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ABSTRACT
Magnetohydrodynamic (MHD) simulations of subsonic (Mach number < 1) turbulence are crucial to our understanding of
several processes including oceanic and atmospheric flows, the amplification of magnetic fields in the early universe, accretion
discs, and stratified flows in stars. In this work, we demonstrate that conventional numerical schemes are excessively dissipative
in this low-Mach regime. We demonstrate that a new numerical scheme (termed ‘USM-BK’ and implemented in the FLASH
MHD code) reduces the dissipation of kinetic and magnetic energy, constrains the divergence of magnetic field to zero close to
machine precision, and resolves smaller-scale structure than other, more conventional schemes, and hence, is the most accurate
for simulations of low-Mach turbulent flows. We first compare several numerical schemes/solvers, including Split-Roe, Split-
Bouchut, USM-Roe, USM-HLLC, USM-HLLD, and the new USM-BK, on a simple vortex problem. We then compare the
schemes/solvers in simulations of the turbulent dynamo and show that the choice of scheme affects the growth rate, saturation
level, and viscous and resistive dissipation scale of the dynamo. We also measure the numerical kinematic Reynolds number
(Re) and magnetic Reynolds number (Rm) of our otherwise ideal MHD flows, and show that the new USM-BK scheme provides
the highest Re and comparable Rm amongst all the schemes compared.
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1 INTRODUCTION

Subsonic flows are ubiquitous in a wide range of physical systems,
ranging from terrestrial applications to astrophysics. They appear in
the study of turbine blade performance (Leggett et al. 2022), fusion
and fission systems (Min et al. 2024), rotorcraft fuselages and ship
airwakes (Park et al. 2022), ocean modelling (Tissot et al. 2023), strat-
ified systems like stars (Kupka & Muthsam 2017), and the amplifica-
tion of primordial magnetic fields (Wagstaff et al. 2014; Achikanath
Chirakkara et al. 2021). Such subsonic flows are characterised by
fluid velocities smaller than the speed of sound (also referred to as
the low-Mach regime, where Mach number 𝑀 = 𝑣/𝑐s < 1 and 𝑣 and
𝑐s are flow velocity and sound speed, respectively). Being inherently
non-linear and three-dimensional, these turbulent, complex systems
are impossible to tackle via analytic calculations. Hence, they are
studied through numerical simulations, a large class of which use fi-
nite volume discretisation and Godunov-based methods. While such
methods are highly successful in modelling the transonic and the
supersonic regime, they are subject to limitations in terms of effi-
ciency in the subsonic regime. The artificial discontinuity created by
the finite-volume method (FV method) at each cell interface creates
spurious waves that lead to an overestimate of pressure, overwhelm-
ing the physical fluxes (see Guillard & Murrone 2004), leading to
excessive dissipation in the low-Mach regime. Apart from this, the
discretisation of the MHD equations introduces viscous terms as well
(see Malvadi Shivakumar & Federrath (2023)). Both of these effects
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combined operate similar to physical viscosity (𝜈) and resistivity (𝜂),
and are referred to as artificial and numerical viscosity and resistivity.

These types of numerical/artificial viscosity and resistivity must
be significantly lower than the physical viscosity and resistivity of the
flow being modelled in an MHD simulation. Otherwise, features of
the flow are smeared and the simulation results deviate significantly
from the physical setting. Flow properties in MHD are determined
primarily by the hydrodynamic and the magnetic Reynolds numbers,
labelled Re and Rm, respectively. They are defined as

Re =
𝑢ℓ

𝜈
, and (1)

Rm =
𝑢ℓ

𝜂
, (2)

where 𝑢 and ℓ are the characteristic velocity and length scales of the
flow, respectively. To accurately model a flow, the numerical Re and
Rm must be larger than the physical Re and Rm of the flows being
modelled.

Numerical dissipation arising from discretisation can be reduced
by increasing the grid resolution and special techniques, like Adaptive
Mesh Refinement (AMR) (Berger & Colella 1989). The effect of grid
resolution on numerical viscosity and resistivity has been thoroughly
studied by Malvadi Shivakumar & Federrath (2023). In this work, we
focus on the dissipation originating from the artificial discontinuities
created by the FV method in simulating subsonic flows. We test an
extension of Waagan et al. (2011) introduced in Birke & Klingenberg
(2023), which significantly reduces this dissipation.

In Section 2, we introduce the MHD equations. Section 3 describes
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our numerical methods and briefly summarises why simulations of
subsonic flows are more dissipative and how Birke & Klingenberg
(2023) overcome this difficulty. Section 4 presents simulations of the
Balsara vortex (Balsara (2004), see also Leidi et al. (2022)) as a test
case for a variety of numerical schemes, all at the same grid reso-
lution, to demonstrate the effect of the choice of numerical scheme
on artificial viscosity and resistivity and test if the new scheme pro-
vides an improvement over previous methods. In Section 5, we test
the various numerical schemes on simulations of subsonic turbu-
lent dynamos, which also have important astrophysical applications.
We compare the effect of the numerical scheme on the time evo-
lution and saturation of the dynamo, as well as the structure and
turbulent MHD statistics of the system. We also measure the numer-
ical Reynolds numbers of these otherwise ideal MHD (Re → ∞,
Rm → ∞) simulations. We summarise our results in Section 6.

2 EQUATIONS OF MHD

The MHD equations are given as follows:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0, (3)

𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ·

(
𝜌𝒖⊗𝒖 − 1

4𝜋
𝑩⊗𝑩

)
+ ∇𝑝tot = ∇ · (2𝜈𝜌𝑺) + 𝜌𝑭, (4)

𝜕𝑒

𝜕𝑡
+ ∇ ·

[
(𝑒 + 𝑝tot) 𝒖 − 1

4𝜋
(𝑩 · 𝒖) 𝑩

]
=

∇ ·
[
2𝜈𝜌𝒖 · 𝑺 + 1

4𝜋
𝜂𝑩 × (∇ × 𝑩)

]
, (5)

𝜕

𝜕𝑡
𝑩 = ∇ × (𝒖 × 𝑩) + 𝜂∇2𝑩, (6)

Here, 𝜌, 𝒖, 𝑝tot = 𝑝th+|𝑩 |2/(8𝜋), 𝑩, 𝑒 = 𝜌𝑒int+𝜌 |𝒖 |2/2+|𝑩 |2/(8𝜋),
𝑆ij = (𝜕i𝑢j + 𝜕j𝑢i)/2 − (𝛿ij∇ · 𝒖)/3, 𝜈, 𝜂 denote the density, veloc-
ity, pressure (thermal plus magnetic), magnetic field, energy density
(internal plus kinetic, plus magnetic), strain tensor, kinematic vis-
cosity and magnetic resistivity, respectively. The system of equations
is closed by an equation of state relating the thermal pressure (𝑝th)
to the density (𝜌).

