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a b s t r a c t

The ideal MHD equations are a central model in astrophysics, and their solution relies upon
stable numerical schemes. We present an implementation of a new method, which pos-
sesses excellent stability properties. Numerical tests demonstrate that the theoretical sta-
bility properties are valid in practice with negligible compromises to accuracy. The result is
a highly robust scheme with state-of-the-art efficiency. The scheme’s robustness is due to
entropy stability, positivity and properly discretised Powell terms. The implementation
takes the form of a modification of the MHD module in the FLASH code, an adaptive mesh
refinement code. We compare the new scheme with the standard FLASH implementation
for MHD. Results show comparable accuracy to standard FLASH with the Roe solver, but
highly improved efficiency and stability, particularly for high Mach number flows and
low plasma b. The tests include 1D shock tubes, 2D instabilities and highly supersonic,
3D turbulence. We consider turbulent flows with RMS sonic Mach numbers up to 10, typ-
ical of gas flows in the interstellar medium. We investigate both strong initial magnetic
fields and magnetic field amplification by the turbulent dynamo from extremely high
plasma b. The energy spectra show a reasonable decrease in dissipation with grid refine-
ment, and at a resolution of 5123 grid cells we identify a narrow inertial range with the
expected power law scaling. The turbulent dynamo exhibits exponential growth of mag-
netic pressure, with the growth rate higher from solenoidal forcing than from compressive
forcing. Two versions of the new scheme are presented, using relaxation-based 3-wave and
5-wave approximate Riemann solvers, respectively. The 5-wave solver is more accurate in
some cases, and its computational cost is close to the 3-wave solver.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

In order to model complex nonlinear astrophysical phenomena, numerical solutions of the equations of ideal MHD are
central. Examples include the dynamics of stellar atmospheres, star formation and accretion discs. Magnetised gas flows
in astrophysics are typically highly compressible, nonlinear and often supersonic. Hence, obtaining stable numerical results
in such regimes is extremely challenging if the numerical schememust also be both accurate and efficient. Here we present a
new MHD solver that preserves stable, physical solutions to the compressible MHD equations by construction, while at the
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same time showing improved efficiency and comparable accuracy to standard schemes based on the very accurate, but less
stable Roe approximate Riemann solver [59].

We consider numerical solutions of the ideal MHD system (here written in conservation form, and in three dimensions,
letting I3 denote the 3 ! 3 identity matrix)

qt þr # ðquÞ ¼ 0;

ðquÞt þr # qu' uþ pþ 1
2
jBj2

! "
I3 ( B' B

! "
¼ 0;

Et þr # Eþ pþ 1
2
jBj2

! "
u( ðB # uÞB

# $
¼ 0;

Bt þr # ðB' u( u' BÞ ¼ 0;
r # B ¼ 0;

ð1:1Þ

with the specific internal energy e, such that the total energy density is given by E ¼ qeþ 1
2qu

2 þ 1
2 jBj

2, and the pressure gi-
ven by the equation of state p = p(q,e). The Cartesian components of the velocity are denoted by u = (u, v, w). The system fits
the generic form of a conservation law Ut +r # F(U) = 0, except for the restriction on r # B. However, if this restriction is sat-
isfied at the initial time t = 0, it automatically holds at later times t > 0 for the exact solution. Shock conditions are common in
astrophysics, hence (1.1) should be understood in a weak sense. The lack of regularity and large scale ranges in astrophysical
flows make it particularly challenging to devise numerically stable schemes. Recent developments in nonlinear stability
analysis have made such schemes possible, however. The central stability notions are entropy stability and positivity of mass
density q and internal energy qe. This paper presents an implementation of the robust positive second order scheme from
[72], which uses the entropy stable approximate Riemann solvers of [4,5].

Several codes are available for high-performance compressible MHD simulations. We mention Athena [65], AstroBEAR
[13], Chombo [60], Enzo [73], FLASH [24], Nirvana [75], Pluto [49], RAMSES [23] and VAC [68]. The positive scheme of
[72] has so far been unavailable in such codes. We have implemented it as an alternative MHD module in the FLASH code.

