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1. Introduction

In this paper we studied the Cauchy problem of the following system of
isentropic gas dynamics with a moving source term

v + (vu), = a(x — kt)vu

(1.1)

(vu); + (vu® + o (v)), = alx — kt)vu? — ((z, t)vulul,

where u is the velocity of gas, v the density, o(v) the pressure, the positive
constant k£ denotes a moving speed [12], and ((z,t) > 0 is a friction function
of the space variable x and the time variable t. In physics, the pressure
o taking the special form o(v) = %1/7, is for the polytropic gas, where the
adiabatic exponent v > 1.

When ( is a constant, k = 0 and a(z) = —Cg((j)), where the function a(z)
denotes a slowly variable cross section area at z in the nozzle, the global
entropy solutions for the Cauchy problem (1.1) with bounded initial data

(vl 0), u(z,0)) = (vo(x), uo(2)),  vola) > 0 (1.2)

were first studied in [3, 20] when the adiabatic exponent 1 < v < g, and
by the author in [15] for any adiabatic exponent v > 1, if the initial data
satisfy the strong restriction condition Y(vg(x),ug(x)) < 0, where T is a
Riemann invariant given in (1.8). The initial-boundary value problem of
compressible Euler equations including friction and heating that model the
transonic Fanno-Rayleigh flows through symmetric variable area nozzles is
studied in [4].

It is well-known that the unique difficulty to deal with the inhomogeneous
system (1.1) is to obtain the a-priori L estimates of the approximation
solutions of (1.1), for instance, the a-priori L* estimates of the classical

viscosity solutions for the Cauchy problem of the following parabolic system

v+ (vu), = a(z — kt)vu + evy,
(1.3)
(vu); + (v + o (v)), = alx — kt)vu? — ((z, t)vu|u| + e(vu) 4y,

with the initial data (1.2).

When a(z — kt) = 0, (1.1) is the river flow equations, a shallow-water
model describing the vertical depth v and mean velocity u, where ((z, t)vu|u|
corresponds physically to a friction term and ( is the friction coefficient. This
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kind of inhomogeneous systems is simple since the source terms have, in some
senses, the symmetric behavior (see [8] for the details).

When ((z,t) = 0 and k = 0, i.e., the nozzle flow without friction, system
(1.1) was well studied in (cf. [3, 13, 14, 16, 21, 22, 23|, and the references
cited therein). Roughly speaking, the technique introduced in these papers,
is to control the super-linear source terms «a(z)vu and a(x)vu? by the flux
functions vu and vu® 4+ o(v) in (1.1) and to deduce a upper bound of A or
T by a bounded nonegative function ¢ (z), which depends on the function
a(x).

When a(z) # 0 and ((x,t) #Z 0, both the above techniques do not work
because the flux functions can not be used to control the super-linear friction
source terms (vu|ul|, and the functions «o(z)vu destroy the symmetry of the
Riemann invariants (A, Y) (see [9] for the numerical analysis).

However, we may copy the following steps given in [16] to overcome the
above difficulty.

First, to avoid the singularity of the flux function vu” near the vacuum
v = 0, we still use the technique of the {-flux-approximation given in [17]
and introduce the sequence of systems

2

v+ (—28u + vu), = a(z — kt)(v — 2§)u

(vu); + (vu? — &u® + 01 (1, 6)) = a(x — kt) (v — 28)u? — (o, t)vulu|
(1.4)
to approximate system (1.1), where £ > 0 denotes a regular perturbation
constant and the perturbation pressure

o1 (v, ) = /2 5 %a’(t)dt. (1.5)

Second, we add the classical viscosity terms to the right-hand side of (1.4)
and obtain the following standard parabolic system

v+ (v —20)u), = oz — kt) (v — 2§)u + vy

(vu); + (vu? — &u? + 01(v,€)), = alz — kt)(v — 28)u? — ((x, )vulu| + e(vu) 4
(1.6)

with initial data

(V5 (@, 0), ut(, 0)) = (no(x) + 26, uo(x)), (1.7)