The magnetic field also satisfies the divergence free constraint
given by

∇ · 𝑩 = 0. (7)

In the absence of physical viscosity and resistivity (𝜈 = 0 and
𝜂 = 0), the system of partial differential equations described above
takes the general conservative form

𝜕𝑼

𝜕𝑡
+ 𝜕𝑭

𝜕𝑥
+ 𝜕𝑮

𝜕𝑦
+ 𝜕𝑯

𝜕𝑧
= 0, (8)

where 𝑼 is a vector of conservative variables given by

𝑼 =
[
𝜌, 𝜌𝑢x, 𝜌𝑢y, 𝜌𝑢z, 𝑒, 𝐵x, 𝐵y, 𝐵z

]
, (9)

and 𝑭, 𝑮 and 𝑯 are the fluxes given by

𝑭 = [𝜌𝑣x, 𝜌𝑣
2
x + 𝑃 + |𝑩 |2/8𝜋 − 𝐵2

x/4𝜋, 𝜌𝑣x𝑣y − 𝐵x𝐵y/4𝜋,

𝜌𝑣x𝑣z − 𝐵x𝐵z/4𝜋,
(
𝑒 + 𝑃 + |𝑩 |2/8𝜋

)
𝑣x − 𝐵x (v · B)/4𝜋, 0,

(𝑣x𝐵y − 𝑣y𝐵x), −(𝑣z𝐵x − 𝑣x𝐵z)], (10)

𝑮 = [𝜌𝑣y, 𝜌𝑣x𝑣y − 𝐵x𝐵y/4𝜋, 𝜌𝑣2
y + 𝑃 + |𝑩 |2/8𝜋 − 𝐵2

y/4𝜋,

𝜌𝑣y𝑣z − 𝐵y𝐵z/4𝜋,
(
𝑒 + 𝑃 + |𝑩 |2/8𝜋

)
𝑣y − 𝐵y (v · B)/4𝜋, 0,

(𝑣y𝐵z − 𝑣z𝐵y), −(𝑣x𝐵y − 𝑣y𝐵x)], and (11)

𝑯 = [𝜌𝑣z, 𝜌𝑣x𝑣z − 𝐵x𝐵z/4𝜋, 𝜌𝑣y𝑣z − 𝐵y𝐵z/4𝜋,

𝜌𝑣2
z +𝑃+ |𝑩 |2/8𝜋−𝐵2

z/4𝜋,
(
𝑒 + 𝑃 + |𝑩 |2/8𝜋

)
𝑣z−𝐵z (v ·B)/4𝜋, 0,

(𝑣x𝐵z − 𝑣z𝐵x), −(𝑣y𝐵z − 𝑣z𝐵y)] . (12)

3 NUMERICAL METHODS

3.1 Finite volume method

Eq. (8) can be solved using the finite-volume (FV) method. The
FV method divides the computational domain into control volumes
(grid cells) and integrates the governing equations over each vol-
ume, ensuring conservation of fluxes across cell boundaries. Fluxes
at the interfaces are computed using Riemann solvers (such as Roe,
HLLD, HLLC, etc). To improve accuracy, the physical state variables
are reconstructed at the cell faces via linear or even higher-order re-
construction. Slope limiters are used to ensure that the reconstruction
step does not introduce artificial maxima/minima. The temporal dis-
cretisation is performed using schemes such as Euler or Runge-Kutta
methods and the time-stepping can be implemented in a split or un-
split fashion. The divergence of the magnetic field is constrained to
zero up to machine precision using constrained transport (CT) (Yee
1966; Evans & Hawley 1988; Dai & Woodward 1998; Gardiner &
Stone 2008), or kept at reasonably low levels by a divergence cleaning
technique (Dedner et al. 2002).

3.2 Numerical dissipation

Discretisation of MHD equations gives rise to viscous terms that
introduce numerical dissipation. This kind of numerical dissipation
can be reduced by choosing a reconstruction method or a time step-
per of higher order. However, finite volume methods also create an
artificial discontinuity at each grid interface that gives rise to spuri-
ous waves. Since these artificial waves create pressure fluctuations
of the order of the sonic Mach number 𝑀 , they can overwhelm the
physical flux in the simulations of low-Mach flows that have pres-
sure fluctuations of the order 𝑀2 (Guillard & Murrone 2004). This
leads to excessive dissipation in low-Mach flows. Various methods
have been explored to mitigate this issue, like pre-conditioning the
Riemann problem at each interface to reduce the effect of disconti-
nuities (Turkel 1999; Clerc 2000), or rescaling the dissipation term
in the numerical flux to make it independent of the Mach number
(Miczek et al. 2015; Minoshima & Miyoshi 2021; Leidi et al. 2022;
Birke et al. 2023). Additionally, implicit-explicit methods, which use
the Godunov-type method only for the slow dynamics in the PDE,
so that the dissipation term does not scale with 𝑂 (1/𝑀), are also a
suitable approach for low-Mach problems (Klein 1995; Birke et al.
2024). In this work, we focus on the relaxation scheme by Birke &
Klingenberg (2023) (referred to as the BK method), which resorts on
rescaling the numerical flux in the low-Mach-number regime.

3.3 BK method

The core idea of the BK method is to construct an enlarged system
of equations, including a relaxation term on the right-hand side, such
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that the new system is an approximation of the original system given
in Section 2. Then the left-hand side of the relaxation system is solved
using a Riemann solver followed by a projection of the solution back
onto the original variables. Since there is some freedom in how the
relaxation system is constructed, it is possible to tweak the solution
of the pressure variable in the Riemann fan and fix the incorrect
scaling of the pressure, while ensuring that the resulting Riemann
solver satisfies a discrete entropy inequality. We point the reader to
Birke & Klingenberg (2023) for further details on their relaxation
scheme.

The fastest wave-speed in the Riemann fan of the BK relaxation
scheme can be closely approximated by

𝜆fastest = 𝑢 + 1
2

√√√√(
𝑐2

s
𝑀2

BK
+ 𝑐2

A

)
+

√√√(
𝑐2

s
𝑀2

BK
+ 𝑐2

A

)2

− 4𝑐2
s 𝑐

2
A;x, (13)

where 𝑢 is the fluid velocity, 𝑐s is the sound speed, 𝑐A is the Alfvén
speed, 𝑐A;x is the Alfvén speed in the x-direction (direction along
which the MHD equations are one-dimensionalised before solving
the Riemann problem) and 𝑀BK (the equivalent of 𝜙 in Eq. (14)–(16)
in Birke & Klingenberg 2023) is defined as

𝑀BK = min
{
max

{
𝑀cut,

𝑢

𝑐s

}
, 1

}
. (14)

The parameter 𝑀cut is used to set a local cut-off Mach number
below which the scheme does not reduce dissipation any longer by
increasing the scheme-specific speed, thereby preventing division by
small numbers in regions where the velocity is close to 0, which
would lead to 𝜆fastest → ∞ and the time-step Δ𝑡 → 0. In this work,
we set 𝑀cut equal to the reference Mach number (M = 0.1 or 0.01)
that we are simulating – the reference Mach number is a statistical
(global) quantity describing the characteristic ratio of typical flow
velocities to the sound speed in a given problem1. Note that for a
conventional Riemann solver, like Roe or HLLD, 𝑀BK = 1, and
𝜆fastest is a close approximation of the fastest wave speed in the
Riemann fan of these conventional solvers.

The time-step restriction for stability is given by the
Courant–Friedrichs–Lewy (CFL) condition,

Δ𝑡 = CFL
Δ𝑥

𝜆fastest
, (15)

where Δ𝑥 is the cell size. We use CFL = 0.5 throughout this work.

