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Abstract

Abstract

We consider a multi-species gas mixture described by a kinetic model. More precisely,
we are interested in models with Bhatnagar–Gross–Krook (BGK) interaction operators.
Several extensions to the standard BGK model are studied.

Firstly, we allow the collision frequency to vary not only in time and space but also with
the microscopic velocity. In the standard BGK model, the dependence on the microscopic
velocity is neglected for reasons of simplicity. We allow for a more physical description by
reintroducing this dependence. But even though the structure of the equations remains
the same, the so-called target functions in the relaxation term become more sophisticated
being defined by a variational procedure.

Secondly, we include quantum effects (for constant collision frequencies). This ap-
proach influences again the resulting target functions in the relaxation term depending
on the respective type of quantum particles.

In this thesis, we present a numerical method for simulating such models. We use implicit-
explicit (IMEX) time discretizations in order to take care of the stiff relaxation part due
to possibly large collision frequencies. The key new ingredient is an implicit solver which
minimizes a certain potential function. This procedure mimics the theoretical derivation
in the models. We prove that theoretical properties of the model are preserved at the
discrete level such as conservation of mass, total momentum and total energy, positivity of
distribution functions and a proper entropy behavior. We provide an array of numerical
tests illustrating the numerical scheme as well as its usefulness and effectiveness.

Zusammenfassung

Wir betrachten ein Gasgemisch, das aus mehreren Spezies zusammengesetzt ist und
durch kinetische Modelle beschrieben werden kann. Dabei interessieren wir uns vor
allem für Modelle mit BGK-Wechselwirkungsoperatoren. Verschiedene Erweiterungen
des Standard-BGK-Modells werden untersucht.

Im ersten Modell nehmen wir eine Abhängigkeit der Stoßfrequenzen von der mikro-
skopischen Geschwindigkeit hinzu. Im Standard-BGK-Modell wird diese Abhängigkeit
aus Gründen der Komplexität vernachlässigt. Wir nähern uns der physikalischen Re-
alität weiter an, indem wir die Abhängigkeit von der mikroskopischen Geschwindigkeit
beachten. Die Struktur der Gleichungen bleibt erhalten, allerdings hat dies Auswirkun-
gen auf die sogenannten Zielfunktionen im Relaxationsterm, welche sodann durch einen
Variationsansatz definiert werden.
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Das zweite Modell berücksichtigt Quanteneffekte (für konstante Stoßfrequenzen), was
wiederum die Zielfunktionen im Relaxationsterm beeinflusst. Diese unterscheiden sich
abhängig von den jeweils betrachteten, quantenmechanischen Teilchentypen.

In dieser Doktorarbeit stellen wir numerische Verfahren vor, die auf oben beschriebene
Modelle angewandt werden können. Wir legen eine implizite-explizite Zeitdiskretisierung
zu Grunde, da die Relaxationsterme für große Stoßfrequenzen steif werden können. Das
Kernstück ist ein impliziter Löser, der eine gewisse Potenzialfunktion minimiert. Dieses
Vorgehen imitiert die theoretische Herleitung in den Modellen. Wir zeigen, dass die Eigen-
schaften des Modells auch auf der diskreten Ebene vorliegen. Dies beinhaltet die Massen-,
Gesamtimpuls- und Gesamtenergieerhaltung, die Positivität von Verteilungsfunktionen
sowie das gewünschte Verhalten der Entropie. Wir führen mehrere numerische Tests
durch, die die Eigenschaften, die Nützlichkeit und die Zweckmäßigkeit des numerischen
Verfahrens aufzeigen.
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Chapter 1

Introduction

Mathematical fluid mechanics is a broad field describing the behavior of fluids based on
partial differential equations (PDEs). ‘Fluid’ refers to any state of matter but solids, i.e.
liquids, gases and plasmas. This includes the atmosphere, oceans, inner parts of stars and
the sun. The solutions of PDEs express the behavior of such static and dynamical systems
depending on provided initial and boundary conditions. This is not limited to physical
phenomena, but corresponding models can also be developed for economics, finance or
engineering problems. Hence, theory of PDEs is a modern field and strongly inspired by
applications.

Once a model is established, we are interested in solutions of the problem. However,
in general the equations cannot be solved analytically, and numerical schemes come into
play. Therefore, we approximate the solutions numerically and explore properties and
phenomena of the equations by numerical tests. Nevertheless, it is a difficult task to find
numerical schemes which preserve the properties of the model at the discrete level. Again,
this is an active field in research with relevance for science and industry.

The governing equations depend on the underlying scales of the system. Famous rep-
resentatives for macroscopic scales are the Euler and Navier-Stokes equations. Whereas
for rarefied gases or plasmas, which interact at mesoscopic scales, it is better to use
kinetic models. Kinetic theory describes phenomena in statistical physics and was initial-
ized 1872 by the physicist Ludwig Boltzmann. He developed a PDE which models the
time evolution of a rarefied monatomic, single-species gas [Bol09]. The theory has been
further developed among others by James Clerk Maxwell, Sydney Chapman, Thomas
George Cowling, Carlo Cercignani and Cédric Villani. Last year’s Nobel prize in physics
(2021) was awarded to Syukuro Manabe, Klaus Hasselmann and Giorgio Parisi who have
contributed to the understanding of complex systems in statistical physics [Deu20]. This
illustrates the ongoing interest in this field.

In 1954, the three mathematicians Bathnagar, Gross and Krook presented a simplified
model maintaining the same fundamental properties as the Boltzmann equation [BGK54].
Moreover, the model allows for efficient numerical simulations such that these equations
and their extensions are of real interest for practical use.

There are several applications for kinetic theory. We mention here models for traffic flows
which nowadays also explore the effect of autonomous cars [HPV21, PT21, HPRV20].

Another important application is the physical regime of plasma, and especially con-
trolled thermonuclear fusion. The energy output from the sun originates from fusion
reactions. If we succeded to rebuild a controlled ‘small sun’ on earth, it could support
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future electricity supply. One branch in fusion energy research corresponds to inertial
confinement fusion (ICF). Nuclear fusion is achieved by compressing and heating targets
filled with thermonuclear fuel with the help of laser beams. Only recently, a new milestone
in experiments (a burning plasma) was achieved [ZHCe22]. Another branch is given by
so-called Tokamak reactors in which the fusion plasma is confined by superposed mag-
netic fields. The energy gain and resulting power could recently be more than doubled
compared to former records in the Joint European Torus (JET) experiment [Son22]. A
further exciting and fascinating project in this branch is the International Thermonuclear
Experimental Reactor (ITER) [Cla20]. From an economic point of view, an even larger
machine than ITER will be needed. But firstly, open questions shall be answered by this
project. Since fusion experiments are very challenging, numerical tests play an important
role for both approaches towards controlled thermonuclear fusion.

The thesis is structured as follows. In Chapter 2, we introduce fluid models. Start-
ing with an overview over models in several regimes in Section 2.1, we explain established
kinetic models in more detail in the following sections, such as the transport equation, the
Boltzmann equation and BGK equations. In Section 2.2, we consider a consistent multi-
species BGK model with velocity-dependent collision frequency. We provide a motivation
and a short overview over cross sections and collision frequencies. Including quantum
effects opens a new field in kinetic theory. We deal with this in Section 2.3.

Chapter 3 presents numerical schemes. After a short introduction into existing schemes
in Section 3.1, we give the basic idea of our scheme in Section 3.2. We carry out the details
for the discretization in time in Section 3.3, for the discretization in space in Section 3.4
and for the discretization of the velocity space in Section 3.5. Our scheme is formulated
in such a way that it can be applied to both the multi-species BGK model with velocity-
dependent collision frequency and the quantum multi-species BGK model. Our method’s
core is a general implicit solver for the target functions.

In Chapter 4, we perform analytical calculations regarding properties of our numerical
scheme. We show positivity of distribution functions (Section 4.2), conservation of mass,
total momentum and total energy (Section 4.4) and an adequate behavior of the entropy
(Section 4.5).

We present numerical results in Chapter 5. We illustrate the properties of our scheme
for multi-species BGK equations with both constant and velocity-dependent collision fre-
quencies, as well as for the quantum model. Further, we consider more physical set-ups
exploring gas mixtures being relavant in plasma physics.

In Chapter 6, we provide conclusions and an outlook.
We attach several appendices. In Appendix A, we provide a short excursion which

considers the coupling to a self-consistent field when charged particles are encountered.
In Appendix B, we present the general implicit solver from Section 3.3.5 for 3 species.
In Appendix C, we provide pseudo codes of our numerical scheme. In Appendix D, we
consider units and the unit system cm- g- s (CGS). We give a list of symbols in Appendix
E and conclude with a glossary of abbreviations in Appendix F.



Chapter 2

Theory of kinetic models

Fluids are surrounding us and we make use of them in most parts of our lives. Ac-
cordingly, research in this area is of real interest. Mathematics enters in this field by
establishing models as physical as possible (and by developing numerical schemes for
these models which is addressed in Chapter 3). One distinguishes between microscopic,
mesoscopic/kinetic and macroscopic models describing the evolution of fluids at the cor-
responding scales. We are interested in kinetic models where our focus lies on BGK-type
models.

In Section 2.1, we give an introduction into the description of fluid models. In particu-
lar, we explain the transport equation, the Boltzmann equation and the BGK model. We
present a consistent multi-species BGK model with velocity-dependent collision frequency
in Section 2.2. And we conclude with a multi-species BGK model which takes quantum
effects into account in Section 2.3. ´

2.1 Fundamentals

Starting with a short overview over existing models in different regimes in Section 2.1.1,
we present selected kinetic models in more detail in Sections 2.1.2–2.1.4.

2.1.1 Models in different regimes

There exist many models for fluids. Even though these models always aim to describe the
same class of matter — fluids — and are often given by (a system of) partial differential
equations, they can look very different. This is not surprising because we also expect a
very distinct behavior, e.g. if we think of liquids or gases. What makes the difference
between those?

A basic classification comes by the mean free path and Knudsen number, respectively.

Definition 2.1.1 (Mean free path and Knudsen number). The mean free path is an
average distance which a particle travels until it collides with another particle.

The Knudsen number Kn is the dimensionless ratio of the mean free path and a char-
acteristic length of the system.

Let us consider a fluid. For a large Knudsen number (Kn ≳ 0.05 [Str05]), we are able to
follow each single particle and describe its microscopic behavior by Newton’s mechanics,
see Figure 2.1a.

3
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Figure 2.1: For the microscopic description of a fluid (a), each particle’s position and
velocity are followed. Whereas distribution functions in phase space (see Definition 2.1.12)
are the basic quantity in the kinetic description (b). This plot is also explained in Section
2.1.4. In the macroscopic context (c), the number density is one quantity of interest (see
Section 5.3.3 for more information about the plot).

Whereas for a very small Knudsen number (Kn ≪ 1 [Str05]), we are practically
not able to follow each single particle anymore. Instead we are looking for macroscopic
quantities which we can follow and describe. These can be measurable quantities like
density, mean velocity, pressure, temperature and so on, which are statistic averages
over the microscopic properties of all the particles, see Figure 2.1c. In a hydrodynamic
regime, this is a valid approach in order to find a suitable and manageable description.
Nevertheless, we lose information about the detailed behavior at the particle level.

What if it is not convenient to follow each particle individually, but the loss of infor-
mation by the hydrodynamic approach is too severe, too? Then we are in a mesoscopic
or kinetic regime. Here, we are interested in distribution functions which can be inter-
preted as probability distributions where the particles are located, see Figure 2.1b. So,
we neither follow each single particle nor look at the statistic averages. Rather we take a
description in between.

A nice summary of the description at different levels and their connection can be found
in [Gra49]. In the following, we give a brief introduction to the different regimes.

Microscopic regime

In [New87], Isaac Newton formulated three axioms (in Latin language) which form the
basis for the entire classical physics:

Axiom 2.1.2 (Newton’s first law, principle of inertia). ’Corpus omne perseverare in statu
suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis
cogitur statum suum mutare.‘
An object remains in motion at constant speed and in a straight line unless acted on by
an unbalanced force.

Axiom 2.1.3 (Newton’s second law). ’Mutationem motus proportionalem esse vi motrici
impressae, et fieri secundum lineam rectam qua vis illa imprimitur.‘
The time change of momentum of a body is proportional to and occurs in the same direc-
tion as the applied force.

Axiom 2.1.4 (Newton’s third law, action-reaction law). ’Actioni contrariam semper
et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse



5 CHAPTER 2. THEORY OF KINETIC MODELS

aequales et in partes contrarias dirigi.‘
If an object exerts a force on another object, the second object exerts also a force on the
first object which is equal in magnitude and opposite in direction.

Only in quantum mechanics and for relativistic scales, limitations of their validity are
reached such that extended formulations are needed. In this project, we do not treat
relativistic set-ups, but quantum theory is addressed in Section 2.3.1. For now, let us
consider a fluid consisting of N (numbered) particles which obey Newton’s laws. We are
not interested in the description of the fluid viewed as a whole, but we aim to express
the detailed happening for each particle. We follow the nice introduction in [Pir18] and
examine the position qi ∈ R3 and the velocity vi ∈ R3 at any time t ∈ R+

0 for the particle
with number i ∈ {1, . . . , N} and constant mass mi (excluding chemical reactions). Then,
the trajectories of each particle can be described as solutions of the following system
of ordinary differential equations, formulating Axioms 2.1.2 and 2.1.3 in mathematical
language.

Axiom 2.1.5 (Newton’s equations). Let q0
i and v0

i be the position and velocity of a
particle i ∈ {1, . . . , N} at time t = t0 ∈ R+

0 . For t ≥ t0, the evolution of the position qi(t)
and the velocity vi(t) of this particle are given by the solution of

d

dt
qi(t) = vi(t),

qi(t0) = q0
i ,

mi
d

dt
vi(t) =

∑
j ̸=i

Fi,j,int(qi(t),vi(t),qj(t),vj(t), t) + Fext(qi(t),vi(t), t),

vi(t0) = v0
i .

(2.1)

The equations (2.1) describe that the change of position is prescribed by the velocity,
and the change of velocity is dictated by the forces acting on the particle. The forces can
be split into an internal force

∑
j ̸=iFi,j,int, describing the interactions between particles,

and an external force Fext.

Newton’s laws of motion also establish fundamental properties whenever particles in-
teract via elastic interactions, namely the conservation of momentum and energy during
interactions. In the following, we consider binary interactions. But it is straight forward
to generalize the statements to an arbitrary number of involved particles.

Theorem 2.1.6 (Conservation of momentum). Let Fext = 0. Then it holds

m1v1(t) +m2v2(t) = const (2.2)

for all t ∈ I, where I ⊆ [t0,∞) is the interval in which particle 1 and particle 2 do not
interact with any other of the N − 2 particles.

Proof. Newton’s equations 2.1 read

m1
d

dt
v1(t) = F1,2,int(q1(t),v1(t),q2(t),v2(t), t),

m2
d

dt
v2(t) = F2,1,int(q2(t),v2(t),q1(t),v1(t), t)

Ax 2.1.4
= −F1,2,int(q1(t),v1(t),q2(t),v2(t), t)

for t ∈ I provided that Fext = 0. Adding both equations and integrating with respect to
t yields the statement.
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For so-called conservative forces F, there exists a scalar potential Φ such that F =
−∇xΦ, x being the space variable. This means that the work

∫
γ Fds is independent of

the path γ, and especially that the work vanishes for closed paths. So it is impossible to
gain (or lose) energy by passing a closed path several times. Actually, the existence of
such a scalar potential and the independence of the path are equivalent. The proof can be
found in [DR11, Theorem 13.50]; and this results in the following conservation of energy.

Theorem 2.1.7 (Conservation of energy). Let Fext = 0. Assume that F1,2,int only de-
pends on q1(t)− q2(t) and that there exists a potential Φ(x) such that F1,2,int = −∇xΦ.
Then it holds

m1

2
|v1(t)|2 +

m2

2
|v2(t)|2 +Φ = const (2.3)

for all t ∈ I, where I ⊆ [t0,∞) is the interval in which particle 1 and particle 2 do not
interact with any other of the N − 2 particles.

Proof. Under the given assumptions, Newton’s equations (2.1) read

m1
d

dt
v1(t) = F1,2,int(q1(t)− q2(t)),

m2
d

dt
v2(t) = F2,1,int(q2(t),v2(t),q1(t),v1(t), t)

Ax 2.1.4
= −F1,2,int(q1(t)− q2(t))

for all t ∈ I. We multiply the first equation with v1(t), the second one with v2(t) and
add both of them:

d

dt

(m1

2
|v1(t)|2 +

m2

2
|v2(t)|2

)
= F1,2,int(q1(t)− q2(t)) · (v1(t)− v2(t))

= −∇xΦ(q1(t)− q2(t)) · (v1(t)− v2(t))

= − d

dt
Φ(q1(t)− q2(t)).

In the last step, we used the chain rule and Newton’s equations (2.1). The statement
follows by integration with respect to t.

Newton’s equations result in an additional conservation law given in the following
theorem.

Theorem 2.1.8 (Conservation of angular momentum). Let Fext = 0 and b ∈ R3 be a
fixed point in space. Assume that F1,2,int is parallel to q1(t)− b and F2,1,int is parallel to
q2(t)− b. Then it holds

mi(qi(t)− b)× vi(t) = c = const ∈ R3

for i = 1, 2 and for all t ∈ I, where I ⊆ [t0,∞) is the interval in which particle 1 and
particle 2 do not interact with any other of the N − 2 particles. Additionally, the map
b 7→ c(b) is continuous in b.

Proof. Under the given assumptions, the product rule and Newton’s equations (2.1) yield

d

dt
[mi(qi(t)− b)× vi(t)]v1(t) = mi(qi(t)− b)× d

dt
vi(t)

= (qi(t)− b)× Fi,j,int(qi(t),vi(t),qj(t),vj(t), t)

= 0
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for i, j = 1, 2, i ̸= j and for all t ∈ I. The first statement follows by integration with
respect to t. For the continuity, let b1,b2 ∈ R2 be arbitrary. It follows

|c(b1)− c(b2)| = |mi(qi(t)− b1)× vi(t)−mi(qi(t)− b2)× vi(t)|
= |mi(b2 − b1)× vi(t)| ≤ mi|vi(t)||b2 − b1|.

Hence, c(b) is Lipschitz continuous in b, in particular continuous.

The physical consequence is that particles stay in the same plane while colliding. This
becomes more obvious in the following corollary.

Corollary 2.1.9 (Post-collisional velocities). Let Fext = 0. Assume that F1,2,int is parallel
to q1(t)−q2(t), F2,1,int is parallel to q2(t)−q1(t), and let there exist a compactly supported
potential Φ(x) such that F1,2,int = −∇xΦ. During the interaction, we assume that only
particle 1 and particle 2 are involved. Furthermore, we assume that the interaction occurs
instantaneously at time t = t∗ when the particles reached their minimal distance. We
call ξ the unit vector along the line with minimal distance of the two particles during the
interaction in direction of particle 2, see Figure 2.2. Then ξ can be written as

ξ =
q2(t∗)− q1(t∗)

|q2(t∗)− q1(t∗)|

and the conservation laws during the collision read

m1v1 +m2v2 = m1v
′
1 +m2v

′
2,

m1|v1|2 +m2|v2|2 = m1|v′
1|2 +m2|v′

2|2

with the velocities v′
1 and v′

2 after the interaction

v′
1 = v1 −

2m2

m1 +m2
[(v2 − v1) · ξ]ξ,

v′
2 = v2 +

2m1

m1 +m2
[(v2 − v1) · ξ]ξ.

Proof. The proof can be found e.g. in [Pir18] and follows from the previous theorems.

At the microscopic level, elastic collisions are time reversible in the following sense.
Consider two particles with velocities v1 and v2. Due to a collision, they exchange mo-
mentum and energy, and their velocities convert into v′

1 and v′
2, respectively. If we now

move backward in time, change vi 7→ −v′
i and v′

i 7→ −vi, all theorems still hold true. So
there is no preferred direction for collisions to happen. This is in contrast to the descrip-
tions at mesoscopic and macroscopic levels. We will emphasize this in Section 2.1.3.

Knowing the initial positions and velocities of all particles in a gas, we can calculate
the evolution of a classic gas for all times by Newton’s laws. When this is solved numeri-
cally, it is often called molecular dynamics. However, this is a very rich description. Only
1 g hydrogen already contains about 6 · 1023 particles. This illustrates that the detailed
description of Newton’s mechanics might be useful under specific circumstances, but in
many applications it is not practicable. This leads us to the kinetic regime.
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particle 1

q1(t∗)
v1

particle 2

q2(t∗)
v2

ω

Figure 2.2: At time t = t∗, particle 1 and particle 2 reach their minimal distance such
that they collide. The vector ω connects the particles’ positions q1(t∗) and q2(t∗), and
ξ = ω

|ω| .

Mesoscopic/kinetic regime

The description at the microscopic level is very rich and also discrete. In order to approach
a continuum, we consider an ensemble of conceptual copies of a given physical system.
Then we look at the probability W that the system is in the corresponding state at a
given time. [Gra49]

Let N be fixed and let us assume N particles of mass m whose position is denoted by
qi and whose momentum is given by pi for i = 1, . . . , N , as it is conventionally done in
theoretical mechanics. The quantity

W =W (q1, . . . ,qN ,p1, . . . ,pN )

denotes the probability that the system is located in the volume dq1 . . . dqN dp1 . . . dpN .
The following statements can be found e.g. in [Sch06, Cer88, LL69].

Theorem 2.1.10 (Liouville’s theorem). The functionW is constant along the trajectories
of the system. In other words, the volume and orientation of a flow in the (q,p)-space
stays constant in time.

From Liouville’s theorem, it follows Liouville’s equation

∂tW +

N∑
i=1

pi

m
· ∇qiW +

N∑
i=1

Fi

m
· ∇piW = 0,

Fi = −
N∑
j ̸=i

∇qi (ϕij + ϕext) ,

(2.4)

where the force Fi on particle i is determined by the gradient of a potential which is the
sum of an external potential ϕext and an internal potential ϕij coming from interactions
between the particles i and j.

We integrate Liouville’s equation (2.4) over parts of the variables and build a chain of
equations. This is called the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hier-
archy [Bog46, BG46, Kir46, Kir47, Yvo35]. We consider the functions [CIP94]

fs(q1, . . . ,qs,p1, . . . ,ps) =

∫
W (q1, . . . ,qN ,p1, . . . ,pN ) dqs+1 . . . dqN dps+1 . . . dpN
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for s = 1, . . . , N . The probable number of particles in e.g. the volume dq1 dp1 is given
by

Nf1dq1 dp1.

We obtain N equations where the time evolution of fs is given by

∂tfs +

s∑
i=1

pi

m
· ∇qifs +

s∑
i=1

Fi

m
· ∇pifs = (N − s)

s∑
i=1

∫
(∇qiϕi,s+1) · (∇pifs+1) dqs+1 dps+1

Fi = −
s∑

j ̸=i

∇qi (ϕij + ϕext)

with a correction term on the right-hand side (RHS) representing the influence of the
N − s suppressed particles. In this chain, the s-th equation connects fs and fs+1. So,
in order to determine only f1 one has to solve the equation for f2, which requires the
solution of f3, and so on, and eventually one needs to solve the full Liouville equation.

However, we can break the chain at some point and solve the equation for fs if
we found a sufficient approximation for fs+1. For instance, an adequate estimate of
f2(q1,q2,p1,p2) turns into the collision operator of the Boltzmann equation (2.25) [Gra49].
Here, the Boltzmann-Grad limit enforces

N → ∞ and r → 0 while Nr2 → const ∈ R+.

We do not discuss the limiting process in this thesis. But in Section 2.1.3, we give a
motivation where the famous Boltzmann equation comes from.

Remark 2.1.11 (Irreversibility). While the microscopic description is time reversible,
the mesodynamics (and macrodynamics) behave irreversible. The irreversibility enters
the description when the BBGKY chain gets broken and interpreted stochastically [Cer88].
This issue led to discussions, especially concerning the Boltzmann equation, see Section
2.1.3.

The previously given equations are supposed to motivate the description at the meso-
scopic level. It is based on a function which combines all particles. Since we do not want
to track each particle, we look for a dependence only on space x, microscopic velocity
v and time t (not on each particle’s position and velocity). In the following, be aware
that motivations and discussions using individual particles only serve for illustration pur-
poses. Kinetic theory does not consider particles themselves, but the so-called distribution
function.

Definition 2.1.12 (Distribution function and phase space). A function f : R3 × R3 ×
R+
0 → R+

0 is called a distribution function if and only if f(x,v, t) dxdv is the number of
particles with velocities in (v,v + dv) located at (x,x+ dx) at time t.

We call (x,v) the phase space.

The value of the distribution function f(x,v, t) can also be interpreted as the proba-
bility with which a particle with velocity v can be found at position x and time t.

Definition 2.1.13 (General kinetic equation). A general kinetic equation can be written
as

∂tf + v · ∇xf +
F(x, t)

m
· ∇vf = Q[f ]. (2.5)
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The left-hand side (LHS) of (2.5) describes that particles move uniformly along
straight lines, but they might be deflected by a force F. We consider this part of the
equation in Section 2.1.2. The RHS of (2.5) takes care of possible interactions between
the particles. This general formulation captures many different models. In the following,
we list possible variations for this equation.

For stationary problems, it holds ∂tf = 0. The second term on the LHS vanishes in
space homogeneous settings. And often it is F = 0, otherwise the force F is either given
or needs to be determined separately.

Moreover, the RHS takes many different forms focusing on diverse aspects of possible
interactions between particles. We will give a short overview over kinetic models in the
following and illustrate it in Figure 2.3.

If direct interactions are neglected (being valid for short time scales), we have Q[f ] = 0
which is the case e.g. for the Vlasov equation. This is often used for plasmas which means
that charged particles are encountered and the force term due to a self-consistent field
becomes crucial. For special geometries and applications as the Tokamak, the gyrokinetic
coordinates have been developed [GIVW10].

The specific treatment of interactions becomes necessary for long periods [Vil02] and
leads to different collision operators on the RHS of (2.5) and to different models, respec-
tively. From the BBGKY hierarchy, the Boltzmann equation can be derived by a binary
scattering approximation. This model is discussed in Section 2.1.3.

Another approach is a correlation expansion [Len60, Bal60]. This yields the Lenard-
Balescu equation with the interaction operator

Q[f ] = ∇v ·
∫
K(v, |v − v∗|,∇vf) [f(v∗)∇vf(v)− (∇v∗f(v∗))f(v)] dv∗

and a strong nonlocal and nonlinear kernel K(v, |v − v∗|,∇vf). The Lenard-Balescu
equation intrinsically includes screening given by a dynamical dielectric response [PB52].
This is why, in plasma physics, it is often considered to be more suitable than the Boltz-
mann equation (where modifications need to be done in order to handle charged particles,
see Remark 2.2.9). However, the nonlinear kernel makes the model very complicated. For
more details, see [Str06] and references therein.

Both the Boltzmann and the Lenard-Balescu approach can be continued to the Landau
equation when grazing collisions dominate [Lan37, RMJ57, Len60]. It incorporates the
interaction operator

Q[f ] = ∇v ·
∫
K(|v − v∗|) [f(v∗)∇vf(v)− (∇v∗f(v∗))f(v)] dv∗.

Compared to the Lenard-Balescu equation, the kernelK(|v−v∗|) is much simpler and bet-
ter handable. It contains the so-called Coulomb logarithm which indicates the preponder-
ance of many weak interactions, cf. Remark 2.2.10. The asymptotic limit for the deriva-
tion of the Landau equation has been justified among others in [DLD92, Des92]. In special
cases and coordinate systems, the nonlinear Landau equation reduces to the linear Fokker-
Planck equation [Vil02], and the names are often coupled to Fokker-Planck/Landau equa-
tion. In plasma physics, the Fokker-Planck/Landau equation is often used [LM05].

The kinetic formulation is useful for the mesoscopic regime. However, the distribution
function f is a mathematical construction and not physically measurable. The distribu-
tion function is yet linked to measurable quantities given by moments of f .
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many
particles
system

molecular dynamics
(Newton’s laws)

BBGKY

Boltzmann
(cross sections)

Lenard-Balescu
(dielectric response)

Fokker-Planck/Landau
(Coulomb logarithm)

BGK
(collision frequency)

hydrodynamics

direct solution

phase-space and

ensemble averaging

binary collisions weak scattering

correlation expansion no screening

moments in v

Figure 2.3: An overview over the structure in kinetic theory is given, inspired by [SM16].
Instead of solving Newton’s equations (2.1) directly, the system of equations can be ap-
proximated by the BBGKY hierarchy. If the number of particles goes to infinity while
conserving mass, kinetic models can formally be derived. A correlation expansion yields
the Lenard-Balescu model representing many-body physics in the weak-scattering limit
established by a dielectric response. Alternatively, a binary-collision assumption leads to
the Boltzmann equation where the detailed physics is hidden in the cross sections. Both
branches can be continued to the Fokker-Planck/Landau equation for weak- and binary-
scattering collisions where the Coulomb logarithm appears as important quantity. We are
especially interested in BGK models which can be derived from the Boltzmann equation
where the cross sections convert to collision frequencies. A hydrodynamic description can
be obtained by taking moments in v of the kinetic equations.

Definition 2.1.14 (Macroscopic quantities). Let S be a set of indices, each index cor-
responding to a species. Let fi : R3 × R3 × R+

0 → R+
0 with (1 + |v|2)fi ∈ L1( dv) be the

distribution function of species i ∈ S.

1. The functions

ni : R3 × R+
0 → R+

0 , (x, t) 7→
∫
R3

fi(x,v, t) dv and

ρi : R3 × R+
0 → R+

0 , (x, t) 7→ mi

∫
R3

fi(x,v, t) dv

are called number density and mass density of species i, respectively.

2. We define

niui : R3 × R+
0 → R, (x, t) 7→

∫
R3

fi(x,v, t)v dv.

For ni > 0, the function ui =
niui
ni

is called the mean velocity of species i.

3. The function

Ei : R3 × R+
0 → R+

0 , (x, t) 7→ mi

2

∫
R3

fi(x,v, t)|v|2 dv

is said to be the energy density of species i.
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4. The internal energy of species i is given by

ei : R3 × R+
0 → R+

0 , (x, t) 7→ Ei(x, t)−
mi

2
ni|ui|2 =

mi

2

∫
R3

fi(x,v, t)|v − ui|2 dv.

5. For an ideal gas and ni > 0, the (kinetic) temperature1 of species i is defined by

Ti : R3 × R+
0 → R+

0 , (x, t) 7→ 2ei
dni

=
mi

dni

∫
R3

fi(x,v, t)|v − ui|2 dv (2.6)

where d denotes the dimensions in velocity space. In this thesis, it is d = 3.

6. The energy flux of species i is defined to be

Qi : R3 × R+
0 → R3, (x, t) 7→ mi

2

∫
R3

fi(x,v, t)|v|2v dv.

7. We call

Pi : R3 × R+
0 → R3×3, (x, t) 7→ mi

∫
R3

fi(x,v, t)(v − ui)⊗ (v − ui) dv

the pressure tensor of species i. The pressure of species i is given by

pi =
1

3
trPi.

Remark 2.1.15 (Degrees of freedom). The formula for the temperature (2.6) depends
on the translational degrees of freedom which comes by the dimensionality of the v-space.
We consider three independent v-variables corresponding to three translational degrees of
freedom, d = 3. Since we assume a monatomic gas, there are no rotational degrees of
freedom. In more general cases, the notion of temperature needs to be extended.

If more than one species is involved, macroscopic quantities of the gas mixture need to
be defined. Let S be the set of indices for the species. For N species, it is S = {1, . . . , N}.
Be aware that N is not the number of particles but the number of different species.

Definition 2.1.16 (Mixture quantities). The total number density and total mass density
are given by

nmix =
∑
i∈S

ni and ρmix =
∑
i∈S

ρi. (2.7)

For nonvanishing ρmix, we denote the mixture mean velocity

umix(x, t) =

∑
i∈S ρiui

ρmix
(2.8)

and the total energy

Emix =
3

2
nmixTmix +

1

2
ρmix|umix|2

1We suppress the Boltzmann constant kB for ease of presentation. If the Boltzmann constant is
required, the replacement T 7→ kBT works in most cases which can be verified by a check of units. In
Section 2.2.3, we emphasize the use of kB for clearness.
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where the mixture temperature reads

Tmix(x, t) =
2

3nmix

∑
i∈S

∫
mi

2
|v − umix|2fi dv

=
1

nmix

(∑
i∈S

niTi +
1

3

∑
i∈S

ρi(|ui|2 − |umix|2)
)

=
1

nmix

∑
i∈S

niTi +
1

3ρmix

∑
i,j∈S
i<j

ρiρj(|ui − uj |2)

 .

(2.9)

Moreover, the reduced mass is defined by

µij =
mimj

mi +mj
. (2.10)

Taking moments of f means that we average over the velocities. This leads to a loss
of the detailed information in f . Nevertheless, in many occasions the description by these
averaged values is sufficient.

Macroscopic regime

The macroscopic regime seems to be the most natural one because we can feel and see
the corresponding quantities defined in Definition 2.1.14. That is why we are also familiar
with (physical) measurements at this scale in our daily life. Nevertheless, as we have seen
in the previous sections, this is only one possible description.

Even though rigorous proofs have not been found yet, one can formally derive hydro-
dynamic equations from the kinetic description. One possibility are moment methods,
another approach is the Chapman-Enskog expansion [Str05], developped independently
by Chapman [Cha16, Cha18] and Enskog [Ens17, Ens21]. Starting e.g. from the Boltz-
mann equation, setting the distribution function to be Maxwellian (in equilibrium) and
taking moments, we get the well-known Euler equations.

Definition 2.1.17 (Euler equations). Let ρ,u, e be a fluid’s mass density, mean velocity
and internal energy and sufficiently smooth. Let the pressure p be a function of the internal
energy. Then the Euler equations read

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ p1) = 0,

∂t

(ρ
2
|u|2 + e

)
+∇x ·

(ρ
2
|u|2 + e+ p

)
u = 0.

(2.11)

We do not specify the required smoothness of the solutions here because there exist
several frameworks such as strong solutions, weak solutions and measure-valued solutions.
Every notion lowers the required regularity, see [Mar21] and references therein.

The Euler equations are one of the oldest systems of partial differential equations
describing the motion of fluids, formulated by Euler in the 18th century [Eul57]. They
also correspond to the zeroth order in the Chapman-Enskog expansion. Considering first-
order corrections, we obtain the famous Navier-Stokes equations. These include viscosity
and heat conductivity, so they capture more phenomena in fluids.
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Definition 2.1.18 (Navier-Stokes equations). Let ρ,u, p be a fluid’s mass density, mean
velocity and pressure and sufficiently smooth. Let the pressure p be a function of the
internal energy. We denote the viscosity by µ and heat conductivity by κ. Then the
Navier-Stokes equations read

∂tρ+∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u+ p1) = ∇x · σ
∂t

(ρ
2
|u|2 + e

)
+∇x ·

(ρ
2
|u|2 + e+ p

)
u = κ∆xT +∇x · (σ · u)

(2.12)

with the trace-free stress tensor

σ = 2µ

(
∇xu+ (∇xu)

⊤ − 1

3
(∇x · u)1

)
.

The viscosity and thermal conductivity belong to the so-called transport coefficients
for macroscopic laws which can be measured by experiments. The Chapman-Enskog
expansion allows to compute them from microscopic details of the gas [Str05]. A constant,
which will be important in the context of the BGK equations, is the Prandtl number.

Definition 2.1.19 (Prandtl number). The Prandtl number Pr is the dimensionless ratio
of viscosity and heat conductivity

Pr =
5kB
2m

µ

κ

where kB denotes the Boltzmann constant and m the mass of the gas. The measured value
for a monatomic gas is Pr ≈ 2

3 .

The systems of equations (2.11) and (2.12) represent conservation laws at the macro-
scopic level.

Theorem 2.1.20. The Euler equations (2.11) and Navier-Stokes equations (2.12) con-
serve mass, momentum and energy.

Proof. For the Euler equations, this gets evident when integrating with respect to x and
applying Gauß’s law. Then the mass

∫
ρdx, the momentum

∫
ρudx and the energy∫ (ρ

2 |u|2 + e
)
dx are conserved unless there is a flux over the boundary. For the Navier-

Stokes equations, more computations are required. We refer to [TM05, LL91].

One requirement of the systems (2.11) and (2.12), respectively, is the so-called equation
of state which closes the systems and relates the pressure p to the internal energy e,
respective density ρ and temperature T . Thermodynamic theory enters the fluid dynamics
among other things by these laws. For ideal gases, it holds

p = (γ − 1) e

with the ratio γ = f+2
f and the degrees of freedom f. We consider three translational

degrees of freedom but no rotations nor vibrations; that is f = d = 3 and p = nT . Here,
we slightly abused notation because this ideal gas law directly follows from kinetic gas
theory [Bol09]; we wanted to give the equations in a bigger context where also more gen-
eral equations of state can be applied even if we do not go into further details.
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In order to obtain as physical solutions as possible, additional properties and admissibil-
ity conditions may be required. One notion, which will also be important for our kinetic
models, is entropy. In the hydrodynamic set-up, it is linked to an additional inequality
to be fulfilled by the system. This specifies a preferred direction in time and excludes
solutions with unphysical properties. For further information, we refer to [Eva10, Mar21].

There exist many variations for the systems (2.11) and (2.12). We already mentioned
the possibility of different equations of state, but also source terms can be taken into
account, e.g. gravitation in stars. One also distinguishes between compressible and in-
compressible equations, where for incompressible conservation laws it is ∇x · u = 0.

The given systems consider fluids consisting only of one species. If more species are in-
volved, this refers to global quantities corresponding to the assumption that every species
behaves similarly. However, this approach is not valid when the species behave differently,
and multi-species equations need to be considered. In this case, each species follows its
equations for mass, momentum and energy. The mass of each species, total momentum
and total energy are conserved. The exchange of momentum and energy between the
species introduces a coupling of equations of different species. [RS07]

The Euler and Navier-Stokes equations are a field of active research. Very famous is
the open question on the existence and uniqueness of solutions for the Navier-Stokes
equations. This is stated to be a Millenium Prize Problem [Ins] which is why this issue
is known even outside the field. However, already the Euler equations let us tumble re-
garding the existence and uniqueness of solutions. Recent results prove that there exist
initial data for which the Euler equations (in multiple space dimensions) admit infinitely
many solutions which do fulfil an entropy inequality. [Mar21]

Another topic is the development of adequate numerical schemes. For example, there
are situations where it is necessary to maintain a stationary solution exactly. For this
purpose, well-balanced schemes are developed [BCK21]. Another feature of interest is
that a discretization stays accurate and efficient throughout several regimes. By this
comment, we close the circle and observe that the macroscopic equations, representing
the hydrodynamic limit, are also of interest for the kinetic regime. As a scaling parameter
(e.g. the Knudsen number) approaches zero, we formally pass over from the kinetic to the
macroscopic description. Numerical formulations shall be uneffected by this transition
which is called asymptotic-preserving (AP). We will elaborate this in Chapter 3.

We end this short overview with a brief section on thermodynamics.

Thermodynamics and statistical mechanics

Thermodynamics is a branch of physics mainly dealing with the macroscopic quantities
heat, work and temperature. Introduced by physical experiments and observations at
macroscopic scales, it is being consolidated by statistical mechanics which describes phys-
ical properties of many-body systems on the basis of microscopic principles. This surely
reminds us of the kinetic description of fluids, and it is not surprising to detect links
between these theories.

Comparable to Newton’s laws in microdynamics, the fundamental laws of thermody-
namics form the basis of this subject. The first one concerns the conservation of energy
[Sch06]. We here give the second one.
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Axiom 2.1.21 (Second law of thermodynamics). ‘Wärme kann nie von selbst von einem
kälteren in ein wärmeres Reservoir übergehen.’ (Rudolf Clausius, 1850) [Sch06]
Heat can only pass from a colder to a warmer reservoir with another change connected to
it.

There exist different but equivalent formulations of the second law of thermodynamics,
e.g. by Lord Kelvin in 1851. In the end, they all result in the existence of reversible and
irreversible processes connected to a basic quantity in statistical physics, called entropy
S. A mathematical formulation reads

ϑ
dS

dt
≥ dE

dt
+ p

dV

dt
(2.13)

where ϑ denotes the absolute temperature, E the energy of the system, p the pressure
and V the volume occupied by the gas.

One of the entropy’s main features is that it either stays constant or increases in time.
If the entropy increases, we consider an irreversible process being in contrast to the overall
reversible microdynamics.

For more details, we refer to the textbook [Sch06].

We will later see that entropy plays an essential role in kinetic theory. The second law
of thermodynamics 2.1.21, being introduced as axiom, can be derived and formulated as
theorem which is known as H-Theorem. This was firstly done for the famous Boltzmann
equation by Boltzmann himself, see Theorem 2.1.31.

Before we go into detail, we study another kinetic equation which partly appears in
the Boltzmann equation as well.

2.1.2 Transport equation

The general kinetic equation (2.5) consists of two parts. The LHS describes the transport
in phase space, whereas the RHS specifies the interactions of the particles. In this sec-
tion, we focus on the LHS with vanishing RHS, the so-called transport equation. Many
introductory books explain such kind of equation, e.g. [Joh71, Chapters 1.3 and 1.4]
and [Eva10, Chapter 1.2]. We only consider the following special form of the transport
equation which, in particular, is hyperbolic.

Definition 2.1.22 (Transport equation). The homogeneous transport equation reads

∂tf + v · ∇xf +
F(x, t)

m
· ∇vf = 0,

f(x,v, 0) = f0(x,v).
(2.14)

By the method of characteristics, the partial differential equation (2.14) can be reduced
to a system of ordinary differential equations.

Definition 2.1.23 (Characteristic curve). A curve along which the solution of (2.14) is
constant is called characteristic curve. The corresponding system of ordinary differential
equations is called the characteristic equations.

In the following, we perform this approach for (2.14). Let

γ : [0, 1] → R3 × R3 × R+
0 , s 7→ γ(s) = (x(s),v(s), t(s))
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be a smooth parametrization of a curve in R3 × R3 × R+
0 . For q(s) = f(γ(s)) =

f(x(s),v(s), t(s)) it is

d

ds
q(s) =

dt(s)

ds
∂tf +

dx(s)

ds
· ∇xf +

dv(s)

ds
· ∇vf.