9A oA

where (1(7),ug(z)) are given in (1.2). Now multiplying (1.6) by (5, 55

u):/:@ds—u, / \/—d +u (L8)

are the Riemann invariants of (1.1), ¢ is a constant and m = vu denotes the
momentum, we obtain

A+ ASA,

= Do+ Srelhe = g (20 w0y, (19)

+a(x — kt)(v — 2§)u—”i(y) — ((z, t)ulu

and
T, + AST,
— 2e e / ", 2
= Vo + 21,1, 21/2\/m(20 +vo" v (1.10)
talz — k) (v — 20u¥2Y 4 (2, tyulul,
where

=T VER o A= R GG

v
are two eigenvalues of the approximation system (1.4).

It is obvious that the terms a(z—kt)(v—2¢)u m in (1.9) and (1.10) are
not symmetric with respect to the Riemann 1nvar1ants A, Y. However, with
the strong restriction Y (vy(z),up(z)) < 0 on the initial data, we obtained
the uniformly upper bounds of T and A in [20, 15], by using the maximum
principle. Unfortunately, without the condition Y (vy(z), ug(z)) < 0, we will
meet some new technical difficulties when we study the Cauchy problem (1.1)

and (1.2).

2. Main Results

In this paper, we will unite the techniques given in [8] and in [20, 15]
to obtain the estimates T < w(x — kt) and A < w(x — kt), for a suitable
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uniformly bounded function w(z — kt), and to prove the global existence of
the entropy solutions for the Cauchy problem (1.1) and (1.2).
The main results of this paper are in the following Theorems 1-3.

Theorem 1. Let o(v) = %1/7,7 > 1, ((z,t) >0 and a(x — kt) <0.
(I). Let1 < v < 3,k > 0. Then there exists a function ¢(x) € B2(—o0, 00)
satisfying ¥(x) < M < k and the inequality (2.5) given below such that

(o (x, )’

T (5 (2, 1), ubc (z,t)) = 7

—ub(z,t) < (x — kt) (2.1)

and

(= (x, 1))
0

if the initial data Y (v5¢(z,0),us¢(z,0)) < ¥(z) and A(v54(x,0),u(x,0)) <
(x) € B2, where ¢, = w and 0 = 1.

(IT). Let v > 3,k < 0. Then there exists a function x(z) € C3(—o0, )
satisfying x(x) < M < —%k and the inequality (2.6) given below such that
Y (5 (x, t), use (2, 1)) < x(z — kt), A5 (z,t), us (2, 1)) < x(x — kt), which
are similar with the estimates (2.1) and (2.2).

AV (2, 1), us (x,1)) = +ubE(2,t) < P(x — kt) (2.2)

Theorem 2. Let o(v) = }/zﬂ,v > 1, {(z,t) > 0 and a(x — kt) = a_(z —
kt) + ay(x — kt), where a_(x — kt) < 0,y (z — kt) > 0.

(IIT). Let 1 < v < 3,k > 0. Then there exists a function ¥(zx) €
B2(—o00,00) satisfying ¥(x) < M < k, the inequalities (2.12) and (2.13)
given below, such that the same estimates like (2.1) and (2.2) are true.

(IV). Let v > 3,k < 0. Then there exists a function x(x) € C3(—00, )
satisfying x(z) < M < —%k, the inequalities (2.14) and (2.15) given below,
such that YT (V5 (z,t), us*(z,t)) < x(x — kt), AW (z,t), u(2,t)) < x(z —
kt) are true.

Theorem 3. If the conditions about the functions a(x — kt), ((z,t) and the
initial data in Theorem 1 or Theorem 2 are satisfied, then there exists a
subsequence of (V5°(z,t),us(x,t)), which converges pointwisely to a pair of
bounded functions (v(z,t),u(x,t)) as &, e tend to zero, and the limit is a weak
entropy solution of the Cauchy problem (1.1)-(1.2).