3.4 Numerical schemes in FLASH

We perform our simulations using a modified version of the FLASH
code (Fryxell et al. 2000; Dubey et al. 2008) and compare several
numerical schemes with different Riemann solvers. Some schemes
utilise split time-stepping combined with Dedner-Marder cleaning
(Marder 1987; Dedner et al. 2002) for magnetic field divergence
control (Split-Roe and Split-Bouchut), while others adopt unsplit
time-stepping on a staggered mesh with an upwind version of Lee’s
constrained transport scheme (Lee 2006) (USM-Roe, USM-HLLD,
USM-HLLC, and USM-BK, where ‘USM’ stands for ‘unsplit-
staggered mesh’). All our schemes use the 2nd-order TVD (total
variation diminishing) interpolation of data in space and time using
the Hancock method (van Leer 1984). The details of the numerical
schemes are summarised in Table 1.

1 For instance, in turbulent flows, M is the standard deviation of 𝑀.

0.0

0.2

0.4

0.6

0.8

1.0

100|v |
100|B |
pth

0 1 2 3 4 5
r

−5

0

5

×10−5

Centrifugal Term
Magnetic Tension
∇pth

∇pB

Figure 1. Top panel shows the radial profiles of velocity, magnetic field and
pressure for the Balsara vortex, following Eqs. (16)–(18) for a sonic Mach
number of M = 0.01 and the ratio of the magnetic to the rotational kinetic
energy 𝛽k = 1. Note that the velocity and magnetic pressure profiles have been
scaled by a factor of 100 for the sake of clarity. The scaled velocity profile
touches the thermal pressure profile (𝑝th ≈ 1) at 𝑟 = 1 since M = 0.01. The
bottom panel shows that the centrifugal term −(𝒗 · ∇)𝒗 is balanced by the
magnetic tension (𝑩 · ∇)𝑩, and the gradients of the thermal pressure (∇𝑝th)
and the magnetic pressure (∇𝑝B) balance each other.

4 BALSARA VORTEX

The Balsara vortex (Balsara 2004) is an exact stationary solution
of the ideal MHD equations in two dimensions, where the centrifu-
gal force, magnetic tension, thermal pressure gradient, and magnetic
pressure gradient are perfectly balanced. This configuration, which
conserves kinetic and magnetic energies independently in the absence
of dissipative forces, serves as an excellent test problem for evaluating
energy conservation in MHD simulations. Discretisation errors and
artificial discontinuities in finite-volume methods introduce numeri-
cal dissipation, leading to a loss of rotational and magnetic energy.
Here we use the Balsara vortex to compare the energy conservation
performance of various split and unsplit MHD solvers across dif-
ferent numerical schemes. While the dissipation we observe arises
from a combination of numerical discretisation and the choice of
numerical technique (like reconstruction method, Riemann solver,
etc.) as well as the presence of artificial discontinuities, we use the
same resolution for all the different schemes in Tab. 1, such that we
can compare the dissipation arising from the latter.
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Table 1. Numerical schemes used in this work.

Scheme Name Split / Unsplit Riemann Solver ∇ · 𝑩 Method Electric Field Reconstruction
(1) (2) (3) (4) (5)
Split-Roe Split Roe Dedner-Marder cleaning N/A
Split-Bouchut Split Bouchut Dedner-Marder cleaning N/A
USM-Roe Unsplit Roe Constrained Transport Lee-Upwind
USM-HLLD Unsplit HLLD Constrained Transport Lee-Upwind
USM-HLLC Unsplit HLLC Constrained Transport Lee-Upwind
USM-BK Unsplit BK Constrained Transport Lee-Upwind

Notes. Column (1): name of numerical scheme, (2): whether the scheme uses directionally split or unsplit updates, (3): Riemann solver – Roe (Roe 1981),
Bouchut (Waagan et al. 2011), HLLD (Miyoshi & Kusano 2005), HLLC (Li 2005) or BK (Birke & Klingenberg 2023), (4): whether Dedner-Marder cleaning
(Marder 1987; Dedner et al. 2002) or constrained transport (CT) (Yee 1966; Evans & Hawley 1988; Dai & Woodward 1998; Gardiner & Stone 2008) was used
to handle the magnetic field divergence constraint, (5): Lee-upwind (Lee 2006) electric field reconstruction method, if applicable. All schemes use the
2nd-order Hancock (van Leer 1984) method for interpolation of data in space and time.

4.1 Initial conditions

The initial conditions for the Balsara vortex are given by

𝒗 = �̃� (−𝑦�̂� + 𝑥 �̂�) exp
(
1 − 𝑟2

2

)
, (16)

𝑩 = �̃� (−𝑦�̂� + 𝑥 �̂�) exp
(
1 − 𝑟2

2

)
, (17)

𝑝th = 1 +
[
�̃�2

2
(1 − 𝑟2) − �̃�2

2

]
exp

(
1 − 𝑟2

)
, (18)

𝜌 = 1, (19)

where 𝑟2 = 𝑥2 + 𝑦2, and �̂� and �̂� are unit vectors in the 𝑥 and 𝑦

directions, respectively. We use �̃� = 0.01, �̃� = 0.01, and 𝛾 = 5/3.
Here we define the reference Mach number (M) as the maximum
local Mach number (𝑀) in the simulation domain. Our choice of pa-
rameters �̃� , �̃� and 𝛾 gives M ≈ 0.01. The radial profiles of velocity,
magnetic field and pressure are shown in Fig. 1.

4.2 Setup

We use a computational domain of (𝑥, 𝑦) ∈ [−5, 5]×[−5, 5] and 64×
64 grid cells with periodic boundary conditions for our simulations.
The problem is made computationally harder by advecting the vortex
along the diagonal of the computational grid with speed �̃�. We run
our simulations for one complete advection of the vortex across the
diagonal, such that it ends up exactly at the starting position, i.e., at
the coordinate origin. In this time interval, the vortex turns around
2.25 times.

4.3 Results and comparison of solvers

In order to quantify the amount of kinetic and magnetic energy dissi-
pation, we calculate and compare the fraction of rotational and mag-
netic energy that the vortex has retained compared to their respective
initial values. The rotational kinetic energy (𝐸rot) is calculated as

𝐸rot =
1
2
𝜌

[(
𝑣x − �̃�

2

)2
+

(
𝑣y − �̃�

2

)2
]
, (20)

while the magnetic energy (𝐸mag) is calculated as

𝐸mag =
1
2
|𝑩 |2. (21)

Fig. 2 shows the fraction of the rotational energy retained in the
system at the end of one complete advection of the vortex. The
energy has been normalised by the maximum local rotational energy
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Figure 2. Rotational energy of the vortex after one advection diago-
nally through the computational domain for the six different numerical
solver/scheme combinations (from left to right and top to bottom): Split-
Roe, Split-Bouchut, USM-Roe, USM-HLLD, USM-HLLC, and USM-BK.
The rotational energy has been normalised by the maximum rotational en-
ergy (at 𝑟 = 1) at the beginning of the simulation (𝑡 = 0). The value in the
top left corner of each panel shows the fraction of the total rotational energy
left in the system compared to 𝑡 = 0. We see that USM-BK outperforms all
other schemes by retaining 84% of the rotational kinetic energy.
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Figure 3. Same as Fig. 2, but for the magnetic energy. The value in the top
left corner of each panel shows the fraction of the total magnetic energy
left in the system after one complete box advection compared to 𝑡 = 0.
We find that the USM-BK scheme is also the best-performing scheme with
respect to the magnetic energy, with only 1% of the initial energy dissipated.
The Split schemes dissipate magnetic energy while damping the magnetic
monopoles, while the 3-wave USM-HLLC scheme has dissipated almost all
of the magnetic energy in the system.
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Figure 4. Same as Fig. 2, but for the divergence of the magnetic field, defined
in a normalised fashion via Eq. (22), such that its magnitude can be compared
to order unity. The inset on the top left in each panel shows the root-mean-
squared value of ∇ · �̂�. The split schemes keep the value of ∇ ·𝑩 at reasonably
low levels while the USM schemes maintain ∇ · 𝑩 = 0 close to machine
precision.