If γ is a solution to

dt(s)

ds
= 1,

dx(s)

ds
= v(s),

dv(s)

ds
=

F(x(s), t(s))

m
,

(2.15)

it holds d
dsq(s) = 0, which means that q(s) = f(γ(s)) is constant along the curve. There-

fore, (2.14) can be solved by tracing back the characteristic curve and evaluating the
corresponding initial data.

Often, the force term is neglected, i.e. F = 0, which encounters the assumption that
the acceleration is due only to external fields. Then the solution to the characteristic
equations (2.15) reads

t(s) = s+ t0,

x(s) = vs+ x0,

v(s) = v0

(2.16)

for given initial t0 ≥ 0, x0,v0 ∈ R3. For ease, let t0 = 0. The choice s = t yields
f(x(t),v(t), t) = q(t) and especially f(x0,v0, 0) = q(0). Since q is constant along solutions
of (2.15), we obtain

f(x,v, t) = q(t) = q(0) = f(x0,v0, 0) = f0(x0,v0) = f0(x− vt,v),

where we used (2.16). This solves the initial value problem (2.14) for F = 0 uniquely
according to the theorem of Picard-Lindelöf. And we conclude that the initial values
f0(x) are transported along straight lines in direction of v, see Figure 2.4.

t

xx0

(x1, t1)

x− vt = x0

Figure 2.4: We illustrate the characteristic curve for the transport equation (2.14) with
F = 0. The solution at point (x1, t1) is given by the corresponding initial datum evaluated
at x0 = x1 − vt1 because solutions stay constant along characteristic curves.

In the framework of kinetic theory, the transport part (LHS of (2.5)) describes that
particles move uniformly along straight lines in direction of v. This observation matches
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Newton’s first law 2.1.2. According to a possible nonvanishing force F, the velocities of
the particles can be deflected. Such forces often come by electric (and magnetic) fields
for charged particles.

Coupling to electric field

Let us consider a charged particle within an electric field E and magnetic field B. The
so-called Lorentz force acts on this particle which is given by

FL = Ze (E+ v ×B)

with the charge state Z of the particle and the elementary charge e. The fields are
externally given or provided by the solutions of Maxwell’s equations [Max65]. These
are the fundamental equations in electro-magneto dynamics, comparable to the role of
Newton’s laws in classical physics.

Axiom 2.1.24 (Maxwell’s equations). Maxwell’s equations are the system of the following
four PDEs.

Gauß’s law: ∇x ·E =
q

ε0
Gauß’s law for magnetism: ∇x ·B = 0

Faraday’s law of induction: ∇x ×E = −∂tB
Ampère’s law with Maxwell’s addition: ∇x ×B = µ0 j+ µ0ε0 ∂tE

Here, E(x, t) denotes the electric field, B(x, t) the magnetic field, q(x, t) the electric charge
density, j(x, t) the electric current density, ε0 the electric permittivity of vacuum and µ0
the magnetic permeability of vacuum.

In the context of kinetic theory, the electric charge and current density can be calcu-
lated via moments of the distribution functions.

Definition 2.1.25 (Electric charge and current density). The electric charge and current
density are given by

q(x, t) =
∑
i

Zie

∫
fi(x,v, t) dv =

∑
i

Zieni

and j(x, t) =
∑
i

Zie

∫
vfi(x,v, t) dv =

∑
i

Zieniui

for i ∈ S.

We simplify Maxwell’s equations in the following way [Son19]. We assume that the
electric field represents the dominating term such that we neglect the magnetic field.
Moreover, we suppose the fields to be quasi-static, and time derivatives will be neglected.
We end up with the Lorentz force

FL = ZeE (2.17)

where the electric field is determined by

∇x ×E = 0 (2.18)

and ∇x ·E =
q

ε0
. (2.19)
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We impose appropriate boundary conditions, e.g. periodic boundaries or the perfectly
conducting boundary condition E× n = 0 with the outer normal vector n.

As the electric field is curl-free (2.18), there exists a scalar potential ϕ such that

E = −∇xϕ. (2.20)

Together with (2.19), this results in the Poisson equation for the potential:

−∆xϕ =
q

ε0
. (2.21)

We further assume that no external fields apply and that the electric field is self-consistent;
that is the electric field represents a mean field acting on particles due to inhomogenities
in the distribution functions.

In summary, the force F in (2.14) being responsible for the transport in velocity
space is given by the simplified form of the Lorentz force (2.17). It originates from the
self-consistent electric field which is determined by (2.20) and the Poisson equation (2.21).

The above set of equations describes interesting physical phenomena. In the following,
we mention the Landau damping.

Landau damping We consider the interaction of particles via the self-consistent electric
field. Any further type of collisions of the particles is excluded such that there will be
no relaxation towards a thermal equilibrium. (This will be explained in the following
sections.) We obtain a situation being described by the Vlasov-Poisson system. The
distribution function is determined by

∂tf + v · ∇xf +
Ze

m
E · ∇vf = 0 (2.22)

which is coupled to

E = −∇xϕ and −∆xϕ =
q

ε0
. (2.23)

In one space dimension, (2.23) reduces to

∂xE =
q

ε0
. (2.24)

The Vlasov-Poisson system encounters a damping phenomenon of the electric field due to
an initial disturbance from the equilibrium distribution. The so-called Landau damping
is an irreversible process representing an uniformization in configuration space [Bal60].
It was mathematically predicted by Landau in 1946 [Lan46] for the linearized Vlasov-
Poisson system and confirmed later by experiments. The mathematical result was made
rigorous by Mouhot and Villani in 2010 [MV10, MV11].

For this phenomenon, we are interested in the distribution function of electrons fe
following (2.22). Ions are assumed to be immobile, and they are only considered as a
neutralizing background density n0 obeying the quasi-neutrality condition

0 =

∫
(n0 − ne) dx =

∫ (
n0 −

∫
fe dv

)
dx.
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The resulting PDE for the electric field is

∂xE =
1

ε0
(n0 − ne) =

1

ε0

(
n0 −

∫
fe dv

)
.

If collisions between particles are allowed and given e.g. by a BGK operator, the
electric field is damped by two distinct effects [Bau21]: the Landau damping and the
relaxation process according to the H-Theorem which will be explained in the following
section(s).

2.1.3 Boltzmann equation(s)

In 1872, Ludwig Boltzmann published a pioneering equation [Bol09]. It realistically de-
scribes phenomena in dilute atmosphere, e.g. aeronautics in high altitude or interactions
in dilute plasmas, proven by experiments [Cer00, Vil02]. However, the equation was
doubted by many physicists at that time because of the supposed contradiction between
reversible microdynamics and the irreversibility related to the so-called H-Theorem. Only
after 100 years and many discussions, this concern could be resolved rigorously [Lan75].
Nowadays, the Boltzmann equation is fundamental in kinetic theory and celebrated in
many articles. A lot of (introductory) articles and textbooks can be found in the litera-
ture [CC70, Cer88, Bab98, Cer00, Vil02, EP05, Gol06].

We make the following assumptions on a monatomic gas [Cer88, Vil02, GMM09]. Firstly,
we assume a dilute gas such that only binary interactions take place. For N hard spheres
with radius r in a three dimensional space, this translates to

Nr3 << 1, Nr2 ≈ 1.

Secondly, the description is based on classical mechanics without (chemical) reactions.
Neither quantum nor relativistic effects are taken into account. This is sensible for a mean
distance between particles which is larger than their thermal deBroglie wavelength and
if the ratio of thermal speeds to the speed of light is small. References for extensions
regarding the other cases are given in [Vil02, p. 17].

Thirdly, the collisions are localized in space and time. The duration time of an inter-
action is small compared to the typical time scales of the description.

Fourthly, we consider elastic collisions, so the microscopic conservation of momentum
(2.2) and energy (2.3) are fulfilled.

Fifthly, the collisions are micro-reversible. This means that they are time reversible
at the microscopic level. Speaking of statistics, the probability that v and v∗ change into
v′ and v′

∗ due to a collision is as high as the probability that v′ and v′
∗ change into v and

v∗.
Sixthly, we make Boltzmann’s chaos assumption: Particles which are going to collide

are uncorrelated. However, this assumption causes an asymmetry because particles are
correlated after a collision. Actually, this asymmetry is crucial in order to explain the
discrepancy between reversible microdynamics and irreversible mesodynamics which we
discuss later.

With these assumptions, the Boltzmann equation can be formulated.

Definition 2.1.26 (Boltzmann equation). The Boltzmann equation for a distribution
function f reads

∂tf + v · ∇xf = Q[f ] (2.25)
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with the collision operator

Q[f ](x,v, t) =

∫
R3

∫
S2

(f(x,v′, t)f(x,v′
∗, t)− f(x,v, t)f(x,v∗, t))K(|v − v∗|, ξ) dξ dv∗,

(2.26)

where K(|v−v∗|, ξ) is the collision kernel, explained later, and ξ represents the unit vector
in scattering direction.

This equation is often called Boltzmann transport equation, too.

In the following, we shortly motivate the collision operator. Let us have a look at two
particles with velocities v and v∗, respectively. The probability that these collide is given
by

f(x,v, t)f(x,v∗, t),

where we use that particles are not correlated before and during the interactions. Because
of the collision, the particles exchange momentum and energy such that the velocities
convert into v′ and v′

∗, respectively, see Figure 2.2. The relations of the velocities are pre-
dicted by the conservation of momentum and energy at the microscopic level (Theorems
2.1.6 and 2.1.7):

v + v∗ = v′ + v′
∗

v2 + v2
∗ = v′2 + v′2

∗ .

This means that by such a collision the particles with velocities v and v∗ get ‘lost’,
whereas the particles with velocities v′ and v′

∗ are ‘gained’. The Boltzmann collision
operator combines and sums up the effects of all possible interactions.

The details of these interactions are hidden in the collision kernelK(|v−v∗|, ξ) = |v−v∗|σ
with the differential cross section σ = σ(|v − v∗|, θ) and the deflection angle θ and
cos(θ) = v−v∗

|v−v∗| · ξ. A cross section can be seen as a probability that a collision oc-
curs. Depending on the underlying model of the particles, several cross sections can be
derived. The most common cross sections correspond to variable soft spheres, Maxwell
molecules, pseudo-Maxwell molecules, hard spheres or Coulomb collisions (in plasmas).
We give these examples in Section 2.2.3. The cross sections also have impacts on the
needed regularity of f and its behavior at the tails [Vil02, p. 50].

The Boltzmann equation satisfies many physical properties such as conservation of mass,
momentum and energy, a reasonable entropy behavior, and an H-theorem can be proven.

We will specify these statements for the generalization to multi-species. Such an
extension for gas mixtures can be found in [CC70, Cer88, Cer00].

Definition 2.1.27 (Multi-species Boltzmann equations). The multi-species Boltzmann
equations are a system of equations:

∂tfi + v · ∇xfi = Qi[{fi}] (2.27)

for i ∈ S with the collision operator

Qi[{fi}](x,v, t) =
∑
j∈S

Qij [fi, fj ] (2.28)
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where the interactions between particles of species i and species j are described by

Qij [fi, fj ] =

∫
R3

∫
S2

(fi(x,v
′, t)fj(x,v

′
∗, t)− fi(x,v, t)fj(x,v∗, t))Kij(|v − v∗|, ξ) dξ dv∗

(2.29)

with Kij(|v−v∗|, ξ) = |v−v∗|σij and the differential cross section σij for the species pair
(i, j).

The pre- and post-collisional velocities follow again the microscopic conservation of
momentum and energy (Theorems 2.1.6 and 2.1.7). But in the multi-species case, the
masses need to be taken into account which results in

miv +mjv∗ = miv
′ +mjv

′
∗

miv
2 +mjv

2
∗ = miv

′2 +mjv
′2
∗ .

The collision operator satisfies the following invariance properties which reflect im-
portant physical laws.

Theorem 2.1.28 (Conservation properties for multi-species Boltzmann equations). The
multi-species Boltzmann equations conserve mass, total momentum and total energy. This
means for intra-species interactions, it holds∫

Qii[fi, fi] dv = 0, (2.30)∫
Qii[fi, fi]miv dv = 0, (2.31)∫

Qii[fi, fi]mi|v|2 dv = 0, (2.32)

and for inter-species collisions, it holds ∫
Qij [fi, fj ] dv = 0, (2.33)∫

Qij [fi, fj ]miv dv +

∫
Qji[fj , fi]mjv dv = 0, (2.34)∫

Qij [fi, fj ]mi|v|2 dv +

∫
Qji[fj , fi]mj |v|2 dv = 0, (2.35)

for i, j ∈ S and i ̸= j.

Proof. The proof can be found e.g. in [Gol06, Vil02, Pir18].

As already mentioned in the above theorem, these properties represent the conser-
vation of mass, total momentum and total energy at the kinetic level. Since the kinetic
regime is hard to imagine (f is not physically measurable), we illustrate this nomenclature
in the following theorem.

Theorem 2.1.29 (Macroscopic equations for multi-species Boltzmann equations). Let
f1, f2 ∈ L∞( dv) decay fast enough to zero in v. If f1 and f2 are solutions to (2.27) in
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the sense of distributions, the following local macroscopic equations are satisfied:

∂tni +∇x · (niui) = 0,

∂t(ρiui) +∇x · Pi +∇x · (ρiui ⊗ ui) =
∑
j∈S
j ̸=i

∫
miQij [fi, fj ]v dv,

∂t

(
ρi
2
|u|2 + 3

2
niTi

)
+∇x ·Qi =

∑
j∈S
j ̸=i

∫
mi

2
Qij [fi, fj ]|v|2 dv.

Proof. We give the proof exemplary for the conservation of mass. The other equations
are proven e.g. in [Pir18]. Under some integrability assumptions it holds

0
(2.30),(2.33)

=

∫
Qi[{fi}] dv

(2.27)
=

∫
[∂tfi + v · ∇xfi] dv = ∂t

∫
fi dv +∇x ·

(∫
vfi dv

)
= ∂tni +∇x · (niui).

Accordingly, the number density, respective mass density are transported through
the space. A further integration with respect to x and Gauß’s law yield that the total
mass

∫
ρi dx of species i ∈ S can only change due to a flux over the boundary of the

spatial domain. For proper boundary conditions, the flux vanishes and the total mass is
conserved.

Similar statements can be formulated for the conservation of total momentum and the
conservation of total energy. But in these cases, the species can exchange momentum and
energy, which can be seen by the exchange terms on the RHS. Nevertheless, the sum over
all species vanishes (due to Theorem 2.1.28), and total momentum and total energy are
conserved for proper boundary conditions.

Moreover, the (multi-species) Boltzmann equation fulfils an H-Theorem. This is a very
fundamental property. In the beginning, it caused many doubts because of the resulting
irreversibility at the mescoscopic level. But when the sceptics has been overcome, the
relevance is tremendous. Before we discuss this in more detail, we define the entropy and
corresponding quantities which the H-Theorem is about.

Definition 2.1.30 (Entropy). The entropy density functional of a gas is given by

H[{fi}] =
∑
i∈S

Hi[fi]

with Hi[fi] =

∫
fi log fi dv

(2.36)

and the entropy is ∫
H[{fi}] dx. (2.37)

The entropy dissipation functional reads

D =
∑
i∈S

Di[{fi}]

with Di[{fi}] =
∫

Qi[{fi}] log fi dv,
(2.38)
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and we denote the relative entropy of f and g by

H[f |g] =
∫
f log

f

g
dv. (2.39)

‘Entropy’ is also known in statistical mechanics, see (2.13); the Shannon entropy is a
quantity of information [CT05]. The entropy (2.37) coincides with the Shannon entropy up
to a sign. More comments on the physical content of (2.36) can be found in [Gra61, Vil02].

Often, the entropy density (2.36) is referred to entropy. Even more confusion comes
up when in kinetic theory (and for hyperbolic systems of conservation laws) the notion
of entropy is generally used to be a functional of specific use (see the H-Theorem 2.1.31
below). So one better uses and thinks of ‘entropy’ deliberately.

We give the H-Theorem here for the multi-species case. But the real work has been
done by Boltzmann for the one-species model. The H-Theorem was one of the most
important contributions to statistical physics by Boltzmann [Vil02].

Theorem 2.1.31 (H-Theorem for the Boltzmann equation). The entropy is dissipated
in the space homogeneous gas

D ≤ 0 ⇔ ∂tH ≤ 0

with equality if and only if

fi = M[ni,ueq, Teq,mi]

for i ∈ S and an equilibrium velocity ueq and equilibrium temperature Teq which is common
to all species and specified in Proposition 2.1.33. The Maxwellian M is given in Definition
2.1.32.

In the space inhomogeneous case, it holds true

∂tH+∇x ·
∑
i∈S

∫
vfi log fi dv ≤ 0.

Proof. The proof can be found e.g. in [Cer00, paragraph 6.4]. It uses the basic inequality

(z − y) log
(y
z

)
≤ 0

for y, z ∈ R+ with equality if and only if y = z. Additionally, the proof relies on the
so-called collision invariants and on the fact that from

φ(v) + φ(v∗) = φ(v′) + φ(v′
∗)

it follows that φ is a linear combination of 1, v and |v|2.

Definition 2.1.32 (Maxwellian). A Maxwellian M(x,v, t) ≥ 0 is a distribution function
of the specific form

M(x,v, t) = M[f ](x,v, t) = M[n,u, T,m](x,v, t) =
n√
2π T

m

d
exp

(
−|v − u|2

2 T
m

)
(2.40)
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v

M[n, u, T,m]

u

n

u +
√

T
m

u −
√

T
m

Figure 2.5: A Maxwellian M[n, u, T,m] is illustrated. This special Gaussian is centered

around the mean velocity u, has integral n and standard deviation
√

T
m . Assuming a

Maxwellian distribution, a particle has velocity v ∈
[
u−

√
T/m, u+

√
T/m

]
with around

68 %.

which shares the same macroscopic quantities with a corresponding distribution function
f ; that is  n

nu
3nT

 =

∫
f

 1
v

m|v − u|2

 dv.

The exponent d corresponds to the dimensions in v. In this thesis, it is d = 3.
An illustration is given in Figure 2.5.

In the following, we discuss the meaning and consequences of the H-Theorem and
refer to [Vil02, Vil08].

The H-Theorem states that the entropy H is nonincreasing. This is an exemplifica-
tion of the second law of thermodynamics, given in Axiom 2.1.21. But, the second one
being a postulate, the first one is even a theorem. Both describe the irreversibility of
the macrodynamics. However, even though Clausius’ law was accepted, the H-Theorem
gave rise to doubts since it was seen as a contradiction to the reversible mechanics the
Boltzmann equation is derived from [CIP94, Leb95].

The irreversible macrodynamics do not contradict the reversible microdynamics pro-
vided that the macroscopic model is interpreted with the right amount of probability
[EE07, Kac59] (a translated version of [EE07] can be found in [EEML60]). Referring
to the Boltzmann equation, the probabilistic content sticks in the initial data: Among
all microscopic configurations, which are compatible with the distribution function, we
choose one to be the initial configuration. Hereby, the chaos assumption is relevant, and
it is important to handle correctly that particles are uncorrelated before a collision, but
they are correlated after the collision. Otherwise, contradictive statements can be con-
structed such as Loschmidt’s paradox [Vil02]. Only in 1975, Lanford [Lan75] derived the
Boltzmann equation rigorously from classical mechanics — at least for a perturbative
framework and for hard-spheres collisions.

We now want to emphasize the importance of the H-Theorem. From a physical point
of view, we recognize the irreversibility of macrodynamics and the exemplification of the
second law of thermodynamics. From a mathematical point of view, we make the follow-
ing comments. To start with, we admit that the proof is not rigorous in a satisfactory
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generality because we do not know in general whether the solutions of Boltzmann’s equa-
tion are smooth enough. However, the theorem’s consequences and interpretations are
pleasing.

There is a statistical (microscopic) meaning. The more exceptional an observed con-
figuration is, the higher is the entropy. This fits the Shannon entropy which indicates
how much information a signal contains.

Moreover, theH-Theorem gives us powerful a priori estimates for the Boltzmann equa-
tion. It specifies that the entropy and also the entropy dissipation are finite, determined
by the initial entropy.

The qualitative behavior for long times is also given by the H-Theorem, and we can
study the relaxation to equilibrium (when the collision term is zero). The entropy density
decreases strictly and vanishes if and only if the distribution function has the specific form
of a local Maxwellian. Local means that the corresponding number density, mean veloc-
ity and temperature may vary in x. Maxwellian means yet that the distribution function
behaves hydrodynamically. Together with the transport, the distribution function con-
verges to a global Maxwellian; there is no spatial dependence anymore. To motivate this
hydrodynamic limit mathematically, we bring some statements together: If the mean free
path is short (the Knudsen number becomes small), the collisions play a very significant
role. And then the finiteness of the entropy dissipation pushes the distribution function
to be close to the local Maxwellian.

Both the H-Theorem and the conservation properties are fundamental for the Boltzmann
equation. They are also the elementary properties in order to call an approximative model
consistent. Once, these properties are proven, several features follow automatically. In
this sense, the conservation properties in Theorem 2.1.28 inherit that e.g. the mixture
quantities in equilibrium can be precomputed from initial data in the space homogeneous
case. The following statement is also proven for a more special case in [HHK+22].

Proposition 2.1.33. In the spatially homogeneous case of a consistent kinetic equation,
the mixture mean velocity umix and mixture temperature Tmix, defined in Definition 2.1.16,
stay constant in time.

Proof. In the homogeneous setting, the number densities ni, the mass densities ρi and
the total momentum

∑
i∈S ρiui are all constant in time due to Theorem 2.1.28. Hence

the ratio ∑
i∈S ρiui∑
i∈S ρi

which defines umix is constant in time. To show that Tmix is constant in time, we use
Definition 2.1.16 to write

3

2
nmixTmix = I− II, (2.41)

where

I =
∑
i∈S

1

2
ρi|ui|2 +

3

2
niTi (2.42)

is the total energy and

II =
1

2
ρmix|umix|2. (2.43)

In the homogeneous case, both I and II are constant in time. And we conclude that Tmix

is also constant in time because of formula (2.41).



27 CHAPTER 2. THEORY OF KINETIC MODELS

Corollary 2.1.34. In the homogeneous case of a consistent kinetic equation, the mean
velocity ueq and temperature Teq in equilibrium can be computed from the initial data by

ueq = umix(t = 0) and (2.44)

Teq = Tmix(t = 0) (2.45)

where umix and Tmix are the mixture quantities given in Definition 2.1.16.

Proof. This follows from Proposition 2.1.33 and the H-Theorem 2.1.31 where it says that
all species share the same mean velocity ueq and the same temperature Teq in equilibrium.

The formulae (2.44) and (2.45) apply to any kinetic model satisfying the conservation
properties and the H-Theorem. The latter one implies |ui − uj |(t) → 0 for t → ∞ such
that, in equilibrium, the equation for the temperature simplifies to

Teq = Tmix(t→ ∞)
(2.9)
=

∑
i niTi(t→ ∞)∑

i ni
.

For some models, even more can be said. E.g. for the multi-species BGK model in
[KPP17, CKP20] it is known that the decay is exponentially fast, see Section 2.1.4.

The Boltzmann equation is fundamental in kinetic theory. But especially in numerics, this
model suffers from some drawbacks. It is computationally costly to evaluate the compli-
cated collision operator which makes implicit time discretizations extremely demanding.
These are essential for strong interactions when approaching the hydrodynamic regime.
So simplifications of the collision operator become necessary. One approach is the lin-
earization, another approach is the modelling of the interaction part. The latter one may
lead to the BGK equation.

2.1.4 BGK equation(s) and their extensions

In 1954, the so-called BGKmodel was published by Bathnagar, Gross and Krook [BGK54].
It is an approximation to the Boltzmann equation where (2.26) is replaced by a simpler
operator. Basic properties like the conservation of mass, momentum and energy and an
H-theorem are verified. However, some properties are lost due to the approximation,
e.g. the correct Prandtl number [Str97, ALPP00]. Nevertheless, in many occasions the
benefits predominate, and the field of BGK equations is an active topic of research.

In the following, we motivate the BGK equation and refer to [BGK54, Str05]. The funda-
mental assumption for BGK models is that the distribution function is near equilibrium.
Therefore, the distribution functions corresponding to the post-collisional velocities can
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be written as Maxwellians∫
R3

∫
S2

(f(v′)f(v′
∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗

≈
∫
R3

∫
S2

(M(v′)M(v′
∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗

=

∫
R3

∫
S2

(M(v)M(v∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗

= M(v)

∫
R3

∫
S2

M(v∗)K(|v − v∗|, ξ) dξ dv∗

− f(v)

∫
R3

∫
S2

f(v∗)K(|v − v∗|, ξ) dξ dv∗.

The second but last equality holds because of

M(v′)M(v′
∗) = M(v)M(v∗)

which comes by the microscopic conservation laws (2.2) and (2.3). Since we assume that
we are close to equilibrium, we can state∫

R3

∫
S2

f(v∗)K(|v − v∗|, ξ) dξ dv∗ ≈
∫
R3

∫
S2

M(v∗)K(|v − v∗|, ξ) dξ dv∗,

and it follows∫
R3

∫
S2

(f(v′)f(v′
∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗ ≈ ν(v)(M(v)− f(v))

with the collision frequency

ν(x,v, t) =

∫
R3

∫
S2

M(x,v∗, t)K(|v − v∗|, ξ) dξ dv∗. (2.46)

This integral (2.46) can be very complicated as discussed in Section 2.2.3. Only for very
special cross sections (such as for Maxwellian molecules (2.88)), the integral is evaluable
explicitely and independently of the microscopic velocity. Actually, a velocity-independent
collision frequency simplifies the following calculations a lot. That is why usually the
velocity dependence is avoided by very special cross sections, or an average value ν̄ =
1
n

∫
νf dv is taken. However, this assumption includes physical drawbacks. In [Str97,

HHK+21], the velocity challenge is faced.

In this section, we assume that the collision frequency is independent of the micro-
scopic velocity; that is ν(x,v, t) = ν(x, t). Then, we can introduce the following BGK
equation.

Definition 2.1.35 (BGK equation). The BGK equation takes the form

∂tf + v · ∇xf = Q[f ] (2.47)

with the BGK collision operator

Q[f ] = ν(M[f ]− f) (2.48)

and the collision frequency ν = ν(x, t).
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v

M

f

Figure 2.6: Illustration for the space homogeneous BGK equation: The distribution func-
tion f relaxes to the corresponding Maxwellian M. When equilibrium is reached, it holds
f = M.

In this context, the collision or interaction operator Q[f ] is also called relaxation
operator. This is motivated in the following and illustrated in Figure 2.6. In the space
homogeneous case, the BGK equation reads

∂tf = ν(M− f).

If M > f , then the RHS is positive. This results in a positive time derivative of f which
means that f increases in time. However, if M < f , then the negative RHS leads to a
negative time derivative of f , and f decreases in time. In summary, f relaxes to M.

Another way to motivate the BGK equation is a minimization procedure [ALPP00]. In a
more general set-up, this is executed in Section 2.2, and the motivation for the standard
BGK model is captured as special case for simplified collision frequencies.

The BGK equation is an approximation to the Boltzmann model. Yet, they share the
same main properties.

Theorem 2.1.36 (Properties of the BGK model). Let ν, f > 0 and f ∈ L∞( dv) be
a solution of the BGK equation decaying fast enough to zero for |v| → ∞. Then the
BGK collision operator (2.48) shares the same main properties as the Boltzmann collision
operator (2.26), that is conservation of mass, momentum and energy, H-Theorem and the
structure of the equilibrium.

Proof. The proof can be found in [Str05, Section 3.6]. The fact that the collision frequency
is independent of the microscopic velocity is used in a fundamental way. We show this
for the conservation of mass. It is∫

Q[f ] dv =

∫
ν(M[f ]− f) dv

(∗)
= ν

∫
(M[f ]− f) dv = 0.

The integral vanishes because the Maxwellian M[f ] shares the same number density with
f . However, we emphasize that (∗) only holds true for velocity-independent collision
frequencies.

Theorem 2.1.36 makes the BGKmodel to a consistent approximation of the Boltzmann
equation. However, the simplification of the collision operator goes with some (physical)
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drawbacks. By extending the BGK model while maintaining a simplified RHS, one over-
comes these physical discrepancies. In the following, we list some extensions which also
can be combined. We do not claim completeness.

The Boltzmann equation reproduces the correct Prandtl number (Definition 2.1.19),
whereas the standard BGK model gives Pr = 1 which is unphysical. One way to fix this
issue is to use ellipsoidal statistical BGK (ES-BGK) models [Hol66, ALPP00, KPP18].
There, the Maxwellian in the relaxation term is replaced by a function of the same form
but the scalar temperature is turned to a tensorial analogue. Alternatively, one may use
a Shakhov model [Sha68, BY21] where the Maxwellian is multiplied with an extra term
that adjusts the heat flux, but that does not affect the collision invariants.

For the one-species BGK model, the correct Prandtl number can also be regained by
using velocity-dependent collision frequencies [Str97, MS04]. For an extension to multi-
species [HHK+21] one has not proven this additional feature, yet. Anyway, the velocity-
dependent collision frequency is a way to come closer to the Boltzmann equation again
because the constant collision frequency in the BGK model is an additional assumption.

We already presented the multi-species Boltzmann equations. This is a natural extension
since, in nature, there are usually gas mixtures instead of pure one-species gases. For
the same reasons, there exist several extensions of the BGK equation to multi species
which can be devided into two different classes. The first class of multi-species BGK
models uses one relaxation operator on the RHS [AAP02, BPS12, GMS11]. The sec-
ond class of multi-species BGK models employs the same structure as the multi-species
Boltzmann equations (2.27) which results in the sum of N relaxation operators for N
species. We will present a general model of those in the following section. This model
[KPP17] captures a lot of proposed models in the literature as special cases, such as
[GK56, Ham65, Asi08, GSB89, SS01, Cer88, Gre73, HHM17a, BBG+18].

Another simplification used in the standard Boltzmann and BGK models is that only
monatomic particles are considered. In order to deal with molecules, polyatomic models
have been developed. The number of degrees of freedoms increases as rotations and vi-
brations become possible. We refer to the nice review in [Pir21].

In this thesis, we only consider physical phenomena. If chemical reactions should be
taken into account, the model needs to be changed which especially influences the con-
servation of mass. References concerning with chemical reactive gases can be found in
[BKPY21].

Currently, we only considered classical physics. But there are also extensions for rela-
tivistic and quantum regimes, respectively. BGK models including relativistic effects can
be found in [PR18, BCNS12]. For quantum models, we refer to [BKPY21] and references
therein. This is also concerned with in Section 2.3.

We are especially interested in gas mixtures, so we focus on models for multi species. In the
following, we shortly recall the general consistent multi-species BGK model [KPP17]. It
was developed by Klingenberg, Pirner and Puppo in 2017 which is why we use Klingenberg-
Pirner-Puppo (KPP) in the following to refer to this model. Its special feature are free
parameters which — appropriately chosen — generate many other multi-species models
in the literature or which can be used to match additional physical properties.
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KPP: a consistent multi-species BGK model

This model is nicely presented and many properties are summarized in [Pir18]. In the
following, we give a short overview and also include more recent results.

For simplicity in notation and statements, we present the multi-species BGK model
[KPP17] for two species, but the model can be extended to an arbitrary number of species
because we only consider binary interactions. The structure of the RHS of the multi-
species Boltzmann equations (2.27) is preserved, but every single collision operator is
replaced by a BGK approximation consisting of a collision frequency νkjnj multiplied by
the deviation of the distributions from a local Maxwell distribution.

Definition 2.1.37 (Multi-species BGK equations). The multi-species BGK equations in
[KPP17] read

∂tf1 + v · ∇xf1 = Q1[{f1, f2}],
∂tf2 + v · ∇xf2 = Q2[{f1, f2}]

(2.49)

with the collision operators

Q1[{f1, f2}] = Q11[f1, f1] +Q12[f1, f2] = ν11n1(M11 − f1) + ν12n2(M12 − f1), (2.50)

Q2[{f1, f2}] = Q22[f2, f2] +Q21[f2, f1] = ν22n2(M22 − f2) + ν21n1(M21 − f2) (2.51)

and the collision frequencies per density (i, j = 1, 2)

νij = νij(x, t).

The Maxwellians M11 = M[f1] and M22 = M[f2] are already known from the one-
species case. On top of that, the mixture Maxwellians M12 and M21 are given by

M12(x,v, t) = M[n12,u12, T12,m1] =
n12√
2π T12

m1

3 exp

(
−|v − u12|2

2T12
m1

)
,

M21(x,v, t) = M[n21,u21, T21,m2] =
n21√
2π T21

m2

3 exp

(
−|v − u21|2

2T21
m2

)
,

(2.52)

where nij , uij and Tij still need to be defined. Actually, the collision frequencies νijnj and
the macroscopic mixture quantities nij , uij and Tij represent degrees of freedom which can
be used in order to obtain desired properties. The main task is to satisfy the fundamental
properties of the Boltzmann equation: conservation of mass, total momentum and total
energy as well as the correct entropy behavior.

The collision frequencies ν11n1 and ν22n2 are related to intra-species collisions, whereas
ν12n2 and ν21n1 correspond to inter-species collisions. Usually, the latter ones are linked
by a constant, e.g. the mass ratio in the case of a plasma [Pir18, Section 5.2.1]. So we
assume

ν12 = εν21, 0 < ε ≤ 1. (2.53)

The requirement on ε is not restrictive. If ε > 1, the exchange of the notation 1 and 2
yields 1

ε ≤ 1. In addition, all collision frequencies are assumed to be positive.

Remark 2.1.38. In this section, the collision frequency is denoted by νn where ν is the
collision frequency per density. This notation simplifies later statements and theorems.
However, in the rest of this thesis the collision frequency itself is denoted by ν.
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The choices M11 = M[f1] and M22 = M[f2] guarantee the conservation of mass,
momentum and energy during interactions of particles of one species with itself (2.30)–
(2.32). Accordingly, the parameters n12, n21, u12, u21, T12 and T21 for M12 and M21 are
supposed to guarantee the conservation of the number of particles, total momentum and
total energy (2.33)–(2.35) during inter-species interactions. We impose that u12 is a linear
combination of u1 and u2, and T12 is a linear combination of T1 and T2 plus a velocity
term. Then corresponding expression for u21 and T21 can be found while satisfying the
conservation properties.

Theorem 2.1.39 (Conservation properties for the KPP model). Let M11 = M[f1] and
M22 = M[f2]. For the mixture Maxwellians M12(x,v, t) = M[n12,u12, T12,m1] and
M21(x,v, t) = M[n21,u21, T21,m2] define

n12 = n1 and n21 = n2, (2.54)

and

u12 = δu1 + (1− δ)u2,

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1),

(2.55)

as well as

T12 = αT1 + (1− α)T2 + γ|u1 − u2|2,

T21 =

[
1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ ε(1− α)T1 + (1− ε(1− α))T2,

(2.56)

with

0 ≤ α ≤ 1, δ ∈ R, γ ≥ 0. (2.57)

Then the BGK equations (2.49) satisfy conservation of mass (2.30)/ (2.33), total momen-
tum (2.31)/ (2.34) and total energy (2.32)/ (2.35).

Proof. The proofs can be found in [KPP17, Theorems 2.1–2.3].

The newly introduced parameters α, δ and γ play an essential role in this model.
On the one hand, they can be physically interpreted. On the other hand, they equip the
model with more degrees of freedom which can be used to match specific properties. Both
features are discussed later. But first of all, we need to restrict δ and γ in order to ensure
the positivity of temperatures.

Theorem 2.1.40 (Positivity of temperatures for the KPP model). All temperatures in
(2.49) are positive if

0 ≤ γ ≤ m1

3
(1− δ)

[
(1 +

m1

m2
ε)δ + 1− m1

m2
ε

]
, (2.58)

and

m1
m2
ε− 1

1 + m1
m2
ε
≤ δ ≤ 1. (2.59)
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Proof. The proof is given in [KPP17, Theorem 2.5].

Another fundamental property corresponds to the entropy.

Theorem 2.1.41 (H-Theorem for the KPP model). Let f1, f2 > 0. Assume the relation-
ships (2.53)–(2.59) for α, δ ̸= 1. Then it holds

D =

∫
ν11(M11 − f1) log f1 dv +

∫
ν12(M12 − f1) log f1 dv

+

∫
ν21(M21 − f2) log f2 dv +

∫
ν22(M22 − f2) log f2 dv ≤ 0

with equality if and only if f1 and f2 are Maxwellians with equal mean velocity and tem-
perature.

Proof. The proof is given in [KPP17, Theorem 2.7].

As for the Boltzmann equation, the H-Theorem gives us the qualitative behavior in
equilibrium. There, the relaxation term vanishes which implies a specific form of the
kernel — a Maxwellian.

Theoretical results of this model We give a short overview over recent theoretical
results concerning existence of solutions and large-time behavior which is also given in
[PWed].

In the periodic setting and under certain conditions on the initial data and the collision
frequencies, there exist unique mild solutions to (2.49), proven in [KP17]. Mild solutions
are a class of solutions with lower regularity than in the classical sense, comparable to
the notion of weak solutions [Pir18].

In [BKYP22], there is another existence result concerning the existence of a unique
global-in-time classical solution when the initial data are perturbed slightly from a global
equilibrium.

Moreover, one can prove the following results on the large-time behavior.

Theorem 2.1.42 (Estimates for the distribution functions for the KPP model). Let ν12
be constant in time and consider the space homogeneous case. Then, we have the following
decay rate of the distribution functions f1 and f2

||fi −Mi||L1(dv) ≤ 4e−
1
2
Ct[H(f01 |M0

1) +H(f02 |M0
2)]

1
2 , i = 1, 2,

where C is the constant given by

C = min{ν11n1 + ν12n2, ν22n2 + ν21n1}
and the superscript 0 denotes the value at time t = 0. Here, we use the relative entropy
defined in (2.39).

Proof. The proof is given in [CKP20, Theorem 4.1].

Theorem 2.1.43 (Estimates for the mean velocities for the KPP model). Let ν12 be con-
stant in time and consider the space homogeneous case. It holds the following relaxation
rate

∂t(u1 − u2) = ν12(1− δ)

(
n2 +

m1

m2
n1

)
(u2 − u1) (2.60)

and the following decay rate for the mean velocities

|u1(t)− u2(t)|2 = e
−2ν12(1−δ)

(
n2+

m1
m2

n1

)
t|u1(0)− u2(0)|2. (2.61)
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Proof. The proof can be found in [CKP20, Theorem 4.2].

Theorem 2.1.44 (Estimates for the temperatures for the KPP model). Let ν12 be con-
stant in time and consider the space homogeneous case. It holds the following relaxation
rate

∂t(T1 − T2) = −C1(T1 − T2) + C2|u1 − u2|2 (2.62)

and the following decay rate for the temperatures

T1(t)− T2(t) = e−C1t

[
T1(0)− T2(0) +

C2

C1 − C3
(e(C1−C3)t − 1)|u1(0)− u2(0)|2

]
, (2.63)

where the constants are defined by

C1 = (1− α)ν12 (n2 + n1) ,

C2 = ν12

(
n2

(
(1− δ)2 +

γ

m1

)
− n1

(
1− δ2 − γ

m1

))
,

C3 = 2ν12(1− δ)

(
n2 +

m1

m2
n1

)
.

Proof. The proof can be found in [CKP20, Theorem 4.3].

More results for the linearized collision operator in the space homogeneous case can be
found in [LP18] where hypocoercivity in continuous phase space is studied. The authors
prove exponential relaxation to global equilibrium with explicit rates. Their strategy
is based on the entropy and spectral methods adapting Lyapunov’s direct method as
presented in [AAC16] for the one-species linearized BGK model.

In the hydrodynamic limit, we obtain the following result.

Theorem 2.1.45 (Macroscopic equations for the KPP model). The macroscopic equa-
tions of the multi-species BGK model (2.49) read

∂tni +∇x · (niui) = 0,

∂t(ρiui) +∇x · Pi +∇x · (ρiui ⊗ ui) = fmi,j ,

∂t

(
ρi
2
|ui|2 +

3

2
niTi

)
+∇x ·Qi = FEi,j ,

with the exchange terms fmi,j and FEi,j given by

fm1,2 = −fm2,1 = m1ν12n1n2(1− δ)(u2 − u1),

Fm1,2 = −Fm2,1

=

[
ν12

1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2)) +

1

2
ν12n1n2γ(u1 − u2)

]
· (u1 − u2)

+
3

2
εν21n1n2(1− α)(T2 − T1).

Proof. The LHS is the same as the one of the macroscopic equations for the Boltzmann
equations in Theorem 2.1.29, but the RHS differs. For the Boltzmann operator, the
integrals are only computable in special cases (e.g. for Maxwellian molecules, see (2.88)).
Whereas for the BGK operators (2.50), it is possible to evaluate these integrals explicitly
by using Theorem 2.1.39 and its proof.
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Meaning and possible choices of the free parameters In this section, we deal
with the meaning and possible choices of the free parameters. In Theorems 2.1.43–2.1.45,
we observe a physical meaning of α and δ. We see that α and δ show up in the exchange
terms of momentum and energy as parameters in front of the relaxation of u1 towards u2

and T1 towards T2. So they determine, together with the collision frequencies, the speed
of relaxation of the mean velocities and the temperatures to a common value.

These parameters can be tuned to make the model more physical. One possibility is
to choose the parameters in such a way that the macroscopic exchange terms of mo-
mentum and energy match the ones for the Boltzmann equation. Since the Boltzmann
equation is considered to be physical, the same applies in this case for the relaxation rates
of the multi-species BGK equations.

The following calculations are performed by myself and published in [PWed]. We
follow [HHM17a, Chapter 4.1] and compare the relaxation rates in the space homoge-
neous case to the relaxation rates for the space homogeneous Boltzmann equations. In
[HHM17a], they find formulas for νij such that either their relaxation rate for the mean
velocities or their relaxation rate for the temperatures coincides with the corresponding
rate of the Boltzmann equation. But using the free parameters α, δ and γ, we are able
to match both of the relaxation rates at the same time.