Definition 1. We call a pair of bounded functions (v(x,t),u(x,t)) is a weak
entropy solution of the Cauchy problem (1.1)-(1.2) if

I3 22 vy + (vu)d, + alx — ktyvugdadt + [ vo(z)p(x, 0)dz = 0,
I [ vugy + (vu? + 0 (v)) s + (a(x — kt)vu® — ((x, t)vulul)pdadt

+ [ vo(z)ug(z)p(x, 0)dx = 0
(2.3)
holds for all test function ¢ € Cj(R x R*) and

fooo ffooo n(v,m)o; + q(v,m)o, + a(x — kt)vun(v,m), o
2.4
+(a(x — kt)vu? — ((z, t)vu|u|)n(v, m)odedt > 0

holds for any non-negative test function ¢ € C§°(R x Rt — {t = 0}), where
m = vu and (1,q) s a pair of convezr entropy-entropy fluz of system (1.1).

Remark 1: The definitions of B3(R) and C3(R) are given in [15]. For a
given () € B3(R), if we let x(x) = ¢(—z), then x(z) € C3(R).

Before we prove Theorems 1-3 in the next sections, we first construct
some necessary special functions in B2(R) and C3(R).
Example 1: For a given a(z), we can find many functions ¢ (x) in the set

B2(R), which satisfy
0?a?(x — kt)p*(x — kt) + (1 — 0)*? — 20(1 + 0)a(x — kt)p(x — ki),

+de10a(x — kt)(x — k), <0
(2.5)
or x(z) in C2(R) satisfy

0202 (z — kt)x*(z — kt) + (1 — 0)*x2 +20(1 + 0)a(x — kt)x(x — kt) Xz

—defa(x — kt)x(x — kt)x. <0,
(2.6)
for a small e; >0
For instance, we choose a(x) = 22 a(x) = —Z((f)) = —2 as the author

studied in [21] for the spherically, symmetric solutions in z > 1. We now



extend it to the whole space = € (—00, c0) in the following way:

(2.7)

—2 for x> e,
€T
2
ax) = —é, for 0<z <ey,
0, for x<0,
where g9 > 0 is a constant. Then we can easily check that the following
function
((qz®,  for x> e,
Bz?
P(z) = qe*, for 0<uxz<e,
l @1, for <0,
satisfies

v

W) = ~Dale)i(a) it gef = gt

where ¢, q, are two positive constants and [ is a negative constant.

clearly — M (z) < ¢'(z) <0.

Moreover,
( qB(B — 12772, for x> e,
" pa? pa?
P'(x) = qlée%g + ql(f—g)Qe %5, for 0<ux<e,
L 0, for x <0,

and ¢"(z) = ¢ (z
definition of B3(R), thus ¥ (x) € B3(R).

(2.9)
Then

(2.10)

) + o), where 1 (z),102(x) satisfy the conditions in the

Let —2 = %, Then we can easily check that v (z — kt) satisfies (2.5),

where () is given by (2.9).

In fact, let v, = —aw(g;kt) =L

a(x — kt)(xz — kt). Then ¢, < 0 and



(2.5) is equivalent to
0?0 (x — kt)p*(x — kt) + (1 — 0)%? — 20(1 + 0)a(z — kt)p(x — ki),

+e10a(x — kt)(x — kt)),
=20(1 — O)a(x — kt)(x — kt)h, — 20(1 + O)a(x — kt)(x — kt),
+de10a(x — kt)(x — kt)i),

= (=40 + 4e1)0a(x — kt)p(z — kt)p, < 0.
(2.11)
Example 2: We may choose suitable functions a_(z — kt) and o (z — kt)
to obtain the functions i (z — kt) satisfying

0202 (v — kt)?(x — kt) + (1 — )2 — 20(1 + 0)a_(x — kt)p(x — kt )i,

+4e10a_(x — kt)(x — kt)y, <0
(2.12)
and

4=k + (1 +e)(x — kt))bo(x — kt) — ay (v — kt)*(x — kt) >0 (2.13)
or x(z — kt) satisfying
0202 (x — kt)x*(z — kt) + (1 — 0)*x2 + 20(1 + 0)a_(x — kt)x(z — kt)xs

