roduct of Re and Pm, i.e. Rm, turns out to be similar for both
olvers. 
MNRAS 544, 4256–4270 (2025)
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M

Figure 10. Time-averaged power spectra of the kinetic energy (top panel), 
magnetic energy (second panel), electric current (third panel) and vorticity 
(bottom panel), for USM-HLLD and USM-BK. USM-BK has been shifted 
by a factor of 0.5 along the y -axis for clarity. The black lines are the fits to 
the model given in equation ( 24 ). The viscous dissipation scale and resistive 
dissipation scale are marked on the x -axis. Both the viscous and resistive 
dissipation scales are significantly separated from each other, showing that 
USM-BK is less dissipative than USM-HLLD, in both kinetics and magnetics. 
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F  

t
c

λ

Figure 11. The effective numerical hydrodynamic Reynolds number (Re ) 
as a function of the turbulent Mach number ( M ). Re does not change with 
M for USM-BK; however, it decreases with decreasing Mach number for 
USM-HLLD. 

w  

f  

o
1

λ

W  

t  

m  

i  

�

 

(  

s  

t  

o  

f  

i  

c  

a  

n  

d  

U  

s  

n
 

R

R

T  

M

T  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/staf1973/8321673 by guest on 02 D

ecem
ber 2025
.5 Computational cost 

actoring out the sound speed ( cs ) in equation ( 13 ) and approximating
he Alfvén speed in the x -direction by the total Alfvén speed ( cA;x ≈
A ), we can write the fastest wave-speed as 

fastest ≈ cs M + cs 

2 

√ √ √ √ 

(
1 

M2 
BK 

+ M2 

M2 
A 

)
+

√ (
1 

M2 
BK 

+ M2 

M2 
A 

)2 

− 4
M2 

MA 
, (29) 
NRAS 544, 4256–4270 (2025)
here MBK = 1 for conventional Riemann solvers, while MBK ≈ M
or the BK method, for our choice of Mcut = M . For our application
f turbulent dynamos where M ≈ M 
 1 
 MA ≈ MA and cs ≈
, this can be written as 

fastest ∼ M + 1 

MBK 
. (30) 

e can immediately see that for conventional Riemann solvers,
he fastest signal speed scales as (1 + M ) ∼ 1 while for the BK

ethod it scales as ∼ 1 / M . Therefore, the time-step ( �t ∝ c−1 
fastest ) is

ndependent of the Mach number for conventional solvers, however,
t ∝ M for the BK method (see equation 15 ). 
Since the turbulent turnover time ( tturb ) also scales as ∼ 1 / M

c.f., Section 5.2 ), the number of time-steps required to achieve the
ame amount of time evolution (i.e. the number of eddy-turnover
imes of evolution) also scales as ∼ 1 / M . Therefore, the total cost
f a simulation with the BK method scales as 1 / M2 , while that
or conventional Riemann solvers goes as 1 / M . If the end goal
s to achieve the highest numerical Re possible, either USM-BK
an be used at some resolution or USM-HLLD can be used at
 comparatively higher resolution. Fig. 11 shows the variation of
umerical Re with M at fixed resolution ( N ). For USM-BK, Re
oes not change significantly with M ; however, it scales as M0 . 4 for
SM-HLLD. L. Malvadi Shivakumar & C. Federrath ( 2023 ) have

hown that the effective numerical Re varies as N4 / 3 , where N is the
umber of grid cells in each direction. 
Therefore, for a given Mach number and resolution, the effective

e for the two solvers goes as 

ReBK ∼ M0 N4 / 3 , 

eHLLD ∼ M0 . 4 N4 / 3 . (31) 

he ratio of computational cost ( C) for the two solvers at a given
ach number and resolution is given by 

CBK 

CHLLD 
∼ M−2 N4 

M−1 N4 
. (32) 

o achieve a target Re = ReBK = ReHLLD at a fixed Mach number
y varying the resolution, we can use equations ( 31 ) and ( 32 ), and
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rite the ratio of the computational cost as 

CBK 

CHLLD 
∼ M−2 Re 3 

M−1 M−1 . 2 Re 3 
∼ M0 . 2 . (33) 

hus, we can say that USM-BK is marginally better than USM-
LLD on the metric of computational cost. An implicit implemen- 

ation of the BK method, which is less restrictive in the time-step
onstraint is preferable and we leave it to future works. 