The relaxation rates for the multi-species Boltzmann equations are given in [HHM17a]
and read

∂t(u2 − u1)

∣∣∣∣
Boltz

= −α12

(
ρ1 + ρ2
ρ1ρ2

· m1 +m2

2

)
(u2 − u1) (2.64)

∂t(T2 − T1)

∣∣∣∣
Boltz

= −α12

[
n1 + n2
n1n2

(T2 − T1) +
ρ2 − ρ1
3n1n2

|u2 − u1|2
]
, (2.65)

where α12 is a coefficient for energy transfer coming from the Boltzmann equation, see
[HHM17a] and references therein. We compare the coefficients of the terms u2−u1, T2−T1
and |u2 − u1|2 in these Boltzmann relaxation rates (2.64)–(2.65) with the coefficients for
the BGK relaxation rates (2.60) and (2.62). This results in the specific parameters:

(u2 − u1)-term: δ = 1− α12

ν12

m1 +m2

2

m1n1 +m2n2
m1n1m2n2

(
n1
m1

m2
+ n2

)−1

,

(T2 − T1)-term: α = 1− α12

ν12n2n1
,

|u2 − u1|2-term: γ =
1

3
(n1 + n2)

−1

[
α12

ν12

m2n2 −m1n1
n2n1

−m1n2(1− δ)2 +m1n1(1− δ2)

]
.

Additionally, the constraints (2.57)–(2.59) need to be satisfied. This can be verified by a
corresponding choice of νij . One possibility is

νij =
1

2

αij

ninj

(mi +mj)
2

mimj
(2.66)

and for 1 ≥ ε = mi
mj

(cf. in a plasma). Then, ν11 and ν22 are still free and can be set in a

desired way.

Alternatively but in an analogous way, the free parameters can be used to match the
entropy decay rate or transport coefficients.
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Another use for the parameters is the following one. They can be set such that we gen-
erate special cases of multi-species BGK models in the literature [GK56, Ham65, Asi08,
GSB89, SS01, Cer88, Gre73, BBG+18, HHM17a].

All models, which can be considered as special cases of the class described here, en-
joy the theoretical properties derived for the more general KPP model: an H-theorem,
conservation properties, positivity of the inter-species temperatures and the quantitative
decay rates to equilibrium.

If we exemplary choose

ε = 1, δ =
m1

m1 +m2
, α =

m2
1 +m2

2

(m1 +m2)2
, γ =

m1m2

(m1 +m2)2
m2

3
,

we obtain the model by Hamel in [Ham65]. This is done in more details in [KP17, Pir18].

In [HHM17a], Haack, Hauck and Murillo introduce their multi-species BGK model. They
assume a symmetry of the mixed mean velocities uij and temperatures Tij which coincides
with the choice

δ =
m1ν12

m1ν12 +m2ν21
, α =

ν12
ν12 + ν21

, γ =
m1m2ν12ν21

3(ν12 + ν21)(m1ν12 + ν21m2)
,

respective

δ =
m1ε

m2 +m1ε
, α =

ε

1 + ε
, γ =

εm1m2

3(1 + ε)(m1ε+m2)

provided that ν12 = εν21. Be aware of the slightly different definition of νij according to
Remark 2.1.38. We used the notation of the KPP model here.

In their article [HHM17a], the authors additionally derive a fluid transport model by
using a Chapman-Enskog expansion. On top of that, they illustrate the relaxation process
in a spatially homogeneous plasma by numerical tests matching either the mean velocity
or temperature relaxation rate to the Boltzmann one.

In [BBG+18], the authors derive a multi-species BGK model explicitely for an arbitrary
number of species where they specify the free parameters for Maxwellian molecules. This
notion refers to specific cross sections, see Section 2.2.3. It is

δ =
m1

m1 +m2
, α =

2δm2

m1 +m2
, γ =

δm2

3

(
2m1

m1 +m2
− δ

)
,

and the model [BBG+18] can be seen as a special case of the KPP model. This justifies
in retrospect the linear combinations in KPP for the mixed quantities to be sensible and
natural.

Having multi-species BGK models at hand, we aim to extend such a model by velocity-
dependent collision frequencies.

2.2 Multi-species BGKmodels with velocity-dependent col-
lision frequency

2.2.1 Motivation

Deriving the BGK equation (2.47) from the Boltzmann equation (2.25), the collision fre-
quency ν appears as an integral over the differential cross section σ, see (2.46). The latter
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one defines the underlying physics during the collisions which is then inherited to the
collision frequencies. In (2.46), we see that the collision frequency naturally depends on
the microscopic velocity v. However, in the standard BGK models and many extensions,
this dependence is neglected for reasons of simplicity which we have comprehended in the
proof of Theorem 2.1.36. Transport coefficients derived via the Chapman-Enskog expan-
sion are very sensitive to the dynamics of the tails of the distribution function [CC70]
so that this simplification may have profound effects on e.g. the resulting hydrodynamic
behavior associated with this model. Now, equipped with around 50 years of further math
experience, it makes sense to reintroduce the dependence on the microscopic velocity in
order to come closer to the behavior of the Boltzmann equation again.

But also from physical considerations, we expect a velocity dependence. We can think
of different motivations for respective types of interactions why the velocity dependence
becomes important.

Firstly, we consider billiard balls. If all balls had exactly the same velocity, no collisions
would occur at all. But the larger the relative velocity, the more collisions are expected,
see Figure 2.7.

mean velocity

no collisions

mean velocity

collisions possible

Figure 2.7: In both illustrations, the fluid’s mean velocity is the same. In the left il-
lustration, each particle’s velocity coincides with the mean velocity so that the relative
velocities vanish. Collisions between particles are not possible. However, in the right
illustration, all particles have different velocities (in direction and absolute value) which
results in very distinct relative velocities. This can lead to collisions.

We illustrate the second motivation in Figure 2.8. Especially for plasmas where a
Coulomb force is encountered, it is better to think of interactions between particles than
of collisions. Let us consider two particles in the frame of reference where particle 2 is
at rest. The (effective) cross section in which the two particles interact is given by the
dashed circle. Actually, the Coulomb potential ranges to infinity, but it is often replaced
by an effective potential with finite range, see Section 2.2.3. If particle 1 moves fast (red
line, for a large relative velocity), it spends little time in the cross section and just passes
particle 2. The effect of an attractive interaction is small. Whereas, if particle 1 moves
slowly (blue line, for a small relative velocity), it stays quite a while in the cross section
such that the interaction has a large effect. We conclude that the microscopic velocity
and more precise the relative velocity plays an important role for the interactions between
particles.

Be aware that this is only an illustration. We still assume that interactions/collisions
take place instantaneously. In our model, this means that these interaction à la Coulomb
are condensed in time to a single moment. Alternatively speaking, the time scales for the
interactions are much smaller than the system’s time scale.
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particle 1

particle 2

Figure 2.8: An attractive interaction between particle 1 and particle 2 is illustrated. We
assume the frame of reference where particle 2 is at rest and give the effective cross section
(the area in which an interaction is possible) by a dashed circle. For a large velocity of
particle 1 (red line), the effect of the interaction is small. But for a small velocity of
particle 1 (blue line), particle 1 is deflected more due to a strong interaction.

These two considerations show that there is a range of relative velocities where we really
expect an impact on collisions. Since the temperature scales like T ∝

∫
|v − u|2f dv,

which also involves the relative velocity, our observations translate to the temperature.
One characteristic of a plasma is its usual high temperature. This explains why a velocity-
dependent collision frequency might be more important in a plasma than in cold water.

2.2.2 A consistent BGK model with velocity-dependent collision fre-
quency for gas mixtures

In the derivation of the standard BGK model, the collision frequency is assumed to be
constant in velocity. This holds true only for very specific cross sections, but it simplifies
the model a lot. The generalization to velocity-dependent collision frequencies poses many
challenges in the structure and for the proofs.

A single-species BGK model with velocity-dependent collision frequency was intro-
duced in [Str97]. Since we are especially interested in gas mixtures, we recall the multi-
species model presented in [HHK+21] which includes [Str97] as a by-product.

For reasons of readability and simplicity in notation, we stick to two species. The
extension to multi species can be found in [HHK+21].

We consider two distribution functions f1 = f1(x,v, t) ≥ 0 and f2 = f2(x,v, t) ≥ 0
for the species with masses m1 and m2, respectively, and for x ∈ R3 and v ∈ R3 being
the phase space variables and t ≥ 0 the time.

Definition 2.2.1 (Multi-species BGK equations with velocity-dependent collision fre-
quency). The multi-species BGK equations in [HHK+21] read

∂tf1 + v · ∇xf1 = Q1[{f1, f2}],
∂tf2 + v · ∇xf2 = Q2[{f1, f2}]

(2.67)

with the collision operators

Q1[{f1, f2}] = Q11[f1, f1] +Q12[f1, f2] = ν11(G11 − f1) + ν12(G12 − f1), (2.68)

Q2[{f1, f2}] = Q22[f2, f2] +Q21[f2, f1] = ν22(G22 − f2) + ν21(G21 − f2) (2.69)

and the collision frequencies (i, j = 1, 2)

νij = νij(x,v, t) ≥ 0.
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In the following, we use the notation

ai(v) = mi

 1
v
|v|2

 (2.70)

for i = 1, 2. Before we specify the target functions Gij , we assume some integrability
properties regarding the effect of the velocity-dependent collision frequencies.

Assumption 2.2.2. Each collision frequency νij is strictly positive with the additional
property that

{λ ∈ R5 | exp(λ · ai) ∈ L1(R3)} = {λ = (λ(0),λ(1), λ(2)) ∈ R× R3 × R |λ(2) < 0}

is independent of i and j.

This assumption ensures integrability properties being satisfied for velocity-independent
collision frequencies which holds true for many realistic frequency models.

The BGK system (2.67) maintains the structure from the multi-species Boltzmann (2.27)
and BGK (2.49) equations. However, the velocity-dependent collision frequency intro-
duces many challenges regarding the target functions Gij which still need to be defined.
They are chosen in such a way that they guarantee the consistency of the model by con-
struction. This construction includes the constant collision frequency case in which the
multi-species BGK model in [HHM17a] is regained.

We first give the form of the target functions Gij followed by the interpretation and
derivation.

Definition 2.2.3 (Target functions for the multi-species BGK model with ν(v)). The
target functions for the multi-species BGK equations (2.67) are given by

Gii[fi] = eλii·ai(v), (2.71)

Gij [fi, fj ] = eλij ·ai(v) (2.72)

for i, j = 1, 2, i ̸= j. The parameters λii =
(
λ
(0)
ii ,λ

(1)
ii , λ

(2)
ii

)⊤
∈ R × R3 × R− and

λij =
(
λ
(0)
ij ,λ

(1), λ(2)
)⊤

∈ R×R3×R− depend on the corresponding distribution functions

f1 and f2.

We can think of several names for Gij : target functions, attractors or generalized
Maxwellians. This comes by different possibilities how these are interpreted. On the one
hand, target function, respective attractor comes by the fact that the relaxation structure
of (2.67) pushes fi to Gii. On the other hand, since Gii are Gaussian functions, for a given
mass m there exist a number density ñ, a mean velocity ũ, a temperature T̃ such that we
can write

Gii = M[ñ, ũ, T̃ ,m].

However, this is missleading because in general this Maxwellian cannot be associated with
the distribution function fi, i.e. Gii ̸= M[fi]. This is why we prefer the other names. In
addition, we want to emphasize that, in general, we cannot express the macroscopic quan-
tities ni, ui and Ti as analytic functions of λi and λij . For constant collision frequencies,
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this is possible (see Remark 3.2.3), but for velocity-dependent collision frequencies we do
not know any explicit relationship. In the following section, we will see how Gii and fi
yet are connected.

The form of these target functions actually comes by physical requirements. Let us first
consider the intra-species target functions Gii.

Intra-species target functions

We seek a distribution function which minimizes the entropy while conserving mass,
momentum and energy for intra-species interactions. Here we refer to ‘entropy’ to be a
special functional. We weight the usual objective by the collision frequencies which in the
end will yield the form of Gii. We define the strictly convex function

h(z) = z log z − z, z > 0,

and the constrained minimization problem reads

min
g∈χii

∫
νiih(g) dv, i ∈ {1, 2}, (2.73)

where

χii =

{
g
∣∣∣ g > 0, νii(1 + |v|2)g ∈ L1(R3),

∫
νiiai(v)(g − fi) dv = 0

}
.

Via the constraints in the set χii, the conservation properties (2.30)–(2.32) are ensured.
The problem (2.73) can be reformulated by using the Lagrange functional

Lii(g,α) =

∫
νiih(g) dv −α ·

∫
νiiai(v)(g − fi) dv. (2.74)

Any critical point satisfies the first-order optimality condition

δLii

δg
(Gii,λii) = νii(lnGii − λii · ai(v)) = 0,

which results in

Gii = exp (λii · ai(v)) = exp
(
miλ

(0)
ii +miλ

(1)
ii · v +miλ

(2)
ii |v|2

)
.

For Λ := {α = (α(0),α(1), α(2))⊤ ∈ R× R3 × R−}, the multipliers λii ∈ Λ solve the dual
of (2.74):

λii = argmin
α∈Λ

zii(α,µii) (2.75)

with

zii(α,µii) = −
∫
νiie

α·ai dv +α · µii

and

µii =

∫
νiiaifi dv.

Having motivated the intra-species target functions, we prove that they are well-posed.
For this, we define the set

Iij := {g ≥ 0 | νij(1 + |v|2)g ∈ L1(R3), g ̸≡ 0}
clarifying integrability conditions.
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Theorem 2.2.4 (Well-posedness of intra-species target functions for the multi-species
BGKmodel with ν(v)). There exists a unique function of the form (2.71) which minimizes
(2.73) for any fi ∈ Iii.

Proof. The entire proof is given in [HHK+21, Theorems 1 and 3]. We shortly summarize
the basic ideas. Firstly, suppose that there exists a λii ∈ Λ such that Gii = eλii·a ∈ χii.
Then the convexity of h and h′(Gii) = λii · ai lead to

h(g) ≥ h(Gii) + λii · ai(g − Gii).

Because of νii ≥ 0, it holds for all g ∈ χii∫
νiih(g) dv ≥

∫
νiih(Gii) dv + λii ·

∫
νiiai(g − Gii) dv =

∫
νiih(Gii) dv.

So Gii is a minimizer of (2.73), and due to the strict convexity of h, Gii is unique.

The second step is to show that there always exists such a unique λii ∈ Λ for any
fi ∈ Iii. This was rigorously proven in [HHK+21]. Basically, the authors show that the
dual function zii(α,µ) is differentiable and that it attains its unique minimum at λii

on Λ with exp(λii · ai) ∈ Iii for any µ of the form
∫
νiiaig(v) dv and g ∈ Iii. A main

ingredient, following [Jun00], is to prove that zii attains a minimum along the line α+ sξ
in any direction ξ ∈ S5, and these minima are not located at the boundary. Using the
implicit function theorem, this statement can be tied up for the entire function zii(α,µ)
which results in one minimum of zii. Then, for the thus found minimum, the necessary
condition yields

0 = ∇αzii(λii,µ)

giving µ =
∫
νiiaie

λii·ai dv. The result follows from the first part of the proof.

We continue with inter-species interactions.

Inter-species target functions

For the inter-species interactions, we seek a solution to

min
g1,g2∈χ12

∫
ν12h(g1) dv +

∫
ν21h(g2) dv, (2.76)

where

χ12 =

{
(g1, g2)

∣∣∣ g1, g2 > 0, ν12(1 + |v|2)g1, ν21(1 + |v|2)g2 ∈ L1(R3),∫
m1ν12(g1 − f1) dv = 0,

∫
m2ν21(g2 − f2) dv = 0,∫

m1ν12

(
v
|v|2

)
(g1 − f1) dv +

∫
m2ν21

(
v
|v|2

)
(g2 − f2) dv = 0

}
.

(2.77)

The set χ12 ensures that the mass for each species, the total momentum and the total en-
ergy for inter-species collisions are conserved (2.33)–(2.35). The corresponding Lagrange
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functional reads

L12 : χ12 × R× R× R3 × R → R,

L12(g1, g2, α
(0)
12 , α

(0)
21 ,α

(1), α(2)) =

∫
ν12(g1 ln g1 − g1) dv +

∫
ν21(g2 ln g2 − g2) dv

−α(0)
12

∫
m1ν12(g1 − f1) dv − α

(0)
21

∫
m2ν21(g2 − f2) dv

−α(1) ·
(∫

m1ν12v(g1 − f1) dv +

∫
m2ν21v(g2 − f2) dv

)
−α(2)

(∫
m1ν12|v|2(g1 − f1) dv +

∫
m2ν21|v|2(g2 − f2) dv

)
.

(2.78)

The first-order optimality conditions

δL12

δg1
(G12,G21, λ

(0)
12 , λ

(0)
21 ,λ

(1), λ(2)) = ν12(lnG12 − λ12 · a1) = 0,

δL12

δg2
(G12,G21, λ

(0)
12 , λ

(0)
21 ,λ

(1), λ(2)) = ν21(lnG21 − λ21 · a2) = 0

need to be satisfied by any critical point (G12,G21, λ
(0)
12 , λ

(0)
21 ,λ

(1), λ(2)). We end up with

G12 = exp(λ12 · a1) = exp
(
m1λ

(0)
12 +m1λ

(1) · v +m1λ
(2)|v|2

)
,

G21 = exp(λ21 · a2) = exp
(
m2λ

(0)
21 +m2λ

(1) · v +m2λ
(2)|v|2

)
.

We only require conservation of the combined momentum and energy. This leads to
only one Lagrange multiplier for the momentum constraint and one Lagrange multiplier
for the energy constraint. Therefore, λ(1) and λ(2) are the same for both G12 and G21.
When the collision frequency is constant, this restriction is the same as the one used in
[HHM17a], but more restrictive than in model [KPP17].

If Λ12 = {(α12,α21) : αij = (α
(0)
ij ,α

(1), α(2))⊤ ∈ R × R3 × R−}, then the multipliers
(λ12,λ21) solve the dual problem of (2.78):

(λ12,λ21) = argmin
(α12,α21)∈Λ12

{
−
∫
(ν12e

α12·a1 + ν21e
α21·a2) dv

+ α
(0)
12

∫
m1ν12f1 dv + α

(0)
21

∫
m2ν21f2 dv

+α(1) ·
∫

v(m1ν12f1 +m2ν21f2) dv

+ α(2)

∫
|v|2(m1ν12f1 +m2ν21f2) dv

}
.

(2.79)

We now consider the well-posedness of G12 and G21.

Theorem 2.2.5 (Well-posedness of inter-species target functions for the multi-species
BGK model with ν(v)). There exists a unique solution of the form (2.72) which minimizes
(2.76) for any fi ∈ Iij.

Proof. The proof is given in [HHK+21, Theorems 2 and 4]. The ideas of Theorem 2.2.4
are essentially extended to the mixture case.

After having established the model, we can discuss its properties.
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Consistency of the model

The consistency of the presented model is given in the following theorems.

Theorem 2.2.6 (Conservation properties for the multi-species BGK model with ν(v)).
The model (2.67) conserves mass, total momentum and total energy; that is∫

νii(Gii − fi)ai dv = 0 for i = 1, 2 and (2.80)∫
ν12(G12 − f1)a1 dv +

∫
ν21(G21 − f2)a2 dv = 0. (2.81)

Proof. This is an immediate consequence of the construction of the target functions.

In a kinetic context, the conservation of mass, momentum and energy are associated
with the equations (2.80) and (2.81). However, it is useful to keep in mind that these
correspond to

∂tρ1 +∇x ·
∫
m1vf1 dv = 0, (2.82a)

∂tρ2 +∇x ·
∫
m2vf2 dv = 0, (2.82b)

∂t(ρ1u1 + ρ2u2) +∇x ·
(∫

v ⊗ v(m1f1 +m2f2) dv

)
= 0, (2.82c)

∂t

(
ρ1|u1|2

2
+

3ρ1T1
2m1

+
ρ2|u2|2

2
+

3ρ2T2
2m2

)
+∇x ·

(∫
1

2
v|v|2(m1f1 +m2f2) dv

)
= 0.

(2.82d)

The equations (2.82) illustrate the conservation properties and are also common in the
hydrodynamic context.

We continue with the entropy behavior of the model.

Theorem 2.2.7 (H-Theorem for the multi-species BGK model with ν(v)). Assume
f1, f2 > 0 and the validity of (2.80) and (2.81). Let us denote the function h(z) =
z ln(z) − z and the total entropy H[{f1, f2}] =

∫
(h(f1) + h(f2)) dv. Then, the following

entropy inequality holds true

∂tH[{f1, f2}] +∇x ·
[∫

v(h(f1) + h(f2)) dv

]
≤ 0 (2.83)

with equality if and only if f1 and f2 are two Maxwell distributions with equal mean velocity
and temperature.

Proof. The proof can be found in [HHK+21, Theorem 6 and Corollary 3] which uses
standard techniques regarding entropy. For convenience, we recall it here. A direct
calculation gives

∂tH[{f1, f2}] +∇x ·
[∫

v(h(f1) + h(f2)) dv

]
=

2∑
i=1

∫
Qi[{fi}] log fi dv

= D11 +D12 +D21 +D22

with the dissipation terms

Dij =

∫
νij(Gij − fi) log fi dv.
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We show that Dii ≤ 0 and D12 +D21 ≤ 0 which proves (2.83).
Due to the conservation during intra-species interactions (2.80), it is∫

νii(Gii − fi) log Gii dv = λii ·
∫
νii(Gii − fi)ai dv = 0.

It follows

Dii =

∫
νii(Gii − fi) log fi dv −

∫
νii(Gii − fi) log Gii dv

=

∫
νii(Gii − fi) log

fi
Gii

dv ≤ 0 (2.84)

where the last inequality holds because

(z − y) log
(y
z

)
≤ 0 (2.85)

for y, z ∈ R+. Additionally, (2.85) is an equality if and only if y = z. Applied to (2.84),
Dii = 0 if and only if Gii = fi. In that case, fi is a Gaussian function, and since Gii and
fi obviously share the same moments, fi = M[fi] is even a Maxwellian.

For the mixed dissipation terms, we use the conservation during inter-species interac-
tions (2.81) and observe

I :=

∫
ν12(G12 − f1) log G12 dv +

∫
ν21(G21 − f2) log G21 dv

= λ
(0)
12

∫
ν12(G12 − f1)m1 dv + λ

(0)
21

∫
ν21(G21 − f2)m2 dv

+λ(1) ·
∫

[ν12(G12 − f1)m1 + ν21(G21 − f2)m2]v dv

+λ(2) ·
∫
[ν12(G12 − f1)m1 + ν21(G21 − f2)m2]|v|2 dv = 0.

Adding this vanishing term to the dissipation terms yields

D12 +D21 = D12 +D21 − I

=

∫
ν12(G12 − f1) log

f1
G12

dv +

∫
ν21(G21 − f2) log

f2
G21

dv
(2.85)

≤ 0

with equality if and only if f1 = G12 = M[f1] and f2 = G21 = M[f2] using the same
arguments as above. Moreover, a direct calculation determines the corresponding mean
velocities and temperatures to be

u1 = u2 = −λ(1)

λ(2)
and T1 = T2 = − 1

2λ(2)
.

So in this special set-up (equilibrium), the macroscopic quantities ui and Ti can be ex-
pressed as functions of λij even if, in general, this is not possible.

Remark 2.2.8. The entropy in Definition 2.1.30 is given by an auxiliary funcion h̃(z) =
z log z instead of h(z) = z log z − z. But the difference between those only contributes to
an additional, constant term (the mass) when integrating with respect to v. In the end,
the statement of the H-Theorem remains the same.

In order to end the introduction of this model, we specify the velocity-dependent
collision frequencies of our interest.
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2.2.3 Cross sections and collision frequencies

We give a short introduction into cross sections and collision frequencies in this section.
For ease, we start with kernels for one species, but in the end we give the formulas which
are used in our numerical simulations for two species.

Cross sections

Cross sections represent the fundamental object regarding the underlying physics in the
Boltzmann model, see Definitions 2.1.26, 2.1.27. By a careful handling, the validity of
the Boltzmann equation can even be extended, e.g. to dense plasmas [HHM17b, SM16].

Cross sections basically depend on the interaction potential which describes how parti-
cles behave near each other. For instance, hard spheres correspond to a collision behavior
like billiard balls leading to a constant cross section (2.90). Whereas the Coulomb poten-
tial ϕ(r) = 1

r applies for charged particles, r being the distance of two particles. Then
the cross section is given by Rutherford’s formula (2.91).

In [Max67], Maxwell derived implicit formulas for the collision kernel in terms of the
interaction potential. Only in the two mentioned cases above, they can be made explicit.
However, other important interaction potentials are the inverse-power laws

ϕ(r) =
1

rs−1
, s > 2.

These are often used in physics and modelling and lead to so-called variable-sphere colli-
sion kernels. Van der Waals interactions for example typically correspond to s = 7 and
ion-neutral interactions to s = 5 [Vil02]. The problem with this kind of interaction po-
tential is the infinite range which results in a nonintegrable singularity. One can control
the collisions with such very large impact parameters (‘grazing collisions’) by cutting off
the integral such that it gets integrable. Regardless of the difficulties, one can show that
these collision kernels factor up into a kinetic and an angular part like

K(|v − v∗|, ξ) = |v − v∗| · σ(|v − v∗|, θ) = Kk(|v − v∗|) ·Ka(cos θ)

with

Kk = |v − v∗|γ and Ka(cos θ) sin
N−2 θ ∼ const · θ−(1+ν)

γ =
s− 5

s− 1
, N = 3, ν =

2

s− 1
.

Often, s > 5 (γ > 0) is referred to hard potentials and s < 5 (γ < 0) is referred to soft
potentials. The special case s = 5 (γ = 0) leads to a pure dependence of the collision
kernel on the angle θ. The latter theoretical model corresponds to so-called Maxwellian
molecules.

It is not clear which range of values for s should be considered. The range can amount
to s ∈ (2,∞), where s = 2 is the limit for Coulomb interaction which at first glance does
not really fit to Boltzmann, see Remark 2.2.9.

Just by this short introduction, it is evident that much effort in modelling can be spent.
Especially for the comparison with physics, a careful determination of constants is needed.
In the following, we list the most common cross sections used in the literature. More in-
formation can be found in [Bir94, KM91, Bir80, Vil02].
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In the field of aerospace engineering, the variable-soft-spheres cross section is often
used. It takes the form

σ(|v − v∗|, θ) =
α

2

cos2α−1(θ/2) sin(θ/2)

sin(θ)

d2ref
Γ(52 − ω)

(
2kBTref
µ|v − v∗|2

)ω− 1
2

, (2.86)

where µ is the reduced mass and α, Tref , dref and ω = γ
2 are reference parameter for the

material in question. However, in other fields, this formula is used less.
Taking α = 1 in (2.86) leads to the variable-hard-spheres cross section

σ(|v − v∗|) =
d2ref

4Γ(52 − ω)

(
2kBTref
µ|v − v∗|2

)ω− 1
2

. (2.87)

A very interesting cross section for Boltzmann and BGK models is when the collision
kernel K = σ · |v − v∗| has no velocity dependence. This is the case for Maxwellian
molecules, setting ω = 1 in (2.86):

σ(|v − v∗|, θ) =
α

2

cos2α−1(θ/2) sin(θ/2)

sin(θ)

2d2ref

π
1
2 |v − v∗|

(
2kBTref

µ

) 1
2

. (2.88)

More frequently, the pseudo-Maxwell molecules are incorporated. Here, the angular
dependence in (2.88) is overcome by additionally having α = 1:

σ(|v − v∗|) =
d2ref

2π
1
2 |v − v∗|

(
2kBTref

µ

) 1
2

(2.89)

which also results in a constant in v collision rate for BGK models.
Eventually, for α = 1 and ω = 1

2 we obtain the constant hard-spheres cross section

σ =
d2ref
4
. (2.90)

For plasmas, a distinct kind of cross sections is used. In this state of matter, we expect
a velocity dependence which scales like |v − v∗|4. However, corresponding choices for α
and ω in (2.86) led to problems, e.g. a 1

Γ(0) term. Nevertheless, in plasmas Coulomb
collisions are typically assumed. For these, we can apply the Rutherford cross section

σ(|v − v∗|, θ) =
(

Z2e2

2m|v − v∗|2 sin2(θ/2)

)2

. (2.91)

A derivation of (2.91) can be found e.g. in [LL69].

Remark 2.2.9 (Boltzmann operator and charged particles). Plugging in the Rutherford
cross section (2.91) into the Boltzmann collision operator (2.26) leads to a diverging
integral [Vil02, HHM17a]. This is because of the slow decay of the Coulomb potential
ϕ(r) = 1

r and the corresponding singularity in the cross section for small-angle collisions.
A standard remedy is to establish a screening leading to the Debye potential

ϕ(r) =
e−r/λD

r

or to introduce a cut-off [SM16]. Another work-around is to approximate the Boltzmann
operator. A small-angle approximation yields the Landau or Fokker-Planck collision op-
erator. But also a BGK collision operator can be used with a corresponding handling of
the collision frequency what is discussed next.
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Collision frequencies

Cross sections are part of the Boltzmann model, and these are inherited to the BGK
models because the collision frequencies can be seen as averaged cross sections. Now,
even more modelling comes into play since issues of complexity force us to establish sim-
plifications. Especially integrability issues occur: In the Boltzmann model, an ‘infinite
cancellation’ between gain and loss terms takes place. The BGK derivation naturally
splits these gain and loss terms such that we have to deal with singularities. Often, these
non-trivial calculations are done for specific cross sections. For example in [HHM17a],
they perform detailed computations in order to achieve their (velocity-independent) col-
lision frequencies.

In Section 2.2.1, we already motivated why we insist on a collision frequency which does
depend on the relative velocity. Before we come to a derivation of closed formulas for
collision frequencies in a plasma, we want to clarify our expectations. On the one hand,
for small relative velocities we expect a considerable impact of interactions. On the other
hand, for large relative velocities we expect that the influence of the interactions decreases,
see Figure 2.8. In Figure 2.9, we show that our final formula matches these expectations.

Derivation The most obvious way to derive a collision frequency is to use its definition
(2.46)

ν(x,v, t) =

∫
R3

∫
S2

M(x,v∗, t)|v − v∗|σ(|v − v∗|, ξ) dξ dv∗

which comes intrinsically by the derivation of the BGK model [Str97, HHM17a]. This is
used for Maxwell molecules due to their special cross section (2.88). But in a plasma, the
Rutherford cross section scales like

σ ∼ 1

|v − v∗|4 sin4(θ/2)
.

Unfortunately, this has a singularity to be dealt with. Often, this is handled by an angular
cut-off. However, the integral still blows up near the cut-off angle for charged particles.
This is related to the grazing collisions limit in the Boltzmann operator [GH14] which
does not seem to be conducive for BGK terms.

In order to reduce the complexity, one often considers the momentum transfer cross
section

σMT(|v − v∗|) = 2π

∫ π

0
σ(|v − v∗|, θ) sin2(θ/2) sin θ dθ.

This is one of the fundamental quantities in the theory of binary collisions from a physical
point of view [Vil02, SJB66, DB94]. Inserting the Rutherford cross section (2.91), we
obtain

σMT(|v − v∗|) = 4π
(Z2e2)2

(2m|v − v∗|2)2
∫ π

0

1

sin4(θ/2)
sin2(θ/2) sin θ dθ

= 8π
(Z2e2)2

(2m|v − v∗|2)2
∫ π

0

cos(θ/2)

sin(θ/2)
dθ

= 16π
(Z2e2)2

(2m|v − v∗|2)2
log(sin(θ/2))

∣∣∣∣π
0
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by using trigonometric identities. Again, we run into a problem concerning a singularity.
Therefore, we perform an angular cut-off using an argument related to Debye screening
[SM16]:

σMT(|v − v∗|) ≈ 16π
(Z2e2)2

(2m|v − v∗|2)2
log(sin(θ/2))

∣∣∣∣π
θmin

= −16π
(Z2e2)2

(2m|v − v∗|2)2
log

(
sin

θmin

2

)
:= 16π

(Z2e2)2

(2m|v − v∗|)2)2
log Λ.

(2.92)

The so-called Coulomb logarithm log Λ plays another important role in modelling and is
discussed in Remark 2.2.10. We plug in the momentum transfer cross section (2.92) into
(2.46)

ν(v) =

∫
R3

∫
S2

M(v∗)σMT(|v − v∗|)|v − v∗|dξ dv∗.

This gives us another singularity for |v−v∗| = 0 which cannot be overcome easily. There-
fore, we follow another approach.

The mean free time between collisions scales like 1
n|v|σ [LM84, Sch06]. As the collision

frequency represents the number of collisions per time unit, we follow the approach of the
ad-hoc collision rate

ν(v) = n|v|σ(v).

Several choices need to be made. We conveniently take [LM84]

ν(v) = n|v − u|σMT(|v − u|)

≈ 4πn
(Z2e2)2

m2
log Λ · 1

δ + |v − u|3

where we use the relative velocity |v − u| at the kinetic level. In order to avoid a singu-
larity at |v− u| = 0, we have added some δ > 0 in the denominator. This is specified for
our numerical simulations in Section 5.3, depending on the velocity grid.

In the following remark, we discuss the Coulomb logarithm.

Remark 2.2.10 (Coulomb logarithm). The Boltzmann equation is not capable to model
charged particles for which a Coulomb potential applies, see Remark 2.2.9. In 1937,
Landau [Lan37] approximated the Boltzmann operator by a small angle scattering which
works for the Coulomb interactions and led to the Fokker-Planck-Landau equation [Lan37,
RMJ57]. It holds

QBoltz ≈ log Λ · QFPL +O(1)

where log Λ is the Coulomb logarithm and FPL stands for Fokker-Planck-Landau.
The Coulomb logarithm encounters minimal and maximal impact parameters arising

through truncating corresponding limits in an integral [SM16]. A simple Coulomb loga-
rithm, appropriate for classical plasmas reads

log Λ = log

(
λD
b90

)
, (2.93)
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where λD is the Debye length and b90 is the classical distance of closest approach (and the
90◦ deflection radius, respectively). These depend on the moments of the system (density
and temperature). The argument of the logarithm gets small for little collisions. To stay
positive, we use

log Λ =
1

2
log

(
1 +

λ2D
b290

)
. (2.94)

More sophisticated approaches can be followed. Instead of the momentum transfer
cross section (2.92), one might use more elaborated ones as can be found in [SM16]. But
as we already mentioned earlier, much effort in modelling can be spent here. For our
numerical simulations we are happy with the following collision frequencies.

Velocity-dependent collision frequency formulas To conclude, we summarize and
specify the formulas we use in our numerical simulations. All formulae are given in CGS
units, see Appendix D. This also requires the consistent use of Boltzmann’s constant kB.
In all other parts of this thesis, we suppress kB for ease of presentation.

We make the following assumption on the collision frequencies νij(x,v, t).

Assumption 2.2.11. The space and time dependence of the collision frequencies νij
arise via a dependence on the mass densities ρi(x, t), the mixture mean velocity umix(x, t)
and the mixture temperature Tmix(x, t). Furthermore, because the collisional process con-
serves these quantities, the collision frequencies νij are independent of time in the space
homogeneous setting.

This relationship between collision frequencies and moments is typical for standard
collision rates in the literature and follows from cross section definitions; see for example
[KT73, HHM17a].

We use the following velocity-dependent collision frequencies

νij(v) = nj4π

(
ZiZje

2

2µij

)2
1

δij + |v − umix|3
log Λij (2.95)

where µij =
mimj

mi+mj
is the reduced mass; Zie, Zje are the charges of the two particles; and

log Λij is the Coulomb logarithm given by

log Λij =
1

2
log

(
1 +

λ2D
b290,ij

)
. (2.96)

The regularization parameter δij will depend on the corresponding velocity grid in order
to involve an adequate scaling. We set the classical distance of closest approach to be

b90,ij =
ZiZje

2

Tmix
. (2.97)

For the Debye length λD we use the following formulae

λD =

(
1

λ2e
+

1

λ2I

)−1/2
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v

1
1+|v−u|3

u

Figure 2.9: The shape of the velocity-dependent collision frequency (2.95) is illustrated.

with

λe =

(
Tmix

4πnee2

)1/2

and λI =

(∑
i∈S

1

λ2i

)−1/2

,

where

λi =

(
Tmix

4πniZ2
i e

2

)1/2

and ne =
∑
i∈S

Zini,

with the Boltzmann constant kB. The mixture quantities umix and Tmix defined in (2.8)
and (2.9) are inserted into these formulas to determine the collision frequencies used in
the model. There are modifications that can be made to ensure that these formulas
(e.g. screening length) apply to a wider range of plasma regimes, but this should be a
reasonable start.

The shape of (2.95) is shown in Figure 2.9.

Velocity-independent collision frequency formulas For a comparison, we use sev-
eral velocity-independent collision frequencies of comparable size where we guarantee that
ν12
ν21

= n2
n1
. A convenient choice in plasma physics [SM16] is to take

ν̃ij = ρj4π

(
ZiZje

2

2µij

)2
1

δij + v3T
log Λij , (2.98)

where the deviation from the mean velocity |v − umix| is approximated by the thermal
velocity vT =

√
kBTmix/(2µij). However, this choice seems arbitrary. When replacing

|v − umix| by vT , the observation∫
|v − u|2f dv = 3n

T

m
= 3nv2T (2.99)

allows also for replacing |v − umix| by
√
3vT . That is why we need to normalize a corre-

sponding constant collision frequency in some way. In order to calibrate possible constants
we average the velocities by

v̂3 =

∫
|v − umix|3Mij(v) dv∫

Mij(v) dv
(2.100)

where
Mij(v) = M[ni,umix, Tmix, 2µij ]. (2.101)

Replacing v3T in (2.98) by (2.100), gives us a second option for a corresponding velocity-
independent collision frequencies ν̂ij resulting in

ν̂ij = ρj4π

(
ZiZje

2

2µij

)2
1

δij + v̂3
log Λij . (2.102)
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Another natural way to obtain velocity-independent collision frequencies is to average
νij(v) given by (2.95) themselves leading to

ν̄ij =

∫
νij(v)Mij(v) dv∫

Mij(v) dv
(2.103)

with the Maxwellians Mij(v) = M[ni,umix, Tmix, 2µij ].

For later reference, we also give the velocity-independent collision frequencies derived
in [HHM17a]. We start with collision frequencies describing ion-ion interactions in dense
plasma. The collision frequencies νMij in (2.104) and (2.107) ensure that the relaxation
rates of the momenta for the model in [HHM17a] coincide with the one of the multi-species
Boltzmann equations. And the collision frequencies νTij in (2.105) and (2.108) ensure the
corresponding relaxation rates for the temperatures. It is

νMij =
128

3

π2

(2π)3/2
nj
mi

(ZjZie
2)2

√
mimj(mi +mj)

(miTj +mjTi)3/2
Ψ(γij) (2.104)

νTij =
256

3

π2

(2π)3/2
nj(ZjZie

2)2
√
mimj

(miTj +mjTi)3/2
Ψ(γij) (2.105)

with the charges Z1e, Z2e, the elementary charge e, the function

Ψ(x) =

−1
4 log

(∑5
n=1 anx

n
)

for x < 1,

b0+b1 log x+b2 log
2 x

1+b3x+b4x2 for x > 1,

where the coefficients an, bn are defined in [SM16]

n 0 1 2 3 4 5

an 1.4660 −1.7836 1.4313 −0.55833 0.061162
bn 0.081033 −0.091336 0.051760 −0.50026 0.17044

with the short form

γij =
ZjZie

2

λ

mi +mj

miTj +mjTi

and the screening length

λ =

 4πe2ne√
T 2
mix +

(
ℏ2
3me

)2
(3π2ne)4/3

+

2∑
i=1

4π(Zie)
2ρi

Tmix + 3Z2
i e

2
(
4π
3

σ
Zi

)−1/3


− 1

2

. (2.106)

Here, we use the electron mass me, its density ne = Z1n1+Z2n2 and the mixture temper-
ature Tmix, the total charge density (devided by e) σ =

∑
Ziρi and the reduced Planck

constant ℏ.
Collision frequencies describing screened Coulomb interactions with a Coulomb loga-

rithm are given by

νMij =
8

3

√
2π nj

√
mj

mi

mi +mj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6, (2.107)

νTij =
16

3

√
2π nj

√
mimj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6. (2.108)
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The Coulomb logarithm log ΛGMS6 takes the following form

log ΛGMS6 =
1

2
log

(
1 +

λ2 + a2i
λ2dB,i + b2ij

)
(2.109)

considering the screening length (2.106), the ion sphere radius ai =
(
3
4π

|Zi|
σ

)1/3
, the de-

Broglie wave length λdB,i =
2πℏ√
miTi

and the distance of closest approach bij = max (0, b90,ij)

using b90,ij from (2.97).

Now, we are equipped with an array of different collision frequencies and we make use of
them in Section 5.3. For a moment, we can put them aside. In the following section, we
handle collision frequencies with simplicity, but we include quantum effects instead.

2.3 Quantum multi-species BGK models

Classical physics is based on Newton’s laws (Axioms 2.1.2–2.1.4). However, at the end
of the 19th century, physicists experienced phenomena which could not be explained by
those, more severe, which even contradicted them. A new theory was developed at the
beginning of the 20th century concerning such effects at very small scales, i.e. atomic
scales: quantum mechanics.

Although many phenomena in our daily life can only be understood with the help
of quantum physics, it is very challenging to deal with this theory. Even the Nobel
laureate Richard Feynman stated: ‘I think I can safely say that nobody really understands
quantum mechanics.’

2.3.1 Fundamentals

In the following section, we do not go into details of quantum theory and restrict ourselves
to some selected concepts needed for the quantum description of kinetic models. For more
information, we refer to [Sch07].

Introduction to quantum mechanics

In classical mechanics, a system of particles with masses mi is fully determined by their
positions xi and velocities vi = pi

mi
, where pi is the corresponding momentum. For

quantum particles, we run into several problems.
Firstly, we should track the particles’ momenta instead of the velocities. This is due

to the fact that e.g. the mass of a photon is zero, but a photon’s momentum needs not
to vanish. Hence, the notion ‘velocity’ needs to be treated with care. In this thesis,
we only consider nonrelativistic particles with nonvanishing mass such that we do have
the relationship vi = pi

mi
. Nevertheless, in quantum theory the momentum variable is

requested being the canonic conjugate quantity to the space variable. So the phase space
is now given by (x,p).

A second issue is the Heisenberg uncertainty principle. We do not go into details here,
but we want to mention that it is possible to exactly measure either position or momentum
of a particle, but not both. This means that a system cannot be fully determined, instead
a quantum system is always described with uncertainties and probabilities, respectively.

These uncertainties lead to another concern, namely the fact that quantum particles
can be identical. This means that they cannot be distinguished, not even in principle. To
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see this, imagine two electrons. Their intrinsic physical properties are all the same, such
as mass, charge and spin. Hence, distinguishing these electrons would only be possible by
tracking the trajectory of each particle. Due to the Heisenberg uncertainty principle, the
trajectory cannot be determined with infinite precision which makes an exact tracking
impossible. The electrons are indistinguishable.