—de1fa_(z — kt)x(x — kt)x, <0
(2.14)
and

4~k + (1 +e)x(z — kt))xo(x — kt) — ay(z — kt)x*(z — kt) >0 (2.15)

for a small £; > 0.
For instance, if we let a_(x), ¥ (x) satisty (2.9) or

e (x — kt) = —ga_ (x — kt)(z — kt), (2.16)

then (2.12) is true. Clearly (2.13) is also true if
A=k + (14 e) M) (x — kt) — Moy (x — kt)p(x — kt) >0 (2.17)
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or

Ui (x — kt) > —lgay (x — kt)(x — kt) (2.18)

for a suitable positive constant ly. If we choose a_(x — kt) and o (x — kt)
such that
B

—§a_(x — kt) > —lpay (v — kt), (2.19)

then i (x — kt) satisfies (2.13).

The proofs of Theorems 1-3 are given in the following several sections.

3. Proof of Theorem 1.

By using the transformation T = i (z,t) + m, for a suitable function
Y(z,t) in (1.10), we have

T+ P+ (u— 20 (V) (T + a)

2
= EMgz + 577Z)aca:

2e @ _ € / "y, ,2
ZVpTz + Vg —QVQW(QU +vo" v (3.1)

e — k)T () + 7 — 7 YT D) 4 (e, tyulul,
which is
T+ (0= ST — a0l )+ 7 — [ YT ) — ST
Ty + (T,

_ _ 2 _
- Eﬂ-xaﬁ 9,2 /_/(V) (20_ +VU )[ T 20’+Va’” Vcc x 20" +l/0'”

+577Z)xx Vxﬂ-w 20" +l/gu @Z)2 - Oé - kt)y%%\/ O'/(V)'(ﬁ(l‘, t)
x—kt) =20’ (v)m + a(z — kt) =2 /o' (v) [F —”O:(V)dy + ((z, t)ulul

(3.2)



or

T+ G+ ale, )y + b, O 4 [~ T2 e, — egih(x, B

20'+vo’!

+ YT i, — (1= )l 1), — C(, Dulul

(3.3)
e = k) (1) = (v — 26) V7
—a(r — kt)(v — 28)~ i(y) X C:(V)dy < €My,
for a suitable small constant ; > 0, where a(z,t) — =20 (v) — Zy,

and b(x, 1) = =, + alx — kt)(v — 20) Y2,
Similarly, if we make the transformation A = ¥(z,t) + s in (1.9), we
obtain

st + P + B0 (1) (50 + Ua)
— 2 2 2
= ESzy + 5¢zx + fyxsx + fljxd}x - W(QOJ + VOJ/)V:C (34)

— kt) =2\ /o' (v)u — ((z, t)ulul,

which is

Sk Yt (u et BTy + Gl t) 5 = [73TE) + 058 Tw)
(20" + va")[V? +42V'J(V Ve + (QV\/O_wm)]

= E£ES — RN SN
T (7'/+1/0'// ZI/‘ 20'/+1/0'”

2024 /o’ (v)

tet + Zups, + T2 4 (e — kt) =20 (V)u — ((x, ulul

(3.5)

or

St Uy + e, t)se + d(2, )8 + [T 2 oy — eip(x, )by

20’ +vo!’
(2T W) — [ YT dv) + (1 1) e, ), (36)
—a(r — kt)l/—T%\/UI(V)U + ((z, t)ulu| < 844,
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where c(z,t) = u + =2/0'(v) — Zv, and d(z,t) = ;.

By using the maximum pr1nc1ple to the first equation in system (1.6), we
may obtain the a-priori estimate v > 2¢. Then letting € = o(§) and € = o(ey),
we have the following estimates on the three terms of the left-hand side of
(3.3) and (3.6)

2e/0'(v) ,
207 + vo’

U3 — Ehay — 12, 1)1y > 0, (3.7)
Now we rewrite (3.3) and (3.6) as follows:

i+ U+ alx, ) + b(x, t)7

YT g, (1 e, e+ 2 ) — )l
(3.8)
oz — ktyb(a, t) — ] (v — 26) Y20

—a(x — kt)(v — 2¢) \/_ [ mdu < €Mya,

and
St + WU+ c(x, t)s, +d(x,t)s

F(SE ) - [ YT+ (el . (3

+1(¢(2, t)|u| — alz — kt) =2 /0'(v)) (s — ) < ESua.