 C O N C L U S I O N S  

e examined the impact of numerical schemes, particularly the 
hoice of Riemann solver, on numerical dissipation in low-Mach 
HD simulations. Using the Balsara vortex test problem, we 

ssessed the suitability of the new Riemann solver (USM-BK) and 
xplored its effectiveness in capturing structures in low-Mach tur- 
ulent dynamo simulations. The following are the main conclusions 
rawn from this work: 

(i) Conventional Riemann solvers (Roe, HLLC, HLLD, and 
ouchut) exhibit excessive dissipation in the low-Mach regime. 
(ii) The new USM-BK solver demonstrates the least dissipation 

f kinetic energy in the Balsara vortex tests at Mach 0.01, preserving
4 per cent of the kinetic energy after one complete advection of the
ortex across the computational grid. In constrast, USM-Roe, USM- 
LLC, and USM-HLLD show the highest dissipation, preserving 
nly 39 per cent of the kinetic energy. 
(iii) The USM-BK solver also exhibits very little dissipation of 
agnetic energy at Mach 0.01, retaining 96 per cent of the magnetic

nergy after one complete advection of the Balsara vortex. It is
arginally outperformed by USM-HLLD and USM-Roe, which 

etain 97 per cent of the magnetic energy. 
(iv) An unsplit-staggered mesh (USM) implementation of the 

K Riemann solver is preferred over the usage of divergence 
leaning since divergence cleaning also diffuses the magnetic energy. 
urthermore, constrained transport keeps the divergence of magnetic 
eld close to zero up to machine precision, by construction. 
(v) The time-step restriction for stability for USM-BK scales 

s �t ∼ O( M ) (c.f., equation 15 ). Therefore, implicit time-
teppers are preferable for applications in the low Mach 
egime. 

(vi) As discussed in Section 5 , the choice of Riemann solver
ignificantly influences both the growth rate and the saturation 
evel of the dynamo due to variations in the effective Reynolds
umbers between solvers. We measured the growth rates and the 
orresponding effective Reynolds numbers for various solvers at 
ach 0.1 and Mach 0.01. 
(vii) The new solver can resolve smaller length scales compared 

o the other solvers, which is evident from the kinetic and electric
urrent spectra. While USM-HLLD marginally outperforms USM- 
K in resolving magnetic structures at Mach 0.1, USM-BK surpasses 
SM-HLLD in performance as the Mach number is decreased. 
his difference in dissipation length scales is also reflected in the 
orphological features seen in snapshots taken during the kinematic 

hase. 
(viii) At a given energy ratio, USM-BK captures more vorticity 

ompared to USM-HLLD. The vorticity power spectra show that 
SM-BK has more power at smaller wave-numbers than USM- 
LLD, indicating that USM-BK captures more small-scale struc- 

ures since smaller eddies have not been dissipated into heat. 