Actually, the further behavior of identical particles leads to a classification. A subset
of quantum particles follows Pauli’s exclusion principle which states that any quantum
state within a quantum system can only be occupied by at most one particle.

Definition 2.3.1 (Fermions and bosons). A fermion is a quantum particle obeying Pauli’s
exclusion principle. It is also classified by possessing a half-integer spin.

A quantum particle whose spin quantum number has an integer value is called boson.
Additionally, it does not follow Pauli’s exclusion principle.

Electrons and protons are fermions. So in the case of electrons in a poly-electron
atom, the Pauli exclusion principle has the following consequence. If two electrons are
located in the same orbital, three out of the four quantum numbers are the same. Thus,
these electrons must have a different spin quantum number (±1

2). So this orbital is full,
and additional electrons must reside in different orbitals.

Bosons, such as the Higgs boson or photons, behave differently. One quantum state
can be occupied by any number of identical bosons which is the case e.g. for lasers or
Bose-Einstein-condensates. For formal reasons, we exclude photons in this thesis.

We end this short introduction into quantum mechanics and continue by carrying quan-
tum effects into kinetic theory.

Quantum Boltzmann equation

Around 1930, the physicists Nordheim, Ueling and Uhlenbeck developed a kinetic model
for a quantum gas [FN28, KN30, UU33, Ueh34]. They use a kinetic description as for
classical gases, but they take quantum effects of the particles into account.

To be precise, we introduce the quantum distribution function.

Definition 2.3.2 (Quantum distribution function). A function f : R3 × R3 × R+
0 → R+

0

is called a distribution function if and only if f(x,dp, t) dxdp is the number of particles
with momenta in (p,p+ dp) located at (x,x+ dx) at time t.

For fermions, we additionally require

f(x,p, t) < 1. (2.110)

The upper bound for fermions is physically motivated as described in the following
remark.

Remark 2.3.3 (Bounds for fermions). The additional upper bound for distribution func-
tions of fermions comes by integrability conditions. In general, we require that all ‘physi-
cal’ quantities are bounded, i.e.∫

f(1 + |p|2) dp <∞ and H[f ] <∞,

where H denotes the entropy, see Definition 2.3.7. These requirements represent integra-
bility conditions and for fermions additionally lead to (2.110). [EMV03]
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Now, we can formulate the quantum Boltzmann equation.

Definition 2.3.4 (Quantum Boltzmann equation). The quantum Boltzmann equation for
a distribution function f = f(x,p, t) reads

∂tf + v · ∇xf = Q[f ] (2.111)

with the collision operator

Q[f ](x,p, t) =∫
R3

∫
S2

(f ′f ′∗(1− τf)(1− τf∗)− ff∗(1− τf ′)(1− τf ′∗))K(|p− p∗|, ξ) dξ dp∗, (2.112)

where f = f(p), f ′ = f(p′), f∗ = f(p∗), f
′
∗ = f(p′

∗); K(|p−p∗|, ξ) is the collision kernel,
ξ represents the unit vector in scattering direction and v = p

m .
This equation is often called Ueling-Uhlenbeck equation or Nordheim equation in the

literature.

The collision operator Q describes the effect of interactions between particles. The
pre-collisional and post-collisional momenta follow the conservation of momentum and
energy at the particle level as in the classical case, see Theorems 2.1.6 and 2.1.7; that is

p+ p∗ = p′ + p′
∗

|p|2 + |p∗|2 = |p′|2 + |p′
∗|2.

In contrast to the classical Boltzmann operator (2.26), the operator includes additional
terms in the quantum case (2.112) taking into accout the degeneracy of quantum par-
ticles. For fermions τ = +1, these guarantee that Pauli’s principle is satisfied, and for
bosons τ = −1, the possibility to cluster is given.2

The notions mass, momentum and energy can be carried over from the classical the-
ory. For clearness regarding variables, we provide the following definition. For clearness
regarding units, we refer to Appendix D.2.

Definition 2.3.5 (Macroscopic quantities in the quantum case). Let f be the distribution
function of a quantum gas with particle mass m. We denote the species’ mass density by

N =

∫
R3

f dp,

the species’ momentum by

P =

∫
R3

fpdp

and the species’ energy density by

E =

∫
R3

f
|p|2
2m

dp.

We define the kinetic temperature by

T =
2

3N
E − 1

3m

|P|2
N2

=
1

3mN

∫
R3

f
∣∣∣p− P

N

∣∣∣2 dp. (2.113)

2In the literature, the sign of τ is not used consistently. When τ is plugged in, the final equations
matter.
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The notion of temperature seems intuitively clear. However, it is a concept for equi-
librium states only. We postpone a further discussion of this issue to Remark 2.3.10.

The quantum Boltzmann equation fulfils the following invariance property.

Theorem 2.3.6 (Conservation properties for the quantum Boltzmann equation). The
quantum Boltzmann equation conserves mass, momentum and energy.

Proof. A proof for a more general multi-species quantum Boltzmann equation is provided
e.g. in [BKPY21].

The trend to equilibrium is of central interest. Therefore, the entropy needs to be
investigated.

Definition 2.3.7 (Quantum entropy). The entropy density functional of a quantum gas
is defined by

H[f ] =

∫
[f log f + τ(1− τf) log(1− τf)] dp. (2.114)

Entropy minimizers are the equilibrium states we are looking for. We already know
that the distribution function of a classic gas converges to a Maxwellian distribution for
t→ ∞. The analogues of quantum particles are called Fermi-Dirac distribution functions
for fermions and Bose-Einstein distribution functions for bosons. We introduce these
distribution functions in the following definition and give the formal statement below.

Definition 2.3.8 (Specific quantum distribution functions). A Maxwellian M(x,p, t) ≥
0 is a distribution function of the specific form

M(x,p, t) = M[a,b, c,m](x,p, t) =
1

ema
∣∣ p
m
−b
∣∣2+c

(2.115)

with a > 0. A Fermi-Dirac distribution function F(x,p, t) ≥ 0 is defined by

F(x,p, t) = F [a,b, c,m](x,p, t) =
1

ema
∣∣ p
m
−b
∣∣2+c + 1

. (2.116)

In contrast to a Bose-Einstein distribution function B(x,p, t) being given by

B(x,p, t) = B[a,b, c,m](x,p, t) =
1

ema
∣∣ p
m
−b
∣∣2+c − 1

(2.117)

with

ma
∣∣ p
m

− b
∣∣2 + c < 0.

These three distribution functions can be summarized in the general formulation

Eτ (x,p, t) = Eτ [a,b, c,m](x,p, t) =
1

ema
∣∣ p
m
−b
∣∣2+c + τ

=


M for τ = 0,

F for τ = +1,

B for τ = −1.

(2.118)
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Theorem 2.3.9 (H-Theorem for the quantum Boltzmann equation). The entropy is
dissipated in the space homogeneous quantum gas

∂tH ≤ 0

with equality if and only if

f = Eτ .

Proof. A proof can be found e.g. in [EMV03].

For classic particles, the parameters a,b, c in the local equilibrium (Maxwellian) are
related explicitly to the macroscopic quantities N,P, T . (This is an easy calculation.)
But for general quantum particles, it is more complicated. We only have a relationship
between b and P (see the proof of Theorem 2.3.13), and a can be related to the concept
of physical temperature (see Remark 2.3.10).

Remark 2.3.10 (The concept of temperature). The physical temperature ϑ is uniquely
defined for equilibrium states by the second law of thermodynamics, see Axiom 2.1.21 and
(2.13). It can be seen as the price at which a system offers energy in return for entropy
[Hin20].

In kinetic theory, this concept is extended for nonequilibrium states, and we formally
introduce the (kinetic) temperature T in (2.6)/ (2.113). For monatomic ideal and classic
gases, it holds T = ϑ. Hence, the temperature (physical and kinetic) can be seen as a
measure for the internal energy. But in more general settings (e.g. discrete-velocity or
quantum models), T does not equal the physical temperature ϑ even though the macroscopic
quantities like density, pressure and energy still coincide with the corresponding moments
of the distribution function. [Cer97]

In other words: The kinetic temperature is closely related to the total energy minus
the kinetic energy. However, the physical temperature prices the internal energy. Only in
special cases, this ‘price’ can be reduced to a relationship between the total energy and the
translational motion only. In general, the contribution of heat, pressure, volume,. . . to
the total energy cannot be expressed by the kinetic temperature.

We yet ‘find’ the physical temperature in our quantum formulation by the following
observation. In thermodynamic theory, the physical temperature appears in the equilibrium
canonical distribution. The latter one is proportional to exp(−βE) where E is the total
energy of the gas and β is the inverse temperature: β−1 = kBϑ with the Boltzmann
constant kB. With this fact in mind, we look at the local equilibria Eτ and relate the
physical temperature to the equilibrium coefficient a.

Additionally, we can formally relate the notions of temperatures using Bose-Einstein
and Fermi-Dirac functions, respectively. [HJ11]

The quantum Boltzmann operator (2.112) is very complex making practical applica-
tions challenging, and there are many interesting questions [Vil02, EMV03]. In order to
reduce complexity, quantum BGK models are widely used. In the following section, we
present a consistent multi-species quantum BGK model.

2.3.2 A consistent multi-species quantum BGK model

Recently, a consistent multi-species quantum BGK model was published in [BKPY21].
We recall this model for two species, but everything can also be extended to more species
because only binary interactions are taken into account. We consider two distribution
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functions f1 = f1(x,p, t) ≥ 0 and f2 = f2(x,p, t) ≥ 0 for species with masses m1 and m2,
respectively, with the phase space variables position x ∈ R3 and momentum p ∈ R3 and
time t ≥ 0.

Definition 2.3.11 (Quantum multi-species BGK equations). The quantum multi-species
BGK equations in [BKPY21] read

∂tf1 +
p

m1
· ∇xf1 = Q1[{f1, f2}],

∂tf2 +
p

m2
· ∇xf2 = Q2[{f1, f2}]

(2.119)

with the collision operators

Q1[{f1, f2}] = Q11[f1, f1] +Q12[f1, f2] = E11,τ1 − f1 + E12,τ1 − f1, (2.120)

Q2[{f1, f2}] = Q22[f2, f2] +Q21[f2, f1] = E22,τ2 − f2 + E21,τ2 − f2 (2.121)

where τi ∈ {−1, 0,+1}.
The local equilibrium Eij,τi takes distinct forms depending on the type of the species,

specified by τi. We distinguish between

τi =


0 for species i being classic particles,

+1 for species i being fermions,

−1 for species i being bosons.

A general formulation of the local equilibria is given in the following definition.

Definition 2.3.12 (Local equilibria for the quantum multi-species BGK model). The
target functions for the quantum multi-species BGK equations (2.119) are given by

Eii,τi [fi] =
1

e
miai

∣∣ p
mi

−bi

∣∣2+ci + τi

, (2.122a)

Eij,τi [fi, fj ] =
1

e
mia
∣∣ p
mi

−b
∣∣2+cij + τi

(2.122b)

for i, j = 1, 2, i ̸= j. The parameters ai,bi, ci and a,b, cij depend on the corresponding
distribution functions f1 and f2.

Using the above description, we obtain a universal formulation for a model describing
the interactions of each of the following combinations:

1. fermion-fermion interactions: Eij,1 = Fij . (i, j = 1, 2)

2. boson-boson interactions: Eij,−1 = Bij . (i, j = 1, 2)

3. classical-classical interactions: Eij,0 = Mij . (i, j = 1, 2)

4. fermion (f1)-classical (f2) interactions: E1j,1 = F1j , E2j,0 = M2j . (j = 1, 2)

5. classical (f1)-boson (f2) interactions: E1j,0 = M1j , E2j,−1 = B2j . (j = 1, 2)

6. fermion (f1)-boson (f2) interactions: E1j,1 = F1j , E2j,−1 = B2j . (j = 1, 2)

The target functions Eij,τi depend on the distribution functions fi. Under appropriate
assumptions on Ni,Pi, Ei, they are uniquely defined which will be derived in the following
sections.
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Intra-species target functions

We seek a distribution function which conserves mass, momentum and energy for intra-
species interactions. These conservation properties read in the quantum description∫

R3

Eii,τi dp = Ni,

∫
R3

Eii,τipdp = Pi,

∫
R3

Eii,τi
|p|2
2mi

dp = Ei, (i = 1, 2). (2.123)

In order to simplify the notation, we introduce the function

jτi(x) =

∫
1

e|p|2+x+τi
dp(∫ |p|2

e|p|2+x+τi
dp
)3/5 , (2.124)

and we define

l : {+1,−1} → [−∞,∞], l(x) =

{
l(+1) = −∞,
l(−1) = 0.

The limit j+1(−∞) is understood in the following sense:

j+1(−∞) = lim
x→−∞

j+1(x).

Now, we can show that the intra-species target functions are well-posed, and moreover,
give the corresponding parameters ai,bi, ci at least implicitly.

Theorem 2.3.13 (Well-posedness of intra-species target functions for the quantum multi-
-species BGK model). For τi = 0, we do not have any further requirements. For τi = ±1,
we assume

Ni(
2miEi −P2

i /Ni

) 3
5

≤ jτi(l(τi)).

Then there exist unique parameter ai,bi, ci for the target functions Eii,τi in (2.122a) such
that the model (2.119) satisfies the conservation constraints (2.123) during intra-species
interactions.

Proof. The statement for τi = 0 is well-known and follows e.g. from Theorem 2.2.4 for
νii = 1. The proof for τi = ±1 can be found in [BY20]. The main challenge is to show
that the equation (i = 1, 2)

jτi(ci) =
Ni

(2miEi − |Pi|2/Ni)
3
5

,

has a unique solution ci. With this implicitly defined value, we obtain ai by

ai = mi

(∫
R3

1

e|p|2+ci + τi
dp

) 2
3

N
− 2

3
i ,

and a direct computation gives

bi =
Pi

miNi
.

The ideas for the intra-species interactions can be extended to the inter-species case.



59 CHAPTER 2. THEORY OF KINETIC MODELS

Inter-species target functions

For the inter-species interactions, we require the conservation properties∫
R3

E12,τ1 dp = N1,

∫
R3

E21,τ2 dp = N2,∫
R3

E12,τ1pdp+

∫
R3

E21,τ2pdp = P1 +P2,∫
R3

E12,τ1
|p|2
2m1

dp+

∫
R3

E21,τ2
|p|2
2m2

dp = E1 + E2.

(2.125)

As in the intra-species case, we make use of auxiliary functions

h̃τi(x) =

∫
R3

1

e|p|2+x + τi
dp, (2.126)

and

kτi,τj (x, y) =
m

3
2
1

∫
R3

1

e|p|2+x+τi
dp(

m
3
2
1

∫
R3

|p|2
e|p|2+x+τi

dp+m
3
2
2

∫
R3

|p|2
e|p|2+y+τj

dp

) 3
5

. (2.127)

Additionally, we define gτi,τj as a composite function of kτi,τj and h̃−1
τi by

gτi,τj (x) = kτi,τj
(
x, y(x)

)
=

m
3
2
1

∫
R3

1

e|p|2+x+τi
dp(

m
3
2
1

∫
R3

|p|2
e|p|2+x+τi

dp+m
3
2
2

∫
R3

|p|2
e|p|2+y(x)+τj

dp

) 3
5

, (2.128)

where y(x) denotes

y(x) = h̃−1
τj

m 3
2
1N2

m
3
2
2N1

h̃τi(x)

 .

Be aware that h̃−1
τj always exists because h̃τi is strictly decreasing.

Theorem 2.3.14 (Well-posedness of inter-species target functions for the quantum multi-
-species BGK model). For τi = 0, we do not have any further requirements. For τi = ±1,
we assume

N1(
2E1 + 2E2 − |P1+P2|2

m1N1+m2N2

) 3
5

≤ gτi,τj

max

l(τi), h̃−1
τi

m 3
2
2N1

m
3
2
1N2

h̃τj (l(τj))


 .

Then there exist unique parameters a,b, c12, c21 for the target functions E12,τ1 and E21,τ2 in
(2.122b) such that the model (2.119) satisfies the conservation constraints (2.125) during
inter-species interactions.

Proof. The proof can be found in [BKPY21, BPW22]. We only give the relations which
uniquely determine the equilibrium coefficients. An explicit calculation gives

P1 +P2 = b(m1N1 +m2N2),
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hence

b =
P1 +P2

m1N1 +m2N2
. (2.129)

Using

Ni = m
3
2
i a

− 3
2

∫
R3

1

e|p|
2+cij + τi

dp (2.130)

and

E1 + E2 =
m

3
2
1

2
a−

5
2

∫
R3

|p|2

e
m1a| p|

m1
−b|2+c12 + τ1

dp+
m

3
2
2

2
a−

5
2

∫
R3

|p|2

e
m2a| p|

m2
−b|2+c21 + τ2

dp

+
1

2
(m1N1 +m2N2)b

2

yields

a =

m
3
2
1

∫
R3

|p|2

e|p|2+c12+τ1
dp+m

3
2
2

∫
R3

|p|2

e|p|2+c21+τ2
dp

2E1 + 2E2 − |P1+P2|2
m1N1+m2N2


2
5

. (2.131)

For a closed formula of a in (2.131), we need to define c12 and c21. With the above
equations and (2.127), we obtain

N1(
2E1 + 2E2 − |P1+P2|2

m1N1+m2N2

) 3
5

= kτi,τj (c12, c21). (2.132)

On top of that, it follows from (2.130) and (2.126) that

N1

N2
=
m

3
2
1 h̃τ1(c12)

m
3
2
2 h̃τ2(c21)

.

It can be shown that gτi,τj is strictly monotonically decreasing [BKPY21]. It follows that
c12, c21 can be defined as unique solutions of the above relations, and

c21 = h̃−1
τ2

m 3
2
1N2

m
3
2
2N1

h̃τ1(c12)

 .

We study the properties of the model in the following.

Consistency of the model

In this section, we present properties of the quantum multi-species BGK model (2.119).
First of all, the model satisfies the conservation properties and an H-Theorem. This is
stated in the following theorems and proven in [BKPY21].
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Theorem 2.3.15 (Conservation properties for the quantum multi-species BGK model).
Let the equilibrium coefficients be chosen as given in the proofs of Theorems 2.3.13 and
2.3.14. Then the model (2.119) conserves mass, total momentum and total energy if the
assumptions in Theorems 2.3.13 and 2.3.14 are fulfilled.

Proof. This is an immediate consequence of Theorems 2.3.13 and 2.3.14.

Theorem 2.3.16 (H-Theorem for the quantum multi-species BGK model). Let us denote
the function hτ (z) = z log(z)− z+ τ(1− τz) log(1− τz)− τ(1− τz) and the total entropy
H[{f1, f2}] =

∫
(hτ1(f1) + hτ2(f2)) dp. With the choice of equilibrium coefficients given

in the proofs of Theorems 2.3.13 and 2.3.14, the quantum BGK model for gas mixtures
(2.119) satisfies the following entropy inequality

∂tH[{f1, f2}] +∇x ·
[∫

v(hτ1(f1) + hτ2(f2)) dp

]
≤ 0. (2.133)

The equality in (2.133) is characterized by fi being Fermi-Dirac distribution functions for
fermions, Bose-Einstein distributions functions for bosons and Maxwellian distribution
functions for classical particles. In all cases, the equilibrium distributions share the same
a and b.

Proof. We recall the proof from [BKPY21]. A direct calculation gives

∂tH[{f1, f2}] +∇x ·
[∫

v(hτ1(f1) + hτ2(f2)) dp

]
=

2∑
i=1

∫
Qi[{fi}]h′τi(fi) dv

= D11 +D12 +D21 +D22

with the dissipation terms

Dij =

∫
(Eij,τi − fi)h

′
τi(fi) dp

and the derivative

h′τ (z) = log
z

1− τz
.

We show that Dii ≤ 0 and D12 +D21 ≤ 0 which proves (2.133).
Due to the conservation during intra-species interactions (2.123), it is∫

(Eii,τi − fi)h
′
τi(Eii,τi) dp = 0.

It follows

Dii =

∫
(Eii,τi − fi)h

′
τi(fi) dv −

∫
(Eii,τi − fi)h

′
τi(Eii,τi) dp

=

∫
(Eii,τi − fi)(h

′
τi(fi)− h′τi(Eii,τi)) dp ≤ 0. (2.134)

The last inequality holds because h−1(z), h0(z) are increasing functions for z ∈ [0,∞),
and h1(z) increases for 0 < z < 1, resulting in

(z − y)(hτ (y)− hτ (z)) ≤ 0 (2.135)
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for y, z ∈ R+
0 (τ = 0,−1) and for 0 < y, z < 1 (τ = +1), respectively. Additionally,

(2.135) is an equality if and only if y = z. Applied to (2.134), Dii = 0 if and only if
fi = Eii,τi .

For the mixed dissipation terms, we use the conservation during inter-species interac-
tions (2.125) and observe

I :=

∫
(E12,τ1 − f1)h

′
τ1(E12,τ1) dp+

∫
(E21,τ2 − f2)h

′
τ2(E21,τ2) dp = 0.

Adding this vanishing term to the dissipation terms yields

D12 +D21 = D12 +D21 − I

=

∫
(E12,τ1 − f1)(h

′
τ1(f1)− h′τ1(E12,τ1)) dp

+

∫
(E21,τ2 − f2)(h

′
τ2(f2)− h′τ2(E21,τ2)) dp

(2.135)

≤ 0

with equality if and only if f1 = E12,τ1 and f2 = E21,τ2 using the same arguments as above.
It follows that the equilibrium distributions share the same a and b.

Moreover, one can prove that the distribution function in the fermion case remains
bounded by 1 for all times t ≥ 0.

Lemma 2.3.17. Let fi be a distribution function for fermions and fi(x,p, 0) < 1. Then
we have fi(x,p, t) < 1 for t ≥ 0.

Proof. We paraphrase the proof presented in [BKPY21]. We integrate the evolution
equation (2.119) along the characteristic and obtain

fi(x,p, t) = e−2tfi

(
x− p

mi
t,p, 0

)
+

∫ t

0
e2(s−t)[Fii + Fij ](x+ (s− t)p,p, s) ds.

By definition, it is 0 < Fii,Fij < 1 for all (x,p, t), and hence

fi(x,p, t) ≤ e−2tfi

(
x− p

mi
t,p, 0

)
+

∫ t

0
2e2(s−t) ds

= e−2tfi

(
x− p

mi
t,p, 0

)
+ (1− e−2t)

< e−2t + 1− e−2t = 1.

We are now interested in the hydrodynamic behavior of the presented equations.

Macroscopic equations

From the quantum multi-species BGK model (2.119), one can derive the following macro-
scopic equations.



63 CHAPTER 2. THEORY OF KINETIC MODELS

Theorem 2.3.18 (Macroscopic equations for the quantum multi-species BGK model).
Let {f1, f2} be a solution to (2.119), then we obtain the following formal conservation
laws

∂tN1 +∇x · P1

m1
= 0,

∂tN2 +∇x · P2

m2
= 0,

∂tP1 +∇x ·
∫

p⊗ p

m1
f1(p) dp = P12 −P1,

∂tP2 +∇x ·
∫

p⊗ p

m2
f2(p) dp = P21 −P2,

∂tE1 +∇x ·
∫ |p|2

2m1

p

m1
dp = E12 − E1,

∂tE2 +∇x ·
∫ |p|2

2m2

p

m2
dp = E21 − E2,

(2.136)

where the exchange terms of momentum are given by

P12 −P1 = −(P21 −P2) =
m1N1m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

We define the function

Hτi(c) =

∫ |p|2
e|p|2+c + τi

dp

and obtain for the exchange of energy

E12 − E1 =
1

2

m1N1|P1 +P2|2
(m1N1 +m2N2)2

+
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12)− E1

= −(E21 − E2).

(2.137)

Proof. We multiply the first equation of (2.119) with (1,p, |p|2
2m1

), and the second one with

(1,p, |p|2
2m2

). Integration with respect to the momentum p yields the LHS of (2.136) in a
straight-forward way.

The exchange of momentum can be computed by multiplying (2.119) with p and
integrating with respect to p. That is

P12 −P1 =

∫
R3

p

e
m1a
∣∣ p
m1

−b
∣∣2+c12 + τ1

dp−P1 =

∫
R3

p+m1b

ea|p|2+c12 + τ1
dp−P1

= m1bN1 −P1
(2.129)
= m1N1

P1 +P2

m1N1 +m2N2
−P1

=
m1N1m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
= −(P21 −P2).

(2.138)

For the exchange of energy, we start with a change of variables (similar as in [BY20,
Section 2]) leading to

E12 −
1

2

|P12|2
m1N1

=
1

m1

∫
R3

|p|2

e
m1a
∣∣ p
m1

−b
∣∣2+c12 + τ1

dp− 1

2

|P12|2
m1N1

=
1

2
a−5/2m

3/2
1 Hτ1(c12).

(2.139)
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Inserting the expression for a from Theorem 2.3.14 in (2.131) yields

E12 −
1

2

|P12|2
m1N1

=
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12).

Replacing P12 with Theorem 2.3.14 concludes to

E12 − E1 =
1

2

m1N1|P1 +P2|2
(m1N1 +m2N2)2

+
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12)− E1

= −(E21 − E2).

The proof was done by Pirner in [BPW22].

In general, the exchange of energy in the macroscopic equations (2.136) cannot be ex-
pressed explicitly because Hτi might not be computed analytically. However, considering
only classical interactions, the exchange terms can be expressed by closed formulae.

Remark 2.3.19. In the classical-classical case τ1 = τ2 = 0, the relationship (2.132) in
Theorem 2.3.14 simplifies to

N1

N2
=
m

3
2
1 h̃0(c12)

m
3
2
2 h̃0(c21)

=
m

3
2
1

∫
R3

1

e|p|2+c12+0
dp

m
3
2
2

∫
R3

1

e|p|2+c21+0
dp

=
m

3/2
1

m
3/2
2

e−c12

e−c21
.

Further, computing the integrals

m
3/2
1 H0(c12)

m
3/2
1 H0(c12) +m

3/2
2 H0(c21)

=
m

3/2
1 e−c12

m
3/2
1 e−c12 +m

3/2
2 e−c21

=
m

3/2
1

m
3/2
1 e−c12 +m

3/2
1

N2
N1
e−c12

=
N1

N1 +N2
,

we obtain

E12 − E1 =
N1N2

N1 +N2

(
E2

N2
− E1

N1
+

m1 −m2

(m1N1 +m2N2)2
1

2
|P1 +P2|2

)
=

N1N2

N1 +N2

(
E2

N2
− 1

2

|P2|2
m2N2

2

− E1

N1
+

|P1|2
m1N2

1

+m1m2
m1N

2
1 +m2N

2
2

(m1N1 +m2N2)2
1

2

( |P2|2
m2

2N
2
2

− |P1|2
m2

2N
2
1

)
+

m1m2N1N2

(m1N1 +m2N2)2

(
P2

m2N2
− P1

m1N1

)
·
(
P1

N1
+

P2

N2

))
.

We can also specify decay rates for macroscopic quantities.

Decay rates for the mean velocities and temperatures in the space homoge-
neous case

The H-Theorem states that both species share the same mean velocity in equilibrium.
More precisely, we can compute an explicit rate with which the mean velocities converge.
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Theorem 2.3.20 (Estimates for the mean velocities for the quantum multi-species BGK
model). In the space homogeneous case of (2.119), we have the following convergence rate
for the momenta:

P1

m1N1
− P2

m2N2
= e−t

(
P1(0)

m1N1
− P2(0)

m2N2

)
. (2.140)

Proof. Since Ni is constant in the space homogeneous case (2.136), we have

∂t

(
P1

m1N1

)
=

1

m1N1
∂tP1 =

1

m1N1
(P12 −P1)

(2.138)
=

m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

(2.141)

In a similar way, we compute

∂t

(
P2

m2N2

)
=

m1N1

m1N1 +m2N2

(
P1

m1N1
− P2

m2N2

)
. (2.142)

If we subtract the two equations (2.141)–(2.142), we obtain

∂t

(
P1

m1N1
− P2

m2N2

)
= −

(
P1

m1N1
− P2

m2N2

)
and conclude

P1

m1N1
− P2

m2N2
= e−t

(
P1(0)

m1N1
− P2(0)

m2N2

)
.

The proof was done by Pirner in [BPW22].

Remark 2.3.21. Equivalently to (2.140), one can also write

b1 − b2 = e−t(b1(0)− b2(0))

using the relationship Pi = miNibi.

We continue with the convergence rates of the kinetic temperatures 3
2Ti =

Ei
Ni

− 1
2

|Pi|2
miN2

i
.

Theorem 2.3.22 (Estimates for the kinetic temperatures for the quantum multi-species
BGK model). In the space homogeneous case of (2.119), it is(

E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

)
= e−t

((
E1(0)

N1
− 1

2

|P1(0)|2
m1N2

1

)
−
(
E2(0)

N2
− 1

2

|P2(0)|2
m2N2

2

))

+
1

2
m1m2

m2N
2
2 −m1N

2
1

(m1N1 +m2N2)2
e−t(1− e−t)

∣∣∣∣∣P2(0)

m2N2
− P1(0)

m1N1

∣∣∣∣∣
2

+

(
E1(0) + E2(0)−

1

2

|P1(0) +P2(0)|2
m1N1 +m2N2

)
e−t

·
∫ t

0
es

 m
3/2
1
N1

Hτ1(c12(s))−
m

3/2
2
N2

Hτ2(c21(s))

m
3/2
1 Hτ1(c12(s)) +m

3/2
2 Hτ2(c21(s))

 ds.

(2.143)
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Proof. Using (2.136) and inserting (2.141), we compute

∂t

(
E1

N1
− 1

2

|P1|2
m1N2

1

)
= ∂t

(
E1

N1

)
− P1

N1
∂t

(
P1

m1N1

)
=
E12

N1
− E1

N1
− P1

N1

m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

(2.144)

We plug (2.137) in and obtain

∂t

(
E1

N1
− 1

2

|P1|2
m1N2

1

)
=

1

2

m1|P1 +P2|2
(m1N1 +m2N2)2

+
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12)

N1

−E1

N1
− P1

N1

m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

(2.145)

An analogous expression can be derived for species 2. Subtracting both leads to

∂t

((
E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− |P2|2
m2N2

2

))

=
E2

N2
− E1

N1
+ϖ +

(E1 + E2)− 1
2

|P1+P2|2
m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

[
m

3/2
1 Hτ1(c12)

N1
− m

3/2
2 Hτ2(c21)

N2

]
with

ϖ =
1
2(m1 −m2)m1N

2
1 +m2N2(m1N1 +m2N2)

(m1N1 +m2N2)2
|P1|2
m1N2
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+
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2
1 −m2N

2
2 )

(m1N1 +m2N2)2N1N2
P1 ·P2

+
1
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.

This can be rewritten to

∂t

((
E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

))
= TE + TP + TH

where

TE(t) = −
((

E1

N1
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m1N2

1

)
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E2
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m2N2

2
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,

TP (t) =
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(m1N1 +m2N2)2
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,

TH(t) =
(E1 + E2)− 1

2
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m1N1+m2N2

m
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Now, Duhamels formula gives(
E1

N1
− 1
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|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

)
= T ∗

E + T ∗
P + T ∗

H
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with

T ∗
E = e−tTE(0) = e−t

((
E1(0)

N1
− 1

2

|P1(0)|2
m1N2

1

)
−
(
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and
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·
∫ t

0
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Using Theorem 2.3.20 yields

T ∗
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0
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,

which finishes the proof. The proof was done by Pirner in [BPW22].

The complicated formula (2.143) can be simplified in the case of classical-classical
interactions.

Remark 2.3.23. We continue Remark 2.3.19. In the classical-classical case τ1 = τ2 = 0,
we get

N1

N2
=
m

3/2
1

m
3/2
2

e−c12

e−c21
,

and we are able to explicitly compute the bracket term of T ∗
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m
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m
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3/2
1

N1
N2
e−c12

= 0.

This means that in the classical-classical case, the decay rate for the kinetic temperatures
(2.143) simplifies to(

E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

)
= T ∗

E + T ∗
P

which equals the temperature rate for the KPP model in Theorem 2.1.44.
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This section sets collision frequencies νij = 1. Actually, it is not clear how collision
kernels in the quantum Boltzmann model look like [Vil02] which led to collision frequencies
in the BGK model.

The following observation concludes this section and illustrates that the mean ve-
locities and temperature converge the faster the larger the possible collision frequencies
are.

Remark 2.3.24. If we include constant collision frequencies νij into the model with the
condition

ν12 = ν21,

i.e.

∂tf1 = ν11(E11 − f1) + ν12(E12 − f1),

∂tf2 = ν22(E22 − f2) + ν12(E21 − f2),

then we can repeat all computations for the decay rates in Theorems 2.3.20 and 2.3.22 in
the same way resulting in
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Chapter 3

Numerical schemes

The field of numerical mathematics was eventually born when computers have been in-
vented and the computational power was further developed. New issues arise when a
mathematical model is translated to computer language because analytical properties
shall be reflected at the numerical level. Clever schemes are developed in order to avoid
compromises between small numerical errors and efficient simulations.

We give a short introduction into numerical schemes regarding kinetic equations in
Section 3.1. In Section 3.2, we present the basic idea of our scheme for a general multi-
species BGK-type equation. Subsequently, we explain the discretization techniques for
the corresponding time, space and velocity variables in Sections 3.3–3.5.

3.1 Fundamentals

Kinetic equations depend on three independent variables: time, space and (microscopic)
velocity. Each of them needs to be discretized. In this section, we give an overview over
existing discretization methods. We start with the discretization in time in Section 3.1.1
because this is the main focus in this thesis. Then we give a short introduction into space
discretization techniques in Section 3.1.2. As we will only consider one-dimensional test
cases for reasons of computational costs, we also stick to one dimension in the introduction.
In Section 3.1.3, we consider the discretization of the three-dimensional velocity space.

3.1.1 Time discretization

We first present methods how to numerically solve an initial value problem for the general
autonomous ordinary differential equation (ODE)

f ′(t) = G(t, f(t)),

f(0) = f0
(3.1)

with given G : R × R → R and f0 ∈ R. The exact solution of (3.1) is approximated by
f ℓ ≈ f(tℓ) where tℓ = ℓ ·∆t with ℓ ∈ N0 and a problem dependent ∆t > 0.

We focus on Runge-Kutta (RK) methods and refer to [HV03].

Runge-Kutta methods

We consider the ODE in (3.1). Generally speaking, we want to calculate f ℓ+1 from a given
f ℓ. Using RK schemes, intermediate values f [i] are computed, and the next time step f ℓ+1

is then given by a linear combination of these values. The auxiliary approximations f [i]

69
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are called stages where i = 1, . . . , s. A general form of a RK scheme is given in the
following definition.

Definition 3.1.1 (Runge-Kutta method). Given A = (aij) ∈ Rs×s, b, c ∈ Rs and f ℓ.
The update f ℓ+1 for (3.1) is given by

f ℓ+1 = f ℓ +∆t

s∑
i=1

biG(tℓ + ci∆t, f
[i])

with the stage values

f [i] = f ℓ +∆t
s∑

j=1

aijG(tℓ + cj∆t, f
[j]), i = 1, . . . , s.

This is often written in a compact way according to [But87] via the Butcher tableau

c A

b
.

The properties of any RK scheme are determined by A, b and c. An obvious classifi-
cation is given by the following definition.

Definition 3.1.2 (Explicit and implicit). A RK method is called explicit if aij = 0 for
j ≥ i because all stage values can be computed one after another by explicit relations.

Otherwise, the method is called implicit. In these cases, the stage values are only given
by a system of algebraic relations. If aij = 0 for j > i, the scheme is called a diagonally
implicit Runge-Kutta (DIRK) scheme.

Let fe be the exact solution to (3.1). Substituting fe(tℓ) into the scheme leads to a
value f ℓ+1

e which should be approximately fe(tℓ+1) because the method approximates the
differential equation. If the local error satisfies

fe(tℓ+1)− f ℓ+1
e = O(∆tp+1),

the method is called consistent of order p (provided that G is sufficiently differentiable).
Concerning such order of accuracy, so-called order conditions can be derived. For first-
order schemes, it is required that

∑
i bi = 1. Second-order schemes can be achieved

provided that the equality b⊤c = 1
2 is fulfilled. The higher the order, the more conditions

on A, b and c need to be satisfied. This also results in more and more necessary stages.
The minimal number of required stages for a method of order p is determined by order
barriers [But16]. For schemes of order higher than 5, the number of required stages
increases faster than the order of the scheme.

We assume that the method is stable (which is addressed subsequently). Using above
notation and starting at the given initial value fe(0) = f0, the local errors are added up
such that the global error at time t = tL is

fe(tL)− fL = O(∆tp).

This means that the numerical solution converges to the exact solution for ∆t → 0. In
other words, the method will be convergent with order p when applied to a smooth ODE.
However, the order may be reduced for stiff ODEs. Further details on these topics can
be found e.g. in [HV03].



71 CHAPTER 3. NUMERICAL SCHEMES

A numerical method is called stable if small local errors lead to only small global er-
rors. In order to examine the stability of a scheme, the method is applied to the scalar,
complex test equation

f ′(t) = λf(t).

One is interested in the stability function R which is determined by the recursion

f ℓ+1 = R(z)f ℓ

with z = λ∆t. More precisely, one seeks the stability regions

S = {z ∈ C : |R(z)| ≤ 1}.

We state the following notions of stability for ODE methods.

Definition 3.1.3 (Stability notions). An ODE method is called A-stable1 if S ⊇ {z ∈
C : ℜ(z) ≤ 0}. It is said to be strongly A-stable if additionally limz→∞ |R(z)| < 1. An
ODE method is called L-stable if it is A-stable and in addition limz→∞ |R(z)| = 0.

Accordingly, A-stable and L-stable schemes are unconditionally stable which means
that they are stable without any condition on the step size.

Remark 3.1.4 (Methods for PDEs). Consistency, stability and convergence are fun-
damental requirements for any numerical scheme and become even more challenging if
more variables are encountered. Regarding stability, we only mention the notion of total-
variation-stability, i.e. the total variation of the numerical solution remains bounded. See
e.g. [LeV02].

We are especially interested in conservation laws. The following is given in [HV03].

Lemma 3.1.5 (Conservation laws for RK schemes). Let w be a given weight function,
w ̸≡ 0. Assume

w(G(t, f)) = 0

for all t ≥ 0 and f ∈ R. This corresponds to the conservation law that for any solution
f(t) the quantity w(f(t)) is constant in time. Then any RK method in Definition 3.1.1
preserves this conservation property; that is

w(f ℓ+1) = w(f ℓ)

for all ℓ.

For later reference, we list several RK schemes.

Definition 3.1.6 (List of RK schemes). Explicit RK schemes are

1. the first-order Forward Euler method

f ℓ+1 = f ℓ +∆tG(tℓ, f
ℓ), (3.2)

respective

0 0

1
, (3.3)

1This notion was introduced in [Dah63].
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2. the second-order Heun’s method

f ℓ+1 = f ℓ +
∆t

2
G(tℓ, f

ℓ) +
∆t

2
G(tℓ +∆t, f ℓ +∆tG(tℓ, f

ℓ)), (3.4)

respective

0

1 1
1
2

1
2

. (3.5)

3. the second-order method ARS-ex [ARS97]

f [1] = f ℓ + γ∆tG(tℓ + γ∆t, f ℓ),

f [2] = f ℓ + δ∆tG(tℓ +∆t, f ℓ) + (1− δ)∆tG(tℓ +∆t, f [1]),

f ℓ+1 = f [2],

(3.6)

respective,

0

γ γ

1 δ 1− δ 0

δ 1− δ 0

(3.7)

with δ = 1− 1
2γ and γ = 1−

√
2
2 .

Implicit RK schemes are

1. the first-order, L-stable Backward Euler method

f ℓ+1 = f ℓ +∆tG(tℓ+1, f
ℓ+1), (3.8)

respective

1 1

1
, (3.9)

2. the second-order (implicit) and A-stable trapezoidal method

f ℓ+1 = f ℓ +
∆t

2
G(tℓ, f

ℓ) +
∆t

2
G(tℓ+1, f

ℓ+1), (3.10)

respective

0

1 1
2

1
2

1
2

1
2

. (3.11)
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3. the second-order method ARS-im [ARS97]

f [1] = f ℓ + γ∆tG(tℓ + γ∆t, f [1]),

f [2] = f ℓ + (1− γ)∆tG(tℓ +∆t, f [1]) + γ∆tG(tℓ +∆t, f [2]),

f ℓ+1 = f [2],

(3.12)

respective,

0

γ 0 γ

1 0 1− γ γ

0 1− γ γ

(3.13)

with γ = 1−
√
2
2 .

More methods We want to mention two additional classes of schemes because they
are also frequently used for kinetic equations.

For an update according to RK schemes, only the previous approximation is needed.
This is in contrast to multi-step methods where k ≥ 1 preceding approximations are used
for the update. Such methods are defined by

k∑
j=0

αjf
ℓ+j =

k∑
j=0

βjG(tℓ+j , f
ℓ+j)

where the coefficients αj and βj depend on the step size ∆t and determine the method.
The main advantage of these methods is that any update requires only one new evaluation.
For RK schemes, every stage corresponds to a new evaluation. Hence, multi-step methods
are often used for reasons of efficiency. However, there are two main drawbacks for multi-
step methods. Firstly, a change in the step size leads to a change in the coefficients αj

and βj . Secondly, there is only one value given at initial time. The method yet needs k
starting values f0, . . . , fk−1 which therefore need to be calculated by different approaches.
[HV03]

An example for multi-step schemes in the context of kinetic equations is provided in
[DP17].

Another approach is to use exponential time integrators. Linear or constant parts of the
initial value problem can be integrated exactly in time which may help for stiff equations.
In the context of BGK equations, we refer to [DP11, DP14] and [Xu01, XCX21, SY08].

Having introduced discretization methods for (3.1), we come to more elaborated equations
and schemes.