If we may choose a suitable bounded function v (x,t) such that the fol-
lowing inequalities hold

Ut YD o, — (1= 1), B

<
S

Hale — kt)b(a, t) — ] (v — 26) (3.10)

—a(z — kt)(v — 26)~ JVI(V) X U;(V)du >0

and

U+ V(2T 0) — [P YD) + (14 e)(x, )y > 0, (311)
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then we have from (3.8) and (3.9) that
T+ a(@, £)m, + b(x, ) + 5C(2, t)|ul(r — 5) < ey (3.12)
and

st + c(@,t)s, + d(x,t)s + 5((z,1)|u] — alx — kt) =22 /0/ (V) (s — ) < €Sy
(3.13)
Before we check the possibility of (3.10) and (3.11), we apply the inequal-
ities (3.12) and (3.13) to prove the following Lemma 4 about the a priori
estimates of 7 and s:

Lemma 4. If at the time t = 0, w(x,0) <0 and s(x,0) < 0, then the mazi-
mum principle is true to the functions m(z,t) and s(z,t), namely, m(z,t) <
0,s(z,t) <0 for all t > 0.

Proof of Lemma 4: Make a transformation

N (2% + qLe') N (2% + qLe)
L? L?

where L, g, § are suitable positive constants and NV is the upper bound of 7, s

on R x [0,T] (N can be obtained by the local existence). The functions 7, 5,
as are easily seen, satisfy the equations

T = el (T ), s=¢e"(5+ ) (3.14)

-+ a(a, ) — e + (54 b, 1)+ 5C(, )T~ 2(w, Dluls
< _(QLet + 237&(1‘,@ — 25)% _ (/B + b(%,t))N(lz 2_2qL6t)7

S+ c(x,t)5, — €50 + (B +d(x,t) + %C(m, t)u| — alr — kt)y _1/2(5 VP (v))s
bl - e — )2 P

2 v
N N(x? + qLe?)
¢

\ < —(qLe" + 2xc(z,t) — 2€>ﬁ — (B +d(x,t)) 73 ,

(3.15)
resulting from (3.12) and (3.13). Moreover

_ N(z? + qL) _ N(z? +qL)

7(z,0) = 7(x,0) — — 7z < 0, 5(z,0) = s(z,0) — 5 0,
(3.16)
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7(+L,t) <0, m(—L,t) <0, s(+L,t) <0, s(—L,t) <0. (3.17)
From (3.15),(3.16) and (3.17), we have
7(x,t) <0, §(x,t) <0, on (—L,L)x(0,7T). (3.18)

If (3.18) is violated at a point (x,t) € (—L, L) x (0,T), let ¢ be the least
upper bound of values of t at which 7 < 0 (or 5§ < 0); then by the continuity
we see that 7 = 0,5 < 0 at some points (z,¢) € (=L, L) x (0,T). So

>0, T, =0, —eT >0, at (Z,1). (3.19)

If we choose sufficiently large constants ¢, 5 (which may depend on the
bound of the local existence) such that

qL + 2za(x,t) —2¢ >0, B+b(x,t)>0 on (—L,L)x(0,7). (3.20)

(3.19) and (3.20) give a conclusion contradicting the first inequality in
(3.15). So (3.18) is proved. Therefore, for any point (zg,ty) € (—L,L) X
(0,T),

N(xf + qLef)
L2

N (x4 qLef)

el sz, to) < ( 72

7(zo,t) < ( )efto (3.21)
which gives the desired estimates 7 < 0,s < 0 if we let L go to infinity. So
Lemma 4 is proved.

From v < 0,s < 0, we may immediately obtain the estimates A < ¢ (x,t)
and T < ¢(z,t) given in Part (I) of Theorem 1, if we may choose ¥ (z,t)

such that (3.10) and (3.11) are true.

Lemma 5. Let o(v) = %I/’Y, 1 <y <3,¢=0. For a given function ¥ (x) €
B2(R), if ¥(x) < M < k and satisfies the inequality (2.5) in Theorem 1 ,
then (3.10) and (3.11) are true if we choose (x,t) = (x — kt).