We focus here on a comparison with the original FLASH code. Benchmark tests in one and two spatial dimensions are
presented. Transition to unstable turbulence-like flow is particularly emphasised. Additional tests of the algorithms may
be found in [5,35] and [72]. As an example application we consider turbulence in molecular clouds, which is characterised
by high Mach numbers and the presence of magnetic fields. Before presenting the results, we give a review of the numerical
schemes and their theoretical properties.

2. Numerical schemes

In this section we give a quick summary of the numerical techniques used, and their justification. Consider first a system
of conservation laws in one spatial dimension (we consider the x-dimension) Ut + F(U)x = 0. The numerical schemes we will
use are of the finite volume type

SDtUi ¼ Ui (
Dt
h

F iþ1
2
( F i(1

2

% &
; ð2:1Þ

where Ui are averages over intervals (or ‘cells’) of length h indexed by i at a given time t, and the operator SDt updates the cell
averages to time t + Dt. The numerical fluxes F are evaluated at the cell interfaces, hence U is conserved and we call the
scheme conservative.

2.1. First order accuracy in one space dimension

First order accurate schemes can be given by

F iþ1
2
¼ FðUi;Uiþ1Þ: ð2:2Þ

Typically, Fð#; #Þ is given by an approximate Riemann solver [3,67,41]. The following are considered here: The Roe solver and
the HLLE (Harten, Lax, van Leer and Einfeldt) solver as implemented in FLASH, and the multi-wave HLL-type solvers of [4,5]
(named HLL3R and HLL5R, or HLLxR). Other HLL-type solvers are given in [27,50,26,42,44,25] among others. The numerical
flux should be consistent (i.e. FðU;UÞ ¼ FðUÞÞ, and satisfy appropriate stability criteria. For gas and plasma dynamical sys-
tems a strong and physically meaningful stability criterion is implied by the second law of thermodynamics, which reads in
one dimension:

ðqsÞt þ ðqusÞx P 0; ð2:3Þ

s being the specific entropy of the system. This inequality holds, by definition, for an exact Riemann solver, and should also
hold for an approximate Riemann solver. The HLLxR solvers were proved in [4,5] to satisfy (2.3), and consequently the result-
ing conservative scheme satisfies a discrete version of (2.3). We refer to an approximate Riemann solver satisfying (2.3) as
being entropy stable. For the Roe and HLLE solvers there are no rigorous proofs of entropy stability. For HLLE this appears not
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to be a problem, while Roe solvers yield non-physical shocks at sonic points. Therefore, Roe solvers are typically equipped
with a so-called entropy-fix, which adds extra dissipation at sonic points. The Roe solver also tends to produce negative mass
density values, while HLLE and HLLxR provably preserve positive mass density. Positivity of mass density and entropy sta-
bility imply that the internal energy remain positive. The positivity of density and internal energy ensures that the hyperb-
olicity of the equations does not break down (in which case the numerical schemes no longer make sense), and implies that
the computed conserved quantities are stable in L1 [55]. Entropy stability and positivity are referred to as nonlinear stability
conditions since they apply directly to nonlinear systems. The ‘R’ in HLLxR comes from the derivation of the solvers from a
relaxation approximation to the MHD equations, hence they are referred to as relaxation solvers. The underlying relaxation
approximation has formally been found to be entropy dissipative through a Chapman–Enskog analysis [4]. The correspond-
ing relaxation solver for hydrodynamics [2], was tested in an astrophysical turbulence setting in [34].