Implicit-explicit schemes

We consider the generic ODE

∂tf + T (f) = R(f) (3.14)
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for a distribution function f . In the context of kinetic equations, T denotes the transport
operator, and R refers to the interaction/relaxation operator. In order to discretize (3.14)
in time, both operators and the time derivative need to be discretized. The solution is
approximated by f ℓ ≈ f(tℓ).
The structure of the operators indicates a particular treatment. In our case, the transport
operator T is usually discretized explicitly introducing a Courant-Friedrichs-Lewy (CFL)
condition which is discussed later in Sections 3.1.2 and 3.4. The relaxation operator R
can also be discretized explicitly. However, for large collision frequencies this results in
severe restrictions on the time step size. So often it is preferred to use a more difficult
implicit time discretization. Thanks to the special structure of the BGK operators, the
implication is comparably easy manageable and the equation stays explicitly solvable
[PP07, FJ10]. In Section 3.3.5, we present our general implicit solver for the relaxation
operator.

Definition 3.1.7 (IMEX schemes). If one equation is discretized by a suitable mixture
of implicit and explicit methods, one refers to IMEX schemes.

In the following, we present how IMEX schemes can be constructed and refer to
[DP14].

Splitting schemes Operator splitting is a classic and widely used approach, in the
kinetic context e.g. in [CP91, HHM17b]. For these methods, the ODE (3.14) is solved in
[tℓ, tℓ+1] as a sequence of steps where only one operator is taken into account during one
step. To first order, we first solve the space homogeneous relaxation problem

∂tf
∗ = R(f∗),

f∗(tℓ) = f ℓ

in [tℓ, tℓ+1], and for convenience, we write f∗(tℓ+1) = R∆t(f
ℓ). Afterwards, we consider

the transport step

∂tf + T (f) = 0

f(tℓ) = f∗(tℓ+1)

in [tℓ, tℓ+1], and in short f(tℓ+1) = T∆t(f
∗(tℓ+1)). We summarize this in the following

definition.

Definition 3.1.8 (First-order splitting). Given f ℓ. The update f ℓ+1 is achieved by the
first-order splitting method

f∗ = R∆t(f
ℓ),

f ℓ+1 = T∆t(f
∗) = T∆t(R∆t(f

ℓ)).

In practice, the splitting is stable provided that every step is stable [HV03]. But
additional errors may be introduced by the splitting approach. Only in the case that the
operators commute, the splitting is exact [HV03]. Hence, the order of the discretization
techniques for the operators is important, as well. It is sensible to perform the operation
which acts on shorter time scales at first.

A symmetry in the splitting may yield a better accuracy. Actually, a second-order
splitting scheme is given by the well-known Strang splitting [Str68].
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Definition 3.1.9 (Strang splitting). Given f ℓ. The update f ℓ+1 is achieved by the second-
order splitting method

f∗ = T∆t/2(f
ℓ),

f∗∗ = R∆t(f
∗) = R∆t(T∆t/2(f

ℓ)),

f ℓ+1 = T∆t/2(f
∗∗) = T∆t/2(R∆t(T∆t/2(f

ℓ))).

There exist also higher-order splitting schemes [HV03, Chapter IV]. However, we focus
on schemes up to second order in this thesis.

The advantage of splitting schemes is obvious: Already existing methods for the indi-
vidual operators can be glued together. In the special case of kinetic equations, even
more benefits exist. The relaxation operator only acts on v, whereas the transport oper-
ator acts on x. So the splitting simplifies to design schemes with appropriate properties
because the methods for each operator can focus on a reduced number of variables.

Unfortunately, one fundamental drawback is that splitting schemes may suffer from
order reduction in the fluid limit [Jin95]. This issue can be overcome by different ap-
proaches.

IMEX Runge-Kutta schemes IMEX RK schemes were originally developed in
[ARS97] for parabolic PDE. In [Jin95, PR05], they have been extended to hyperbolic
systems with relaxation terms. Examples concerning our purposes can be found in [PR05,
PP07], and we use such techniques in [HHK+22, BPW22].

Definition 3.1.10 (IMEX RK schemes). We consider an explicit RK scheme with Â =
(âij) ∈ Rŝ×ŝ, b̂, ĉ ∈ Rŝ and an implicit RK scheme with A = (aij) ∈ Rs×s, b, c ∈
Rs. Given f ℓ. A standard implicit-explicit Runge-Kutta scheme applied to (3.14) can be
written as

f [i] = f ℓ −∆t

i−1∑
j=1

âijT (f [j]) + ∆t

s∑
j=1

aijR(f [j])

f ℓ+1 = f ℓ −∆t
i−1∑
j=1

b̂iT (f [j]) + ∆t
s∑

j=1

biR(f [j])

with the stage values f [i] and the numerical solution f ℓ+1.

Additional to suitable order conditions, the coefficients of both the implicit and the
explicit RK scheme need to satisfy coupling conditions [ARS97, KC03, PR05]. A first-
order method is given by the coupling of the schemes (3.8) and (3.2), whereas the coupling
of (3.12) and (3.6) yields a second-order, L-stable and globally stiffly accurate (GSA)
IMEX RK scheme [ARS97]. The notion of GSA schemes is introduced in Definition
3.1.11 below.

In [BPR13, DP14], IMEX RK schemes are characterized and corresponding properties
are proven. We only give the following notion.

Definition 3.1.11 (GSA). An IMEX RK scheme is called globally stiffly accurate if the
corresponding DIRK method is stiffly accurate; that is

asi = bi, i = 1, . . . , s;

and if, in addition, the explicit method satisfies

âŝi = b̂i, i = 1, . . . , ŝ.
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P ε
∆t P 0

∆t

P ε P 0

∆t → 0 ∆t → 0

ε → 0

ε → 0

Figure 3.1: A kinetic problem P ε and its fluid limit P 0 are discretized by P ε
∆t and P

0
∆t.

If the diagram commutes, that is if P ε
∆t is a consistent and stable approximation of P 0 as

ε→ 0 for a fixed ∆t, the method is called AP.

According to the previous definition, the numerical solution coincides with the last
stage value for GSA schemes. This property is important for the accuracy of the method
in the limit where the collision frequencies become infinite.

Structure-preserving properties

In this section, we take a deeper look at two structure-preserving properties, namely AP
and strong-stability-preserving (SSP) schemes.

Asymptotic-preserving schemes AP schemes play an essential role in the transition
of different regimes, e.g. when passing from kinetic to fluid descriptions. In this case,
a great number of collisions occur making the interaction part stiff, but the collisional
forces are not strong enough to drive the kinetic system to a fluid description yet. In
order to deal with such multi-scale problems, unconditionally stable numerical methods
have been developed which succeed in capturing the correct asymptotic behavior while
avoiding severe restriction on the time step. These schemes are called AP [DP14]. To be
more precise, we give the following definition.

Definition 3.1.12 (AP). Let P ε be a kinetic problem with fluid limit P 0 for ε → 0. A
consistent and stable time discretization P ε

∆t of step size ∆t is called asymptotic preserving
if it becomes a consistent and stable time discretization P 0

∆t for the reduced fluid equation
in the limit ε→ 0 and for fixed ∆t, see Figure 3.1.

The scaling parameter can be associated with the Knudsen number which appears
e.g. in the nondimensional Boltzmann equation [Str05]. For BGK equations, ε → 0
corresponds to enormous collision frequencies ν → ∞.

Using AP schemes, the correct equilibrium solutions are preserved while remaining
an efficient scheme [Pup19, HJL17, BIP15, DP14, FJ10, BLM08, PP07]. In this context,
splitting methods should be treated with care because, in the hydrodynamic limit, the
(second-order) Strang splitting reduces actually to a first-order approximation of the
equilibrium equation as shown in [Jin95].

Strong-stability-preserving schemes For this kind of schemes, we need to anticipate
parts of the space discretization. Considering a PDE, it is a common practice to first
discretize the space variables which results in a system of ODEs in the time variable.
ODE solvers can be applied provided that an adequate stability criterion is satisfied. For
hyperbolic equations, a corresponding class of (high-order) time discretization methods
is called total-variation-diminishing (TVD), introduced in [Shu88, SO88]. However, in
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[GST01] the authors explain that the notion strong-stability-preserving (SSP) is more
suitable for this class because the essential part of these methods is not restricted to
the total variation norm. The construction of such schemes often relies on convexity
arguments which hold for any norm. The property is given in the following definition.

Definition 3.1.13 (SSP). A scheme is called strong-stability-preserving if

||f ℓ+1|| ≤ ||f ℓ||

for any norm || · ||.

If an equation possesses an entropy decay structure, this one is preserved at the
discrete level as a consequence of the SSP property. Moreover, the positivity of an IMEX
RK scheme follows from the above property. More generally speaking, an SSP scheme
preserves any convex property which makes SSP schemes attractive. However, in [GST01]
it was shown that unconditionally SSP implicit schemes are at most first-order accurate.
As the positivity of the distribution functions indeed is required, further developments
are needed for kinetic equations.

For the standard BGK equation, such an extension is given in [HSZ18] where an ad-
ditional correction step to a preceded IMEX RK method guarantees the positivity of the
scheme. This scheme asks for several requirements concerning the individual positivity
preservation of the transport and the interaction operator, respectively. To the best of
our knowledge, one of those cannot be proven for velocity-dependent collision frequencies
such that we cannot apply this scheme to our equations (2.67). This also means that we
need to take care of the positivity preservation by additional considerations, see Section
4.2.

In the following section, we concern ourselves with existing methods for the discretization
of the space variable.

3.1.2 Space discretization

There can be found many different approaches for the space discretization in the literature
as the same transport term is incorporated by many different kinetic equations. The
most common techniques for the space discretization are finite difference (FD), finite
element (FEM) and finite volume (FV) schemes. For FD methods, the derivatives are
approximated by finite differences, and discrete point values are evolved in time. This
results in a system of linear equations. For FEM schemes, the considered matter is divided
into a finite number of elements. The evolution of these elements is described in time based
on the forces acting on and between them. Whereas the space is discretized into control
volumes for FV schemes, and occuring fluxes between such volumes are approximated.

The transport term being hyperbolic, a FV discretization is often used, preserving
the conservation properties by construction. That is why we will use this approach as
well. In the following, we give a short introduction into FV schemes. For reasons of
computational costs, we will only consider one-dimensional settings in space (but we
will stick to three dimensions in velocity, see Remark 3.2.1). Therefore, we restrict the
following introduction to one dimension. For extensions to higher dimension and for more
information, we refer to [LeV02, Tor09, Ber21].
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Figure 3.2: The initial data f0 is given and averaged in each cell Ik. The resulting function
is piecewise constant with values (f̄0)k for x ∈ Ik.

Finite Volume schemes

A convenient approach for conservation laws is a FV method. Let us consider the following
one-dimensional balance law in the spatial domain I ⊂ R

∂tf(x, t) + ∂xF (f(x, t)) = R(f) for x ∈ I, t > 0 (3.15)

f(x, 0) = f0(x) for x ∈ I, (3.16)

where F denotes the flux function. In kinetic equations, it is F (f) = vf .
We divide the domain in cells Ik = [xk − ∆x

2 , xk + ∆x
2 ] for k ∈ {0, . . . ,K} and an

appropriately chosen ∆x > 0. For simplicity, we use equidistant cells. In every cell, the
initial data is averaged

(f̄0)k :=
1

∆x

∫
Ik

f0(x) dx

resulting in a piecewise constant function

f̄(x, 0) = (f̄0)k for x ∈ Ik,

illustrated in Figure 3.2. We now look at the modified initial value problem

∂tf̄ + ∂xF (f̄) = R(f̄) for x ∈ I, t > 0 (3.17)

f̄(x, 0) = (f̄0)k for x ∈ Ik. (3.18)

These equations describe a series of Riemann problems; that is, a Cauchy problem where
the initial condition consists of two constant states seperated by a discontinuity. We
integrate (3.17) in space and obtain an ODE which can be solved according to Section
3.1.1. The equation in conservative form reads

∂tf̄k = f̄k −
1

∆x

(
Fk+ 1

2
− Fk− 1

2

)
+Rk (3.19)

where

f̄k =
1

∆x

∫
Ik

f(x, t) dx



79 CHAPTER 3. NUMERICAL SCHEMES

are cell averages. Using the set of cell averages {f̄k}, f can be reconstructed inside a cell
Ik resulting in a polynomial pk(x) ≈ f(x) for x ∈ Ik [Tor09]. Often, the polynomials pk
and pk+1 are used to determine the flux across the interace x = xk+ 1

2
. In general, we

approximate the flux at the interface x = xk+ 1
2
as a function of adjacent cell averages

Fk+ 1
2
= F (f̄k−l, . . . , f̄k+r) (3.20)

with l and r two nonnegative integers. Moreover, we define the space integral average

Rk =
1

∆x

∫
Ik

R(f(x, t)) dx. (3.21)

The formulae (3.20) and (3.21) need to be approximated appropriately leading to nu-
merical fluxes and numerical sources, respectively. The construction of numerical fluxes
is a central task for the numerical method. There exist approaches where the Riemann
problems are solved exactly such as Godunov’s method applied to the Euler equations.
Alternatively, approximations are used which result in different numerical fluxes. In any
case, the numerical fluxes are supposed to satisfy some properties.

Definition 3.1.14 (Consistent numerical flux). The numerical flux F is called consistent
with the physical flux F if F (g, . . . , g) = F (g).

A sufficient criterion for consistency is to have a Lipschitz continuous function F in
each variable. A consistent numerical flux ensures consistency of the semi-discrete scheme
(3.19) with the hyperbolic conservation law (3.15). If the numerical method is additionally
stable, the scheme converges under grid refinement. This is often summarized in the
fundamental theorem of numerical methods for PDEs. For further information, including
different notions of stability, we refer to [LeV02].

In this context, we want to mention the Lax-Wendroff theorem [LW60] which guaran-
tees that the approximate solution of a consistent and conservative scheme for a hyperbolic
conservation law with convergence under grid refinement converges in this case towards
a weak solution of the conservation law.

A further issue are the boundaries, either physically given by the spatial domain or
artificially set for computational reasons. For periodic boundaries, the cells IK and I0
are thought of to be connected. But also open and fixed boundaries can be used. Any
boundary behavior results in a special treatment of the numerical fluxes FK+ 1

2
and F− 1

2
.

High-resolutions can be obtained by elaborated methods, e.g. by weighted essentially
non-oscillatory (WENO) schemes. And discontinuous Galerkin (DG) schemes can also be
applied which is a combination of the FEM and FV framework. For orders higher than
two, one has to be especially careful with the corresponding formulation of the numerical
source Rk. [Mie00, PP07, HJL17, BCS11, CGP12]

More approaches

Especially for the transport term, semi-Lagrangian (SL)2 methods have been developed
which acknowledge its special and quite easy structure. The full equation is then often
solved by splitting methods [DP14]. For the SL approach, the characteristics, being

2The notion reminds of the description in Lagrangian coordinates in contrast to Eulerian coordinates.
For these, see [TM05].
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straight lines (see Section 2.1.2), are followed exactly. This requires an interpolation for
the evaluation of the corresponding foot point, illustrated in Figure 3.3. A benefit of these
schemes is that no stability conditions are needed. Unfortunately, SL methods are not
conservative in general. Nevertheless, they can be kept conservative also for higher orders
by conservative reconstructions or corrections [SRBG99, CMS10, DP14, CBRY21, QS11].

t

xtℓ

tℓ+1

xk − v∆t xk

f ℓ+1
i,k

v > 0 v < 0

Figure 3.3: We illustrate the SL approach for the transport term. To determine f ℓ+1
i,k , the

characteristic curve is followed for v > 0. Since the foot point xk − v∆t does not hit a
node of the grid, an interpolation is needed.

Based on discrete-velocity models (see Section 3.1.3) and SL methods, efficient schemes
can be developed [DL13]. Here, the distribution function needs not to be reconstructed
at each time step (in contrast to standard SL schemes) which then accelerates numerical
computations.

We also want to mention Particle in Cell (PIC) methods. These are the most used
methods for the Vlasov equation which approximate the plasma by a finite number of
macro-particles [FSB01]. In [FSB01], the authors shortly discuss different methods for the
Vlasov equation and then introduce their positive and flux conservative method (PFC).

We have given an overview over existing techniques for discretizing the space and time
variable. In order to obtain a fully-discrete scheme, the velocity variable needs to be
discretized as well.

3.1.3 Velocity discretization

Considering the microscopic velocities as independent variables, poses several challenges.
In the same time, it introduces more degrees of freedom which makes it possible to capture
more phenomena at smaller scales.

Historically, discrete-velocity methods aimed to study a rarefied gas qualitatively
[DP14]. A relatively new approach are the Lattice-Boltzmann methods which can be
seen as schemes for a discrete-velocity Boltzmann equation. This has been successfull
in simulating hydrodynamic systems up to the Navier-Stokes level with possible com-
plex boundaries. Accordingly, discrete-velocity BGK models have been developed. See
[Bue96, Mie00, Mie01, YH09], as well as [DP14, Chapter 4] and references therein.

Regarding computational costs, kinetic equations suffer from the high dimensionality.
So it is recommendable to use coarse grids [Pup19] whenever possible. However, a coarse
velocity grid amplifies the challenges regarding errors in the macroscopic quantities which
makes it necessary that given conservation laws are fulfilled at the discrete level as well.
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In [GT09], the authors propose a constrained L2-projection in order to preserve the
moment conservation properties. A profound study of discrete moments, a discrete en-
tropy and the corresponding discrete Maxwellians in a BGK model is provided in [Mie00].
There, basic estimates on and effects to the mean velocities and temperatures can be found
when microscopic velocities are discretized and truncated. We shortly summarize some
of the statements in the following. For reference, see [Mie00, DP14].

A discrete-velocity model for the BGK equation

Let us consider one space and one velocity dimension for sake of simplicity in notation.
The BGK equation for one species with mass m (and constant in v collision frequency)
reads

∂tf + v ∂xf = ν(M[f ]− f).

We introduce a discrete velocity grid

{vq ∈ R, q ∈ V }
with V ⊂ Z being a finite subset and ∆v > 0 such that a node of the mesh can be written
as

vq = q∆v.

We are interested in the evolution of the vector f = (fq(x, t))q ≈ (f(x, vq, t))q which is
described by a system of |V | partial differential equations3

∂tfq + vq ∂xfq = νV (Mq[f ]− fq),

where the discrete Maxwellian Mq[f ] is not defined yet. The discrete collision frequency
νV = ν(nV , TV ) is determined by the discrete fluid quantities4 which can be calculated
by discrete sums. We use the midpoint rule; that is

nV =
∑
q∈V

fq ∆v,

nV uV =
∑
q∈V

vqfq ∆v,

nV TV =
∑
q∈V

m(vq − uV )fq ∆v.

(3.22)

We define the discrete entropy

HV [f ] =
∑
q∈V

fq log(fq)∆v.

We want to find Mq[f ] such that the discrete conservation laws∑
q∈V

(Mq − fq)∆v = 0,

∑
q∈V

vq(Mq − fq)∆v = 0,

∑
q∈V

m|vq − uV |2(Mq − fq)∆v = 0

(3.23)

3For a fully-discrete scheme, an additional discretization in space and time is needed.
4Since we consider only one velocity dimension in this section, the factor in the temperature differs

from the factor in the rest of the thesis (where we consider three velocity dimensions).
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are satisfied, as well as a corresponding discrete formulation of the H-Theorem.

Discrete Maxwellians A natural choice seems to be

Mq[f ] = M[nV , uV , TV ,m] =
nV

(2πTV /m)
1
2

exp

(
−m|uV − vq|2

2TV

)
. (3.24)

However, this formula, in general, does not satisfy neither the conservation properties
(3.23) nor the entropy behavior. Instead, the discrete equilibrium Mq[f ] is defined in the
following way.

Definition 3.1.15 (Discrete Maxwellian). We call

Mq[f ] = Ma,b,c
q = exp(a+ bvq + c|vq|2), a, b, c ∈ R (3.25)

a discrete Maxwellian if and only if there exists f > 0 resulting in the discrete moments
nV , uV and TV .

The necessary and sufficient condition comes from the particular choice of the grid as
not all sets of moments may be realizable by the given discrete velocities. Additionally,
the velocity grid needs to be large enough. But this last statement is no actual restriction;
it is sufficent to take a Cartesian grid with at least two nodes in each direction and at
least three nodes in a given direction.

The crucial difference between (3.24) and (3.25) is that the parameters a, b, c ∈ R
cannot be computed explicitly from the given moments nV , uV and TV . These parameter
need to be determined by solving (3.23) via a Newton iteration method, for instance.

More information (including existence, uniqueness and convergence results) and the
proofs of the given statements can be found in [Mie00].

We illustrate discrete Maxwellians in Figure 3.4. The Maxwellian Mq[1, 0, 1, 1] accord-
ing to (3.24) is provided by the gray line. If we instead force the discrete Maxwellian
(3.25) to have the discrete moments nV = 1, uV = 0 and TV = 1, the resulting functions
highly depend on the underlying velocity grid. The velocity domain used for the discrete
Maxwellian Ma,b,c

q given by the green crosses is large enough such that Mab,c
q is compa-

rable to Mq[1, 0, 1, 1]. However, for smaller velocity grids, the corresponding Mab,c
q differ

significantly from Mq[1, 0, 1, 1], e.g. for the blue stars and the red crosses, respectively.

Temperature and mean velocity bounds We already mentioned that the set of
moments being realizable by the discrete velocity grid is restricted. This means that,
once a velocity grid is chosen, the corresponding discrete-velocity model cannot describe
any gas flow. Conversely, for a given flow, the velocity space must be discretized properly
in order to obtain a good description.

Proposition 3.1.16 (Bounds for discrete macroscopic quantities). Let f be a distribution
function and the velocity grid given. Then the discrete mean velocity uV and temperature
TV associated with f , defined in (3.22), satisfy

min
V

vq ≤ uV ≤ max
V

vq, (3.26)

min
V

|vq − u|2 ≤ TV ≤ max
V

|vq − uV |2. (3.27)

The previous proposition illustrates that the velocity grid must be large enough for a
possible resolution of high velocities and high temperatures. Moreover, the temperature
is also bounded from below. This means that ∆v must be chosen small enough in order
to resolve possibly small temperatures as pointed out in [Mie00].
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Figure 3.4: The Maxwellian Mq[1, 0, 1, 1] according to (3.24) is illustrated by the gray

line. In comparison, discrete Maxwellians Ma,b,c
q are plotted, all of which share the same

discrete moments nV = 1, uV = 0, TV = 1. However, the corresponding parameters a, b, c
for these discrete Maxwellians (3.25) are calculated with respect to different velocity grids
(in width) resulting in distinct functions.

Quadrature

We are interested in macroscopic quantities being represented by integrals over the dis-
tribution function with respect to the microscopic velocity. By discretizing the velocity
space, the question arises how to discretize integrals. Usually, function values at specific
points are weighted and summed up, specified by the corresponding quadrature rule:∫ b

a
ω(v)f(v) dv ≈

n∑
i=1

ωif(vi) (3.28)

where f(v) is a given function, ω(v) is a weight function, ωi are discrete weights and vi
are the corresponding (possibly unequally spaced) nodes for i = 1, . . . , n.

Gaussian quadrature rules are popular being constructed such that polynomials of degree
2n − 1 or less are maintained exactly. However, the location of the nodes vi poses diffi-
culties for kinetic equations. We illustrate this for the Gauss-Hermite quadrature which
is designed to integrate functions on unbounded intervals of the following form:∫

R
vsf(v)e−v2 dv ≈

n∑
i=1

ωiv
s
i f(vi).

The weight function ω(v) is a Maxwellian, and polynomials of degree 2n − 1 are main-
tained exactly if 2s − 1 = n. As we are especially interested in s = 0, 1, 2, a small
velocity grid with n = 3 sufficed. This method is very suitable for functions being close to
Maxwellians. However, the parameters of the Maxwellian (mean velocity, temperature)
are unknown and may change in space and time. This makes it hard to define a suitable
velocity grid and the corresponding nodes vi. Accordingly, different quadrature rules are
often employed. [Pup19]

A simpler approach is to use an equally spaced velocity grid leading to the Newton-Cotes
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v

f

v0 v1 v2 v3 v4

Figure 3.5: Illustration of the composite trapezoidal rule for 4 subintervals. The integral
of f is approximated by the area of a trapezoid in each subinterval. The corresponding
weights are ω̃0 = ω̃4 =

1
2 and ω̃1 = ω̃2 = ω̃3 = 1.

formulas. For reference see e.g. [SB02, QSS07]. The weight function ω(v) = 1 in (3.28) is
constant, and the discrete weights ωi can be computed as the integral of Lagrange basis
polynomials li: ∫ b

a
f(v) dv ≈

∫ b

a

n∑
i=0

f(vi)li(v) dv =

n∑
i=0

f(vi)

∫ b

a
li(v) dv.︸ ︷︷ ︸
=:ωi

Instead of using high order polynomials for large n, we apply a composite rule; that is,
the interval [a, b] is split into smaller subintervals, and the quadrature rule is executed on
each subinterval.

For n = 1, we obtain the trapezoidal rule having spectral accuracy for smooth and
periodic functions on a uniform grid. [BIP14] The method’s name comes by the fact that
the area under the graph of f(v) is approximated by a trapezoid. Hence, the discrete
weights are ωi =

b−a
2 . For the composite rule, we assume N subintervals and the nodes

v0, . . . , vN . We obtain ∫ vN

v0

f(v) dv ≈
N∑
i=0

f(vi)ω̃i∆v

with the weights

ω̃i =

{
1 for i = 1, . . . , N − 1,
1
2 else

and ∆v = b−a
N . We illustrate the composite trapezoidal rule in Figure 3.5.

Further remarks on velocity grids

For multi-species equations, the mass ratio between species strongly influences the per-
formance of schemes. For instance, multi-species Boltzmann equations with significant
differences in species mass require expensive grid resolutions [MTH+14] because of the
direct integration of distribution functions in the Boltzmann operator (2.28). Here comes
another advantage of multi-species BGK equations. Since particles of different species
only interact with each other through moments, each equation in the BGK model can be
discretized on a seperate grid [HHM17b].
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Grid adaption might be an important tool when the mean velocities u(x, t) cover a wide
range and small temperatures are encountered. Accordingly, grid adaption is tackled
more and more in the last decade, e.g. in [BM14, BIP14, BCR21, HB13].

Another approach for a considerable reduction of the computational costs is the Chu
reduction [Chu65] if there are more degrees of freedom in velocity than in space. Be-
ing interested in macroscopic quantities only, the system’s dimensionality is reduced by
looking at the evolution of appropriate integrals of the distribution functions, but these
integrals are no macroscopic quantities yet.

We have presented discretization techniques for the velocity variable. Many concepts
can be carried over for quantum models by replacing the velocity with momentum.

We conclude this section by highlighting existing literature on schemes for BGK equations.

3.1.4 Existing schemes for BGK equations

In the literature, numerous approaches for discretizing kinetic equations can be found.
We already mentioned in the previous sections which discretization techniques are often
used. We now highlight identified schemes for BGK equations, partly given in [PWed].

We start with contributions where the special structure of the BGK model is used in
a wider context. In these, the benefit from the reduced computational complexity com-
pared to the Boltzmann equation is crucial. This is useful, for instance, for penalization
techniques; in [FJ10, JL13], the BGK equation serves as preconditioner for the numerical
solution of the Boltzmann equation. The authors in [DDP11] aim to develop an improved
Monte Carlo simulation of the Boltzmann equation. As a first step, they have developed
such a method for the BGK equation. Moreover, the BGK approach manages to cou-
ple different domains in which the regimes range from equilibrium to very rarefied [AP12].

This gives rise to the observation that simulations of the BGK model itself are of interest
in the community. We want to mention two specific approaches for AP schemes here. The
micro-macro decomposition [CCL12, CKP20] is based on writing the distribution func-
tion as a sum of its equilibrium part and the remnant kinetic part. This decomposition
results in one kinetic and one macroscopic equation which can be solved by individual
and adequate methods. The former equation is solved by a particle method, whereas the
fluid part is solved by a standard FV approach. This discretization technique fits very
well to plasma applications. In the core of a plasma, a kinetic description is mandatory.
However, next to the wall of a Tokamak, the plasma is close to a fluid such that a hybrid
kinetic/fluid description is adequate.

Another approach is the parity decomposition/AP splitting [JP00, DP14] where the
distribution function is split into an even and an odd parity. This results in a new system
of equations with only one time scale where splitting techniques can be applied appropri-
ately.

A totally different method is the low-rank approximation. The resulting evolution equa-
tions describe the dynamics of the model constraint to the corresponding low-rank mani-
fold which goes with a reduction of the dimensionality of the problem. Hence, dynamical
low-rank algorithms provide robust and efficient approximations to several kinetic models,
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among others to the BGK equation. [Ein19, EHY21]

There also exist contributions using exponential time integrators, often combined with
splitting techniques. The idea is to integrate parts of the equations exactly and include
modelling aspects in the remnant. This results e.g. in a distinct treatment of collisional
and collisionless particles. [DP11, Xu01, XCX21] The latter article additionally takes care
of velocity-dependent collision rates.

In [MS04], a numerical scheme for a one-species BGK model with velocity-dependent
collision frequency [Str97] is presented. Their time-explicit scheme follows a CFL con-
dition being restrictive if the maximal value of the collision frequency gets large. As
time-implicit method, the authors propose to linearize the target function around the
ansatz at the current value which results in an efficient scheme for the simulation of
steady-state solutions. However, as noted in [Mie00], this approach lacks conservation
and entropy properties at the discrete level.

Active contribution in numerics for multi-species BGK models has strongly increased in
the last years. At the discrete level, many ideas can be carried over from the single-species
schemes. In the following, we give contributions of numerical schemes for multi-species
BGK equations, which can be written in the form of the KPP model (2.49).

We already mentioned [CKP20] as example of the micro-macro decomposition ap-
proach.

In [HHM17a], the authors are interested in capturing physical transport coefficient.
They match the relaxation rates in the space homogeneous case to the Boltzmann ones
as described in Section 2.1.4. An extension to space inhomogeneous settings is done in
[HHM17b], and they examine the coupling to electric fields as well.

In [BCGR21], the authors compare numerical results for different multi-species BGK
models. One of those models is a special case of (2.49).

Numerical schemes for quantum equations are less represented in the literature. Still,
several articles on schemes for quantum kinetic equations can be found. For BGK models,
existing schemes are extended which often includes additional root finding algorithms in
order to solve algebraic equations [FHJ12, WMZ12, MY12]. In [YH09], a lattice method is
provided based on Grad’s method. A micro-macro decomposition is performed in [CM14].
Moreover, a relaxation time approximation can be found in [SY08].

Having presented identified contributions concerning schemes for BGK equations, we now
shortly summarize existing approaches for the discretization of the relaxation operator.

A straight-forward method is a time-explicit discretization as the target function can
be determined directly from given data. By establishing discrete Maxwellians (see Section
3.1.3), the velocity discretization becomes more accurate. [Mie00]

Time-implicit techniques are more complicated because the value of the target func-
tion at the next time step is not provided ad-hoc. Indeed, for the standard one-species
BGK model, the macroscopic quantities stay constant in time as does the target function.
Hence, the implication corresponds to a linear solve [CP91, PP07, RF09, FJ10, DP13].
But for more general models, the implication goes with more difficulties. In some set-ups
(e.g. multi-species BGK models with constant collision frequencies), a moment update
can be computed using an iterative solver which in turn determines the target functions
[Pup19]. Another approach is a linearization of the target function [Mie00, MS04].
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We are interested in a time-implicit discretization of the relaxation term. However, the
given methods in the literature are not applicable to the multi-species BGK model with
velocity-dependent collision frequencies, or these do not meet our requirements. Thus, we
develop a new scheme enabling time-implicit target functions while guaranteeing conser-
vation and entropy properties at the discrete level. The main new ingredient is a general
implicit solver for the target functions.

3.2 Basic idea of our scheme

We present the basic idea of our scheme for multi-species BGK equations. This approach
works for many different settings, but we focus especially on velocity-dependent collision
frequencies and quantum models, respectively, which make a special treatment of the tar-
get functions necessary. Parts of the following can already be found in [HHK+22, BPW22].

The scheme is a discrete-velocity method which relies on standard time and space dis-
cretizations from the literature.

As introduced in Section 3.1.1, we use an IMEX time discretization. Transport terms
are treated explicitly, whereas interaction parts are treated implicitly because large col-
lision frequencies make these terms stiff. We follow splitting methods and IMEX RK
methods up to second order, but the ideas can be carried over to different discretization
techniques as well. The key new ingredient is a solver which enables an implicit treatment
of the BGK operator with a broad class of target functions. Mimicking the analytic case,
the crucial step is the formulation of a convex entropy minimization problem. The solver
is based on a numerical minimization procedure in order to determine the parameters
in the target functions. By this construction, conservation and entropy properties are
preserved at the discrete level, up to numerical tolerances.

The space discretization relies on a FV method. We assume a slab geometry for
which ∂x(2)f = ∂x(3)f = 0. So we reduce the physical space dimension to one space
dimension and write x = x(1). The numerical fluxes are inspired by [MS04] and preserve
the positivity of the distribution functions provided that an adequate CFL condition is
fulfilled.

The (microscopic) velocity space remains three-dimensional (v = (v(1), v(2), v(3))). A
discrete-velocity method for the equations is proposed similar to [Mie00]. The optimiza-
tion algorithm is performed on an adequate velocity grid.

Remark 3.2.1 (1d3v). Using one space dimension but three velocity dimension is often
abbreviated by 1d3v. This set-up is of real interest as illustrated by still air. Even though in
the macroscopic framework, there is no movement in the air, molecules do move around
in all three directions at the particle level. So it does make sense to take into account
three microscopic velocity directions even if the macroscopic movement is zero- or one-
dimensional. In other words, we consider only flows with mean velocities u = (u(1), 0, 0).

We give a general formulation for multi-species BGK equations which covers both,
the model in Section 2.2.2 with velocity-dependent collision frequencies and the quantum
model in Section 2.3. Hence, we introduce an auxiliary variable

w =

{
v for the model in Section 2.2.2 with velocity-dependent collision frequencies,

p for the quantum model in Section 2.3.
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In the following, we identify the corresponding models by the value of w. We consider two
species i, j ∈ {1, 2} for simplicity. But the extension to more species is straight-forward
as interactions are assumed to be binary (outlined in Appendix B for 3 species). The
system of PDEs reads

∂tf1 + T (f1) = R1(f1, f2)

∂tf2 + T (f2) = R2(f2, f1)
(3.29)

with the transport operator

T (fi) = v(1)∂xfi

and the relaxation operator

Ri(fi, fj) = νii(w)(Aii,τii(w)− fi) + νij(w)(Aij,τij (w)− fi). (3.30)

Remark 3.2.2. We use the velocity v = p
mi

in the transport operator. However, this
causes problems for massless particles like photons (which we neglect in this thesis). In
such cases, a more general formulation of the velocity is required, see e.g. [EMV03].

The collision frequencies depend on the corresponding model; that is

νij(w) =

{
νij(v) w = v,

1 w = p.

We introduce the notation ai = (a
(0)
i ,a

(1)
i , a

(2)
i )⊤ ∈ R5 where

ai(v) = mi

 1
v
|v|2

 and ai(p) =

 1
p
|p|2
mi

 .

The target functions are given by

Aij,τi(w) =
1

exp(−ai(w) · λij) + τi(w)
(3.31)

with

τi(w) =


0 for w = v,

0 for w = p and for species i being classic particles,

+1 for w = p and for species i being fermions,

−1 for w = p and for species i being bosons.

The main task will be to determine the parameters (i, j = 1, 2; i ̸= j)

λii =

λ
(0)
ii

λ
(1)
ii

λ
(2)
ii

 and λij =

λ(0)ij

λ(1)

λ(2)


which depend on the corresponding distribution functions fi and fj .
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Remark 3.2.3. The shape of the target functions is characterized by (3.31). The cor-
responding value of the target functions comes by evaluation through the parameters
λ = (λ(0),λ(1), λ(2))⊤. For convenience, we provide conversion formulas for the parame-
ters.

In the case w = v with velocity-dependent collision frequencies, the parameters λ
coincide exactly with the parameters from Section 2.2.2, and no conversion is needed.

In the quantum case w = p, we presented the model in Section 2.3 with parameters
a,b, c. An easy calculation gives the conversion formulae

ab
c

 =

 −λ(2)
− λ(1)

2λ(2)

−λ(0) + m
4

|λ(1)|2
λ(2)

 ⇐⇒ λ =

λ(0)λ(1)

λ(2)

 =

−ma|b|2 − c
2ab
−a

 .

The target function A is a Maxwellian distribution M[n,u, T,m] in the very special
case w = p and τ = 0. (This also holds true for w = v and constant in v collision
frequencies.) Only under these circumstances, it is possible to formally convert the pa-
rameters λ = (λ(0),λ(1), λ(2))⊤ into the macroscopic quantities n,u, T in an analytic way,
i.e.

n =
(
− π

mλ(2)

)3/2
exp

(
mλ(0) − m|λ(1)|2

4λ(2)

)
,

u = −λ(1)

2λ2
,

T = − 1

2λ(2)
,

respective

λ(0) =
1

m
log

(
n

(2π T
m)3/2

)
− |u|2

2T
,

λ(1) =
u

T
,

λ(2) = − 1

2T
.

The model is required to satisfy the conservation properties for intra-species interac-
tions ∫

νii(w)(Aii,τi(w)− fi)ai(w) dw = 0, (3.32)

the conservation properties for inter-species interactions∫
ν11(w) a

(0)
1 (w) (A12,τ1(w)− f1) dw = 0,

∫
ν22(w) a

(0)
2 (w) (A21,τ2(w)− f2) dw = 0,∫

ν12(w)a
(1)
1 (w) (A12,τ1(w)− f1) dw +

∫
ν21(w)a

(1)
2 (w) (A21,τ2(w)− f2) dw = 0,∫

ν12(w) a
(2)
1 (w) (A12,τ1(w)− f1) dw +

∫
ν21(w) a

(2)
2 (w) (A21,τ2(w)− f2) dw = 0

(3.33)
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and the correct behavior of the entropy

H[{f1, f2}](w) =

∫
[hτ1(f1(w)) + hτ2(f2(w))] dw

with

hτi(fi) = fi log(fi)− fi + τi(1− τifi) log(1− τifi)− τi(1− τifi). (3.34)

The system of equations (3.29) shall be solved numerically. At the discrete level, the
conservation properties (3.32)–(3.33) and the correct entropy behavior are required as
well. In the following, we present our scheme in details.5 We start with the discretization
of the time variable.

3.3 Time discretization

We pursue IMEX time discretizations where, in (3.29), T is treated explicitly and Ri is
treated implicitly. Our approach works for multi-species BGK quantum models, respective
for multi-species BGK equations equipped with a broad class of collision frequencies.
However, the treatment of the collision frequencies relies on Assumption 2.2.11. It states
that the collision frequencies depend only implicitly on space and time via a dependence
on the mass densities ρi(x, t), the mixture mean velocity

umix(x, t) =
ρ1u1 + ρ1u2

ρ1 + ρ2
(3.35)

and the mixture temperature

Tmix(x, t) =
1

n1 + n2

(
n1T1 + n2T2 +

1

3

2∑
i=1

ρi(|ui|2 − |umix|2)
)

=
1

n1 + n2

(
n1T1 + n2T2 +

ρ1ρ2
3(ρ1 + ρ2)

(|u1 − u2|2)
)
,

introduced in Definition 2.1.16. Since the collisional process conserves these quantities,
the collision frequencies νij are independent of time in the space homogeneous setting.
For example, given tℓ = ℓ∆t for ℓ ∈ N0 a simple update of f ℓi ≈ fi(x,w, tℓ) from tℓ to
tℓ+1 uses the approximation

Ri(f
ℓ+1
i , f ℓ+1

j ) ≈ νℓii

(
Aℓ+1

ii,τi
− f ℓ+1

i

)
+ νℓij

(
Aℓ+1

ij,τi
− f ℓ+1

i

)
. (3.36)

The discrete target functions Aℓ+1
ii,τi

and Aℓ+1
ij,τi

are described in detail in Section 3.3.5.

Here, we only mention that they depend on f ℓ+1
i , f ℓ+1

j , νℓii and νℓij via the solution of a
convex minimization problem. The evaluation of the collision frequencies at time step tℓ
is justified because of Assumption 2.2.11 which gives

νℓ+1
ij = νij(ρ

ℓ+1
i , ρℓ+1

j ,uℓ+1
mix, T

ℓ+1
mix ) = νij(ρ

ℓ
i , ρ

ℓ
j ,u

ℓ
mix, T

ℓ
mix) = νℓij . (3.37)

However, in more general settings, lagging the collision frequencies in this way may cause
a drop in temporal order for an otherwise high-order scheme [Low04].

5In Appendix C, we provide pseudo codes for our scheme.
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In the following sections, we formulate several time discretization methods. The main
aspect is provided in Section 3.3.5 where we present our general implicit solver in order to
determine Aℓ+1

ii,τi
and Aℓ+1

ij,τi
. We want to emphasize that the implicit solver is not limited

to the presented time discretizations, but it can be used for many more discretizations in
a straight-forward way.

3.3.1 First-order splitting

We split the system of PDEs (3.29) into a relaxation step and the transport step. The
order of the steps is not fixed. However, we expect that the relaxation processes take
place on smaller time scales, so we first perform the relaxation step and afterwards the
transport step.

Relaxation step The relaxation step is executed in each spatial cell using the Backward
Euler method (3.8)

f∗i − f ℓi
∆t

= Ri(f
∗
i , f

∗
j ), (3.38)

which can be rewritten to express f∗i as the convex combination

f∗i = cℓif
ℓ
i + cℓi∆t(ν

ℓ
iiA∗

ii,τi + νℓijA∗
ij,τi) (3.39)

with

cℓi =
1

1 +∆t(νℓii + νℓij)
. (3.40)

If A∗
ii,τi

and A∗
ij,τi

can be expressed as functions of f ℓi and f ℓj , then (3.39) provides an

explicit update formula for f ℓ
′

i . In Section 3.3.5, we show how to determine A∗
ii,τi

and
A∗

ij,τi
while preserving the conservation properties (3.32) and (3.33) at the discrete level.

It is also possible to consider the intra-species and inter-species relaxation process
independently. However, we prefer to consider the entire relaxation process as the different
interactions are already represented by the model.

Transport step We solve the transport in x for f ℓ+1
i by the Forward Euler method

(3.2) with initial data f∗i :

f ℓ+1
i − f∗i

∆t
+ T (f∗i ) = 0. (3.41)

Details on the numerical approximation of T are given in Section 3.4.