(at 𝑟 = 1) present in the system at the beginning of the evolution.
We find that the split schemes (Split-Roe and Split-Bouchut) retain
around 65% of the kinetic energy, while the unsplit schemes (USM),
except for the USM-BK, retain only 39% of the initial rotational
kinetic energy. The new scheme (USM-BK; bottom right panel)
performs the best, conserving 84% of the rotational energy.

Fig. 3 shows the same as Fig. 2, but for the magnetic energy. Split-
Roe and Split-Bouchut lose more than half of their initial magnetic
energy and significantly distort the vortex into a nearly square-shaped
form. The increased dissipation is a consequence of the divergence-
cleaning method, which also dissipates magnetic energy while damp-
ing the magnetic monopoles. USM-Roe, USM-HLLD, and USM-BK
perform similarly well in conserving the magnetic energy, with USM-
BK retaining 99% of the initial magnetic energy. These schemes
introduce minor distortions in the shape of the vortex. At the same
time, USM-HLLC, which considers only 3 waves in the Riemann
solution, dissipates almost all the magnetic energy in the system.

Finally, we look at the divergence of the magnetic field. We define
a normalised version of ∇ · 𝑩, as

∇ · �̂� = ∇ · 𝑩

𝐵rmsΔ𝑥
, (22)

where 𝐵rms is the root-mean-squared magnetic field integrated over
the entire volume, and Δ𝑥 is the side length of each grid cell. Fig. 4
shows |∇ · �̂� |. The choice of Riemann solver does not play any
significant role in constraining the divergence of the magnetic field
to zero, however, all simulations using constrained transport (USM)
perform much better compared to the divergence cleaning used in the
split schemes. This is expected since divergence cleaning schemes
do not enforce any particular discretisation of ∇ · 𝑩 to zero. They
instead rely on diffusing and damping numerical magnetic mono-
poles. On the other hand, constrained transport is designed such that
∇ · 𝑩 = 0 to machine precision by the construction of a particular
stencil chosen to construct 𝑩 from the electric field and to calculate
∇ · 𝑩.

5 APPLICATION TO MAGNETIC FIELD
AMPLIFICATION IN LOW-MACH TURBULENCE

5.1 Introduction to the turbulent dynamo

Magnetic fields play an important role in a wide variety of as-
trophysical systems, including accretion disks (Penna et al. 2010;
Boneva, D. V. et al. 2021), star formation (Choudhari 2015; Feder-
rath 2015; Sharda et al. 2021), galaxies (Ruzmaikin et al. 1988; Beck
& Wielebinski 2013), and the interstellar medium (Fletcher et al.
2011; Seta & Federrath 2022). The presence of strong magnetic
fields is attributed to the amplification of seed fields by turbulent
dynamos. Turbulent dynamos amplify magnetic fields exponentially
over short timescales. This amplification is caused by a sequence
of "stretching, twisting, folding, and merging" (Schekochihin et al.
2004; Brandenburg & Subramanian 2005; Federrath 2016) of mag-
netic field lines induced by turbulent motions in the plasma, leading
to an increase in the density of magnetic field lines in a fluid packet.

5.2 Numerical method and setup

We solve Eqs. (3)–(7) in a periodic 3D box of length 𝐿, uniformly
discretised with a grid of 2563 cells. Turbulence is driven stochas-
tically by the Ornstein-Uhlenbeck process (Eswaran & Pope 1988;
Federrath et al. 2010) implemented in the publicly available code
TurbGen (Federrath et al. 2022). The turbulence driving field is
constructed here to be purely solenoidal (divergence free), using a
Helmholtz decomposition in Fourier space, where we measure wave
numbers (𝑘) in units of 2𝜋/𝐿 . The driving is constrained to large
scales, i.e., 𝑘 = [1, 3], following a parabolic Fourier spectrum, where
the peak injection is at 𝑘turb = 2 and the driving amplitude falls off
smoothly to zero at 𝑘 = 1 and 𝑘 = 3, respectively, as in previous
works (e.g., Federrath et al. 2021). Using this turbulence driving
method, we adjust the overall amplitude of the driver such that the
turbulence reaches a target velocity dispersion 𝜎𝑣 = M𝑐s on scale
ℓturb = 𝐿/𝑘turb = 𝐿/2, where 𝑐s is the sound speed and M is the
target turbulence Mach number. This defines the turbulence turnover
timescale as 𝑡turb = ℓturb/𝜎𝑣 = 𝐿/(2M𝑐s). Here we study sonic
Mach numbers of M = 0.1 and 0.01.

The box is initialised with a uniform density of fluid at rest and the
sound speed is set to 𝑐s = 1, i.e., all speeds are measured relative to the
sound speed. The strength and statistical properties of the turbulent
dynamo are independent of the structure of the initial magnetic field
(Seta & Federrath 2020), so we initialise a uniform magnetic field
in the 𝑧-direction of the computational domain to obtain a reference
Alfvén Mach number of MA = 𝜎𝑣/𝑐A = 109 when the turbulence
is fully developed. This corresponds to a very weak initial seed field
that is subsequently amplified by the turbulent dynamo.

Finally, for the runs with the USM-BK scheme, we set the cut-off
Mach number (see Eq. 14) to 𝑀cut = M.

5.3 Results for Mach 0.1

In ideal-MHD, we set 𝜈 and 𝜂 in Eqs. (3)–(7) to 0. However, as shown
earlier, numerical dissipation is always present owing to finite cell
discretisation (Malvadi Shivakumar & Federrath 2023) and due to the
numerical scheme. Consequently, for excessively dissipative solvers,
the results from numerical simulations can deviate significantly from
the physical setting. In the following sections, we compare the effect
of MHD solvers on the time evolution and morphology of the sys-
tem and calculate the characteristic wave-numbers associated with
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Figure 5. Time evolution of the sonic Mach number (top panel) and the
ratio of magnetic to kinetic (turbulent) energy (bottom panel). The Mach
number reaches the target value of ≈ 0.1 within 2𝑡turb, and during 3 and
10 − 30𝑡turb (depending on the solver; labeled in the legend), the magnetic
energy grows exponentially (see fitted solid lines in the bottom panel). Finally,
once 𝐸mag/𝐸kin ⪆ 0.5, the field saturates and the growth stops, coinciding
with a ≈ 20% drop in the Mach number (see top panel), due to the enhanced
back-reaction of the field onto the flow. USM-HLLD, USM-Roe and USM-
BK have the highest growth rate (see Table 2) since they are less dissipative.
On the other hand, the 3-wave USM-HLLC has the smallest growth rate, and
it shows the weakest dip in Mach number owing to its excessive dissipation
of the magnetic energy.

numerical viscosity and resistivity at Mach 0.1. We run our simula-
tions for a period of 100 𝑡turb to allow the magnetic field to saturate.
However, we focus most of our analyses on the so-called ‘kinematic
phase’, where the field does not have a strong back-reaction on the
flow yet, and the field grows exponentially fast.