Approximate Riemann solvers tend to vary in accuracy according to the level of detail they take into account. Typically,
some wave modes are better resolved than others. For the solvers considered here, the HLLE solver can only optimally re-
solve the fast waves, while the Roe solver can, in principle, resolve all isolated waves as well as the exact solver. The relax-
ation solvers lie somewhere in between: the HLL3R can optimally resolve material contacts and tangential discontinuities at
vanishing Alfvén speed, and the HLL5R additionally resolves velocity shears at vanishing Alfvén speed. Hence HLL5R is a true
generalisation of the HLLC solver for the Euler equations. These differences in resolution most prominently appear when the
wave modes in question are close to stationary, i.e. much slower than h/Dt.

2.2. Second order accuracy in one space dimension

In order to obtain second-order accuracy, some interpolation, i.e. reconstruction of the states from cell averages, has to be
employed. We consider here the conservative MUSCL-Hancock scheme, introduced in [70] (see also [67]). We refer to [72] for
the non-conservative case. Let W denote the primitive state variables (q, u, B, p). Away from discontinuities the equations
can be rewritten as Wt + A(W)Wx = 0 for a matrix A(W). The MUSCL-Hancock algorithm goes as follows:

(1) Reconstruction: evaluate discrete differences DWi. For oscillation control, we use the MC-limiter (monotonised central
limiter), so for each component of Wi we take

DWi ¼ ri min 2jWiþ1 (Wij;
1
2
jWiþ1 (Wi(1j;2jWi (Wi(1j

! "
ð2:4Þ

with

ri ¼
1; Wiþ1 (Wi > 0; Wi (Wi(1 > 0;
(1; Wiþ1 (Wi < 0; Wi (Wi(1 < 0;
0; otherwise:

8
><

>:
ð2:5Þ

(2) Prediction step: evaluate

Wc
i ¼ Wi (

Dt
2h

AðWiÞDWi: ð2:6Þ

(3) Evaluate the cell edge values

W(
i ¼ Wc

i (
1
2
DWi; Wþ

i ¼ Wc
i þ

1
2
DWi: ð2:7Þ

(4) Use the cell edge values as input to the numerical flux in the conservative scheme,

SDtUi ¼ Ui (
Dt
h
ðFðUþ

i ;U
(
iþ1Þ ( FðUþ

i(1;U
(
i ÞÞ; ð2:8Þ

where U denotes the conserved state variables.

Using primitive variables as the basis for reconstructing the states was recommended for example in [12]. It ensures that
material contact discontinuities are reproduced exactly (and also shear waves at vanishing Alfvén speed). Alternatively, one
can use that the primitive form Wt + A(W)Wx = 0 may be diagonalised as

Rj
i

% &

t
þ kj Rj

i

% &

x
¼ 0; j ¼ 1;2; . . . ; d ð2:9Þ

with Wi = XiRi. The matrix Xi is given by the eigenvectors Xj
i of A(Wi). The reconstructed gradients may then be evaluated

using the relation DWi = XiDRi, given gradients DRi, and we get

W)
i ¼ XiR

)
i ¼ Xi Ri (

Dt
2h

kRi )
1
2
DRi

! "
¼ Wi (

Dt
2h

AðWiÞDWi )
1
2
DWi; ð2:10Þ
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where k is the diagonal matrix having the eigenvalues kj as entries. The original FLASH code uses the characteristic variable-
based reconstruction, while we use the primitive variables with the relaxation solvers.

The limiter (2.4) forces the scheme to behave like the first order scheme near a discontinuity, hence ensuring that the
entropy dissipation of the approximate Riemann solver kicks in. Even so, it turns out to be important to ensure the positivity
of mass density and internal energy. In [72], a limiting procedure was presented such that the MUSCL-Hancock scheme is
positive for any positive approximate Riemann solver. It consists of a modification that applies to any piecewise linear recon-
struction of the W or R-variables. This limiter (more specifically the ‘W-reconstruction’ of [72]) is used with the relaxation
solvers.