Proof of Lemma 5: We first prove (3.11). Let ¢(z,t) = ¢(x — kt), then
Yy = —kip,. When o(v) = %W, 1 <y <3 andc=0, we have

-2 v \ ! =3 v =3 2 =3
Vfo/a’(y)—/ #du = (V—2§)1/2—/ s2ds—/ sz ds <0,
c 2 0

3
(3.22)
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and
Yo+ (L+e)v(z, ), = (k + (1 +e)p(z — kt))y, > 0. (3.23)

Thus (3.11) is proved.
To prove (3.10), we let the left side of (3.10) be L, then

I — [fou \/U(V)dy o 2_5.[0” \/a(u)dy]w:C

v v

(g, [ YT 0 ) — (1 - )i (@ — k),

.

a’'(v)

Ha(r — kt)p(x — kt) — ] (v — 28) ¥

—a(z — kt)(v —20) YW (v VTW g,

= —ba(r — kt) (v — 220272 + (alw — kt)p(x — kt) — b, + L) (v — 267!

+(27£¢x fol’ _\/"V/(”)dl/ — k) — (1 —ep)(x — kt), — %a(m — kt)(v — 262,

(3.24)
Since 9
~Zaa) 2”7 > 0 (3.25)
and
2 v / 26 43 2 o
e [V = B gz (B - 0, 620
we have

L>—sa(x—kt)(v —28)**72 — (1 —e)v(x — kt)ih,

+Ha( — k(e — kt) — ¢y + 5) (v — 20077

— _%Oé(x — kt)[(]/ _ 25)21/20—2 + ng*¢z*§?¢a§f;gt)w($*kt) (V _ 2§>V9_1

O)p —1e—Oa(x—k r—k
(Lamtbefalo bV )2 (1 — g))yp(x — kt)i,

+ (0vpa—2)s —9&(£—kt)’¢l(.r—kt))2
40a(xz—kt) :

(3.27)
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Since a(x — kt) < 0 and (z — kt) > 0, then L > 0 if we let ¢, < 0 satisfy

<9¢a¢ - ¢x - HOé(ZE - ktW(m - kt))2

—(I—e)(z = kt)ihs + Wale — ) >0, (3.28)
which is equivalent to
(01 — by — Oa(x — kt)h(x — kt))?
(3.29)
< Aba(x — kt)(z — kt)p, — 40e1a(x — kt)p(x — kt)),
or
(0 —1)%% —20(0 + 1)a(x — kt)p(x — ki),
(3.30)

+40e10(x — k) (z — kt), + 0*(a(z — kt)p(xz — kt))* < 0.

(3.30) is true for a suitably small €; > 0 since the inequality (2.5) given in
Theorem 1. Part (I) of Theorem 1 is proved.

To prove Part (II), we let T = x(x,t) + 7, A = x(z,t) + s for a suitable
function x(x,t) in (1.10) and (1.9), we may repeat the process in the proof
of (3.3) and (3.6) to obtain

T+ xe + alx, )7 + bz, )7 + [—Z—Wﬁ — Xz +E1x (7, 1) Xz

+ YT e — (14 &)X, )X — (s ulul

(3.31)
ol — kt)x(x,1) — ol (v — 26) Y20
—a(x — kt)(v — 2)~ i(”) Jo? C:(V) v < EMaas
and
St + Xt + C(ZI;, t)sx + d(xv t)S + [_22€U’+(7l//£(rl’j’) Xg — EXaz + €1X($’ t)Xz]
X (2o (V) — [ VI 4) + (1 - e0)x (@, t)Xa (332

—a(xr — kt)”_T%\/a’(V)u + ((z, )ulu| < es4y,

15



where ¢; > 0 is a suitable small constant.