5.3.1 Time evolution

Fig. 5 shows the growth of the sonic Mach number (M) in the top
panel and the ratio of the magnetic energy to the kinetic energy
(𝐸mag/𝐸kin) in the bottom panel. We see that the Mach number
reaches the target value of 0.1 within 2 𝑡turb. It is followed by the
kinematic phase, where the magnetic energy increases exponentially
(up to 10−30 𝑡turb, depending on the numerical scheme used). This is
attributed to the turbulent motions of the fluid, which stretch, twist,
fold, and merge the magnetic field lines, leading to an increase in
their concentration. Finally, as the magnetic field strength increases,
the Lorentz force back-reacts on the turbulent motion, suppressing
further amplification and saturating the magnetic field. This back-
reaction also lowers the Mach number by about 20%.

In order to measure the magnetic field dynamo growth rate, we fit

the exponential model

𝐸mag
𝐸kin

= 𝐴𝑒Γ𝑡 , (23)

in the kinematic phase, which we define as 5× 10−6 ≤ 𝐸mag/𝐸kin ≤
5 × 10−3 (i.e., 𝐸mag ≪ 𝐸kin), and Γ is the growth rate measured in
units of 𝑡−1

turb. The growth rates measured from the fits are listed in
Table 2.

The USM-HLLC scheme exhibits an abnormally low growth rate.
Consequently, the magnetic field and the Lorentz force is weaker
compared to the other solvers and the sonic Mach number is higher.
It also has a lower saturation level (see column 3 in Table 2). This
behaviour is attributed to the excessive dissipation of magnetic en-
ergy by the HLLC solver (see bottom-middle panel in Fig. 3). In
contrast, USM-HLLD, USM-Roe and USM-BK achieve the highest
growth rates due to their reduced numerical dissipation. It is impor-
tant to note that the growth rate depends on the magnetic Prandtl
number (see Federrath et al. 2014), which, in turn, is determined by
the ratio of the resistive to viscous dissipation wave-numbers (see
Appendix A). Therefore, the growth rate is not a universal indica-
tor of solver performance. For instance, USM-HLLD and UMS-Roe
simulations exhibit higher effective Prandtl numbers (see Table 5),
resulting in a slightly higher growth rate than that of USM-BK.

5.3.2 Magnetic field structure

Numerical dissipation also affects the morphology of the system. To
get a qualitative idea of this in turbulent flows, we investigate the
spatial distribution of the magnetic energy. Fig. 6 shows a slice of the
magnetic energy normalised by the mean magnetic energy during
the kinematic phase of the dynamo, when 𝐸mag/𝐸kin = 10−4. We
see random fluctuations in the magnetic energy field with all the
solvers, however, the morphology is markedly different in USM-
HLLC (bottom-middle panel) and slightly different for Split-Roe
and Split-Bouchut (first two panels). They smear the over-densities
and the under-densities in the field over larger regions. As mentioned
earlier, the dissipation in the Split schemes is attributed to divergence-
cleaning, while that in USM-HLLC is a result of its consideration
of fewer waves in the Riemann solution. In contrast, USM-HLLD
and USM-BK display fine, small-scale structures. We quantitatively
analyse the differences between the various schemes in the next
section.

5.3.3 Spectral analysis

In subsonic turbulence, energy cascades from larger scales to smaller
scales until it reaches a scale where it is dissipated due to the ef-
fects of viscosity and resistivity (e.g., Frisch 1995). This takes place
through the breaking-up of large eddies into smaller eddies. The
wave-numbers where viscosity and resistivity act are called viscous
dissipation wave-number 𝑘𝜈 , and resistive dissipation wave-number
𝑘𝜂 , respectively.

We calculate the power spectrum of the kinetic energy averaged
over the kinematic phase (as defined in Section 5.3.1) to measure
the viscous dissipation wave-number. We follow the power spectrum
model used in Malvadi Shivakumar & Federrath (2023) and fit the
kinetic spectrum from 𝑘 ≥ 3 to exclude the turbulence driving scales.
The upper limit of the fit is set to 𝑘max = 𝑁/8 = 32, where 𝑁 is the
number of grid cells, to exclude spurious effects that arise on scales
smaller than a few grid cells.
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Figure 6. A slice of the magnetic energy normalised by the mean magnetic energy during the kinematic phase of the dynamo, when 𝐸mag/𝐸kin = 10−4,
emphasising its spatial distribution. The more dissipative Split schemes and USM-HLLC smear features over large-length scales while USM-Roe, USM-HLLD
and USM-BK capture finer structures.

The kinetic energy power spectrum (𝑃kin) in the subsonic regime
is modelled as

𝑃kin (𝑘) = 𝐴kin

[(
𝑘

𝑘bn

)−1.7
+

(
𝑘

𝑘bn

) 𝑝bn
]

exp
[
−

(
𝑘

�̃�𝜈

) 𝑝𝜈 ]
, (24)

where 𝐴kin is the amplitude, 𝑘bn is the scale of energy accumulation
due to the bottleneck effect (Falkovich 1994; Frisch 1995; Schmidt
et al. 2004; Verma & Donzis 2007), 𝑝bn characterises the strength
of the bottleneck effect, and 𝑝𝜈 characterises the sharpness of the
transition into dissipation. The viscous dissipation wave-number as
defined in Kriel et al. (2022) is related to �̃�𝜈 and 𝑝bn by

𝑘𝜈 = �̃�
1/𝑝𝜈
𝜈 . (25)

We point the reader to Malvadi Shivakumar & Federrath (2023) and
references therein for the motivation behind this model.

To find the characteristic resistive dissipation wave-number (𝑘𝜂),
we follow the definition in Kriel et al. (2023), using the electric
current (∼ ∇ × 𝑩) power spectrum. Since Ohmic dissipation is pro-
portional to current, 𝑘𝜂 is defined as the wave-number where the
current attains a maximum.

The power spectra of kinetic energy, magnetic energy and current
are shown in Fig. 7, and the fit parameters and the measured charac-
teristic dissipation wave-numbers (𝑘𝜈 and 𝑘𝜂) are given in Table 2.
For the kinetic spectra, the dissipation scales are similar for all solvers
except USM-BK, which shows dissipation at larger wave-numbers
(an ≈ 17% difference compared to USM-HLLD). For the current
spectra, we see that USM-HLLD marginally outperforms USM-BK
(an ≈ 12% difference). We also see that the dissipation scale for

HLLC lies at very small wave-numbers, i.e., it induces numerical
dissipation effects at much larger lengths scales, smearing out small-
scale features. Thus, it is particularly unsuitable for modelling MHD
flows.