3.3.2 First-order IMEX Runge-Kutta

We use the combination of a Backward Euler method and a Forward Euler method for
a first-order IMEX RK scheme. It is described in [ARS97] where one also finds some
stability considerations. Applying the method to (3.29) yields

f ℓ+1
i = f ℓi −∆t T (f ℓi ) + ∆tRi(f

ℓ+1
i , f ℓ+1

j )

which can be rewritten into a convex combination

f ℓ+1
i = cℓiG

ℓ
i + cℓi∆t ν

ℓ
iiAℓ+1

ii,τi
+ cℓi∆t ν

ℓ
ijAℓ+1

ij,τi
(3.42)
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with

Gℓ
i = f ℓi −∆t T (f ℓi )

and

cℓi =
1

1 +∆t(νℓii + νℓij)
.

The update (3.42) is explicit provided that Aℓ+1
ii,τi

and Aℓ+1
ij,τi

can be expressed as functions

of f ℓi . This is discussed in Section 3.3.5.

3.3.3 Second-order Strang splitting

We arrange the relaxation steps and the transport steps presented in Section 3.3.1 ac-
cording to the Strang splitting method, see Definition 3.1.9.

Additionally, each step itself needs to be solved in a second-order manner. The relax-
ation step is surrounded by transport steps with a half step size following the second-order
explicit Heun’s method (3.4). This will be described in Section 3.4.

Given f∗i after the transport step with a half step size. For the relaxation step, we
apply the second-order implicit trapezoidal method (3.10), resulting in

f∗∗i = c∗∗i G
∗
i + c∗∗i

∆t

2
(ν∗∗ii A∗∗

ii,τi + ν∗∗ij A∗∗
ij,τi) (3.43)

with

G∗
i = f∗i +

∆t

2
(ν∗ii(A∗

ii,τi − f∗i ) + ν∗ij(A∗
ij,τi − f∗i ))

and

c∗∗i =
1

1 + ∆t
2 (ν∗∗ii + ν∗∗ij )

.

Importantly, the values of A∗
ij,τi

for the given data G∗
i need to be determined accurately

in order to guarantee the conservation properties. In general, these values are not known
because of the previous transport step.

Given f∗∗i , another transport step with a half step size gives f ℓ+1
i = f∗∗∗i .

Unfortunately, accuracy properties of higher-order splitting schemes may break down
when the collision frequencies become large; see [Jin95] for a case where the nominally
second-order Strang splitting reduces to a first-order scheme in the presence of large
collision frequencies.

3.3.4 Second-order IMEX Runge-Kutta

For a second-order IMEX RK scheme, we use the following Butcher tableaux (3.13), (3.7),

0

γ 0 γ

1 0 1− γ γ

0 1− γ γ

0

γ γ

1 δ 1− δ 0

δ 1− δ 0

(3.44)
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with

γ = 1−
√
2

2
and δ = 1− 1

2γ
, (3.45)

see [ARS97]. This IMEX RK scheme is L-stable and GSA. The left table is used for the
relaxation step, and the right table is used for the transport step.

Applying the method to (3.29) results in the following stages and updates:

f
[1]
i = f ℓi − γ∆t T (f ℓi ) + γ∆tRi(f

[1]
i , f

[1]
j ), (3.46a)

f
[2]
i = f ℓi − δ∆t T (f ℓi )− (1− δ)∆t T (f

[1]
i )

+ (1− γ)∆tRi(f
[1]
i , f

[1]
j ) + γ∆tRi(f

[2]
i , f

[2]
j ), (3.46b)

f ℓ+1
i = f

[2]
i . (3.46c)

Using

c
[r]
i =

1

1 + γ∆t(ν
[r]
ii + ν

[r]
ij )

, (3.47)

we can rewrite (3.46a) and (3.46b) as convex combination of three terms

f
[1]
i = c

[1]
i G

[1]
i + c

[1]
i γ∆t ν

[1]
ii A

[1]
ii,τi

+ c
[1]
i γ∆t ν

[1]
ij A

[1]
ij,τi

(3.48a)

f
[2]
i = c

[2]
i G

[2]
i + c

[2]
i γ∆t ν

[2]
ii A

[2]
ii,τi

+ c
[2]
i γ∆t ν

[2]
ij A

[2]
ij,τi

, (3.48b)

where the quantities

G
[1]
i = f ℓi −∆t γ T (f ℓi ) (3.49a)

G
[2]
i = f ℓi −∆t δ T (f ℓi )−∆t (1− δ)T (f

[1]
i ) + ∆t (1− γ)Ri(f

[1]
i , f

[1]
j ) (3.49b)

depend on known data. The collision frequencies ν
[r]
ii , ν

[r]
ij and constants c

[r]
i are evaluated

at the intermediate steps G
[r]
i . This option maintains second-order accurate as long as

Assumption 2.2.11 applies where we use that collisional processes do not change the
collision frequencies.

The main computational challenge in each stage of (3.48) is to determine the pa-
rameters of the target functions. In the following section, we explain how to manage
this.

3.3.5 General implicit solver

In this section, we describe a method how to deal with the implication of the target
functions which is required for any of the previously presented time discretizations. We
write the implicit updates in (3.39), (3.42), (3.43) and (3.48) in a generic steady state
form

fi = ciGi + ciγ∆t(νiiAii,τi + νijAij,τi) (3.50)

where Aii,τi and Aij,τi are the unique target functions associated to fi,

ci =
1

1 + γ∆t(νii + νij)
, (3.51)
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and Gi is a known function. We aim to express Aii,τi and Aij,τi as functions of Gi and Gj

so that (3.50) provides an explicit update formula for fi even though the target functions
depend on fi via moment equations. In the following, we explain how to manage this.
The resulting general implicit solver can be applied to any time discretization method as
long as the update can be written in the form of (3.50).

Applying the conservation properties (3.32) and (3.33) to (3.50) gives∫
ν11A11,τ1 a1(w) dw +

∫
ν22A22,τ2 a2(w) dw

+

∫
ν12A12,τ1 a1(w) dw +

∫
ν21A21,τ2 a2(w) dw

(3.32),(3.33)
=

∫
ν11ψ1 a1(w) dw +

∫
ν22ψ2 a2(w) dw+

+

∫
ν12ψ1 a1(w) dw +

∫
ν21ψ2 a2(w) dw

(3.50)
=

∫
ν11c1 [G1 +∆t γν11A11,τ1 +∆t γν12A12,τ1 ] a1(w) dw

+

∫
ν22c2 [G2 +∆t γν22A22,τ2 +∆t γν21A21,τ2 ] a2(w) dw

+

∫
ν12c1 [G1 +∆t γν11A11,τ1 +∆t γν12A12,τ1 ]a1(w) dw

+

∫
ν21c2 [G2 +∆t γν22A22,τ2 +∆t γν21A21,τ2 ]a2(w) dw.

(3.52)

After sorting terms, we arrive at the following moment equations∫
c1 (ν11A11,τ1 + ν12A12,τ1)a1(w) dw +

∫
c2 (ν21A21,τ2 + ν22A22,τ2)a2(w) dw

=

∫
c1 (ν11 + ν12)G1a1(w) +

∫
c2 (ν22 + ν21)G2a2(w) dw,

(3.53)

which provide a set of constraints to determine A11,τ1 , A12,τ1 , A21,τ2 and A22,τ2 from the
given data G1 and G2.

The system of equations (3.53) can be solved in an elegant way by realizing that
these constraints in (3.53) represent first-order optimality conditions associated to the
minimization of the convex function

φtot(α1,α2,α) = H[A11,τ1 ,A12,τ1 ,A21,τ2 ,A22,τ2 ](w) + µ11 ·α1 + µ22 ·α2 + µ ·α (3.54)

with

H[A11,τ1 ,A12,τ1 ,A21,τ2 ,A22,τ2 ](w) =
∑
i,j

∫
ciνijhτi [Aij,τi ] dw

where

hτi [Aij,τi ] =
log(1− τiAij,τi)

τi
=


−Aij,0 for τi = 0,

log(1−Aij,1) for τi = +1,

− log(1 +Aij,−1) for τi = −1.

(3.55)
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Moreover, αi = (α
(0)
i ,α

(1)
i , α

(2)
i )⊤;

µii =

µ
(0)
ii

µ
(1)
ii

µ
(2)
ii

 =

∫
ciνiiGiai(w) dw (3.56)

for i = 1, 2; α = (α
(0)
12 , α

(0)
21 ,α

(1), α(2))⊤; and

µ =


µ
(0)
12

µ
(0)
21

µ(1)

µ(2)

 =

∫ 

a
(0)
1 (w)
0

a
(1)
1 (w)

a
(2)
1 (w)

 c1ν12G1 +


0

a
(0)
2 (w)

a
(1)
2 (w)

a
(2)
2 (w)

 c2ν21G2

 dw. (3.57)

The minimization problem can be decoupled as follows which makes the procedure better
handable.

Proposition 3.3.1. The components of the minimizer of (3.54) can be found by mini-
mizing the following three convex functions independently:

φi(αi) =

∫
ciνiihτi [Aii,τi ] dw + µii ·αi for i = 1, 2 and (3.58)

φ(α) =

∫
(c1ν12hτ1 [A12,τ1 ] + c2ν21hτ2 [A21,τ2 ]) dw + µ ·α (3.59)

and the minimum of (3.54) is the sum of their minima.

Proof. The statement is trivial because (3.54) can be written as the sum of the three
potential functions, whose arguments are independent; that is, φtot(α1,α2,α) = φ1(α1)+
φ2(α2) + φ1(α).

The minimum of each potential function in (3.58) and (3.59) is found using Newton’s
method for convex optimization. More details are given in Section 3.5.

The above procedure is appealing because the minimization problems in (3.58) and (3.59)
are numerical analogs of the dual problems in the analytic case. We emphasize this fact
for both models in Sections 2.2 and 2.3 and discuss the existence and uniqueness of solu-
tions to (3.58) and (3.59).

For w = v (the model with velocity-dependent collision frequencies in Section 2.2), the
potential functions (3.58), respective (3.59) read

φi(αi) = −
∫
ciνiiGii dv + µii ·αi, (3.60)

φ(α) = −
∫

(c1ν12G12 + c2ν21G21) dv + µ ·α, (3.61)

where αi = (α
(0)
i ,α

(1)
i , α

(2)
i )⊤ ∈ R × R3 × R− and α = (α

(0)
12 , α

(0)
21 ,α

(1), α(2))⊤ ∈ R ×
R × R3 × R−. The dual problems in the analytic case are given in (2.75) and (2.79),
respectively. Indeed, the temporal discretization simply introduces the additional weights
cℓi → 1 as ∆t → 0. Hence, the existence and uniqueness are guaranteed by the theory in
[HHK+21]. Essentially, one needs only replace the collision frequencies νij by

ν∗ij = ciνij =
νij

1 + γ∆t(νii + νij)
(3.62)
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and then verify that ν∗ij satisfies the conditions used in [HHK+21]. These conditions are
mild integrability conditions. Whenever they are satisfied by νij , they are easily satisfied
by ν∗ij , as well, because 0 < ci < 1.

For w = p (the quantum model in Section 2.3), it is

φi(αi) =

∫
cihτi [Eii,τi ] dp+ µii ·αi, (3.63)

φ(α) =

∫
(c1hτ1 [E12,τ1 ] + c2hτ2 [E21,τ2 ]) dp+ µ ·α. (3.64)

The consistency of the quantum model in Section 2.3 is proven by algebraic considerations.
However, we realize that we can reformulate the modelling problem by using Lagrange
functionals.6 For intra-species interactions, the Lagrange functional reads

Lii(g,α) =

∫
hτi(g) dp−α ·

∫
ai(p)(g − fi) dp

with hτi defined in (3.34). The multipliers solve the corresponding dual problem

λii = argmin
α∈Λii

∫
hτi [Eii,τi(α)] dp+α ·

∫
ai(p)fi dp (3.65)

where Λii = {λi ∈ R5 |
∫
Aii,τi(λi)(1+ |p|2) dp <∞}. The dual problem for inter-species

interaction can be obtained analogously:

(λ12,λ21) = argmin
(α12,α21)∈Λ12

{∫
(hτi [E12,τ1 ] + hτ2 [E21,τ2 ]) dp

+ α
(0)
12

∫
f1 dv + α

(0)
21

∫
f2 dp

+α(1) ·
∫

p(f1 + f2) dp

+ α(2)

∫
|p|2

(
1

2m1
f1 +

1

2m2
f2

)
dp

}
(3.66)

where Λ12 = {(λ12,λ21) |
∫
Aij,τi(λij)(1 + |p|2) dp < ∞ for i, j = 1, 2; i ̸= j}. We see

the close relationship of (3.63) with (3.65) and of (3.64) with (3.66), respectively. The
theory in Section 2.3 guarantees a unique solution to these problems in the analytic case.
Since ci is independent of p (we assume constant collision frequencies νij = 1), it does not
affect the minimization of (3.63) and (3.64), respectively, such that there exists a unique
solution in the discrete case as well.

Remark 3.3.2 (Determine Aℓ
ij,τi

). The main task in our scheme is to determine the

implication of the target functions, i.e. to determine Aℓ+1
ij,τi

. However, especially for the
Strang splitting, one also needs to determine the current value of the target functions
accurately. This can be done by solving the corresponding dual problems themselves nu-
merically.

To conclude, we summarize the main ideas of this section. The update of the distribu-
tion functions needs to be written in the form of the convex combination in (3.50). This

6The first-order optimality condition, for instance, gives us the shape (3.31) of the target functions.
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is possible for many time discretization techniques even if we only presented four different
schemes. The essential step is to determine the implictly evaluated target functions which
turns (3.50) into an explicit update formula. We achieve this by a minimization procedure
which mimics the entropy behavior and conservation properties at the discrete level. The
well-posedness of the minimization problem is guaranteed by the theoretical properties of
the corresponding model.

In the following section, we discuss the discretization of the space variable.

3.4 Space discretization

As already mentioned, we assume a slab geometry and reduce the physical space dimension
to one dimension; we set x = x(1). We divide the spatial domain [xmin, xmax] into uniform
cells Ik = [xk − ∆x

2 , xk +
∆x
2 ] for k ∈ {0, . . . ,K}.

We employ a FV framework that tracks approximate cell-averaged quantities

f ℓi,k ≈ 1

∆x

∫
Ik

fi(x,w, t
ℓ) dx. (3.67)

To second order, we evaluate the spatial cell centers and do not need a further reconstruc-
tion. To approximate the relaxation operator, we use the second-order approximation

Rℓ
i,k = Ri(f

ℓ
i,k, f

ℓ
j,k) ≈

1

∆x

∫
Ik

R
(
fi(x,w, t

ℓ), fj(x,w, t
ℓ)
)
dx. (3.68)

This becomes more delicate and needs to be treated with care for higher-order approxi-
mations.

3.4.1 Numerical fluxes

The transport operator T is discretized with numerical fluxes Fk+ 1
2
by

T (g) ≈ Tk(g) =
1

∆x

(
Fk+ 1

2
(g)− Fk− 1

2
(g)
)

(3.69)

for any grid function g = {gk}. There exist many different approaches for Fk+ 1
2
. We

use numerical fluxes which are already established in the literature for kinetic equations
[MS04], i.e.

Fk+ 1
2
(g) =

v(1)

2
(gk+1 + gk)−

|v(1)|
2

(
gk+1 − gk − ϕk+ 1

2
(g)
)

(3.70)

where ϕk+ 1
2
is a flux limiter. The choice ϕk+ 1

2
= 0 leads to a first-order approximation

(the well-known upwind fluxes). A second-order method is provided by

ϕk+ 1
2
(g) = minmod ((gk − gk−1), (gk+1 − gk), (gk+2 − gk+1)) (3.71)

where

minmod(a, b, c) =

{
smin(|a|, |b|, |c|), sign(a) = sign(b) = sign(c) =: s,

0, otherwise.
(3.72)
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For a simple Forward Euler update (3.2) of (3.41), i.e.

f ℓ+1
i,k = f ℓi,k −

∆t

∆x

(
Fk+ 1

2
(f ℓi )− Fk− 1

2
(f ℓi )

)
, (3.73)

the positivity of fi is guaranteed by enforcing the CFL condition

∆t < α
∆x

max |v(1)| (3.74)

with α = 1 for the first-order flux and α = 2
3 for the second-order flux. (See Proposition

4.2.1.) Applying instead Heun’s method (3.4) yields the update formulae

f
[1]
i,k = f ℓi,k −

∆t

∆x

(
Fk+ 1

2
(f ℓi )− Fk− 1

2
(f ℓi )

)
,

f ℓ+1
i,k = f ℓi,k −

∆t

2∆x

(
Fk+ 1

2
(f ℓi )− Fk− 1

2
(f ℓi )

)
− ∆t

2∆x

(
Fk+ 1

2
(f

[1]
i )− Fk− 1

2
(f

[1]
i )
)
.

We have introduced the techniques for the discretization in time and space in our scheme.
We finally discretize the velocity and momentum variable, respectively, in order to obtain
a fully-discrete scheme.

3.5 Velocity discretization

We firstly introduce the construction of an adequate velocity grid.

3.5.1 Velocity grid

We center the discrete velocities vq = (v
(1)
q1 , v

(2)
q2 , v

(3)
q3 )⊤ with q = (q1, q2, q3) ∈ N3

0 around
the mixture mean velocity umix (3.35) and restrict them to a finite cube. That is, for each
component p ∈ {1, 2, 3},

v(p) ∈ [u
(p)
mix − 6vth,i, u

(p)
mix + 6vth,i] (3.75)

where vth,i =
√

Tmix
mi

is the thermal velocity of species i. To ensure an adequate resolution

of the velocity domain, the velocity mesh size is chosen to be ∆vi = 0.25 vth,i in each
direction. Any quantity is approximated at the nodes by e.g. fq ≈ f(vq).

For the quantum model, we perform the same discretization by additionally using
p = mi · v.

We emphasize again the advantage of the multi-species BGK model that it is possible
to use different grids for each species/equation [HHM17b]. This feature is a substantial
benefit when the species masses, and hence the reference thermal speeds for each species,
differ significantly. And this feature relies on the fact that the particles only interact with
each other through moments.

3.5.2 Quadrature and discrete moments

All integrals with respect to w are replaced by discrete sums using the trapezoidal rule,
which is known to perform well for smooth, compactly supported functions because they
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can be viewed as periodic. (See, e.g, [Atk89, Section 5.4, Corollary 1].) Thus

♢ =

∫
(·) dw ≈

∑
q

ωq(·)q(∆wi)
3 =: ♢W , (3.76)

where ωq = ωq1ωq2ωq3 are the weights and

ωqp =

{
1 if min(qp) < qp < max(qp),
1
2 else.

(3.77)

Be aware that the quadrature is executed on the corresponding velocity grid and momen-
tum grid, respectively, depending on species i.

The quadrature approximation forces us to distinguish between discrete and continu-
ous moments, especially when determining the discrete local equilibria Aii,τi,q and Aij,τi,q.
In fact, the minimization of (3.58) and (3.59) is solved using a discrete-velocity grid and
discrete moments µi,W ,µW as input. Thus, the parameters λii and λij are determined
such that Aii,τi,q and Aij,τi,q have the desired discrete moments, and the conservation
and entropy properties are fulfilled at the discrete level.

In Section 3.1.3, we summarized a similar approach for the standard, singles-species
BGK model, introduced in [Mie00].

We finally give the details for the minimization procedure which completes our scheme.

3.5.3 Optimization algorithm

The minimization of (3.58) and (3.59) is solved by Newton’s method with a backtrack-
ing line search [DS96, p. 325], using the SNESNEWTONLS solver from PETSc [BAA+21b,
BGMS97, BAA+21a]. Newton’s method requires the evaluation of gradients and Hessians.
Using (3.55), we obtain

∇αihτi [Aij,τi ] = −aiAij,τi

and

∇2
αi
hτi [Aij,τi ] =

{
−Aij,τi ai ⊗ ai for τi = 0,

−(Aij,τi)
2 exp(−αij · ai)ai ⊗ ai for τi = ±1.

We define the function7 ζ straight-forwardly by ∇2
αi
hτi [Aij,τi ] := ζ(Aij,τi)ai ⊗ ai. This

leads to the following gradients:

∇αiφi ≈ −(ciνiiAii,τi ai)W + µi,W , (3.78)

∇αφ ≈ − (c1ν12A12,τ1 a12)W − (c2ν21A21,τ2 a21)W + µW , (3.79)

and Hessians:

∇2
αi
φi ≈ (ciνii ζ(Aii,τi)ai ⊗ ai)W (3.80)

∇2
αφ ≈ (c1ν12 ζ(A12,τ1)a12 ⊗ a12)W + (c2ν21 ζ(A21,τ2)a21 ⊗ a21)W (3.81)

where a12 = (a
(0)
1 , 0,a

(1)
1 , a

(2)
1 )⊤, a21 = (0,a2)

⊤. For illustration purposes, we give

(ciνiiAii,τi ai)W =
∑
q

ωq(ciνii)qAii,τi,q ai,q(∆wi)
3,

7For numerical stability, it is better to implement ζ(Aij,±1) = (exp(−αij · ai) + exp(αij · ai)± 2)−1.
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and the input data in (3.56) is computed in a straight-forward way:

µi,W ≈
∑
q

ωq(ciνii)qGi,q ai,q(∆wi)
3. (3.82)

Analogously for the other terms and the input data µW in (3.57).
The Newton method is declared to have converged if one of the standard termination

criteria8 is less than 10−14.

8For solving F (x) = 0, standard termination criteria are: i) ||F || < ϵ, ii) ||F || < ϵ||F (x0)||, and iii)
||∆x|| < ϵ||x|| for the tolerance ϵ.



Chapter 4

Properties of the numerical
scheme

The discretization of an object inevitably introduces errors. Using (prohibitively) small
step sizes reduces these errors. Accordingly, one is interested in discretizations which
make practicable step sizes possible. The corresponding properties at the discrete level
need to be examined analytically before numerical tests can be started.

In this chapter, we validate properties of our scheme by analytical calculations. To
start with, we mention the order and stability of our scheme in Section 4.1. Then we
review the positivity, conservation properties, and the entropy behavior of our scheme in
Sections 4.2–4.5. These statements and proofs can also be found in [HHK+22, BPW22].

4.1 Order and stability

All variables are discretized by first-order or second-order techniques.

When a second-order discretization is needed and a stiff RHS is encountered, we rec-
ommend to use the second-order IMEX RK from Section 3.3.4 approach because the
Strang splitting in Section 3.3.3 may suffer from an order reduction. [Jin95]

Stability is guaranteed if the corresponding CFL condition (3.74) for the transport steps
is statisfied. The relaxation steps are A-stable (or even L-stable). Hence, these do not
restrict the choice of the size of the time step regarding stability.

Time step restrictions regarding the positivity of the distribution functions are treated in
the following section.

4.2 Positivity of distribution functions

A distribution function is positive by definition, see Definition 2.1.12. We require that
a positive initial distribution function is preserved positive by our scheme which can be
guaranteed if certain time step restrictions are satisfied.

The first-order time-stepping schemes in Section 3.3.1 and 3.3.2 preserve positivity for
both first- and second-order numerical fluxes in space; see Propositions 4.2.1 and 4.2.2.
Additionally, we discuss the positivity for the second-order scheme from Section 3.3.3
in Proposition 4.2.3, and give a sufficient criterion. We provide a similar result for the

101
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second-order time-stepping scheme from Section 3.3.4 in Proposition 4.2.4 for the space
homogeneous case.

Distribution functions for fermions are additionally bounded from above, see Definition
2.3.2. The time discretization methods from Sections 3.3.1–3.3.3 combined with the space
discretization from Section 3.4 maintain this property at the discrete level. This is shown
in Proposition 4.2.5.

Proposition 4.2.1 (Positivity of first-order splitting scheme). The first-order time dis-
cretization in Section 3.3.1 together with the space discretization described in Section 3.4
is positivity-preserving, provided that

∆t ≤ α
∆x

max |v(1)| , (4.1)

with α = 1 and α = 2
3 for the first-order and second-order fluxes, respectively.

Proof. Let f ℓi,k ≥ 0. For the relaxation step, it holds

f∗i,k
(3.39)
= cℓi,kf

ℓ
i,k + cℓi,k∆t(ν

ℓ
ii,kA∗

ii,τi,k
+ νℓij,kA∗

ij,τi,k
) ≥ 0 (4.2)

because cℓi,k, ν
ℓ
ii,k, ν

ℓ
ij,k,A∗

ii,τi,k
,A∗

ij,τi,k
≥ 0. For the transport step (3.73), we obtain with

the first-order fluxes

f ℓ+1
i,k =

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v1) ≥ 0, (4.3)

where the last inequality holds in each cell provided that the given CFL condition in (4.1)
holds with α = 1.

For the second-order fluxes, define σ := sign(f∗i,k − f∗i,k−1). Then one can show that

ϕk+ 1
2
(f∗i ) ≥

{
0 if σ = +1

f∗i,k+1 − f∗i,k if σ = −1
, (4.4)

−ϕk− 1
2
(f∗i ) ≥

{
f∗i,k−1 − f∗i,k if σ = +1

0 if σ = −1
. (4.5)

Hence,

f ℓ+1
i,k

(3.73)
=

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗

i,k−sign(v(1))
+

∆t

∆x

|v(1)|
2

(ϕk+ 1
2
(f∗i )− ϕk− 1

2
(f∗i ))

≥
(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗

i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

{
(f∗i,k−1 − f∗i,k) if σ = +1

(f∗i,k+1 − f∗i,k) if σ = −1

=

(
1− 3

2

∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗

i,k−sign(v(1))
+

∆t

∆x

|v(1)|
2

{
f∗i,k−1 if σ = +1

f∗i,k+1 if σ = −1

≥ 0,
(4.6)

provided that the CFL condition in (4.1) holds with α = 2
3 .

This results helps us for the following proposition.
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Proposition 4.2.2 (Positivity of first-order IMEX RK scheme). The first-order time
discretization in Section 3.3.2 together with the space discretization described in Section
3.4 is positivity-preserving, provided that

∆t ≤ α
∆x

max |v(1)| ,

with α = 1 and α = 2
3 for the first-order and second-order fluxes, respectively.

Proof. The statement follows directly from Proposition 4.2.1 and the update formula
(3.42).

It is more difficult to guarantee positivity with a second-order time-stepping. As dis-
cussed in Section 3.1.1, unconditionally SSP implicit Runge-Kutta schemes are at most
first-order accurate [GST01]. Modified IMEX RK schemes that preserve positivity for
the classical single-species BGK equation have been recently developed in [HSZ18]. How-
ever, to our knowledge, these schemes cannot be applied directly to BGK equations with
velocity-dependent collision frequencies.

Nevertheless, we derive some sufficient conditions on the time step ∆t for positivity-
preservation in the second-order schemes presented in Section 3.3.3 and 3.3.4.

Proposition 4.2.3 (Positivity of second-order splitting scheme). The second-order split-
ting scheme presented in Section 3.3.3 together with the second-order space discretization
described in Section 3.4 is positivity-preserving, provided that

∆t ≤ min

{
2∆x

3max |v(1)| ,
2

ν∗ii + ν∗ij

}
. (4.7)

Proof. The positivity during the transport steps T is guaranteed by the CFL condition

∆t ≤ 2∆x

3max |v(1)|

because Heun’s method (3.4) is an explicit SSP scheme (preserving any convex property)
[PR05]. For the relaxation step, we derive the above condition by guaranteeing that the
given functions G∗

i are positive. So we require

0 ≤ G∗
i = f∗i +

∆t

2
(ν∗ii(A∗

ii,τi − f∗i ) + ν∗ij(A∗
ij,τi − f∗i ))

=

(
1− ∆t

2
(ν∗ii + ν∗ij)

)
f∗i +

∆t

2
(ν∗iiA∗

ii,τi + ν∗ijA∗
ij,τi)

for i, j = 1, 2. An obvious sufficient condition for positivity reads

∆t ≤ 2

ν∗ii + ν∗ij
.

If ν∗ij become large, the time step condition (4.7) can be very restrictive. So one may
enforce instead

∆t ≤ 2f∗i
ν∗ii(f

n
i −A∗

ii,τii
) + ν∗ij(f

∗
i −A∗

ij,τi
)

(4.8)
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which is a milder, but still sufficient local condition. Large collision frequencies push each
numerical kinetic distribution to the corresponding target function making the differences
in the denominator small. It follows that condition (4.8) is not very restrictive.

We find similar results for the second-order IMEX RK scheme.

Proposition 4.2.4 (Positivity of second-order IMEX RK scheme). For the space homo-
geneous case, the second-order IMEX RK scheme presented in Section 3.3.4 is positivity-
preserving provided that

∆t ≤ 1

(1− 2γ)(ν
[1]
ii + ν

[1]
ij )

(4.9)

for i, j = 1, 2.

Proof. The positivity of f
[1]
i follows directly from its definition without any restriction on

the time step. For the positivity of f ℓ+1
i = f

[2]
i , we require G

[2]
i ≥ 0. Using the definition

of f
[1]
i , we obtain

0 ≤ G
[2]
i = f ℓi +∆t(1− γ)

[
ν
[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

− (ν
[1]
ij + ν

[1]
ij )f

[1]
i

]
= f ℓi

[
1−∆t(1− γ)c

[1]
i (ν

[1]
ii + ν

[1]
ij )
]
+∆t(1− γ)c

[1]
i

[
ν
[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

]
.

Then, the most obvious sufficient condition for positivity reads

1−∆t(1− γ)c
[1]
i (ν

[1]
ii + ν

[1]
ij ) ≥ 0 ⇐⇒ ∆t ≤ 1

(1− 2γ)(ν
[1]
ii + ν

[1]
ij )

.

The time step condition (4.9) can be very restrictive if ν
[1]
ij become large, especially

for velocity-dependent collision frequencies. For this reason, one may instead enforce the
milder (but still sufficient) local conditions

∆t ≤ f ℓi

(1− 2γ)(ν
[1]
ii + ν

[1]
ij )f

ℓ
i − (1− γ)(ν

[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

)
(4.10)

and

∆t ≤ f ℓi

(1− γ)
[
(ν

[1]
ii + ν

[1]
ij )f

[1]
i − (ν

[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

)
] . (4.11)

When the frequencies are large, the difference between each numerical kinetic distribution
and its corresponding target function is to scale with the inverse of the frequency, in which
case (4.10) and (4.11) are not very restrictive.

A distribution function of a fermion has the additional upper bound f < 1. The fol-
lowing proposition shows that our scheme preserves this property.

Proposition 4.2.5 (Boundedness for fermions). If fi represents the distribution function
of a fermion with f ℓi < 1, any time discretization in Section 3.3.1–3.3.3 together with the
space discretization described in Section 3.4 gives f ℓ+1

i < 1.
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Proof. We perform the proof for the first-oder time splitting method in Section 3.3.1. Let
f ℓi < 1. The local equilibrium of a fermion is a Fermi-Dirac distribution function F for
which 0 < F < 1 by definition. Hence, for the relaxation step it holds

f∗i = cℓif
ℓ
i + cℓi∆t (F∗

ii + F∗
ij) < cℓi + cℓi2∆t = 1 (4.12)

because (3.51) becomes cℓi =
1

1+2∆t in the quantum set-up. For the transport step (3.73),
we obtain with the first-order fluxes

f ℓ+1
i,k =

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v1)

(4.12)

≤
(
1− ∆t

∆x
|v(1)|

)
+

∆t

∆x
|v(1)| = 1.

For the second-order fluxes, define σ := sign(f∗i,k − f∗i,k−1). Then one can show that

ϕk+ 1
2
(f∗i ) ≤

{
0 if σ = −1

f∗i,k+1 − f∗i,k if σ = +1
,

−ϕk− 1
2
(f∗i ) ≤

{
f∗i,k−1 − f∗i,k if σ = −1

0 if σ = +1
.

Hence,

f ℓ+1
i,k

(3.73)
=

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗

i,k−sign(v(1))
+

∆t

∆x

|v(1)|
2

(ϕk+ 1
2
(f∗i )− ϕk− 1

2
(f∗i ))

≤
(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗

i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

{
(f∗i,k−1 − f∗i,k) if σ = −1

(f∗i,k+1 − f∗i,k) if σ = +1

=

(
1− 3

2

∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗

i,k−sign(v(1))
+

∆t

∆x

|v(1)|
2

{
f∗i,k−1 if σ = −1

f∗i,k+1 if σ = +1

(4.12)

≤ 1.

The proof for the time discretization techniques in Sections 3.3.2 and 3.3.3 works analo-
gously.

The fully-discrete scheme maintains the same properties regarding positivity and fi <
1 for fermions when fulfilling the CFL condition with respect to the discrete velocities,
see e.g. (4.13).

Corollary 4.2.6. Propositions 4.2.1–4.2.5 all hold true after discretizing the velocity
variable.

In the following section, we summarize the time step restrictions of our scheme.

4.3 Time step restrictions

In order to guarantee stability and positivity, the advection in space introduces restrictions
for the size of the time step resulting in a CFL condition. The Courant number C needs
to be chosen such that

0 < C ≤ α.
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It is α = 1 for the first-order numerical fluxes and α = 2
3 for the second-order numerical

fluxes. Considering only the convection parts, the time step size ∆t for the update
tℓ → tℓ+1 is chosen to be

∆t = C
∆x

maxq1 |v
(1)
q1 |

. (4.13)

Additionally, we need to take care of the time step restrictions due to the preservation of
positivity during relaxation steps. In our numerical tests, the time step ∆t is set according
to the CFL condition (4.13) by default. This guarantees positivity for the first-order time-
stepping schemes. If positivity is violated for the second-order time-stepping schemes, we
reduce the time step size according to (4.7) and (4.9), respectively. Thus we guarantee
positivity while maintaining large time steps whenever possible. One could instead use
the less restrictive local conditions in (4.8), (4.10) and (4.11), which requires additional
iterations over the grid to find a global value for the time step. However, in practice,
violations of positivity are rare and thus we use (4.7), respective (4.9) for simplicity.

In the following section, we address the conservation of mass, total momentum, and
total energy for our scheme.

4.4 Conservation of mass, total momentum and total en-
ergy

To start with, we look at the relaxation and transport steps in the semi-discrete scheme,
see Propositions 4.4.1 and 4.4.2. Then, we conclude with the fully-discrete scheme, see
Theorem 4.4.4.

Proposition 4.4.1 (Conservation during relaxation process). The relaxation step in the
first-order splitting scheme presented in Section 3.3.1 satisfies the conservation laws∫

a
(0)
1 f∗1 dw =

∫
a
(0)
1 f ℓ1 dw,

∫
a
(0)
2 f∗2 dw =

∫
a
(0)
2 f ℓ2 dw, (4.14)∫ (

a
(1)
1 f∗1 + a

(1)
2 f∗2

)
dw =

∫ (
a
(1)
1 f ℓ1 + a

(1)
2 f ℓ2

)
dw, (4.15)∫ (

a
(2)
1 f∗1 + a

(2)
2 f∗2

)
dw =

∫ (
a
(2)
1 f ℓ1 + a

(2)
2 f ℓ2

)
dw. (4.16)

Proof. We multiply the relaxation step (3.39) by ai, sum over i = 1, 2, and integrate with
respect to w. Sorting terms yields∫

(f∗1a1 + f∗2a2) dw −
∫ (

f ℓ1 a1 + f ℓ2 a2

)
dw

(3.39)
= ∆t

[∫ (
cℓ1ν

ℓ
11A

∗
11,τ1a1 + cℓ2ν

ℓ
22A

∗
22,τ2a2 + cℓ1ν

ℓ
12A

∗
12,τ1a1 + cℓ2ν

ℓ
21A

∗
21,τ2a2

)
dw

−
∫ [

cℓ1

(
νℓ11 + νℓ12

)
f ℓ1 a1 + cℓ2

(
νℓ22 + νℓ21

)
f ℓ2 a2

]
dw

]
.

(4.17)

The RHS above corresponds to the first-order optimality conditions in (3.53). This term
is identically zero as we minimize the corresponding functions in (3.58) and (3.59), which
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in turn proves the conservation statement (4.15) and (4.16). For the number of particles,
we execute the above procedure for each species individually and obtain∫

f∗i a
(0)
i dw −

∫
f ℓi a

(0)
i dw (4.18)

(3.39)
= ∆t

∫ (
cℓiν

ℓ
iiA

∗
ii,τia

(0)
i + cℓiν

ℓ
ijA

∗
ij,τia

(0)
i

)
dw −

∫
cℓi

(
νℓii + νℓij

)
f ℓi a

(0)
i dw (4.19)

= ∆t

[
∂
λ
(0)
i

φi(λi) + ∂
λ
(0)
ij

φ(λ)

]
(4.20)

which vanishes due to first-order optimality conditions on φi and φ.

The conservation properties during the transport step are preserved which is inherited
from the FV formulation.

Proposition 4.4.2 (Conservation during transport process). For each i = 1, 2, the trans-
port step in the first-order splitting scheme in Section 3.3.1 combined with the space dis-
cretization presented in Section 3.4 satisfies the conservation laws

K∑
k=0

∫
aif

ℓ+1
i,k dw∆x =

K∑
k=0

∫
aif

∗
i,k dw∆x

for periodic or zero boundary conditions.

Proof. For i = 1, 2, we multiply the transport step (3.41) by ai, integrate with respect to
w and sum over all cell averages in x. The result is

K∑
k=0

∫
aif

ℓ+1
i,k dw∆x

(3.41)
=

K∑
k=0

∫
aif

∗
i,k dw∆x−

K∑
k=0

∫
∆t
(
Fk+ 1

2
(f∗i )− Fk− 1

2
(f∗i )

)
ai dw

=
K∑
k=0

∫
aif

∗
i,k dw∆x−∆tΩ

where the remnant of the telescoping sum

Ω =

∫
aiFK+ 1

2
(f∗i ) dw −

∫
aiF− 1

2
(f∗i ) dw

vanishes for periodic or zero boundary conditions, e.g. FK+ 1
2
(f∗i ) = F− 1

2
(f∗i ) and

FK+ 1
2
(f∗i ) = F− 1

2
(f∗i ) = 0, respectively.

Any time-stepping scheme presented in Sections 3.3.1–3.3.4 can be broken into re-
laxation and transport parts, each of which preserves the conservation of mass, total
momentum, and total energy. As a result, we have the following.

Corollary 4.4.3. For periodic or zero boundary conditions, any combination of temporal
and space discretization presented in Sections 3.3 and 3.4, respectively, conserves mass,
total momentum and total energy.

Since the optimization algorithm is executed on the discrete-velocity grid, we now
conclude with a statement on the fully-discrete scheme.
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Theorem 4.4.4 (Conservation properties at the discrete level). The scheme in Section
3.3.5 together with the space discretization and velocity discretization presented in Sections
3.4 and 3.5, respectively, satisfies the following conservation properties for ℓ ≥ 0

∑
k,q

ωq

(
f ℓ1,kqa1,q(∆w1)

3 + f ℓ2,kqa2,q(∆w2)
3
)
∆x

=
∑
k,q

ωq

(
f01,kqa1,q(∆w1)

3 + f02,kqa2,q(∆w2)
3
)
∆x (4.21)

with ai,q(v) = mi(1,vq, |vq|2)⊤, ai,q(p) = (mi,pq, |pq|2/mi)
⊤ and fni,kq ≈ f ℓi,k(vq).

We now come to the entropy behavior of our scheme.

4.5 Entropy inequality

We discuss the entropy behavior for the first-order scheme in Section 3.3.1. Both the
relaxation and the transport step dissipate entropy; see Propositions 4.5.1 and 4.5.3.
Additionally, we show in Proposition 4.5.2 that the minimal entropy is reached for the
relaxation step if the distribution functions coincide with the corresponding target func-
tions.

Proposition 4.5.1 (Entropy inequality for the relaxation process in the first-order split-
ting scheme). Let hτ (f) = f log f−f+τ(1−τf) log(1−τf)−τ(1−τf). The relaxation step
in the first-order splitting scheme in Section 3.3.1 fulfills the discrete entropy inequality∫

hτ1(f
∗
1 ) + hτ2(f

∗
2 ) dw ≤

∫
hτ1(f

ℓ
1) + hτ2(f

ℓ
2) dw. (4.22)

Proof. By convexity

hτi(f
ℓ
i ) ≥ hτi(f

∗
i ) + h′τi(f

∗
i )(f

ℓ
i − f∗i ). (4.23)

The derivative

h′τ (f) = log
f

1− τf

is monotonically increasing for f ≥ 0 (τ ∈ {−1, 0}) and 0 < f < 1 (τ = +1), respectively.
This leads to the inequality

(h′(x)− h′(y))(y − x) ≤ 0 (4.24)

for all x, y ≥ 0 (τ ∈ {−1, 0}) and 0 < x, y < 1 (τ = +1), respectively. Moreover, because

h′τi(A∗
ij,τi) = λij · a(w)

it follows that∫
νℓii h

′
τi(A∗

ii,τi)(A∗
ii,τi − f∗i ) dw = λii ·

∫
νℓii a(w)(A∗

ii,τi − f∗i ) dw
(3.32)
= 0. (4.25)
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Analogously for the inter-species terms,∫
νℓ12 h

′
τ1(A∗

12,τ1)(A∗
12,τ1 − f∗1 ) dw +

∫
νℓ21 h

′
τ2(A∗

21,τ2)(A∗
21,τ2 − f∗2 ) dw

= λ
(0)
12

∫
νℓ12 (A∗

12,τ1 − f∗1 ) dw + λ
(0)
21

∫
νℓ21 (A∗

21,τ2 − f∗2 ) dw

+

(
λ(1)

λ(2)

)
·
∫ (

νℓ12 (A∗
12,τ1 − f∗1 )

(
a
(1)
1 (w)

a
(2)
1 (w)

)
+ νℓ21 (A∗

21,τ2 − f∗2 )

(
a
(1)
2 (w)

a
(2)
2 (w)

))
dw

(3.33)
= 0.

(4.26)

Using the implicit step (3.39), i.e.

f∗i − f ℓi = ∆tνℓii(A
∗
ii,τi − f∗i ) + ∆tνℓij(A

∗
ij,τi − f∗i ),

and the convexity of hτ gives

hτi(f
∗
i )− hτi(f

ℓ
i )

(4.23)

≤ h′τi(f
∗
i )(f

∗
i − f ℓi )

= ∆t νℓiih
′
τi(f

∗
i )(A

∗
ii,τi − f∗i ) + ∆tνℓijh

′
τi(f

∗
i )(A

∗
ij,τi − f∗i ).