2.3. Multidimensionality

Clearly our scheme is based on the treatment of one-dimensional Riemann problems. Multidimensional Riemann prob-
lems are much too complicated to be used as a basis of schemes, so various means have been suggested to derive multidi-
mensional schemes from one-dimensional schemes. We only consider Cartesian grids here, where one can rely on
dimensional splitting. This method consists of first solving the system ignoring the y and z-derivatives, then ignoring the
x- and z-derivatives, etc. The splitting adds an error, and in order to maintain second order accuracy, the order of the direc-
tions must be reversed between each time step (Strang splitting). Unsplit methods have been developed to eliminate this
error completely (e.g. in [39,38]). We limit our discussion to the split scheme, and focus on issues specific to the multidimen-
sional MHD equations. Note however that these issues, as well as the proposed solutions, are not specific to split schemes.

Due to considering the directions separately, we have to make sense of one-dimensional problems where the longitudinal
magnetic field component is non-constant, in other words we can no longer assumer # B = 0 initially. In order to handle the
resulting more general one-dimensional problems, we use the following approach of [56], consisting of modifying the evo-
lution equation for B to

Bt þr # ðB' u( u' BÞ ( ur # B ¼ 0: ð2:11Þ

Eq. (2.11) implies that

ðr # BÞt þr # ður # BÞ ¼ 0; ð2:12Þ

consequentlyr # B remains zero analytically, and numerical errors inr # B are transported by the flow. In the original FLASH
code, the momentum and energy equations were also modified, which is what was actually recommended in [56]. We found
it sufficient for stability in [5] and [72] to only include the Powell term for the induction equation.

The one-dimensional Powell system is only conservative when (Bn) is constant, so the schemes must take the form

SDtUi ¼ Ui (
Dt
h

F l U
þ
i ;U

(
iþ1

' (
( F r Uþ

i(1;U
(
i

' (' (
( DtSiðUi(1;Ui;Uiþ1Þ: ð2:13Þ

In the original FLASH code, the source contributions from the cell edges are ignored, and the Powell source term is simply
evaluated by a central discretisation. In [5] and [72], we found that it was essential for stability, both practically and theo-
retically, to discretise the Powell term in a proper upwind manner. This was carried out in [4] for the first order scheme by
extending the relaxation system to the Powell system, see also [25]. The second order extension can be found in [72], and
numerical tests demonstrating the importance of including a properly discretised Powell source are in [25,35] and [72].

We include divergence cleaning in the form of the parabolic cleaning method of [47]; see also [14]. We use it as already
implemented in FLASH. It has the advantage of not expanding the numerical stencil of the scheme. FLASH also has the non-
local projection method of [6] implemented, which could in principle be used also with the new schemes. An alternative to
using (2.11) is the staggered mesh (or constrained transport) approach (reviewed in [69]), which in one dimension essen-
tially means evaluating Bn at the cell interface instead of as a cell average. The numerical stability results we rely on (entropy
stability and positivity) are not available for staggered methods, but staggered schemes have the advantage of guaranteeing
thatr # B = 0 to approximation order in smooth regions. Note that all approximate Riemann solvers we consider may also be
used as components of staggered methods.

2.4. Isothermal gas

As a simple model of cooling (e.g. due to radiation), it is common to assume that the gas temperature is constant. This
means that p ¼ c2sq, where the constant cs is the sound speed. A practical way to implement isothermality consists of (i)
solving the full equations for ideal gas with a c close to 1 within each time step, and (ii) projecting to the isothermal state
between each time step. We use c = 1.00001. This projection method is preferred due its simplicity, accuracy, and
generalisability. By generalisability we mean that the projection to p ¼ c2sq is easily replaced with more elaborate cooling
models. The projection method requires robust underlying numerics, since the full energy equation has to be solved
properly.
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2.5. The schemes

The changes made to the original FLASH code in order to implement the new scheme are as described above. The time

step size is chosen from the maximumwave speed of the previous time step and the maximum of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ B2

q

q
over all cell aver-

ages (cs denoting sound speed). We use a CFL-number of 0.8 throughout, unless otherwise noted. We used version 2.5 of
FLASH, but it is straightforward to implement the new scheme in other finite volume codes.