We conclude that the new USM-BK solver is the most suitable 
or low-Mach MHD simulations, among the schemes compared, as 
t exhibits the least dissipation of kinetic and magnetic energy. The
olver is particularly effective in capturing small-scale structures of 
he flow, making it a good choice for turbulent dynamo simulations
n the low-Mach regime. 
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Figure A1. Variation of the amount of rotational (top panel) and magnetic 
energy (bottom panel) dissipated at the end of one advection as a function 
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PPENDI X  A :  C H O I C E  O F  T H E  C U T-O F F  

AC H  NUMBER  (  Mcut )  

luxes obtained from an approximate Riemann solvers have a
issipation term in the momentum/pressure flux of the form 

 ∼ ρλfastest ( u
L − uR ) , (A1) 

here ρ and λfastest are suitable approximations of density and the
astest wave speed at the cell interfaces, and uL and uR are the
-components (direction along which the MHD equations are one-
imensionalized before solving the Riemann problem) of the fluid
peed on the left and right side of the cell interface, respectively.
his dissipation term adds artificial viscosity that dampens down
ny spurious perturbation modes generated in the solution of the
iscretized MHD equations. However, in the low-Mach regime, such
 dissipation term overwhelms the physical flux. This is clear from
he ratio of the advective flux to the dissipation term: 

Fadvective 

D 

∼ ρu2 

ρλ �u 

∼ M . (A2) 
ow dissipation. We chose Mcut / M = 2 for our 64 × 64 test at Mach 0.01. 
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Figure A2. Rotational (top panel) and magnetic energy (bottom panel) profile of the vortex at the end of one advection for Mcut / M = 0 . 4 , 2 and 8. Mcut / M ≤ 1 
shows a spurious increase in the magnetic energy and distorts the vortex. In contrast, Mcut / M � 1 yields stable, low-dissipation solutions. 
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he advective flux is smaller compared to the dissipation term in 
ubsonic flows. 

This incorrect scaling is fixed by rescaling the dissipation term by 
 factor φ ∝ M . C. Birke & C. Klingenberg ( 2023 ) use φ = MBK 

efined in equation ( 14 ) as 

BK = min 

{
max 

{
Mcut ,

u 

cs 

}
, 1

}
. (A3) 

cut sets a local cut-off Mach number below which dissipation is 
o longer reduced. It also controls the fastest wave-speed in the 
elaxation scheme (see equation ( 13 )). Our relaxation scheme is less
iffusive as long as Mcut < 1. 
Here, we explore the effect of Mcut . We run simulations of the

alsara Vortex test problem at M = 0 . 01 at resolutions of 642 ,
282 and 2562 for Mcut / M ranging from 0.4 to 8. We also run
dditional tests, at M = 0 . 005 and M = 0 . 05 at 642 resolution. Fig.
1 shows the amount of rotational (top panel) and magnetic energy 

bottom panel) dissipated at the end of one complete advection of the
ortex. For Mcut / M ≤ 1, there is an increase in the rotational energy
issipation and a spurious increase in the magnetic energy is also 
een. This spurious increase in the magnetic energy corresponds to a 
ignificant distortion of the vortex. An example of such a distortion
s shown in the left most panel of Fig. A2 , which shows the profile
f the rotational (top panel) and the magnetic energy (bottom panel) 
orresponding to Mcut / M = 0 . 4 , 2 and 8 for the 64 × 64 run at Mach
.01. 
In Fig. A1 , Mcut / M = 2 shows the least dissipation of rotational

inetic energy and conserves the magnetic energy well. Therefore, 
e choose this value for our vortex test. We also perform a resolution

est measuring the L1 norm of the rotational kinetic energy and the
agnetic energy for USM-BK (at Mcut / M = 2) and USM-HLLD.
he L1 for energy E (rotational or magnetic) is calculated using 

1 ( E ) = � | E − E ( t = 0) | 
� E ( t = 0) 

. (A4) 

he variation of the L1 norm with the number of resolution elements
n the x/y direction ( N ) are shown in Fig. A3 . USM-HLLD has
 higher value of L1 norm compared to USM-BK and it decreases
ith increasing resolution for both of them. This shows that USM-
K performs better than USM-HLLD and there is no growth of
ispersive errors. 
It is clear that the optimal choice of Mcut / M is Mach number-

ependent and may depend on the type of problem too. For a given
HD problem, the optimal value can be inferred from low-resolution 

uns before the solver is used in the corresponding high-resolution 
roduction run. Nevertheless, the parameter variation tests in Fig. A1 
uggest that Mcut / M � 1 provides a relatively universal choice that
ields stable and low-dissipation solutions with USM-BK. 
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igure A3. Variation of the L1 norm with increasing resolution. N is the
umber of resolution elements in the x/y direction and LE is calculated via
quation ( A4 ). USM-BK performs better than USM-HLLD and the error
ecreases with increasing resolution for both of them, implying that neither
how any growth of dispersive errors, with Mcut / M = 2 is a good choice for
SM-BK. 