With the help of Lemma 4, we only need to choose a suitable function
x(z,t) € C2(R) and a constant ¢ so that the following inequalities (which are
similar with (3.10) and (3.11))

xe+ [ Y2 oy, — (14 &) x (2, ) xa

Ha( — kt)x(x, ) — xa) (v — 26) Y2 (3.33)

—a(z — kt)(v — 20) Y2 (v VTW g, >

and

Xt + Xa (520" (V) — [ @du) + (1 —e)x(z,t)xz >0 (3.34)

are correct.

The proof of the inequality (3.34) is simple because when 7 > 3 and
k < 0 satisfies the condition in (II) of Theorem 1, we may choose x(z,t) =
X(x — kt),c =0 so that

Y (52 aW) - [ YT d) 4 (1 - e)x (e
=(—k+(1—e)x(z—kt)+ (v —28v f% ds—f0§ 7ds)
> (—k+ (1 —e)x(z — kt) = 5(26)%)xz > 0.

(3.35)
To prove (3.33), we let the left side of (3.33) be Ly, then

Ly =fy i/(l’)d’/ - % Jo O;(V)dy]x

+3Exa Jy Uy(y) dv — kx. — (14 e1)x(z — kt)xs

Hae = k(e — k) — xl(v = 29V — a(e = k(v — 29 Y5 [ Vo,

v

= —2a(z — kt)(v — 28272 + (a(z — kt)x(z — kt) — xo + X2) (v — 2617

2y, [T

dv —kxe — (1 4+e1)x(z — kt)x, — Za(z — kt)(v — 26)1°
(3.36)

16



Since
2 Y ! 2
= /0 VI 20, Ba@w 2ot =0, @a7

we have

Ly > —go(z — kt)(v — 2820272 + (ax — kt)x(z — kt) — xo + X2) (v — 26107

—kxe — (L+e1)x(z — kt)xa

_ —%oz(:v — kt)[(v — 25)%2972 + GXx—Xx—ZZC(:f)t)x(w—kt) (v — 25)1/071

X —bo x— Xz — 0O 2
_|_(6Xac >2<Z 2 7#)2] —kxe — (T +e1)xXe + = ieae o

(3.38)
Since a(x — kt) < 0 and x(x — kt) > 0, then L; > 0 if we let y, > 0 satisfy

_ - 2
(Oxz — Xz — Oax) >0,
40« -

—kxe — (L +e1)xXe + (3.39)

which is equivalent to

(0 —1)%x% 4+ 0%(ax)? — 20(0 — 1)axxe — (40k +40(1 + 1) x)ax. <0
(3.40)
or
(0 = 1)%)xG + 0%(ax)® + 20(0 + 1)axxe — 40e10xXa
(3.41)
—40ax(k+ (14+0)x) <0.

Since k + (1 +0)x < k+ XM < 0 and the inequality (2.6) in (I1) of
Theorem 1, (3.41) is correct and so Part (II) of Theorem 1 is proved.
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4. Proof of Theorem 2.

When a(z —kt) = a_(x — kt) + oy (v — kt), where a_(z — kt) < 0, oy (v —
kt) > 0, we may rewrite (3.3) as

e+ P+ alw, )y + b(a, )1 + [~ T2 i )]

YT G, — (1= ) D, — (D] + g ( — k) (v — 26) Y2
oo ( — k(e 1) — ) (v — 26)
—a_(x — kt)(v — 2§) \/(Z(_V) [r @dy < ey

(4.1)

In a similar way to obtain (3.6), we may obtain the following inequality

S+ U+ er(x,t)s, + di(x, t)s + [— 2ey/ o) V2 — ey, — e19(x, )1,

20'+vao!!

P (T — [ YT ) (14 2l i
—ay(z — ki) (v - 25)@2/}(:6, t) + ap (v — kt)(v — 2€) @ I @dy

+(—a(z — kt) =2 /o' (V) + (2, ) |u])u < e840, )
where ¢, (7,t) = c(z,t) = u+ =2 /0’ 2y, and dy(z,t) = wx—ajL(x‘—
k) — 267

Therefore, if we may choose a suitable bounded function 1 (z, t) such that
the following inequalities hold

Vet [0 YD g, — (1 — ) (x, t)id,

oo (@ — k(. 1) — (v — 26) Y20 (13)
—a_(x — kt)(v — 2¢) @ I @du >0
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and