5.3.4 Numerical Reynolds numbers

Since numerical dissipation is always present in MHD simulations,
the simulated flows have a finite numerical hydrodynamic Reynolds
number (Re) and magnetic Reynolds number (Rm), in contrast to a
perfectly ideal setting, where these would be infinite, because 𝜈 =

𝜂 = 0 in the MHD equations. Appendix A describes the procedure
for obtaining Re and Rm from the characteristic dissipation scales,
using the key relations,

Re =

(
𝑘𝜈

𝑐Re𝑘driving

)4/3
, (26)

Pm =

(
𝑘𝜂

𝑐Pm𝑘𝜈

)2
, and (27)

Rm = Re × Pm, (28)

where 𝑐Re = 0.025+0.005
−0.006 and 𝑐Pm = 2.3+0.8

−0.5.
Table 3 lists the values of the effective Re, Rm, and Pm for the

Mach 0.1 simulations, for each numerical scheme. The measured
values of Re range between 630+290

−150 and 810+400
−240 (an ≈ 30% vari-

ation), while Rm values vary between 1400+1200
−700 and 6300+5400

−3000 (a
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Figure 7. Time-averaged kinetic power spectra (top panel), magnetic power
spectra (middle panel), and current power spectra (bottom panel) for various
solvers. The spectra are multiplied for every solver except Split-Roe by a
factor of 0.1 relative to the next solver in the legends. The black lines in
the kinetic power spectra are the fits to the model given in Eq.( 24). The
viscous dissipation scale and resistive dissipation scale are marked on the
x-axis. The viscous dissipation scales are clustered around each other for all
solvers, however, the resistive dissipation scale measurements clearly show
that HLLC is not suitable for MHD simulations since it is dissipative at very
large length scales.

striking ≈ 350% variation attributable to the choice of the numerical
scheme). The Pm values (which can be calculated from Re and Rm)
vary between 2.1+1.6

−1.0 and 9.9+7.0
−4.6 (an ≈ 370% variation). We see

that the USM-BK scheme shows the highest Re (810+400
−240 compared

to 640+330
−200 for USM-HLLD, the next-highest value). This implies

that USM-BK has the least dissipation of kinetic energy in the low-
Mach regime among the solvers/schemes compared. We further find
that USM-HLLD and USM-Roe have a higher Pm than USM-BK
(9.4+7.3

−4.4 and 9.9+7.0
−4.6 for USM-HLLD and USM-BK, respectively,

compared to 5.6+4.2
−2.6 for USM-BK). As the dynamo growth rate de-

pends on Re as well as Pm (see Federrath et al. 2014), these measure-
ments of Pm explain why USM-BK has a somewhat smaller growth
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Figure 8. Similar to Fig. 5, but for Mach 0.01, comparing the best-performing
solvers from the previous comparison at Mach 0.1, namely USM-BK (orange)
and USM-HLLD (purple). Note that the x-axis shows (𝑡 − 𝑡0 )/𝑡turb, where
𝑡0 is chosen such that both runs start at the same 𝐸mag/𝐸kin to facilitate the
comparison.

rate (c.f., Fig. 5 and Tab. 2) compared to USM-HLLD, despite being
the least dissipative solver.

5.4 Results for Mach 0.01

We have already established in the Balsara vortex test (c.f., Sec. 4)
that the schemes using Dedner-Marder cleaning do not perform very
well in constraining the divergence of the magnetic field to zero.
From our analysis of the electric current power spectra, it is quite
clear that HLLC is not suitable for low-Mach simulations due to its
large viscous dissipation length scale. Based on our study of energy
conservation and the current power spectra, we can conclude that
USM-HLLD and USM-BK have been the best-performing solvers so
far, showing comparable results. Given that many astrophysical pro-
cesses, such as stratified stellar flows (see Kupka & Muthsam 2017)
and early-Universe turbulent dynamos (see Achikanath Chirakkara
et al. 2021), involve highly subsonic flows with Mach numbers below
10−2, we test these schemes further by running a turbulent dynamo
simulation at Mach 0.01. Since our focus is on the kinematic stage of
the dynamo (which we use to obtain solver properties), we stop our
simulations close to the onset of saturation.

5.4.1 Time evolution

Fig. 8 shows the evolution of the Mach number and the ratio of
magnetic energy to kinetic energy with time. The plots have been
shifted so that both simulations have the same starting ratio of the
kinetic energy to the magnetic energy, facilitating the comparison, as
the initial conditions are not relevant for the turbulent dynamo (Seta
& Federrath 2020; Beattie et al. 2023). The features are similar to
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Table 2. Mach 0.1 turbulent dynamo measurements.

Name Γ (𝑡−1
turb ) (𝐸mag/𝐸kin )sat 𝑝bn 𝑘bn �̃�𝜈 𝑝𝜈 𝑘𝜈 𝑘𝜂

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Split-Roe 1.43+0.01
−0.01 0.48+0.07

−0.07 0.92+0.09
−0.07 5.5+0.3

−0.3 5.9+0.1
−0.2 1.0+0.1

−0.1 6.3+0.1
−0.2 31+1

−1

Split-Bouchut 1.39+0.01
−0.01 0.40+0.06

−0.06 1.01+0.10
−0.08 5.8+0.3

−0.3 5.9+0.1
−0.2 1.0+0.1

−0.1 6.3+0.1
−0.2 31+1

−2

USM-Roe 2.20+0.01
−0.01 0.66+0.13

−0.13 0.42+0.28
−0.24 4.0+0.8

−0.7 6.8+1.7
−1.9 1.0+0.1

−0.1 6.4+0.6
−0.9 44+2

−1

USM-HLLD 2.48+0.01
−0.01 0.69+0.09

−0.09 0.35+0.35
−0.29 3.9+0.7

−0.6 7.1+2.2
−2.7 1.0+0.1

−0.1 6.5+0.6
−1.2 45+1

−2

USM-HLLC 0.54+0.01
−0.01 0.21+0.04

−0.04 0.36+0.38
−0.29 4.1+1.0

−0.7 7.4+2.1
−2.5 1.1+0.1

−0.1 6.5+0.7
−1.0 21+1

−2

USM-BK 2.00+0.01
−0.01 0.58+0.10

−0.10 −0.13+0.37
−0.30 4.5+1.5

−1.0 8.8+2.4
−2.8 1.1+0.1

−0.1 7.6+1.0
−1.1 40+1

−0

Notes. All parameters except the saturation value of the ratio of the magnetic energy to the kinetic energy (column 3) were measured/derived by averaging over
the kinematic phase of the dynamo when 5 × 10−6 ≤ 𝐸mag/𝐸kin ≤ 5 × 10−3. Columns: (1) Name of the numerical scheme as described in Table 1. (2) Growth
rate in units of 𝑡−1

turb. (3) Average value of the ratio of the magnetic energy to the kinetic energy in the saturation phase of the dynamo (𝑡 > 60𝑡turb ) . (4)
Exponent of the bottleneck effect in the kinetic spectrum. (5) Scaling wave-number of the bottleneck effect. (6) Viscous dissipation wave-number if 𝑝𝜈 = 1. (7)
Exponent of the dissipation term of 𝑃kin. (8) Viscous dissipation wave-number. (9) Resistive dissipation wave-number.

Table 3. Mach 0.1 turbulent dynamo effective Reynolds numbers.