PPENDIX  B:  EFFECTIVE  H Y D RO DY NA M I C  

N D  M AGNETIC  R E Y N O L D S  N U M B E R S  

he hydrodynamic Reynolds number (Re ) is defined as 

e = uturb �turb 

ν
, (B1) 

here uturb is the fluid turbulent velocity at the driving scale of
urbulence ( �turb = 2 π/kdriving ) and ν is the kinematic viscosity of
he fluid. Similarly, the magnetic Reynolds number (Rm ) is defined
s 

m = uturb �turb 

η
, (B2) 

here η is the magnetic resistivity of the fluid. 
Numerical viscosity and resistivity must be lower than the explicit

iscosity and resistivity to avoid smearing of features and over-
NRAS 544, 4256–4270 (2025)

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reus
amping of flows. Therefore, the numerical Reynolds numbers
ssociated with a numerical scheme must be greater than the explicit
eynolds number being simulated. We can calculate the numerical
ydrodynamic Reynolds number and Magnetic Prandtl number of

deal MHD simulations from measurements of the characteristic
issipation scales. 
To calculate the hydrodynamic Reynolds number, we use the

ollowing relation given in N. Kriel et al. ( 2022 ) 

e =
(

kν

cνkdriving 

)4 / 3 

, (B3) 

here cν = 0 . 025+ 0 . 005 
−0 . 006 (referred to as cRe in the main text). 

To measure the magnetic Reynolds number, we follow N. Kriel
t al. ( 2025 ). However, their definition of the resistive dissipation
cale (their definition will be referred to as k′ 

ν) is different from what
e have used in equation ( 24 ). They define the viscous dissipation
ave-number as the wave-number where the scale-dependent hydro-
ynamic Reynolds number equals one, i.e. Re ( k′ 

ν) = 1. This wave-
umber marks the scale where the flow transitions from an inertial
orce dominated one ( kturb < k < k′ 

ν) to a dissipation-dominated one
 k > k′ 

ν). N. Kriel et al. ( 2025 ) have shown that k′ 
ν and Re are related

y 

′ 
ν = c′ 

νkdriving Re 3 / 4 , (B4) 

here c′ 
ν = 0 . 10+ 0 . 01 

−0 . 01 . 
Using equation ( B3 ) and equation ( B4 ), we can write 

′ 
ν = c′ 

ν

cν

kν. (B5) 

hus, if we have measured kν from spectral fitting in equation ( 24 ),
e can find k′ 

ν . 
N. Kriel et al. ( 2025 ) have also shown the resistive dissipation

ave-number ( kη) scales with the viscous dissipation wave-number
 k′ 

ν , based on the alternative definition mentioned here) and the
randtl number as 

η = cηk
′ 
νPm 

1 / 2 , (B6) 

here cη = 0 . 53+ 0 . 07 
−0 . 07 . 

Using equation ( B5 ) and equation ( B6 ), we can write 

η = cη

c′ 
ν

cν

kνPm 

1 / 2 = cPm 

kνPm 

1 / 2 , (B7) 

here cPm 

= cηc
′ 
ν/cν = 2 . 1+ 0 . 8 

−0 . 5 . 
The Prandtl number (Pm) can be obtained using the above relation.

he Magnetic Reynolds number can then be calculated as 

m = Re × Pm . (B8) 
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