U+ o (EE W) — [P YID ) 4 (14 2, £,

o (z — k) (v — 26) Y7 (1) (4.4)

v

(e — k) — 220 [PV g, 5
then we have from (4.1) and (4.2) that
m +a(x, t)m, + b(x, )7
(4.5)

/

§

o \v

+%(((:v,t)|u|—l—oz+(x—/<:t)(1/—2£) W — ) < empy

v

and
s¢+cr(x,t)s, + di(x,t)s

+1(¢(x, )|u| — a—(z — kt) =2 /0' (V) (5 — 7) < 844
If we let ¥(z,t) = ¢(x — kt), using the inequality (2.12), we may prove (4.3)
in a similar way like the proof of (3.10).
Under the conditions in (I11) of Theorem 2, (4.4) is true because

o (F— & Vo' (v) — / ) —VJV/(V)du) >0 (4.7)

14

(4.6)

and

U+ (1 +e)Y(z, £,

oy (1 — kt) (v — 26) YD (1)

v

oy (@ — k) — 20V [P YT gy > (L (14 )b — k)

—ay(w = kt)p(x — k) f(v) + ap(z — kt) f2(v)
= (—k+ (L +e)v(z — kt))y — jas(x — kt)?(z — kt)
+ay (f(v) — 3¥(z — kt))?

> (=k+ (L +e)p(@ — kt)), — joy(z — kt)? (v — kt) > 0
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due to the condition (2.13), where f(v) = (v — 26)¥2% Thus Part (ITT)
of Theorem 2 is proved. Similarly we may prove Part (IV) of Theorem 2
and complete the proof of Theorem 2.

5. Proof of Theorem 3.

From the upper estimates on the Riemann invariants given in Theorems
1-2, we can easily obtain the following estimates on (15, u%*),

26 < V5 (x,t) < Nz, t),  |ub(z,t)| < N(z,t), (5.1)

where N (z,t) is a positive, bounded function, which depending on the bound
of the initial data, but independent of ¢, &.

Following the standard theory of semilinear parabolic systems, we can
apply the contraction mapping principle to an integral representation of a
solution to obtain the local existence result of the Cauchy problem (1.6)-
(1.7). With the L> estimate (5.1) of the local solution, we can extend the
local time step by step to an arbitrary time 7", since the step time depends
only on the L* norm.

As proved in [17], we know that the original system (1.1) and the approx-
imated system (1.4) have the same entropy equation or the same entropies,
and for any weak entropy-entropy flux pair (n(v, u), (v, u)) of system (1.1)

0 (V55 (2, 1), uS (2, 1)) + qu(V5° (2, 1), uSF (2, 1)) (5.2)

are compact in H, ! (Rx R"), then the compactness framework given in [6, 10]
for 1 < < 3 and in [11] for v > 3 to ensure that there exists a subsequence
of (v5¢(x,t),u*(x,t)), which converges pointwisely to a pair of bounded
functions (v(x,t),u(x,t)) as &, e tend to zero, and the limit (v(x,t),u(x,t))
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satisfies (2.3). Moreover, we multiply (1.6) by (7,,7m) to obtain
(Ve (@, 1), (2,1)) + qu (V5 (2, 8), uS*(2, 1)) + Eqra (V55 (2, 1), uS (2, 1))
= en(vhe, m*)ee — e(Vp®,mge) - VEn(vse, me) - (g, mg=)"
+a(z — kt)usemsen, (15, ms*)
+(a(z — kt)usm&e — ((x, £)mEe|us | g, (v5F, mse)
< en(v5e,mé®) e + alx — kt)usmsen, (V5 ms*)

+(a(z — kt)usm&e — C(x, £)mE=|us ) n, (v5e, m&e)

(5.3)
for any weak convex entropy-entropy flux pair (n(v,u),q(v,u)) of system
(1.1), where g + £q; is the entropy flux of system (1.4) corresponding to the
entropy 7. Thus the entropy inequality (2.4) is proved if we multiply a test

function to (5.3) and let €, £ go to zero. Thus we obtain the proof of Theorem
3.
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