For numerical testing, we compare the new schemes HLL3R and HLL5R with the basic FLASH schemes for MHD. FLASH
offers both a Roe and an HLLE approximate Riemann solver. The relevant schemes are summarised in Table 1. All schemes
are finite volume schemes of MUSCL-Hancock type, with differences in the (approximate) Riemann solver, reconstruction
method and Powell terms as described above. The names of the schemes are taken from the Riemann solvers for simplicity,
although other algorithmic differences may also be important. To distinguish the schemes from the Riemann solvers, we use
the ‘sans serif’ font to indicate the scheme and normal font type for the Riemann solvers (see Table 1). The thermodynamics
are either adiabatic with an ideal gas equation of state or isothermal.

3. Numerical studies 1D

In one spatial dimension, the differences between the schemes are given mainly by the accuracy of the approximate Rie-
mann solver and the stability properties of both the approximate Riemann solver and the reconstruction.

Table 1
Summary of the schemes.

Scheme HLL3R/HLL5R FLASH-Roe FLASH-HLLE

Riemann solver HLL3R/HLL5R Roe HLLE
Reconstruction Positive, primitive Characteristic Characteristic
Powell term B only Full Full
Powell term discretisation Upwind Central Central

Fig. 3.1. Brio-Wu shock tube. Resolution h = 256(1, time t = 0.1. FLASH-Roe and HLL3R are compared. The waves seen are from left to right, a fast
rarefaction, a slow mode compound wave, a material contact discontinuity and a slow shock. The smaller amplitude right-going Alfvén and fast waves are
omitted for clarity.

K. Waagan et al. / Journal of Computational Physics xxx (2011) xxx–xxx 5

Please cite this article in press as: K. Waagan et al., A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear
stability, implementation and tests, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.01.026

http://dx.doi.org/10.1016/j.jcp.2011.01.026


3.1. Brio-Wu shock tube

We first consider initial shock tube data from [8] that have become a standard test case. It contains a variety of numer-
ically challenging wave types occurring in MHD flows, in particular a fast rarefaction, a compound wave, a material contact,
and a slow shock. The initial data are given by U = Ul for x < 0.5, and U = Ur for x > 0.5, with c = 5/3 and

ql ¼ 1; ul ¼ 0; Bl ¼ ð0:75;1;0Þ; pl ¼ 1;
qr ¼ 0:125; ur ¼ 0; Br ¼ ð0:75;(1;0Þ; pr ¼ 0:1:

Fig. 3.1 shows small differences between HLL3R and FLASH-Roe on this standard test with FLASH-Roe slightly sharper on the
compound wave. FLASH-HLLE is similar to HLL3R, except that the material contact was more smeared out than in HLL3R (see
Fig. 3.2). We conclude that all the schemes perform reasonably well on this test case, with some differences in accuracy
depending on the level of detail in the approximate Riemann solver.

3.2. Low b expansion waves

This is a test from [5]. It consists of rarefactions into a region of low plasma b (defined as b ¼ 2p
B2). The initial data are given

by U = Ul for x < 0.5, and U = Ur for x > 0.5, with c = 5/3 and

ql ¼ 1; ul ¼ ð(û; 0;0Þ; Bl ¼ ð1;0:5;0Þ; pl ¼ 0:45;
qr ¼ 1; ur ¼ ðû;0; 0Þ; Br ¼ ð1; 0:5; 0Þ; pr ¼ 0:45:

Hence the sound speed is initially
ffiffiffi
3

p
=2 * 0:87. At û ¼ 3:1 there are only small differences between FLASH-Roe and HLL3R

(Fig. 3.3).
We also performed this test for the isothermal case with c2s ¼ 0:45. FLASH-Roe could only handle û-values up to about 2.9.

For higher values it failed to run due to negative pressure and density. In contrast, FLASH-HLLE and HLL3R proved quite sta-
ble also in the isothermal case. They are compared in Fig. 3.4. HLL3R is able to represent lower densities than FLASH-HLLE
during the expansion.