Name Re Rm Pm

(1) (2) (3) (4)

Split-Roe 6.3+2.9
−1.5 × 102 3.0+2.5

−1.5 × 103 4.7+2.9
−2.2

Split-Bouchut 6.4+2.7
−1.5 × 102 3.0+2.5

−1.4 × 103 4.6+2.9
−2.0

USM-Roe 6.4+2.9
−1.8 × 102 6.3+5.4

−3.0 × 103 9.9+7.0
−4.6

USM-HLLD 6.4+3.3
−2.0 × 102 6.1+5.1

−3.0 × 103 9.4+7.3
−4.4

USM-HLLC 6.5+3.2
−1.9 × 102 1.4+1.2

−0.7 × 103 2.1+1.6
−1.0

USM-BK 8.1+4.0
−2.4 × 102 4.6+3.7

−2.2 × 103 5.6+4.2
−2.6

what we see at Mach 0.1 (cf., Fig. 5). We define the kinematic phase
as in Section 5.3.1 (5 × 10−6 ≤ 𝐸mag/𝐸kin ≤ 5 × 10−3), with the
measured growth rate listed in Table 4. The growth rate is slightly
higher for USM-HLLD compared to USM-BK, which is consistent
with the higher Prandtl number of USM-HLLD (see Table 5), similar
to what we found for the Mach 0.1 comparison of the two solvers.

5.4.2 Morphology

Fig. 9 shows the kinetic energy, the magnetic energy, and the vor-
ticity, respectively, in a slice during the kinematic phase when
𝐸mag/𝐸kin = 10−4. We see that more small-scale kinetic structure is
captured in USM-BK compared to USM-HLLD. This is consistent
with the fact that USM-BK dissipates kinetic energy at smaller length
scales compared to USM-HLLD. The presence of small-scale struc-
tures (left panel) shows that smaller eddies are present in the USM-
BK test case, whereas USM-HLLD dissipates energy into heat before
forming eddies of comparable sizes. A similar pattern is hinted by
the magnetic energy (middle panel), where USM-BK captures some-
what more small-scale structure than USM-HLLD. This difference
is demonstrated quantitatively in the next section. Our findings are
further corroborated by the vorticity modulus (right panel), where
USM-BK captures∼ 20% more vorticity (see inset label) than USM-
HLLD.

5.4.3 Spectral analysis

We repeat the analysis in Section 5.3.3 for the two Mach 0.01 runs.
Fig. 10 shows the kinetic energy, magnetic energy, current, and vor-
ticity power spectra. The kinetic spectra reveal that USM-HLLD turns
downwards (a sign of the onset of dissipation) on scales larger (wave-
numbers smaller) than USM-BK, implying that USM-BK dissipates
kinetic energy at smaller length scales compared to USM-HLLD, and
is therefore less dissipative. The current power spectrum peaks at a
larger wave-number for USM-BK than USM-HLLD, implying that
magnetic resistivity starts acting at smaller length scales for USM-
HLLD compared to USM-BK, i.e., USM-HLLD is somewhat more
resistive than USM-BK. The sharp downward turn of the vorticity
power spectrum of USM-HLLD indicates that smaller eddies have
been dissipated into heat, a consequence of smaller viscous dissipa-
tions wave-number. The fitted dissipation wave-numbers are reported
in Table 4. We find that USM-BK dissipates at significantly smaller
length scales both in terms of kinetics (58% difference in the wave-
numbers) and magnetics (23% difference in the wave-numbers).

5.4.4 Numerical Reynolds numbers

Following the relations given in Appendix A, we measure the numer-
ical hydrodynamic and magnetic Reynolds numbers, and the Prandtl
number in Table 5. We find that USM-BK has Re = 800+380

−220, while
USM-HLLD has Re = 240+140

−80 , implying that the former is less dis-
sipative. We note that the Re for USM-HLLD has dropped by a factor
of 2.5, compared to the Mach 0.1 run, while USM-BK has roughly
the same value, demonstrating that the solver successfully retains
high values of Re even at low Mach number. The Pm for USM-BK
is lower

(
Pm = 6.5+6.1

−3.3

)
compared to USM-HLLD

(
Pm = 21+31

−12

)
,

which explains why USM-BK has a lower growth rate in Table 4.
Since Pm is so much higher in USM-HLLD, the product of Re and
Pm, i.e., Rm, turns out to be similar for both solvers.

5.5 Computational Cost

Factoring out the sound speed (𝑐s) in Eq. (13) and approximating the
Alfvén speed in the x-direction by the total Alfvén speed (𝑐A;x ≈ 𝑐A),
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Figure 9. Slices of kinetic energy (left), magnetic energy (middle), and vorticity, 𝝎 = ∇ × 𝒗 (right), through the simulation domain taken during the kinematic
phase of the turbulent dynamo at Mach 0.01 when 𝐸mag/𝐸kin = 10−4. The presence of small-scale structure in USM-BK shows that it dissipates kinetic energy
at smaller length scales compared to USM-HLLD. Compared to the kinetic energy, the magnetic energy (middle panels) shows somewhat smaller qualitative
differences between the two solvers, but it appears that also here the USM-BK captures slightly more small-scale turbulent structure than USM-HLLD; quantified
in Section 5.4.3. Finally, the vorticity (right-hand panels) reinforces the finding that USM-BK captures more small-scale structure than USM-HLLD. The inset
labels on the vorticity panels show measurements of the mean vorticity in the entire system (not just the slice), demonstrating that USM-BK captures ∼ 20%
more vorticity than USM-HLLD.

Table 4. Same as Tab. 2, but for Mach 0.01.

Name Γ (𝑡−1
turb ) 𝑝bn 𝑘bn �̃�𝜈 𝑝𝜈 𝑘𝜈 𝑘𝜂

(1) (2) (3) (4) (5) (6) (7) (8)

USM-HLLD 2.09+0.02
−0.02 0.3+0.2

−0.2 2.0+0.7
−0.4 2.6+0.8

−0.6 0.8+0.1
−0.1 3.1+0.8

−0.7 31+9
−6

USM-BK 1.94+0.01
−0.01 −0.2+0.2

−0.2 4.7+0.5
−0.5 10.6+1.4

−1.4 1.2+0.1
−0.1 7.4+1.0

−0.6 40+5
−3

Table 5. Same as Table 3, but for Mach 0.01.

Name Re Rm Pm

(1) (2) (3) (4)

USM-HLLD 2.4+1.4
−0.8 × 102 5.5+6.8

−3.1 × 103 21+31
−12

USM-BK 8.0+3.8
−2.2 × 102 5.2+5.7

−2.7 × 103 6.5+6.1
−3.3

we can write the fastest wave-speed as

𝜆fastest ≈ 𝑐s𝑀 + 𝑐s
2

√√√√(
1

𝑀2
BK

+ 𝑀2

𝑀2
A

)
+

√√√(
1

𝑀2
BK

+ 𝑀2

𝑀2
A

)2

− 4
𝑀2

𝑀A
,

(29)

where 𝑀BK = 1 for conventional Riemann solvers, while 𝑀BK ≈ M
for the BK method, for our choice of 𝑀cut = M. For our application
of turbulent dynamos where 𝑀 ≈ M ≪ 1 ≪ MA ≈ 𝑀A and 𝑐s ≈ 1,
this can be written as

𝑐fastest ∼ M + 1
𝑀BK

. (30)

We can immediately see that for conventional Riemann solvers, the
fastest signal speed scales as (1+M) ∼ 1 while for the BK method it
scales as ∼ 1/M. Therefore, the time-step (Δ𝑡 ∝ 𝑐−1

fastest) is indepen-
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Figure 10. Time-averaged power spectra of the kinetic energy (top panel),
magnetic energy (second panel), electric current (third panel) and vorticity
(bottom panel), for USM-HLLD and USM-BK. USM-BK has been shifted
by a factor of 0.5 along the y-axis for clarity. The black lines are the fits
to the model given in Eq. (24). The viscous dissipation scale and resistive
dissipation scale are marked on the x-axis. Both the viscous and resistive
dissipation scales are significantly separated from each other, showing that
USM-BK is less dissipative than USM-HLLD, in both kinetics and magnetics.

dent of the Mach number for conventional solvers, however, Δ𝑡 ∝ M
for the BK method (see Eq. 15).