(4.27)

Thus after integrating (4.27) in w and making use of the zeros (4.25) and (4.26), we
obtain ∫

hτ1(f
∗
1 ) dw −

∫
hτ1(f

ℓ
1) dw +

∫
hτ2(f

∗
2 ) dw −

∫
hτ2(f

ℓ
2) dw

≤ ∆t νℓ11

∫
[h′τ1(f

∗
1 )− h′τ1(A∗

11,τ1)](A∗
11,τ1 − f∗1 ) dw

+∆t νℓ22

∫
[h′τ2(f

∗
2 )− h′τ2(A∗

22,τ2)](A∗
22,τ2 − f∗2 ) dw

+∆t νℓ12

∫
[h′τ1(f

∗
1 )− h′τ1(A∗

12,τ1)](A∗
12,τ1 − f∗1 ) dw

+∆t νℓ21

∫
[h′τ2(f

∗
2 )− h′τ2(A∗

21,τ2)](A∗
21,τ2 − f∗2 ) dw

≤ 0.

(4.28)

The last inequality holds true because of (4.24).

Proposition 4.5.2 (Entropy equality for the relaxation process in the first-order splitting
scheme). The inequality in Proposition 4.5.1 is an equality if and only if f ℓ1 = Aℓ

12,τ1
and

f ℓ2 = Aℓ
21,τ2

. In such cases f∗1 = A∗
12,τ1

and f∗2 = A∗
21,τ2

.

Proof. Suppose first that f ℓ1 = Aℓ
12,τ1

and f ℓ2 = Aℓ
21,τ2

. Then according to the H-Theorem
2.2.7/2.3.16, ∫

hτ1(f
ℓ
1) + hτ2(f

ℓ
2) dw ≤

∫
hτ1(g1) + hτ2(g2) dw (4.29)

for any measurable positive functions g1 and g2 such that∫
a
(0)
1 g1dv =

∫
a
(0)
1 f ℓ1 dw,

∫
a
(0)
2 g2 dw =

∫
a
(0)
2 f ℓ2 dw, (4.30)∫ (

a
(1)
1 (w)g1 + a

(1)
2 (w)g2

)
dw =

∫ (
a
(1)
1 (w)f ℓ1 + a

(1)
2 (w)f ℓ2

)
dw, (4.31)∫ (

a
(2)
1 (w)g1 + a

(2)
2 (w)g2

)
dw =

∫ (
a
(2)
1 (w)f ℓ1 + a

(2)
2 (w)f ℓ2

)
dw. (4.32)
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These conditions are exactly those satisfied by f∗1 and f∗2 (cf. Theorem 4.4.1). Hence∫
hτ1(f

ℓ
1) + hτ2(f

ℓ
2) dw ≤

∫
hτ1(f

∗
1 ) + hτ2(f

∗
2 ) dw (4.33)

which shows that (4.22) is an equality. To show the converse statement, suppose that
(4.22) holds as an equality. Then according to (4.28) f∗1 = A∗

11,τ1
= A∗

12,τ1
and f∗2 =

A∗
21,τ2

= A∗
22,τ2

. Therefore, by definition of Ri in (3.30), Ri(f
∗
i , f

∗
j ) = 0, which when

plugged into (3.38), gives f ℓ1 = f∗1 and f ℓ2 = f∗2 .

Proposition 4.5.3 (Entropy inequality for the transport process in the first-order split-
ting scheme). Let hτ (f) = f log f−f+τ(1−τf) log(1−τf)−τ(1−τf). The transport step
in the first-order splitting scheme in Section 3.3.1 combined with the first-order spatial
discretization in Section 3.4 fulfills the discrete entropy inequality

K∑
k=0

{∫
hτ1(f

ℓ+1
1,k ) + hτ2(f

ℓ+1
2,k ) dw

}
∆x ≤

K∑
k=0

{∫
hτ1(f

∗
1,k) + hτ2(f

∗
2,k) dw

}
∆x (4.34)

for periodic or zero boundary conditions, provided that

∆t ≤ ∆x

max |v(1)| .

Proof. Using the notation v+ := v(1)+|v(1)|
2 and v− := v(1)−|v(1)|

2 , we write the update
formula of (3.41) with the first-order numerical fluxes as

f ℓ+1
i,k = f∗i,k −

∆t

∆x

(
v+f∗i,k + v−f∗i,k+1 − v+f∗i,k−1 − v−f∗i,k

)
=

(
1− ∆t

∆x
|v(1)|

)
f∗i,k −

∆t

∆x
v−f∗i,k+1 +

∆t

∆x
v+f∗i,k−1.

Clearly, if the CFL condition is fulfilled, then f ℓ+1
i,k is a convex linear combination of f∗i,k,

f∗i,k−1, and f
∗
i,k+1. Thus by the convexity of hτ , for each v

(1),

K∑
k=0

hτi(f
ℓ+1
i,k )∆x

≤
∑
k

[(
1− ∆t

∆x
|v(1)|

)
hτi(f

∗
i,k)−

∆t

∆x
v−hτi(f

∗
i,k+1) +

∆t

∆x
v+hτi(f

∗
i,k−1)

]
∆x

=
∑
k

hτi(f
∗
i,k)∆x+∆tΩ

(4.35)
where the boundary term

Ω = v−f∗i,0 log(f
∗
i,0)− v−f∗i,K+1 log(f

∗
i,K+1)− v+f∗i,K log(f∗i,K) + v+f∗i,−1 log(f

∗
i,−1)

is the only remnant of the telescoping sum and vanishes for periodic or zero boundary
conditions. Thus summation over i and integration of (4.35) with respect to w yields the
entropy inequality in (4.34).

Combining the two results above gives the following:



111 CHAPTER 4. PROPERTIES OF THE NUMERICAL SCHEME

Corollary 4.5.4. For periodic or zero boundary conditions, the first-order splitting scheme
3.3.1 combined with the first-order numerical fluxes in Section 3.4 fulfills the discrete en-
tropy inequality

K∑
k=0

{∫
hτ1(f

ℓ+1
1,k ) + hτ2(f

ℓ+1
2,k ) dw

}
∆x ≤

K∑
k=0

{∫
hτ1(f

∗
1,k) + hτ2(f

∗
2,k) dw

}
∆x

provided that

∆t ≤ ∆x

max |v(1)| .

Finally, we conclude with a statement on the fully-discrete scheme.

Theorem 4.5.5 (Entropy behavior of the first-order splitting scheme). Propositions
4.5.1–4.5.3 all hold true after replacing continuous integrals by their respective quadra-
tures.
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Chapter 5

Numerical Results

In the previous chapters, we have introduced fluid models and an adequate scheme for
multi-species BGK-type equations. We now apply the scheme to the equations.

Firstly, we perform tests to verify the order of the presented scheme in Section 5.1.
In Section 5.2, we provide different test cases for the multi-species BGK model with

constant collision frequency where we compare the results with analytic values or simu-
lations from the literature.

In Section 5.3, we focus on velocity-dependent collision frequencies. We illustrate
the behavior and properties of the scheme, followed by test cases inspired by physical
experiments where we emphasize the effect of velocity-dependent collision frequencies by
comparing the results with simulations using constant collision frequencies.

Afterwards, we present numerical results for the quantum multi-species model in Sec-
tion 5.4. We verify the properties of the scheme and compare the analytical decay rates
with the results from the numerical simulations. We conclude with a test case inspired
by physical experiments.

5.1 Proof of order

In Section 5.1.1, we examine the order in space and time discretization, leaving out the
velocity variable for reasons of computational costs. In Section 5.1.2, we leave out the
space variable and run a relaxation test case which uses a discretization in time and
velocity.

5.1.1 Transport equation

We consider the simple transport equation

∂tf(x, t) + v ∂xf(x, t) = 0

where v = 2 in the domain x ∈ [−1, 1] with periodic boundaries. The function f is
initialized by

f(x, 0) = 0.5 sin(πx) + 1.

This problem has the unique solution

f(x, t) = 0.5 sin(π(x− 2t)) + 1, (5.1)

see Section 2.1.2.

113
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For the simulations, we refine the grid more and more. The coarsest grid has 10
equally spaced cells in x, and we compute one time step where ∆t is set according to the
CFL condition (3.74). The next coarsest grid has 20 equally spaced cells in x, and so on.

In Figure 5.1, the L1-error of the numerical solutions compared to the analytical solution
(5.1) is presented in a log-log plot. The first-order schemes from Sections 3.3.1 and 3.3.2
use the Forward Euler time discretization (3.2) combined with the first-order numerical
fluxes from Section 3.4.1. This combination reproduces a good first-order convergence
(left plot).

The nominally second-order schemes use the numerical fluxes with flux limiter (3.71)
from Section 3.4.1. The splitting scheme from Section 3.3.3 implements Heun’s method
(3.4), whereas the IMEX RK from Section 3.3.4 uses the time discretization ARS-ex
given in (3.6). Both methods give similar results. They do not show a good second-
order convergence, but they definitely perform better than first order (right plot). This
is typical for positivity-preserving flux limiters as they introduce numerical dissipation.
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∆x

∆x2

Figure 5.1: Numerical results for the test case 5.1.1. The L1-error of the numerical
solution compared to the analytical solution (5.1) is illustrated in a log-log plot. The
Forward Euler time discretization (3.2) combined with the first-order numerical fluxes
from Section 3.4.1 shows a good first-order convergence. The nominally second-order
schemes (using a combination of Heun’s method (3.4), respective ARS-ex (3.6) and the
numerical fluxes with flux limiter from Section 3.4.1) converge faster than first order, but
they do not quite reach a second-order convergence.

5.1.2 Relaxation test case

We consider a space homogeneous relaxation process between two species for the velocity-
independent collision frequencies νij = nj . Initially, we set the distribution functions to
Maxwellians fi = M[ni,ui, Ti,mi] with

m1 = 1.0, n1 = 1.0, u1 = (1.0, 0, 0)⊤, T1 = 2.0,

m2 = 2.0, n2 = 1.2, u2 = (0.5, 0, 0)⊤, T2 = 1.0.

Again, we refine the grid more and more. The coarsest velocity grid has 123 nodes, and
we set the time step to ∆t = 0.02. The grid and time step are refined by factors of 2.

We cannot solve the equations analytically such that we use a numerical solution
which is computed on a fine grid as reference solution. This grid uses 1923 velocity nodes
and a time step ∆t = 0.00125. The reference solution is obtained by the second-order
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IMEX RK scheme from Section 3.3.4.

In Figure 5.2, we show the L1-error of the numerical solution compared to the reference
solution in a log-log plot. The first-order schemes from Sections 3.3.1 and 3.3.2 use the
Backward Euler time discretization (3.8) which reproduces a good first-order convergence
(left plot).

The second-order splitting scheme from Section 3.3.3 implements the implicit trape-
zoidal method (3.10). It gives a second-order convergence (middle plot). The IMEX
RK from Section 3.3.4 uses the time discretization ARS-im given in (3.12) and shows a
good second-order convergence (right plot). Moreover, the second-order schemes are more
accurate as the L1-error becomes smaller.
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Figure 5.2: Numerical results for the test case 5.1.2. The L1-error of the numerical solution
compared to the reference solution is illustrated in a log-log plot. The Backward Euler
time discretization (3.8) shows a good first-order convergence. The implicit trapezoidal
method (3.10) and the method ARS-im (3.12) show a second-order convergence and a
higher accuracy.

We have verified the order of the individual explicit and implicit parts of the schemes. We
rely on the construction of the IMEX schemes such that we do not perform any further
tests regarding the order of the schemes. Instead we are interested in more physically
relevant test cases.

5.2 Numerical results for the classic multi-species BGK
model with constant collision frequencies

We present several numerical tests for the KPP model from Section 2.1.4. We verify the
decay rates for the mean velocities and temperatures in Section 5.2.1. In Sections 5.2.2
and 5.2.3, we rerun test cases from the literature being physically motivated.

In the following test cases, we define δ, γ, α of the KPP model by assuming u12 = u21

and T12 = T21. This leads to

δ =
εm1

m1ε+m2
, α =

ε

1 + ε
, γ =

εm1(1− δ)2δ

3(1 + ε)
, ε =

m2

m1
.
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5.2.1 Decay rates

This test case is inspired from [CKP20]. We consider a space homogeneous relaxation
process between two species for the velocity-independent collision frequencies

νij = 20nj .

Hence, analytical decay rates are given in (2.61) and (2.63). Initially, we set the distribu-
tion functions to Maxwellians fi = M[ni,ui, Ti,mi] with

m1 = 1.5, n1 = 1.2, u1 = (0.1, 0, 0)⊤, T1 = 0.1,

m2 = 1.0, n2 = 1.0, u2 = (0.5, 0, 0)⊤, T2 = 1.0.

For the simulation, we use a velocity grid with 483 nodes.

In Figure 5.3, we illustrate the results for different time steps and for the time discretiza-
tion methods from Sections 3.3.1–3.3.4. The mean velocities converge exponentially fast
to a common value which is clearly visible by the logarithmic plotting scale. The same
holds true for the temperature, however, the decay rate needs not to be exponential in
general. (It is a sum of exponential functions.) All schemes hit the analytic decay rates
very well for a small time step. However, larger time steps amplify the numerical errors
which makes the schemes less accurate affecting especially the first-order schemes.

5.2.2 Hydrogen-Carbon test case 1

We want to reproduce the result of a more realistic test case, firstly presented in [HHM17a]
and inspired from plasma physics. It considers the space homogeneous mixture of hydro-
gen (species 1) and carbon (species 2).

We use the (velocity-independent) collision frequencies (2.104) and (2.105), see Section
2.2.3, i.e.

νMij =
128

3

π2

(2π)3/2
nj
mi

(ZjZie
2)2

√
mimj(mi +mj)

(miTj +mjTi)3/2
Ψ(γij) , (5.2)

νTij =
256

3

π2

(2π)3/2
nj(ZjZie

2)2
√
mimj

(miTj +mjTi)3/2
Ψ(γij) . (5.3)

The masses and charge numbers of the species are given by

m1 = 1.993 · 10−23 g, m2 = 1.661 · 10−24 g, (5.4)

Z1 = 6, Z2 = 1.

Initially, the distribution functions are Maxwellians fi = M[ni,ui, Ti,mi] with

n1 = 1023 cm−3, n2 = 1023 cm−3, (5.5)

u1 = (1.26 · 105, 0, 0)⊤ cm

s
, u2 = (0, 0, 0)⊤

cm

s
,

T1 = 10 eV, T2 = 12 eV.

The velocity grid takes 483 nodes, and we use the second-order IMEX RK scheme from
Section 3.3.4 with time step ∆t = 0.1 fs.
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Figure 5.3: The mean velocities and temperatures of species 1 and 2 converge to a common
value. The smaller the time step, the better match the numerical decay rates the analytic
ones. The second-order schemes are more accurate which can be clearly seen.
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Remark 5.2.1 (Units in numerical test cases). Incorporating units in a code is chal-
lenging, especially if particles with very small masses are considered. To overcome this
problem, we normalize the units by

cm → 1.5345 · 107, g → 6.02047 · 1023, s → 1.50658 · 1014,
resulting e.g. in the masses m1 = 12 and m2 = 1. We obtain initial values which can be
handled better by numerical calculations. The values are reconverted in the CGS system
when plotted.

This procedure is executed for any test case carrying CGS units.

In Figures 5.4 and 5.5, we illustrate the convergence of the mean velocities and tem-
peratures to a common value which is already predetermined by the initial data and the
mixture quantities (2.8) and (2.9). Comparing with [HHM17a], the results are in good
agreement; however, we observe a slightly slower relaxation rate. We expect that this is
due to the collision frequencies. Even though we took the formulas from [HHM17a], some
details have been left open. Our choices, given in Section 2.2.3, may influence the result
in the given way.
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Figure 5.4: Evolution of the species’ mean velocities and temperatures for the Hydrogen-
Carbon test case in Section 5.2.2 using the constant collision frequencies (5.2). The
quantities hit the mixture quantities (2.8) and (2.9) as expected.

5.2.3 Sulfur-Fluorine-Electrons test case

For a 3-species test case, we reproduce the space homogeneous example given in [HHM17a].
In the following, the index S refers to sulfur ions, the index F refers to fluorine ions, and
the index e refers to electrons.

For ion-ion interactions, we use the collision frequencies (5.2), respective (5.3) from the
previous numerical example. The collision frequencies which encounter an interaction
with electrons are given in (2.107) and (2.108), respectively. For convenience, we restate
them here:

νMij =
8

3

√
2π nj

√
mj

mi

mi +mj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6, (5.6)

νTij =
16

3

√
2π nj

√
mimj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6. (5.7)
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Figure 5.5: Evolution of the species’ mean velocities and temperatures for the Hydrogen-
Carbon test case in Section 5.2.2 using the constant collision frequencies (5.3). The
quantities hit the mixture quantities (2.8) and (2.9) as expected.

Details can be found in Section 2.2.3.

The species’ masses and charge numbers are

mS = 32.07u− 11me, mF = 19u− 7me, me = me,

ZS = 11, ZF = 7, Ze = −1

with the atomic mass u = 1.6605 · 10−24 g. Initially, we assume Maxwellian distributions
fi = M[ni,ui, Ti,mi] with

nS = 1019 cm−3, nF = 6 · 1019 cm−3, ne = 53 · 1019 cm−3,

uS = uF = ue = 0
cm

s
,

TS = TF = 15 eV, Te = 100 eV.

We use velocity grids with 483 nodes for each species, and we use the second-order IMEX
RK scheme from Section 3.3.4 with time step ∆t = 100 fs.

The species are initialized with vanishing mean velocity, and the mean velocities stay
zero. We give the evolution of the temperatures in Figure 5.6 which converge to the
mixture temperature (2.9). As in the previous test case, the relaxation rate is slower
compared to the results in [HHM17a].

For the following section, we increase the complexity of the underlying model by consid-
ering collision frequencies which are dependent on v.

5.3 Numerical results for the classic multi-species BGK
model with velocity-dependent collision frequencies

We perform numerical experiments in order to illustrate the effect of velocity-dependent
collision frequencies in the multi-species BGK model from Section 2.2. Most of this section
can also be found in [HHK+22]. To start with, we examine various space homogeneous
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Figure 5.6: Evolution of the species’ temperatures for the Sulfur-Fluorine-electrons test
case in Section 5.2.3 using the constant collision frequencies (5.2) and (5.6), respective
(5.3) and (5.7). The quantities hit the mixture temperature (2.9) as expected.

set-ups. We illustrate the properties at the discrete level in Section 5.3.1. A physical
more relevant test case is provided in Section 5.3.2.

Afterwards, we run several shock tube problems for the full equations (2.67). In Sec-
tion 5.3.3, we compare the well-known Sod problem in the hydrodynamic limit when
approximated by BGK equations with different collision frequencies. We further examine
the different behavior of constant in v and velocity-dependent collision frequencies for
various shock wave problems in Sections 5.3.4 and 5.3.5. We conclude with the interpen-
etration of hydrogen and helium particles in Sections 5.3.6 and 5.3.7, where the use of
different collision frequencies displays a significantly different behavior of the hydrogen
species.

5.3.1 Illustrative toy problem

The purpose of this experiment is to illustrate basic properties of the multi-species BGK
model with velocity-dependent collision frequency from Section 2.2. We solve the spatially
homogeneous version of (2.67) for species with masses m1 = 1 and m2 = 1.5. The initial
distribution functions (see Figure 5.7a) are given by

fi(v, t = 0) = 0.1 ·m27
i · exp

(
− 0.01

(0.75/mi)10 − |v − ui(0)|101

)
,

with u1(0) = (0.1, 0, 0)⊤ and u2(0) = (−0.1, 0, 0)⊤. The parameter choices here are not
physical; rather they are chosen to yield an initial distribution with a particular shape
that makes the relaxation easier to visualize. With this initialization, the mixture mean
velocity and mixture temperature, defined in Definition 2.1.16, have numerical values

umix = 0.0322 and Tmix = 0.0487.

According to Proposition 2.1.33, these values stay constant in time. The collision fre-
quencies take the form

νij(x,v, t) =
10nj

δij + |v − umix|3

with the regularization parameter δij = 0.1 · (∆vij)3 where ∆vij = 1
4

√
Tmix/(2µij), and

the reduced mass is µij = mimj/(mi +mj).
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The simulation is run using a velocity grid with 483 nodes and the first-order temporal
splitting scheme from Section 3.3.1 with time step ∆t = 0.01. As demonstrated in Chap-
ter 4, this scheme maintains positivity, conservation, and entropy dissipation properties
of the continuous model.

In Figure 5.7, we plot the kinetic distributions at several different times and observe
convergence to their respective equilibria. It is easy to see that the convergence to equi-
librium is much faster in the center than near the tails of the distribution functions. This
is a consequence of the fact that the velocity-dependent collision frequency amplifies the
relaxation process for small relative velocities.

In Figure 5.8, we show convergence of the bulk velocities and temperatures to their
equilibrium values, given by the mixture values in (2.8) and (2.9).

In Figure 5.9, we show the evolution of the entropy and the entropy dissipation. As
expected, the entropy decays monotonically.

In Figure 5.10, we demonstrate conservation properties. The scheme conserves mass,
total momentum and total energy up to numerical oscillations of the order 10−15 or less.
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Figure 5.7: Relaxation of the distribution functions to Maxwellians for the test case in
Section 5.3.1. We fix v(2) = v(3) = 0 and plot fi(v

(1), v(2) = 0, v(3) = 0, t) at times t. At
time progress, the two distribution functions converge to Maxwellians centered around a
common mean velocity with a width according to their common temperature divided by
mass. For reference, these Maxwellians are shown by dotted gray lines.

5.3.2 Hydrogen-Carbon test case 2

In this test case, we explore the effects of the velocity-dependent frequencies on the re-
laxation behavior of a multi-species problem in a more physically relevant setting, with
dimensional formulas given in the CGS unit system.
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Figure 5.8: Convergence of mean velocities and temperatures for the test case in Section
5.3.1. In each plot, the dotted line denotes the mixture values, given in (2.8) and (2.9).
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Figure 5.9: Entropy and entropy dissipation for the test case in Section 5.3.1. As predicted
by the theory, the entropy decays monotonically.

The collision frequencies which are used in this test case are derived in Section 2.2.3.
For convenience, we give again

νij(v) = 4πnj

(
ZiZje

2

2µij

)2
1

δij + |v − umix|3
log Λij , (5.8)

where µij is the reduced mass, Zie and Zje are the charges of the two particles and
log Λij is the Coulomb logarithm. Further details can be found in Section 2.2.3. The
small regularization parameter δij > 0 in the denominator of (5.8) avoids a singularity
at zero relative velocity. For the numerical experiments one needs to ensure that δij
is much smaller than |v − umix|3, and thus we set δij = 0.1 · (∆vij)3, where ∆vij =
1
4

√
kBTmix/(2µij). This choice ensures that ν12 and ν21 are symmetric up to the densities.
For comparison, we consider three velocity-independent collision frequencies that are

often used as simpler alternatives to (5.8).

1. Replacing |v − umix| by the thermal velocity vT =
√
kBTmix/(2µij) gives

ν̃ij = 4πnj

(
ZiZje

2

2µij

)2
1

δij + v3T
log Λij . (5.9)
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Figure 5.10: Global conservation properties for the test case in Section 5.3.1. The mass
densities of each species, the total momentum (M) and total energy (E) have small
oscillations of the order of 10−15 or less.

2. Replacing |v − umix|3 by the weighted average

v̂3 =

∫
|v − umix|3Mij(v) dv∫

Mij(v) dv
, (5.10)

where Mij(v) = M[ni,umix, Tmix, µij ], gives

ν̂ij = 4πnj

(
ZiZje

2

2µij

)2
1

δij + v̂3
log Λij . (5.11)

3. Computing a weighted average of νij(v) directly gives

ν̄ij =

∫
νij(v)Mij(v) dv∫

Mij(v) dv
. (5.12)

While the first option above is convenient and more common in applications [SM16],
it is somewhat arbitrary. The second and third options, on the other hand, provide a
more consistent normalization. According to Proposition 2.1.33, the collision frequencies
stay constant in time because the problem is spatially homogeneous. For purposes of
illustration, we plot them in Figure 5.11.

We consider relaxation between carbon (species 1) and hydrogen (species 2), with
masses and charge numbers

m1 = 1.993 · 10−23 g, m2 = 1.661 · 10−24 g,

Z1 = 6, Z2 = 1.

Initially, the distribution functions are Maxwellians fi = M[ni,ui, Ti,mi] with

n1 = 6.1 · 1022 cm−3, n2 = 3.6133 · 1021 cm−3,

u1 = (9.818 · 105, 0, 0)⊤ cm

s
, u2 = (0, 0, 0)⊤

cm

s
,

T1 = 150 eV, T2 = 100 eV.

We simulate this test case using a velocity grid with 483 nodes and the second-order IMEX
RK scheme from Section 3.3.4 with time step ∆t = 0.8 fs.
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Figure 5.11: Collision frequencies given in (5.8), (5.9), (5.11) and (5.12) along the line
v(2) = v(3) = 0. The largest constant values for ν̄ correspond to the fastest relaxation
process, see Figure 5.12.

In Figure 5.12, we plot the evolution of the differences between species temperatures
and mean velocities. For constant collision frequencies, the convergence is known to be
exponential [CKP20]; this behavior can be clearly observed numerically. However, the
convergence of these quantities for the velocity-dependent cross section appears much
slower and distinctly different in form.

In Figures 5.13 and 5.14, we plot the kinetic distribution of the hydrogen species
for ν(v) and ν̂, the latter giving the slowest relaxation of the velocity-independent colli-
sion frequencies. Since the macroscopic quantities of the heavy species (carbon) hardly
change, we only show the results for the lighter species (hydrogen). The relaxation pro-
cess is weighted by the collision frequencies. Since the velocity-dependent cross section
is maximal at v = umix and decays at larger relative velocity, relaxation to equilibrium
in the tails of the distribution is slower when using a velocity-dependent cross section.
This can be observed in Figure 5.13 where we show the distributions as functions of v(1)

and for fixed v(2) = u(2) = 0, v(3) = u(3) = 0. And it gets even more evident when com-
paring Figure 5.13 with Figure 5.14. For the latter, we fix the second and third velocity
component at v(2) = v(3) = −3.58 · 107 cms , i.e. at the tails for these components.

5.3.3 Sod problem

We run a kinetic version of the well-known Sod problem [Sod78] in the fluid regime (i.e.,
with large collision frequencies). In the limit of large collision frequencies, the distribution
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Figure 5.12: Evolution of the difference in species temperatures and mean velocities for the
Hydrogen-Carbon test case in Section 5.3.2. The convergence for all velocity-independent
collision frequencies—ν̃ in (5.9), ν̂ in (5.11), and ν̄ in (5.12)—appears exponential. How-
ever, the convergence for velocity-dependent collision frequency ν(v) given in (5.8) is
significantly longer and notably different.

functions can be approximated by Maxwellians:

fi ≃ M[ni,ui, Ti,mi].

With this approximation, the conservation laws (2.82) reduce to the Euler equations
(2.11). We further reduce the problem to the single-species case by assuming m1 = m2 =:
m, ρ1 = ρ2 =: ρ, u1 = u2 =: u and T1 = T2 =: T . For convenience, we give the Euler
equations in this case explicitly. In one space dimension, with 3 translational degrees of
freedom, the single-species Euler equations are

∂tρ+∇x · (ρu) = 0, (5.13a)

∂t(ρu) +∇x · (ρu⊗ u) +∇xp = 0, (5.13b)

∂t

(
ρ|u|2
2

+
3ρT

2m

)
+∇x ·

((
ρ|u|2
2

+
3ρT

2m
+ p

)
u

)
= 0, (5.13c)

where p = ρT
m denotes the pressure.

This single-species problem can be implemented with the multi-species model by treat-
ing the species identically. We set m1 = m2 = 1, and the initial data is given by
fi = M[ni,ui, Ti,mi] where

n1 = n2 = 1, u1 = u2 = 0, T1 = T2 = 1

for x ≤ 0 and

n1 = n2 = 0.1, u1 = u2 = 0, T1 = T2 = 0.8

for x > 0.
The equations (5.13) with these initial Riemann data can be solved analytically, see

e.g. [LeV02, Tor09]. We provide the analytical solution in Figure 5.15. The two initial
states are separated by three intermediate characteristic fields for t > 0. From the left
to the right, we have the left initial state, a rarefaction wave, a contact discontinuity,
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Figure 5.13: Relaxation of the kinetic distribution function of hydrogen in the Hydrogen-
Carbon test case of Section 5.3.2 with time step ∆t = 0.8 fs. The velocity components
v(2) and v(3) are fixed at u(2) = 0 and u(3) = 0, respectively. The dashed line corresponds
to the Maxwellian M2,eq = M[n2,umix, Tmix,m2], and the blue and red lines are results
computed with the velocity-independent collision frequencies ν̂ in (5.11) and the velocity-
dependent collision frequencies in ν(v) (5.8), respectively. The tails of the distribution
converge more slowly for the velocity-dependent collision frequencies.

and a shock wave separating the right initial state. The analytical solution can be obtain
by tracking the characteristics. The wave speeds can be calculated which give us the
locations of the fronts. Making use of the Rankine-Hugoniot conditions, the macroscopic
quantities can be computed.

We consider two collision frequencies: one that depends on v

νij(x,v, t) = 2 · 104 nj
δij + |v − umix|3

(5.14)

and one that does not
ν̂ij(x, t) = 2 · 104 nj

δij + v̂3
, (5.15)

where the formula for the averaged relative velocity v̂ can be found in (5.10). Again we
use the regularization parameter δij = 0.1 · (∆vij)3 where ∆vij = 1

4

√
Tmix/(2µij) and

µij = mimj/(mi +mj).
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Figure 5.14: Relaxation of the kinetic distribution function of hydrogen in the Hydrogen-
Carbon test case of Section 5.3.2 with time step ∆t = 0.8 fs. The velocity components
v(2) and v(3) are fixed at v(2) = v(3) = −3.58 · 107 cms , respectively, moving away from the
center of the distribution function compared to Figure 5.13. The dashed line corresponds
to the Maxwellian M2,eq = M[n2,umix, Tmix,m2], and the blue and red lines are results
computed with the velocity-independent collision frequencies ν̂ in (5.11) and the velocity-
dependent collision frequencies in ν(v) (5.8), respectively. This part of the distribution
function converges more slowly for the velocity-dependent collision frequencies.

The simulations are run using a velocity grid with 483 points and 400 equally spaced
cells in x. We use the second-order IMEX RK scheme from Section 3.3.4 combined with
the second-order FV scheme from Section 3.4, with the limiter given in (3.71). The time
step ∆t = 9.29 · 10−5 is set according to the CFL condition in (3.74).

Numerical simulations of the density, mean velocity, and temperature are given in Figure
5.15. We include results using the BGK model with both ν(v) and ν̂, as well as the ana-
lytic solution for the Euler equations (5.13). Both of the collision frequencies ν(v) and ν̂
give similar results, but the deviations from the Euler solution are more pronounced near
the discontinuities in the hydrodynamic model.

For people used to the hydrodynamic regime, the bump in the mean velocity (Fig-
ure 5.15 b, d) might be surprising. At the macroscopic level, sharp discontinuities are
observed analytically, and there is a constant mean velocity expected across the contact
discontinuity. However, at the kinetic level there are too little collisions to push the
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distribution functions to Maxwellians; discontinuities go with (small) transition regions
because particles with e.g. different temperatures mix and do not separate sharply. We
see that jumps are smeared out — not only for reasons of numerical dissipation but also
due to kinetic theory. As the total energy is conserved, a lower temperature on the RHS
of the contact discontinuity goes with a higher kinetic energy and a higher mean velocity,
respectively.
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Figure 5.15: Numerical solution at t = 0.055 of the Sod problem in Section 5.3.3. We
show results for a 2-species kinetic simulation with using the velocity-dependent collision
frequency ν(v) in (5.14) (red solid line) and the velocity-independent collision frequency
ν̂ in (5.15) (dashed blue line). The solutions for both species are identical; we show only
the species 1 results. For reference, the exact solution for the Euler equations (5.13)
is also provided (dotted gray line). Both kinetic solutions recover the fluid limit fairly
well, but the velocity-dependent frequencies contribute to more kinetic behavior around
transitions.

5.3.4 Mach 1.7 Shock wave problem

In this example, we compute the flow across a standing Mach 1.7 normal shock wave in
a mixture of hydrogen (species 1) and helium (species 2). The shock wave structure is
difficult to capture in standard hydrodynamic schemes with a single material/species; in
mixtures we further expect species separation to occur due to the mass difference between
the two species. The shock conditions are calculated via the Rankine-Hugoniot jump
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conditions for a monatomic gas [And89]. We take a domain size of 6 microns (6 ·10−4 cm)
and compute the solution in the frame of the shock. The masses and charge numbers are
(units in CGS)

m1 = 1.655 · 10−24 g, m2 = 3.308 · 10−24 g, Z1 = 1, Z2 = 2.

The initial conditions read fi = M[ni,ui, Ti,mi] with

n1 = n2 = 6.666 · 1019 cm−3, u1 = u2 = 1.7634411 · 107 cm
s
, T1 = T2 = 100 eV

for x ≤ 0 and

n1 = n2 = 1.308 · 1020 cm−3, u1 = u2 = 8.985007 · 106 cm
s
, T1 = T2 = 171.32 eV

for x > 0.
The simulations are run using a velocity grid with 483 nodes and a spatial mesh with

200 cells. We use the second-order IMEX RK scheme from Section 3.3.4 and the second-
order spatial discretization in Section 3.4, with the limiter given in (3.71). The time step
∆t = 22 fs is set according to the CFL condition in (3.74).

In Figure 5.16 we compare numerical results at time t = 5.390 ps using the velocity-
dependent collision frequency ν(v), given in (5.8), with those using the constant collision
frequencies ν̂, given in (5.11). In addition to these results, we plot the relative difference

r(q) =
q({ν̂ij})− q({νij(v)})

|q({ν̂ij})|+ |q({νij(v)})|
(5.16)

for the densities (q = ni), mean velocities (q = u
(1)
i ), and temperatures (q = Ti). As

expected, both the velocity-dependent and constant collision frequency models show a
species separation. For all hydrodynamic quantities, the differences are within a few
percent. While we expect a difference in output profiles between the two models due to the
tail particles relaxing more slowly than the bulk, it is likely that the collision frequencies
outside of the ‘kinetic’ region of the shock interface are high enough to suppress large
deviations from equilibrium.

5.3.5 Mach 4 Shock wave problem

We repeat the shock wave problem from the previous case but increase the shock speed
in the mixture to Mach 4, with the expectation that the distributions will be further out
of equilibrium than in the previous case. The masses and charges of the species are the
same as in the Mach 1.7 case, but we widen the domain size to 12 microns and modify
the initial conditions to construct a Mach 4 shock, again using the Rankine-Hugoniot
relations. Specifically fi = M[ni,ui, Ti,mi] where

n1 = n2 = 3.3488 · 1019 cm−3, u1 = u2 = 5.06 · 107 cm
s
, T1 = T2 = 100 eV,

for x ≤ 0 and

n1 = n2 = 1.128 · 1020 cm−3, u1 = u2 = 1.50 · 107 cm
s
, T1 = T2 = 586.3 eV.

and for x > 0.
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Figure 5.16: Fluid quantities at time t = 5.39 ps for the Mach 1.7 shock wave problem
from Section 5.3.4. The initial Riemann problem forms into a standing shock wave, where
hydrogen and helium separate from each other near the interface. Top row: velocity-
dependent collision frequencies νij(v), given in (5.8); middle row: constant collision fre-
quencies ν̂ij , given in (5.11); bottom row: relative differences (see (5.16)). These differ-
ences are typically within 4%.

As in the previous case, simulations are run using a velocity grid with 483 nodes and
a spatial mesh with 200 cells. We use the second-order IMEX RK scheme from Section
3.3.4 and the second-order spatial discretization in Section 3.4, with the limiter given in
(3.71). The time step ∆t = 25 fs is set according to the CFL condition in (3.74).

In Figure 5.17 we compare numerical results at time t = 6.345 ps using the velocity-
dependent collision frequency ν(v), given in (5.8), with those using the constant collision
frequencies ν̂, given in (5.11). We again observe the evolution towards a standing shock
wave for both the velocity-dependent collision frequency ν(v) and the constant collision
frequency ν̂. As in the Mach 1.7 case above, while we expect a difference in output profiles
between the two models due to the tail particles relaxing more slowly than the bulk, it
is likely that the collision frequencies outside of the ‘kinetic’ region of the shock interface
are high enough to suppress large deviations from equilibrium for this test problem.

The shock wave problems are set up using hydrodynamic theory. Hence, the fluids are
already close to equilibrium suppressing the effects of the velocity-dependent collision
frequencies. The following test cases, in contrast, illustrate that constant collision fre-
quencies may lose details from the kinetic level which are visible with velocity-dependent
ones.



131 CHAPTER 5. NUMERICAL RESULTS

−6 −3 0 3 6

x [µm]

0.50

0.75

1.00

1.25

d
en

si
ty

[c
m
−

3 ]

×1020

n1, ν(v)

n2, ν(v)

−6 −3 0 3 6

x [µm]

1.6

2.4

3.2

4.0

4.8

m
ea

n
ve

lo
ci

ty
[cm s

]

×107

u
(1)
1 , ν(v)

u
(1)
2 , ν(v)

−6 −3 0 3 6

x [µm]

200

400

600

800

te
m

p
er

at
u

re
[e

V
]

T1, ν(v)

T2, ν(v)

−6 −3 0 3 6

x [µm]

0.4

0.6

0.8

1.0

1.2

1.4

d
en

si
ty

[c
m
−

3 ]

×1020

n1, ν̂

n2, ν̂

−6 −3 0 3 6

x [µm]

1.6

2.4

3.2

4.0

4.8
m

ea
n

ve
lo

ci
ty

[cm s
]

×107

u
(1)
1 , ν̂

u
(1)
2 , ν̂

−6 −3 0 3 6

x [µm]

200

400

600

800

te
m

p
er

at
u

re
[e

V
] T1, ν̂

T2, ν̂

−6 −3 0 3 6

x [µm]

−0.0025

0.0000

0.0025

0.0050

0.0075

re
l.

d
iff

.
d

en
si

ti
es r(n1)

r(n2)

−6 −3 0 3 6

x [µm]

−0.006

−0.004

−0.002

0.000

0.002

0.004

re
l.

d
iff

.
m

ea
n

ve
l.

r(u
(1)
1 )

r(u
(1)
2 )

−6 −3 0 3 6

x [µm]

−0.020

−0.015

−0.010

−0.005

0.000

0.005

re
l.

d
iff

.
te

m
p

er
at

u
re

s
r(T1)

r(T2)

Figure 5.17: The fluid quantities for the Mach 4 shock wave problem from Section 5.3.5
(Mach 4) are presented at time t = 6.345 ps. The initial Riemann problem forms into a
standing shock wave. Top row: velocity-dependent collision frequencies νij(v), given in
(5.8); middle row: constant collision frequencies ν̂ij , given in (5.11); bottom row: relative
differences (see (5.16)). The results for the velocity-dependent collision frequency and the
constant collision frequency ν̂ij look very similar at first glance. However, the relative
differences clarify the disparities. They differ up to 4 %.

5.3.6 Interpenetration problem: high density

Standard hydrodynamic models have great difficulty in capturing interpenetrating flows
of rarefied gases. For example in ICF simulations, colliding streams of blown-off hohlraum
wall particles and capsule ablator particles result in an unphysical density spike due to
the lack of interpenetration in hydrodynamic models, which interferes with laser energy
propagation in the integrated simulation. This discrepancy has been proposed as a cause
of symmetry discrepancies in capsule drive between experiments and simulations in ICF
[BHLPD+15].

For this numerical example, we simulate the dynamics of two counter-streaming beams
of different species. We take a domain size of 50 microns (50 · 10−4 cm) and compute the
solution when hydrogen (species 1) interpenetrate with helium (species 2) particles. We
include a trace amount of each species in the whole domain as a background for ease of
computation. The masses and charge numbers are (units in CGS)

m1 = 1.655 · 10−24 g, m2 = 3.308 · 10−24 g, Z1 = 1, Z2 = 2.

The initial conditions are fi = M[ni,ui, Ti,mi] with

n1 = 1020 cm−3, n2 = 1017 cm−3, u1 = u2 = 2.2 · 106 cm
s
, T1 = T2 = 10 eV
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for x ≤ 0 and

n1 = 1017 cm−3, n2 = 1020 cm−3, u1 = u2 = −2.2 · 106 cm
s
, T1 = T2 = 10 eV

for x > 0.

The simulations are run using a velocity grid with 483 nodes and a spatial mesh with
200 cells. We use the second-order IMEX RK scheme from Section 3.3.4 and the second-
order spatial discretization in Section 3.4, with the limiter given in (3.71). The time step
∆t = 806 fs is set according to the CFL condition in (3.74).

In Figure 5.18, we compare the numerical results at time t = 120.870 ps using the velocity-
dependent collision frequency ν(v), given in (5.8), with those using the constant collision
frequencies ν̂, given in (5.11). The lighter hydrogen species shows a significant difference
in profiles between the two species, and displays much more penetration into the helium
beam. Due to its relatively higher mass and charge state, the helium species is much more
collisional than the hydrogen species, and presents a more hydrodynamic-like profile.

To highlight the different behavior due to the respective collision frequency, we provide
a direct comparison of the simulations with the velocity-dependent collision frequency and
with the constant collision frequency in Figure 5.19. It is clearly visible that the hydrogen
species behaves significantly different.

5.3.7 Interpenetration problem: low density

We repeat the interpenetration problem from above but reduce the initial densities by
two orders of magnitude, which leads to fewer collisions. We expect to see a greater
interpenetration of the two beams with less of a density spike at the interface point.
The domain size, masses and charges are the same as before. The initial conditions are
fi = M[ni,ui, Ti,mi] with

n1 = 1018 cm−3, n2 = 1015 cm−3, u1 = u2 = 2.2 · 106 cm
s
, T1 = T2 = 10 eV

for x ≤ 0 and

n1 = 1015 cm−3, n2 = 1018 cm−3, u1 = u2 = −2.2 · 106 cm
s
, T1 = T2 = 10 eV

for x > 0.

As before, the simulations are run using a velocity grid with 483 nodes and a spatial
mesh with 200 cells. We use the second-order IMEX RK scheme from Section 3.3.4 and
the second-order spatial discretization in Section 3.4, with the limiter given in (3.71). The
time step ∆t = 806 fs is set according to the CFL condition in (3.74).