Fig. 3.2. The same experiment as Fig. 3.1. FLASH-HLLE and HLL3R are compared.

Fig. 3.3. Low b expansion wave. Resolution h = 256(1. Adiabatic case, velocity û ¼ 3:1 at time t = 0.05. FLASH-Roe and HLL3R are compared.
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4. Numerical studies 2D

In two dimensions we consider two standard test cases from the numerical literature and a Kelvin–Helmholtz instability.
The tests exhibit strong shock waves and complicated wave interactions. Regarding numerical stability, in addition to the
approximate Riemann solver and the reconstruction, the influence of different discretisations of the Powell term are
investigated.

4.1. Orszag-Tang

This is a standard test case for ideal MHD schemes. It consists of smooth velocity and magnetic field profiles going
through shock formations, complicated wave interactions and eventually forming instabilities. The initial data are given
by c = 5/3,

ðq;u;B;pÞ ¼ ð1; sinðpyÞ; sinðpxÞ; 0;( sinðpyÞ; sinð2pxÞ;0;0:6Þ: ð4:1Þ

At t = 0.5 we observed only minor differences between HLL3R and FLASH-Roe, while FLASH-HLLE gave a smoother pressure
peak along the central current sheet (see Fig. 4.1). Plotting Bx along the cut at x = 0.428 (Fig. 4.2) shows that FLASH-HLLE
gives a slightly more smeared-out current sheet. HLL3R and FLASH-Roe gave very similar results at t = 0.5. At t = 1 a magnetic
island can be observed at the domain centre with FLASH-Roe and HLL3R, while with FLASH-HLLE this instability is sup-
pressed by numerical viscosity (Fig. 4.3). The HLL5R was also tested and gave results very similar to HLL3R and FLASH-Roe.

We consider computational times in Table 2. They are from a computation on two processors, in the form of total CPU
time in seconds and in the percentage of that computation time spent in the sweep routine (which is the only differing
one). This should be taken with a grain of salt, as these numbers vary a bit from time to time. We took the average of
two runs. It appears that HLL3R gives about a 10% speed-up compared to FLASH-Roe. FLASH-HLLE is also a little slower than
HLL3R, which is due to the different reconstruction procedures. All in all we would expect FLASH-HLLE to be faster than

Fig. 4.1. Orszag-Tang test. Pressure at time t = 0.5, with resolution h = 256(1. Left: FLASH-HLLE, right: HLL3R. The result from FLASH-Roe was visually hard
to discern from HLL3R.

Fig. 3.4. Low b expansion wave, isothermal gas. Resolution h = 256(1. Velocity û ¼ 3:1 at time t = 0.05. FLASH-HLLE and HLL3R are compared.
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FLASH-Roe, since only the computation of the numerical flux differs. The time to compute the numerical flux in HLL3R should
be somewhere in between the time for FLASH-Roe and FLASH-HLLE, and in addition HLL3R has a simpler reconstruction and
a slightly more elaborate Powell term than FLASH-Roe and FLASH-HLLE. The HLL5R scheme is the most efficient, however it
requires slightly smaller time steps. The shorter time steps are not surprising, since the wave speeds of the HLL5R Riemann
solver may be up to 10% larger than with the corresponding 3-wave solver in some configurations; see [5]. Consequently,
there would be a roughly 10% reduction in time step size.

4.2. Cloud–shock interaction

The initial conditions are the same as in [25]. The computational domain is (x, y) 2 [0,2] ! [0,1] with artificial Neumann
type boundary conditions. The initial conditions consist of a shock moving to the right, located at x = 0.05, and a circular
cloud of density q = 10 and radius r = 0.15 centred at (x,y) = (0.25,0.5). We took c = 5/3 and

q ¼
3:86859 if x < 0:05;
10:0 if ðx( 0:25Þ2 þ ðy( 0:5Þ2 < 0:152;

1:0 otherwise;