Since the turbulent turnover time (𝑡turb) also scales as ∼ 1/M
(c.f., Sec. 5.2), the number of time-steps required to achieve the
same amount of time evolution (i.e., the number of eddy-turnover
times of evolution) also scales as ∼ 1/M. Therefore, the total cost
of a simulation with the BK method scales as 1/M2, while that for
conventional Riemann solvers goes as 1/M. Therefore, an implicit

implementation of the BK method, which is less restrictive in the
time-step constraint, is preferable and we leave it to future works.

6 CONCLUSIONS

We examined the impact of numerical schemes, particularly the
choice of Riemann solver, on numerical dissipation in low-Mach
MHD simulations. Using the Balsara vortex test problem, we as-
sessed the suitability of the new Riemann solver (USM-BK) and
explored its effectiveness in capturing structures in low-Mach tur-
bulent dynamo simulations. The following are the main conclusions
drawn from this work:

(i) Conventional Riemann solvers (Roe, HLLC, HLLD, and
Bouchut) exhibit excessive dissipation in the low-Mach regime.

(ii) The new USM-BK solver demonstrates the least dissipation
of kinetic energy in the Balsara vortex tests at Mach 0.01, preserving
84% of the kinetic energy after one complete advection of the vortex
across the computational grid. In constrast, USM-Roe, USM-HLLC,
and USM-HLLD show the highest dissipation, preserving only 39%
of the kinetic energy.

(iii) The USM-BK solver also exhibits the least dissipation of
magnetic energy at Mach 0.01, retaining 99% of the magnetic energy
after one complete advection of the Balsara vortex. It marginally
outperforms USM-HLLD and USM-Roe, which retain 97% of the
magnetic energy.

(iv) An unsplit-staggered mesh (USM) implementation of the BK
Riemann solver is preferred over the usage of divergence cleaning
since divergence cleaning also diffuses the magnetic energy. Further-
more, constrained transport keeps the divergence of magnetic field
close to zero up to machine precision, by construction.

(v) The time-step restriction for stability for USM-BK scales as
Δ𝑡 ∼ 𝑂 (M) (c.f., Eq. 15). Therefore, implicit time-steppers are
preferable for applications in the low Mach regime.

(vi) As discussed in Section 5, the choice of Riemann solver sig-
nificantly influences both the growth rate and the saturation level
of the dynamo due to variations in the effective Reynolds numbers
between solvers. We measured the growth rates and the correspond-
ing effective Reynolds numbers for various solvers at Mach 0.1 and
Mach 0.01.

(vii) The new solver can resolve smaller length scales compared
to the other solvers, which is evident from the kinetic and electric cur-
rent spectra. While USM-HLLD marginally outperforms USM-BK
in resolving magnetic structures at Mach 0.1, USM-BK surpasses
USM-HLLD in performance as the Mach number is decreased. This
difference in dissipation length scales is also reflected in the morpho-
logical features seen in snapshots taken during the kinematic phase.

(viii) At a given energy ratio, USM-BK captures more vorticity
compared to USM-HLLD. The vorticity power spectra show that
USM-BK has more power at smaller wave-numbers than USM-
HLLD, indicating that USM-BK captures more small-scale struc-
tures since smaller eddies have not been dissipated into heat.

We conclude that the new USM-BK solver is the most suitable
for low-Mach MHD simulations, as it exhibits the least dissipation
of kinetic and magnetic energy. The solver is particularly effective
in capturing small-scale structures of the flow, making it ideal for
turbulent dynamo simulations in the low-Mach regime.
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APPENDIX A: EFFECTIVE HYDRODYNAMIC AND
MAGNETIC REYNOLDS NUMBERS

The hydrodynamic Reynolds number (Re) is defined as

Re =
𝑢turbℓturb

𝜈
, (A1)

where 𝑢turb is the fluid turbulent velocity at the driving scale of
turbulence (ℓturb = 2𝜋/𝑘driving) and 𝜈 is the kinematic viscosity of
the fluid. Similarly, the magnetic Reynolds number (Rm) is defined
as

Rm =
𝑢turbℓturb

𝜂
, (A2)

where 𝜂 is the magnetic resistivity of the fluid.
Numerical viscosity and resistivity must be lower than the ex-

plicit viscosity and resistivity to avoid smearing of features and
over-damping of flows. Therefore, the numerical Reynolds numbers
associated with a numerical scheme must be greater than the explicit
Reynolds number being simulated. We can calculate the numeri-
cal Hydrodynamic Reynolds number and Magnetic Prandtl number
of ideal MHD simulations from measurements of the characteristic
dissipation scales.

To calculate the hydrodynamic Reynolds number, we use the fol-
lowing relation given in Kriel et al. (2022)

Re =

(
𝑘𝜈

𝑐𝜈𝑘driving

)4/3
, (A3)

where 𝑐𝜈 = 0.025+0.005
−0.006 (referred to as 𝑐Re in the main text).

To measure the magnetic Reynolds number, we follow Kriel et al.
(2023). However, their definition of the resistive dissipation scale
(their definition will be referred to as 𝑘′𝜈) is different from what we
have used in Eq. (24). They define the viscous dissipation wave-
number as the wave-number where the scale-dependent hydrody-
namic Reynolds number equals one, i.e., Re(𝑘′𝜈) = 1. This wave-
number marks the scale where the flow transitions from an inertial
force dominated one (𝑘turb < 𝑘 < 𝑘′𝜈) to a dissipation-dominated
one (𝑘 > 𝑘′𝜈). Kriel et al. (2023) have shown that 𝑘′𝜈 and Re are
related by

𝑘′𝜈 = 𝑐′𝜈𝑘drivingRe3/4, (A4)

where 𝑐′𝜈 = 0.10+0.01
−0.01.

Using Eq. (A3) and Eq. (A4), we can write

𝑘′𝜈 =
𝑐′𝜈
𝑐𝜈

𝑘𝜈 . (A5)

Thus, if we have measured 𝑘𝜈 from spectral fitting in Eq. (24), we
can find 𝑘′𝜈 .

Kriel et al. (2023) have also shown the resistive dissipation wave-
number (𝑘𝜂) scales with the viscous dissipation wave-number (𝑘′𝜈 ,
based on the alternative definition mentioned here) and the Prandtl
number as

𝑘𝜂 = 𝑐𝜂 𝑘
′
𝜈Pm1/2, (A6)

where 𝑐𝜂 = 0.53+0.07
−0.07.

Using Eq. (A5) and Eq. (A6), we can write

𝑘𝜂 = 𝑐𝜂
𝑐′𝜈
𝑐𝜈

𝑘𝜈Pm1/2 = 𝑐Pm𝑘𝜈Pm1/2, (A7)

where 𝑐Pm = 𝑐𝜂𝑐
′
𝜈/𝑐𝜈 = 2.1+0.8

−0.5.
The Prandtl number (Pm) can be obtained using the above relation.

The Magnetic Reynolds number can then be calculated as

Rm = Re × Pm. (A8)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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