In Figure 5.20, we compare the numerical results at time t = 120.870 ps using the velocity-
dependent collision frequency ν(v), given in (5.8), with those using the constant collision
frequencies ν̂, given in (5.11). As expected, we see more interpenetration than in the high
density test case. As in the higher density test case, we see more significant differences
in the lighter species of the mixture; the hydrogen species penetrates more into the right
side of the domain when the collision frequency is velocity-dependent. Due to relatively
higher mass and charge state, the helium species is more collisional. Furthermore, the
density spike at the interface seen in the high density case has mostly disappeared.
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Figure 5.18: The fluid quantities for the interpenetration problem from Section 5.3.6
are presented at time t = 120.870 ps. First row: velocity-dependent collision frequencies
νij(v), given in (5.8). Second row: constant collision frequencies ν̂ij , given in (5.11). Third
row: relative differences between rows 1 and 2 according to (5.16). Red line: hydrogen.
Blue line: helium. Variations in the collision frequency induce significant differences in
the profile of the hydrogen, which penetrates much further into the right side of the
domain when the collision frequency is velocity-dependent. Due to relatively higher mass
and charge state, the helium species undergoes more collisions and is less sensitive to
variations in the collision frequency.
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Figure 5.19: Comparison of the fluid quantities for the interpenetration problem from
Section 5.3.6 when run with velocity-dependent collision frequencies νij(v), given in (5.8),
and constant collision frequencies ν̂ij , given in (5.11). The hydrogen species behaves
significantly different.

To emphasize the different behavior due to the respective collision frequency, we pro-
vide a direct comparison of the simulations with the velocity-dependent collision frequency
and with the constant collision frequency in Figure 5.21.

We have provided several test cases for the model with velocity-dependent collision fre-
quency from Section 2.2. Now, we study numerical set-ups for the quantum model.

5.4 Numerical results for the quantum multi-species BGK
model

We run simulations for the quantum multi-species BGK model from Section 2.3. We only
focus on space homogeneous tests. In Section 5.4.1, we validate the results by comparing
them with the analytic decay rates (2.140) and (2.143). In Section 5.4.2, we rerun the
test case from Section 5.2.3 and encounter different types of species.

5.4.1 Quantum decay rates

In this test case, we illustrate the correct behavior of our numerical scheme for quantum
particles. Moreover, we verify the decay rates which are given analytically in Section 2.3.2.

Initially, we set the distribution functions to Maxwellians fi = M[ni,ui, Ti,mi] with

m1 = 1.0, n1 = 1.0, u1 = (0.5, 0, 0)⊤, T1 = 1.0,

m2 = 1.5, n2 = 1.2, u2 = (0.1, 0, 0)⊤, T2 = 0.5,

inspired by the test case in Secton 5.2.1. By choosing these initial data, we do not
incorporate further physical details (e.g. for a specific quantum regime), but we want to
illustrate the basic properties of the model and scheme, respectively.
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Figure 5.20: The fluid quantities for the lower density interpenetration problem from
Section 5.3.7 are presented at time t = 120.870 ps. First row: velocity-dependent collision
frequencies νij(v), given in (5.8). Second row: constant collision frequencies ν̂ij , given in
(5.11);. Third row: relative differences between rows 1 and 2 according to (5.16). Red line:
hydrogen. Blue line: helium. As expected, we see more interpenetration than in the high
density test case. However, the relative sensitivity of hydrogen to the velocity-dependent
collision frequency is less dramatic.
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Figure 5.21: Comparison of the fluid quantities for the interpenetration problem from
Section 5.3.7 when run with velocity-dependent collision frequencies νij(v), given in (5.8),
and constant collision frequencies ν̂ij , given in (5.11). The hydrogen species still behaves
different but less dramatic compared to the high density test case.

For the simulation, we use a momentum grid with 483 nodes and the first-order split-
ting scheme from Section 3.3.1 with the time step ∆t = 0.01.

We run the simulation for any combination of classical particles, fermions and bosons.
In Figure 5.22, we illustrate the evolution of the entropy and the entropy dissipation
exemplary for the interactions of fermions with fermions. Additionally, we demonstrate
the conservation properties in Figure 5.23 where the numerical oscillations in mass, total
momentum and total energy are only of the order 10−14.

In Figure 5.24, we show the behavior of the mean velocities converging exponentially
fast to a common value. The numerical decay rate matches the analytical one (2.140)
very well. Since the decay rate is independent of the type of the species, we only display
the rate for the interactions of fermions with fermions.

Figure 5.25 illustrates the behavior of the temperatures where we distinguish between
the kinetic temperatures Ti and the physical temperatures ϑi, see Remark 2.3.10. In the
first column, we observe a gap between the final values of the species’ kinetic temperatures
whenever a quantum particle is involved. This is also visible in the middle column where
the decay rate for the kinetic temperatures is illustrated. Numerical and analytical results
coincide very well, and the difference converges to a constant value for quantum particles.
Such behavior of the kinetic temperatures for quantum particles comes by an additional
term for the decay rates (2.143) which vanishes for classical-classical interactions, see
Remark 2.3.23. We compare the results for the kinetic temperatures with the physical
temperatures in the last column. Even though the kinetic temperatures behave differently
for quantum particles, the physical temperatures converge to a common value in all cases.

5.4.2 Sulfur-Fluorine-electrons quantum test case

We repeat the test case from Section 5.2.3, but we treat the electrons like fermions; the
ions are kept to be classical particles. Moreover, we use constant collision frequencies
νij = 1 because of the underlying model from Section 2.3.2.
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Figure 5.22: Entropy and entropy dissipation for the test case in Section 5.4.1, exemplary
for fermion-fermion interactions. As predicted by the theory, the entropy decays mono-
tonically.
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Figure 5.23: Global conservation properties for the test case in Section 5.4.1. The mass
densities of each species, the total momentum (M) and total energy (E) have small
oscillations of the order of 10−14.

The masses and charge numbers of the species are

mS = 32.07u− 11me, mF = 19u− 7me, me = me,

ZS = 11, ZF = 7, Ze = −1

with the atomic mass u = 1.6605 · 10−24 g. Initially, we assume Maxwellian distributions
fi = M[ni,ui, Ti,mi]

nS = 1019 cm−3, nF = 6 · 1019 cm−3, ne = 53 · 1019 cm−3,

uS = uF = ue = 0
cm

s
,

TS = TF = 15 eV, Te = 100 eV.

We use momentum grids with 483 nodes for each species, and we use the second-order
IMEX RK scheme from Section 3.3.4 with time step ∆t = 0.01 fs.

The species are initialized with vanishing mean velocity, and the mean velocities stay
zero. We give the evolution of the temperatures in Figure 5.26. The kinetic temperatures
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Figure 5.24: Mean velocities for the test case in Section 5.4.1, exemplary for fermion-
fermion interactions as the convergence is independent of the type of species. The mean
velocities converge exponentially fast to a common value, and the numerical decay rate
hits the analytical one very well.

approach the mixture temperature (2.9), but they do not converge to a common value
which matches the experiences from the previous test case (see Figure 5.26 (a),(b)). The
relaxation process is much faster than in Section 5.2.3. This is not surprising because
the collision frequencies νij = 1 are much larger than before. Additionally, we observe
that the sulfur and fluorine particles relax in a slightly different way (see Figure 5.26 (c)),
whereas they always hit the same values in the purely classic test case in Section 5.2.3.

Hence, we see an impact when treating electrons like fermions. This motivates for
future studies.
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Figure 5.25: Temperatures for the test case in Section 5.4.1. First column: kinetic tem-
peratures; there remains a gap between the final values whenever a quantum particle is
involved. Second column: decay rates for kinetic temperatures in logarithmic scale; nu-
merical and analytical values coincide very well. Third column: comparison of kinetic and
physical temperature in logarithmic scale; the physical temperatures ϑ converge exponen-
tially fast, whereas the kinetic temperatures T behave differently for quantum particles.
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Figure 5.26: Evolution of the kinetic temperatures for the Sulfur-Fluorine-electrons quan-
tum test case in Section 5.4.2 using the constant collision frequencies νij = 1 and treating
the electrons like fermions. It seems as if the kinetic temperatures hit the mixture tem-
perature (2.9) as in the classical test case (a). However, we observe that the differences
in the kinetic temperatures only decay exponentially fast until they stay constant (b).
Additionally, the relaxation process of sulfur particles differs from the relaxation process
of fluorine particles (c).



Chapter 6

Conclusions and Outlook

We have given an introduction into kinetic theory with a focus on BGK-type equations.
A consistent multi-species BGK model with velocity-dependent collision frequency is
described in more detail including a motivation how to define collision frequencies for
Coulomb interactions in plasmas. Furthermore, we consider a quantum multi-species
BGK model and provide analytical decay rates for the mean velocities and kinetic tem-
peratures.

We have developed a numerical scheme which can be applied to both of the above mod-
els. As the target functions depend only implicitly on the distribution functions, a new
approach for the implication of the target functions is required. We provide a general
implicit solver which determines the target functions via a convex minimization problem.
This procedure mimics the dual of the minimization problem which defines the theoretical
model and also guarantees the conservation of mass, total momentum and total energy
at the discrete level during the relaxation process. Using a standard FV method ensures
the conservation properties during the transport process. The conservation properties at
the discrete level are proven analytically. The positivity of distribution functions holds
rigorously coupled to a possible time step restriction. We prove that a discrete entropy
dissipation property is fulfilled for a first-order scheme. Second-order schemes are used
for improved accuracy.

We have performed several numerical tests in order to illustrate the properties of the
BGK models and our numerical scheme. At first, we run test cases for a multi-species
BGK model with constant collision frequency comparing the results with analytical values
or simulations from the literature. The results are in good agreement.

The main part is given by several tests for the multi-species BGK model with velocity-
dependent collision frequencies where we use collision frequencies that are suitable for plas-
mas and characterized by a slower relaxation in the tails of the distribution functions. We
compare the results with simulations using velocity-independent collision frequencies of
comparable size. For space homogeneous set-ups, we illustrate that the velocity-dependent
collision frequencies induce a slower relaxation to equilibrium in the tails of the kinetic dis-
tributions; additionally, the convergence of the mean velocities and temperatures is slower
and different in form than for constant collision frequencies. We examine several Riemann
problems. The standard Sod shock tube problem is performed: the general fluid shock
structure is recovered, however kinetic effects are better observable for velocity-dependent
collision frequencies. Moreover, we run variations to the Sod problem involving mixtures.
The profiles for the Mach shock wave problems show close agreement between simulations
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using velocity-dependent and velocity-independent collision frequencies. Nevertheless, for
the interpenetration problem the effect of velocity-dependent collision frequencies on the
lighter species (in mass and charge state) are meaningful.

Furthermore, we illustrate the evolution of mean velocities and temperatures in a space
homogeneous setting when quantum particles are involved. The behavior of the mean ve-
locities is unaffected, and they converge exponentially fast to a common value like in the
classical case — in contrast to the temperatures. We need to distinguish between kinetic
and physical temperatures. While the physical ones do converge to a common value, the
kinetic ones behave differently resulting in a gap between the species’ kinetic tempera-
tures in equilibrium. The different behavior of a relaxation process of purely classical
particles compared to a relaxation process of classical particles and fermions inspires to
further studies.

The BGK approximation of the Boltzmann operator is appreciated among other things
for the ability of efficient simulations. However, extending the models by allowing for
velocity-dependent collision frequencies or including quantum effects is not without ad-
ditional costs. For our proposed scheme, the implication of the interaction operator
is realized by a minimization problem which requires a Newton solver. For the gradi-
ent and Hessian of the potential function, integrals in velocity space need to be calcu-
lated via a quadrature. A more efficient implementation of the optimization algorithm
[SBT17, AHOT14, AHT12, KHH15, Abr07] including a more advanced handling of the
velocity grid and quadrature rules is necessary in order to accelerate the solution pro-
cedure. Even though the extensions go with additional numerical costs, the models still
profit from better scaling properties than the original Boltzmann equations. We con-
firm this statement in the following. For evaluating the Boltzmann collision operator,
the fastest algorithms are spectral methods whose complexity for general collision kernels
scale like O(MN4 logN). This can be reduced to O(MN3 logN) for specialized kernels
[GHHH17, GT09, PR00, MP06]. Here, N is the number of points in each dimension of
the velocity grid, and M is the number of quadrature points for the approximation of
the integrals over the unit sphere S2 in R3. The size of M is problem dependent, but
typically it is N ≤ M ≪ N2 [MP06]. In comparison, the number of operations needed
for evaluating the BGK operator in our scheme scales like O(N3). Thus, our presented
method is more expensive than for standard BGK models but still of lower computational
complexity than for the Boltzmann operator. Moreover, grid resolution for multi-species
Boltzmann collision operators introduce expensive requirements for problems with signif-
icant differences in species masses [MTH+14]. Whereas we keep the advantage of BGK
models that the equations can be discretized on separate velocity grids.

Another possible feature of BGK models is the AP property. In this thesis, we have
not examined this attribute, but it would be worthwhile for future works, also in context
of the efficiency.

The idea of the implicit solver is not limited to a specific order of the underlying
scheme nor to a specific discretization technique in time. Hence, the use of high-order
schemes in time is straight-forward. The extension to higher order in space is more dif-
ficult because the relaxation operator also needs to undergo a high-order reconstruction.
Alternatively, one might use an SL approach.

The enlarged class of possible collision frequencies as well as including quantum effects
are physically motivated. Both extensions represent attractive options for exploring more
phenomena in the kinetic regime. Especially the quantum model asks for further tests
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with more elaborated initial data and in more general settings (e.g. shock waves).
Additionally, the models can be improved. A plasma consists of charged particles

which required to include a force term with an electric (and magnetic) field. The asso-
ciated transport in velocity space can be easily incorporated in the presented numerical
method. We have started a short excursion in Appendix A. We provide initial tests where
we simulate the phenomenon of Landau damping and consider Landau damping coupled
with relaxation. The numerical results match our expectations and form a basis for fur-
ther simulations. For future studies, it would be interesting to study different species
(in charge and mass) in more general set-ups and to use more advanced methods for the
transport terms.
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Appendices

A On damping of the electric field

In our scheme, we have not considered possible force terms, yet. Especially for charged
particles, this is a severe simplification. When a force term is encountered, an advection
in velocity space takes place. This is described by the additional term

Fi

mi
· ∇vfi

on the LHS of the kinetic equation, see Sections 2.1.1 and 2.1.2.

We now include a force term by the coupling to a self-consistent electric field which
has been described in Section 2.1.2. For simplicity, we only consider classical particles.
We implement a simplified version of the Lorentz force (2.17), i.e.

Fi = ZieE

where Zi denotes the charge state of species i, e the elementary charge and E the (self-
consistent) electric field. In our one-dimensional setting in space, the governing equations
for the electric field1 reduce to (2.24), i.e.

∂xE(x, t) =
q(x, t)

ε0
(6.1)

with the charge density q =
∑

i Zieni and the vacuum permittivity ε0. We assume periodic
boundary conditions and the zero-mean electrostatic condition∫

E dx = 0. (6.2)

Since the force F (x, t) acts only in the x-direction, the advection occurs only in the first
component of v: v(1). For ease in notation, we write v = v(1).

The system of PDEs (3.29) is extended to

∂tf1 + T (f1) = R1(f1, f2)

∂tf2 + T (f2) = R2(f2, f1)
(6.3)

with the transport operator

T (fi) = v ∂xfi +
Fi

mi
∂vfi

1In this section, E stands for the electric energy which is not the energy density of a species.
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and the relaxation operator

Ri(fi, fj) = νii(Aii − fi) + νij(Aij − fi).

The system (6.3) coupled to (6.1) are also called Vlasov-Poisson-BGK equations. For
references concerning numerics, see e.g. [HHM17b, Ful21]. We apply the discretization
techniques which have been presented in Sections 3.2–3.5. The remnant parts which come
by the force term are discussed in the following.

A.1 Numerical fluxes

We discretize the force term by a FV method. We interpret the values at the discrete-
velocity grid as cell-averaged quantities, which is second-order accurate. The advection in
v is discretized by numerical fluxes. Applying the same approach used for the advection
in x to the advection in v, we obtain

Fi

mi
∂vf ≈ 1

∆vi

(
Fi,q1+

1
2
− Fi,q1− 1

2

)
where

Fi,q1+
1
2
(g) =

Fi

2mi
(gq1+1 + gq1)−

|Fi|
2mi

(
gq1+1 − gq1 − ϕq1+ 1

2
(g)
)

and the flux limiter ϕ is given in (3.71).

A simple Forward Euler update (3.2) of

∂tf +
Fi

mi
∂vf = 0

reads

f ℓ+1
i,q1

= f ℓi,q1 −
∆t

∆vi

(
Fi,q1+

1
2
(f ℓi )− Fi,q1− 1

2
(f ℓi )

)
. (6.4)

The positivity of fi is guaranteed in (6.4) by enforcing the CFL condition

∆t < αmin
i

{
mi∆vi

maxx |Fi|

}
(6.5)

with α = 1 for the first-order flux and α = 2
3 for the second-order flux. Hence, the force

Fi also influences the stability criterion of the scheme.

A.2 Determination of the force

In order to determine the forces Fi, we need to solve (6.1) for the electric field. We
approximate the electric field by Eℓ

k ≈ E(xk, tℓ). A second-order discretization for (6.1)
is given by

E∗
k+1 − E∗

k

∆x
=
qℓk+1 + qℓk

2ε0
for k = 0, ...,K − 1,

E∗
0 − E∗

K

∆x
=
ρn0 + ρnK

2ε0

(6.6)
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which is calculated by a linear solver. In order to guarantee the zero-mean electrostatic
condition (6.2), the electric field at time step t = tℓ is determined by

Eℓ
k = E∗

k −
1

K + 1

∫
E∗ dx. (6.7)

Finally, the force reads

F ℓ
i,k = ZieE

ℓ
k. (6.8)

Having determined the force, we take a closer look to the time step restrictions of the
entire scheme.

A.3 Time step restrictions

In order to guarantee stability and positivity, the advection in both, space and velocity,
introduce restrictions for the size of the time step resulting in a CFL condition. The
Courant number C needs to be chosen such that

0 < C ≤ α

where α = 1 for the first-order numerical fluxes and α = 2
3 for the second-order numerical

fluxes. In terms of positivity, the contributions with negative sign of the advection in
veloctiy are to be added to the contributions with negative sign of the advection in
space. Hence, considering only the convection parts, the time step size ∆t for the update
tℓ → tℓ+1 is chosen to be

∆t = ∆tℓ = C min
q1,i,k

 1

|v(1)q1
|

∆x +
|F ℓ

i,k|
mi∆vi

 = C min
q1,i,k

 ∆x∆vi

∆vi|v(1)q1 |+∆x
|F ℓ

i,k|
mi

 . (6.9)

Since the forces may change between the stages of the second-order schemes, but ∆t is
set during an entire time step, we make the assumption that the Courant number C
comprises such changes.

Additionally, we we need to take care of the time step restrictions due to the positivity
preservation during relaxation steps which is already described in Section 4.3.

Now, we are ready for numerical simulations.

A.4 Numerical tests

We perform initial numerical tests in order to illustrate the damping of a self-consistent
electric field. In Section A.4.1, we start with the well-known Landau damping. In Section
A.4.2, we study the behavior of the electric field when an additional relaxation process
occurs.

A.4.1 Landau damping

We have introduced the phenomenon of Landau damping in Section 2.1.2. It describes
the damping of the self-consistent electric field for the (linearized) Vlasov-Poisson system.
More precisely, the electric energy

||E(x, t)||L2 =

√∫
E(x, t)2 dx (6.10)
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decreases in time being converted to kinetic energy.

Ions are considered as a neutralizing background density n0 = 1. We simulate electrons
and the self-consistent electric field in a spatial domain L = [0, 4π] with periodic boundary
conditions. The distribution function of electrons follows the Vlasov equation representing
the advection in phase space. Initially, we consider a slightly disturbed Maxwellian

fe(x,v, t = 0) = (1 + 0.01 cos(0.5x))M[ne,ue, Te,me]

with

ne = 1, ue = 0, Te = 1, me = 1,

mimicking a linearized system for our fully implemented equations. The charge number
is Ze = −1.

The simulation is run using a velocity grid with 243 nodes and a spatial mesh with 32
cells. We use the second-order IMEX RK scheme from Section 3.3.4 and the second-order
spatial discretization in Section 3.4 with the limiter given in (3.71). The transport in v
is discretized according to Sections A.1 and A.2. The time step is set to ∆t = 0.03 which
fulfils the CFL condition (6.9).

In Figure 6.1, we provide the numerical result. The electric energy decays exponen-
tially with the typical oscillations. The theory predicts a damping rate γ = 0.153 [FSB01]
which is recovered by our simulation. The oscillations need to be studied in more detail.
We suspect that the dissipative fluxes may lead to the shrinking of the amplitude of the
oscillations. This needs to be verified in further tests.

Moreover, we observe a phenomenon which is known as Poincaré recurrence. This
is a numerical phenomenon occuring for a periodic problem in space run on a uniform
velocity grid [Son19]. To explain this incident, we consider the one-dimensional free
streaming equation

∂tf + v ∂xf = 0.

For a periodic problem in x with period L, we represent f by a Fourier series. The mode
k of f obeys

∂tfk −
2πik

L
vfk = 0

with the solution fk(x, t) = e
2πik
L

vtfk(x, 0). As the velocities are discretized by v = q∆v,
we conclude that fk is periodic in t with period T = L

k∆v . In our set-up, we have L = 4π
and ∆v = 0.5. As the first mode dominates, the numerical result hits this recurrence time
reasonably. By reducing ∆v, the recurrence time gets larger and will not affect numerical
results.

This test case only considers one species (electrons), whereas ions are treated via a back-
ground density. We are especially interested in multi-species equations where interactions
are considered by BGK operators. Hence, the following tests handle the ions by evolving
distribution functions.
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||E(x, t)||L2

exp(−0.153 t)

Figure 6.1: Time evolution of the electric energy (6.10) for the Landau damping in Section
A.4.1. The decay rate coincides with the theoretical prediction (gray line).

A.4.2 Landau damping coupled with relaxation

We consider the full system (6.3) for two species where we use different collision frequen-
cies. We vary the magnitude for

ν̂ij = c · nj
δij + v̂

(6.11)

by having different values of c = 0, 10−1, 10, 102, 103, 104. Moreover, we implement the
velocity-dependent collision frequency

νij(v) = 10 · nj
δij + |v − umix|3

. (6.12)

The regularization parameter is δij = 0.1 · (∆vij)3 where ∆vij = 1
4

√
Tmix/(2µij and

µij = mimj/(mi + mj). The averaged velocity v̂ can be found in (2.100), respective
(5.10).

We simulate ions (species 1) and electrons (species 2) in a spatial domain L = [0, 4π]
with periodic boundary conditions. The masses and charge numbers are

m1 = m2 = 1 and Z1 = −Z2 = 1.

The initial conditions read

f1(x,v, t = 0) = M[n1,u1, T1,m1],

f2(x,v, t = 0) = (1 + 0.01 cos(0.5x))M[n2,u2, T2,m2]

with

n1 = 1, u1 = (0.5, 0, 0)⊤, T1 = 1,

n2 = 1, u2 = 0, T2 = 5.

The simulations are run using a velocity grid with 483 nodes and 32 equally spaced cells
in x. We use the second-order IMEX RK scheme from Section 3.3.4 with the limiter given
in (3.71). The transport in v is discretized according to Sections A.1 and A.2. The time
step ∆t = 0.0221 is set according to the CFL condition (6.9).
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Figure 6.2: Illustration of the time behavior of the mean velocities and temperatures
for the test case in Section A.4.2. The constant collision frequency ν̂ij in (6.11) takes
different values for the factor c. The larger c the faster is the local convergence in every
cell. This does not translate one-to-one to the global behavior of ||u1(x, t) − u2(x, t)||∞
and ||T1(x, t)− T2(x, t)||∞.

In Figures 6.2 and 6.3, we compare the numerical results for the constant collision fre-
quencies (6.11). The mean velocities and temperatures converge locally the faster the
larger the collision frequencies are. In Figure 6.2, we illustrate ||u1(x, t)−u2(x, t)||∞ and
||T1(x, t)−T2(x, t)||∞ as we consider a space inhomogeneous test case. These global quan-
tities show another behavior when the collision frequencies become large (c = 103, 104).
We observe a damping of the electric field for each case of c, see Figure 6.3. The electric
energy does not differ visibly for c = 0 and c = 10−1. A small but considerable relaxation
process (c = 10, 102) accelerates the damping of the electric field. However, a large value
of c = 103, 104 corresponds to a slow decay of the electric field without oscillations. This
phenomenon fits to the theoretical results in [Bau21] where it is important to assume
small collision frequencies in order to prove the damping of the electric field. It would be
worth to study the effect of the size of the collision frequency in more detail.

In Figures 6.4 and 6.5, we compare the result for the velocity-dependent collision
frequency (6.12) to the corresponding constant one, (6.11) with c = 10. As we already
realized in previous test cases, the relaxation process of the mean velocities and tempera-
tures is significantly different when velocity-dependent collision frequencies (of comparable
size) are encountered, see Figure 6.4. In Figure 6.5, we observe that also the damping of
the electric energy is affected when using velocity-dependent collision frequencies.

To summarize, the coupling to a self-consistent electric field leads to interesting phenom-
ena and asks for more numerical tests. The provided simulations serve as a first sample.
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Figure 6.3: Damping of the electric field for the test case in Section A.4.2. The constant
collision frequency ν̂ij in (6.11) takes different values for the factor c. The curves for
c = 0 and c = 10−1 coincide. For small collision frequencies, the phenomenon of Landau
damping is still visible. When the collision frequencies become larger, the relaxation
process predominates resulting in a significantly different decay of the electric energy.
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Figure 6.4: Illustration of the time behavior of the mean velocities and temperatures
for the test case in Section A.4.2 where we compare between the result for the constant
collision frequency ν̂ij in (6.11) using the factor c = 10 and the result for the velocity-
dependent collision frequency νij(v) in (6.12). The relaxation process is obviously differ-
ent.
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Figure 6.5: Damping of the electric field for the test case in Section A.4.2 where we
compare between the result for the constant collision frequency ν̂ij in (6.11) using the
factor c = 10 and the result for the velocity-dependent collision frequency νij(v) in (6.12).
The decay of the electric energy shows a significantly different behavior.

B General implicit solver for 3 species

The presented scheme is based on the general implicit solver in Section 3.3.5. We shortly
illustrate that this method can be extended to more than 2 species in a straight-forward
way. Let us consider 3 species described by distribution functions f1, f2 and f3. The
transport operators act on the individual species such that only the relaxation process is
of interest here.

As in Section 3.3.5, we write the implicit updates of the distribution functions in a
generic steady state form

fi = ciGi + ciγ∆t(νiiAii,τi + νijAij,τi + νikAik,τi) (6.13)

for i, j, k ∈ {1, 2, 3}, each of i, j, k distinct, where Aii,τi , Aij,τi and Aik,τi are the unique
target functions associated to fi,

ci =
1

1 + γ∆t(νii + νij + νik)
, (6.14)

and Gi is a known function. We aim to express Aii,τi , Aij,τi and Aik,τi as functions of Gi,
Gj and Gk so that (6.13) provides an explicit update formula for fi.

We apply the conservation properties to (6.13). An analogous calculation as in the
2-species case leads to∫

c1 (ν11A11,τ1 + ν12A12,τ1 + ν13A13,τ1)a1 dw

+

∫
c2 (ν21A21,τ2 + ν22A22,τ2 + ν23A23,τ2)a2 dw

+

∫
c3 (ν31A31,τ3 + ν32A32,τ3 + ν33A33,τ3)a3 dw

=

∫
c1 (ν11 + ν12 + ν13)G1a1(w) dw +

∫
c2 (ν21 + ν22 + ν23)G2a2(w) dw

+

∫
c3 (ν31 + ν32 + ν33)G3a3(w) dw,

(6.15)
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which provides a set of constraints to determine the target functions from the given data.
The constraints in (6.15) represent first-order optimality conditions associated to the

minimization of the convex function

φtot(α1,α2,α3,α12,α13,α23) = φ1(α1) + φ2(α2) + φ3(α3) + φ(α12) + φ(α13) + φ(α23)

with

φi(αi) =

∫
ciνiihτi [Aii,τi ] dw + µii ·αi

and

φ(αij) =

∫ (
ciνijhτi [Aij,τi ] + cjνjihτj [Aji,τj ]

)
dw + µij ·αij .

This formulation already suggests that the minimization can be decoupled. As in the
2-species case, we have

hτi [Aij,τi ] =
log(1− τiAij,τi)

τi
=


−Aij,τi for τi = 0,

log(1−Aij,1) for τi = +1,

− log(1 +Aij,−1) for τi = −1.

Moreover, αi = (α
(0)
i ,α

(1)
i , α

(2)
i )⊤;

µii =

µ
(0)
ii

µ
(1)
ii

µ
(2)
ii

 =

∫
ciνiiGiai(w) dw

for i = 1, 2, 3; for i ̸= j : αij = (α
(0)
ij , α

(0)
ji ,α

(1)
ij , α

(2)
ij )⊤; and

µij =


µ
(0)
ij

µ
(0)
ji

µ
(1)
ij

µ
(2)
ij

 =

∫ 

a
(0)
i (w)
0

a
(1)
i (w)

a
(2)
i (w)

 ciνijGi +


0

a
(0)
j (w)

a
(1)
j (w)

a
(2)
j (w)

 cjνjiGj

 dw.
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C Pseudo codes

The main code has a simple structure, see Algorithm 1. The update of the distribution
functions depends on the chosen time and space discretization. In Algorithms 2–5, we give
the pseudo codes for the first-order splitting scheme, the first-order IMEX RK scheme,
the Strang splitting and the second-order IMEX RK scheme. In Algorithm 6, we provide
the pseudo code for the transport step needed for the splitting schemes. The code’s core
is represented by the relaxation process, see Algorithm 7. We conclude with Algorithm 8
where the update of the force according to a self-consistent electric field is described.

Algorithm 1 The structure of the main code.

1: set initial and boundary conditions
2: create grids (see Sections 3.4 and 3.5)
3: initialize distribution functions
4: determine initial target functions (see Remark 3.3.2)
5: if force active then
6: determine initial force (see Algorithm 8)
7: end if
8: set time step according to CFL condition (see Sections 4.3 and A.3)
9: for iterations do

10: if force active or positivity violated then
11: calculate new time step size (see Sections 4.3 and A.3)
12: end if
13: update distribution functions (Algorithms 2–5)
14: end for

Algorithm 2 Update of distribution functions according to first-order splitting (Sec-
tion 3.3.1): The scheme consists of a first-order relaxation step, followed by a first-order
transport step.

1: first-order relaxation step (Algorithm 7)
2: first-order transport step (Algorithm 6)

Algorithm 3 Update of distribution functions according to first-order IMEX RK (Section
3.3.2): The numerical fluxes are needed in order to compute the input data for the first-
order relaxation step.

1: if force active then
2: update force (see Algorithm 8)
3: end if
4: calculate first-order numerical fluxes (see Sections 3.4.1 and A.1)
5: first-order relaxation step (Algorithm 7)
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Algorithm 4 Update of distribution functions according to Strang splitting (Section
3.3.3): The update starts and ends with a second-order transport step. In between, the
target functions need to be updated because they are needed for the input data of the
relaxation step.

1: second-order transport step with ∆t
2 (Algorithm 6)

2: update target functions (see Remark 3.3.2)
3: second-order relaxation step with ∆t (Algorithm 7)
4: second-order transport step with ∆t

2 (Algorithm 6)

Algorithm 5 Update of distribution functions according to second-order IMEX RK
(Section 3.3.4): Both stages begin with the numerical fluxes in order to compute the
input data for the second-order relaxation step.

1: for stages 1 and 2 do
2: if force active then
3: update force (see Algorithm 8)
4: end if
5: calculate second-order numerical fluxes (see Sections 3.4.1 and A.1)
6: second-order relaxation step (Algorithm 7)
7: end for

Algorithm 6 The transport step (Section 3.4) follows either the Forward Euler method
(3.2) or Heun’s method (3.4).

1: for stages do
2: if force active then
3: update force (see Algorithm 8)
4: end if
5: calculate numerical fluxes (see Sections 3.4.1 and A.1)
6: update distribution functions e.g. by a combination of (3.73) and (6.4)
7: end for
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Algorithm 7 The structure of the relaxation step (Section 3.3.5) is illustrated. The
input data possibly takes numerical fluxes and target functions evaluated at previous
steps/stages into account. This depends on the chosen time and space discretization.
Afterwards, varying collision frequencies are updated. Due to Assumption 2.2.11, the
collision frequencies remain untouched by the relaxation process which guarantees the
conservation properties at the discrete level. The potential functions are minimized by a
Newton algorithm which requires the evaluation of gradients and Hessians. This procedure
yields the values of the target functions at the next time step, followed by the update
of the distribution functions. Eventually, the positivity of the distribution functions is
checked (for the second-order schemes).

1: calculate input data (3.56) and (3.57) (dependent on time discretization)
2: update collision frequencies (see Sections 2.2.3 and 3.3)
3: minimize potential functions (3.58) and (3.59) by Newton’s method which determines

new values of target functions
4: update distribution functions by (3.50)
5: check positivity (see Section 4.2)

Algorithm 8 The force is determined according to Section A.2. The crucial step is to
solve a system of linear equations which determines the self-consistent electric field.

1: calculate charge density
2: calculate electric field by solving (6.6) via a linear solver
3: enforce zero-mean electrostatic condition by (6.7)
4: calculate force by (6.8)
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D Units

In the presented models, we do not emphasize the use of units which is often done in
mathematics. However, for physical reasons units should not be disregarded.

One option to avoid unit mess is to use dimensionless equations. Once these are
derived, no more attention for units is needed. Additionally, one only has to deal with
mass ratios, not with individual, possibly very small masses.

In this thesis, we have not considered dimensionless equations, but we made use of a
normalization, see Remark 5.2.1. We further mention a few things regarding units for our
equations.

D.1 CGS system

There exist several unit systems. In plasma and astrophysics, people mainly use the CGS
system. The basic units are

� [s] = cm for path length,

� [m] = g for mass,

� [t] = s for time,

which explains the system’s name. Additionally, the system is augmented by electrostatic
units. The base energy unit is

� [E] = erg = g· cm2

s2
.

Nevertheless, termperatures are usually expressed in another energy unit:

� [T ] = eV.

This means that a conversion between the temperature and the base energy unit is re-
quired (similar to the SI unit system) which is often denoted by a Boltzmann constant
kB, i.e.

3n kB︸︷︷︸
erg/eV

T︸︷︷︸
eV

=

∫
m|v − u|2︸ ︷︷ ︸

erg

f(v) dv. (6.16)

Accordingly, the typical variables in kinetic simulations have the following units:

� number density: [n] = 1/ cm3,

� velocity: [v] = cm/ s,

� temperature: [T ] = eV = 1.60218× 10−12 g cm2

s2
.

More information including constants in CGS units can be found in Appendix E. For
instance, the vacuum permitivity reads ε0 = 1/4π. This simple representation illustrates
why the CGS system is useful. When the CGS system is used in the literature, 4πε0 is
often set to 1 already in the formulas.
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D.2 Units in the quantum case

The formulae in Section 2.3 suggest [f ] = 1. Though, the distribution function is a density
in phase space; accordingly, we require

[f ] =
1

[x][p]
.

Replacing

f 7→ f

h3
· m

3

β

in all formulae corrects this issue. Here, m is the mass, h is the Planck constant and β
is the statistical weight of a particle (being the number of independent quantum states
with the same internal energy). We additionally need to replace

τ 7→ h3
β

m3
τ.

For more information, see [CC70, Chapter 17].
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E List of symbols

We provide a collection of used notation and give the CGS unit when possible. Firstly,
we present an overview over used indeces and notation for coordinates.

symbol quantity/description CGS unit index, sub/superscript

number of species i, j ↓
type of species (classic, fermion, boson) τ ↓

component r of vector (r) ↑

coordinates

t time coordinate s

ℓ ↑
∗ (splitting step) ↑

[·] (stage) ↑
x space coordinate cm k ↓

(w =)v velocity coordinate cm
s q ↓

(w =)p momentum coordinate g cm
s q ↓

a vector summarizing 1,w, |w|2

The following table presents the symbols used for operators, distribution functions and
correlated quantities, macroscopic and physical quantities.

symbol quantity/description CGS unit

operators and more

Q interaction operator

R relaxation operator

T transport operator

F numerical fluxes

distribution functions

f distribution function (classic) 1
[x]3[v]3

= 1
cm3

s3

cm3

f distribution function (quantum) 1
[x]3[p]3

= 1
cm3

s3

g3 cm3

A target function/attractor

M Maxwell distribution function 1
[x]3[v]3

= 1
cm3

s3

cm3

G classical target function for ν(v) 1
[x]3[v]3

= 1
cm3

s3

cm3

E quantum target function 1
[x]3[p]3

= 1
cm3

s3

g3 cm3
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F Fermi-Dirac distribution function 1
[x]3[p]3

= 1
cm3

s3

g3 cm3

B Bose-Einstein distribution function 1
[x]3[p]3

= 1
cm3

s3

g3 cm3

λ Lagrange multiplier; parameter in A
µ given input data ([ρ], [nu], [E])⊤

macroscopic quantities

ρ mass density [m]
[x]3

= g
cm3

n number density 1
[x]3

= 1
cm3

u mean velocity [v] = cm
s

T (kinetic) temperature eV

ϑ (physical) temperature eV

E(e) (internal) energy density [m][v]2

[x]3
= g cm2

s2
1

cm3

Q energy flux

P pressure tensor g
cm s

p pressure g
cm s

q electric charge density
√

eV cm
cm3

j electric current
√

eV cmcm
cm3 s

H entropy density

h integrand for entropy density

D entropy dissipation

φ potential function

H ‘discrete’ entropy density in scheme

h integrand for ‘discrete’ entropy density

physical quantities

m mass g

µ reduced mass g

ν collision frequency 1
s

E electric field 10−2 Volt
cm

B magnetic field 103 g
s2Ampère

F force g cm
s2

log Λ Coulomb logarithm 1
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λD Debye length/screening length cm

λdB deBroglie wave length cm

b90 distance of closest approach cm

Z charge number 1

Kn Knudsen number 1

Pr Prandtl number 1

We conclude with a summary of some physical constants.

symbol quantity/description value of constant CGS unit

physical constants

e2 square of elementary charge 1.44 · 10−7 eV cm

kB Boltzmann constant 1.60218 · 10−12 erg
eV

h Planck constant 4.135667696 · 10−15 [p][x] = eV s

ε0 vacuum permittivity 1
4π 1

c speed of light in vacuum 2.99792458 · 1010 cm
s

µ0 vacuum permeability 1
ε0c2

s2

cm2
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F Glossary of abbreviations

cm- g- s (CGS) unit system. 2, 49, 118, 121, 129, 131, 157, 159

AP asymptotic-preserving. 15, 76, 85, 142

BBGKY Bogoliubov–Born–Green–Kirkwood–Yvon. 8–10

BGK Bhatnagar–Gross–Krook. iii, 2, 3, 14, 20, 27–32, 34–39, 46, 47, 56, 57, 60–62, 68,
69, 73, 74, 76, 77, 80, 81, 84–87, 98, 99, 103, 113, 119, 120, 127, 134, 141, 142, 146,
148

CFL Courant-Friedrichs-Lewy. 74, 86, 87, 98, 101–103, 105, 106, 110, 114, 127, 129, 130,
132, 146, 148, 149

DIRK diagonally implicit Runge-Kutta. 70, 75

ES-BGK ellipsoidal statistical BGK. 30

FD finite difference. 77

FEM finite element. 77, 79

FV finite volume. 77–79, 85, 87, 97, 107, 127, 141, 146

GSA globally stiffly accurate. 75, 76, 93

ICF inertial confinement fusion. 2, 131

IMEX implicit-explicit. iii, 74, 75, 77, 87, 90–93, 101, 103, 104, 114–117, 119, 123, 127,
129, 130, 132, 137, 148, 149, 154

ITER International Thermonuclear Experimental Reactor. 2

JET Joint European Torus. 2

KPP Klingenberg-Pirner-Puppo. 30, 36, 67, 86, 115

LHS left-hand side. 10, 16, 17, 34, 63, 145

ODE ordinary differential equation. 69–71, 73, 74, 76, 78

PDE partial differential equation. 1, 18, 20, 71, 75, 76, 79, 88, 91, 145

RHS right-hand side. 9, 10, 16, 23, 29–31, 34, 101, 106, 128

RK Runge-Kutta. 69–73, 75, 77, 87, 91–93, 101, 103, 104, 114–117, 119, 123, 127, 129,
130, 132, 137, 148, 149, 154

SL semi-Lagrangian. 79, 80, 142

SSP strong-stability-preserving. 76, 77, 103
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Perthame. The Gaussian-BGK model of Boltzmann equation with small
Prandtl number. European Journal of Mechanics - B/Fluids, 19(6):813–
830, 2000. doi:10.1016/S0997-7546(00)01103-1.

[And89] J. D. Anderson. Hypersonic and high temperature gasdynamics. McGraw-
Hill, 1989.

[AP12] Alessandro Alaia and Gabriella Puppo. A hybrid method for
hydrodynamic-kinetic flow – Part II – Coupling of hydrodynamic and ki-
netic models. Journal of Computational Physics, 231(16):5217–5242, 2012.
doi:10.1016/j.jcp.2012.02.022.

[ARS97] Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. Implicit-explicit
Runge-Kutta methods for time-dependent partial differential equations.
Applied Numerical Mathematics, 25(2):151–167, 1997. Special Issue on
Time Integration. doi:10.1016/S0168-9274(97)00056-1.

[Asi08] Pietro Asinari. Asymptotic Analysis of Multiple-Relaxation-Time Lat-
tice Boltzmann Schemes for Mixture Modeling. Comput. Math. Appl.,
55(7):1392–1407, April 2008. doi:10.1016/j.camwa.2007.08.006.

163

https://doi.org/10.1023/A:1014033703134
https://doi.org/10.1016/j.jcp.2013.10.049
https://doi.org/10.1137/11084772X
https://doi.org/10.1016/S0997-7546(00)01103-1
https://doi.org/10.1016/j.jcp.2012.02.022
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/j.camwa.2007.08.006


BIBLIOGRAPHY 164

[Atk89] Kendall E Atkinson. An introduction to numerical analysis. John wiley &
sons, second edition, 1989.

[BAA+21a] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed
Brown, Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro Dal-
cin, Alp Dener, Victor Eijkhout, William D. Gropp, Václav Hapla, Tobin
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