8
><

>:
ð4:2Þ

u ¼
ð11:2536;0; 0Þ if x < 0:05;
ð1:0;0;0Þ otherwise;

*
ð4:3Þ

p ¼
167:345 if x < 0:05;
1:0 otherwise;

*
ð4:4Þ

B ¼
ð0;2:18261820;(2:18261820Þ if x < 0:05;
ð0;0:56418958;0:56418958Þ otherwise:

*
ð4:5Þ

Hence, the shock has a sonic Mach number around 11.8 and an Alfvénic Mach number around 19.0. The solution becomes
very complicated as the shock interacts with the cloud, and instabilities are observed along filaments of the cloud. We used
these initial data to test the ability of the new scheme to handle adaptive mesh refinement. Eight levels of refinement were
used with the highest resolution corresponding to a resolution of 1024 ! 2048 grid cells. The refinement criterion was based
on the mass density qwith the FLASH code parameters refine_cutoff = 0.75 and derefine_cutoff = 0.25. Mass density pro-
files from HLL3R and FLASH-Roe are shown in Fig. 4.4. The front of the cloud looks more rounded with HLL3R, and the struc-
tures of the turbulent wake differ somewhat. Both FLASH-Roe and HLL3R agree qualitatively well, but since there is no
analytic solution it is unclear how to make a quantitative assessment of the differences. HLL5R gave very similar results
to HLL3R in this test. FLASH-HLLE roughly reproduced the shape of the cloud front, but gave a different structure in the tur-
bulent wake.

Fig. 4.2. Bx along a slice in the y-direction for the Orszag-Tang test. HLL3R (dashed) and FLASH-HLLE (solid). The result from FLASH-Roe was
indistinguishable from HLL3R.
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4.3. Kelvin–Helmholtz instability

The Kelvin–Helmholtz instability is important as a model for the onset of turbulence. From a numerical point of view, we
found it illustrative of some differences between the Riemann solvers. We consider a case where both the velocity and mag-
netic fields switch polarity along a straight line. The initial data are given by p = 3/5, c = 5/3, (v, w, By, Bz) = 0 and

q ¼ 2; u ¼ 0:5; Bx ¼ 0:5; ð4:6Þ

for y > 0, and

Table 2
Computational times for the Orszag-Tang test.

Scheme HLL3R HLL5R FLASH-HLLE FLASH-Roe

N time steps 477 539 476 482
Sweep time fraction 43.6% 47.6% 47.2% 50.0%
Average time/step (s) 0.555 0.520 0.571 0.604

Fig. 4.3. Orszag-Tang test. Pressure at time t = 1 with resolution h = 256(1. Top to bottom: FLASH-Roe, HLL3R, FLASH-HLLE.
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q ¼ 1; u ¼ (0:5; Bx ¼ (0:5; ð4:7Þ

for y < 0. We perturb the velocity in the y-direction by

v ¼ 0:0125 sinð2pxÞ exp½(100ðy( 0:5Þ2,: ð4:8Þ

At y = (0.5 and y = 0.5 we impose reflecting boundary conditions. Hence, we consider a small perturbation to a tangential
discontinuity in both u and B along the line y = 0. Initially the relative sonic Mach number is 1, the magnetosonic Mach num-
ber is 2=

ffiffiffi
5

p
, while plasma b = 8c. We used a resolution of 5122 cells. In numerical experiments of this type, instability growth

tends to occur at the small scales, and therefore depend on numerical viscosity. In [34], this was reflected in a strong depen-
dence between grid resolution and instability growth rate. Mass density profiles at time t = 1 are shown in Fig. 4.5. The high-
er numerical viscosity of the HLLE solver results in FLASH-HLLE suppressing all instabilities at this time. HLL3R yields a
sharper shear-discontinuity than FLASH-HLLE, but the roll-ups still did not develop. In contrast, HLL5R and FLASH-Roe pro-
duce well-developed Kelvin–Helmholtz roll-ups.

The different behaviour of the schemes can be explained by the approximate Riemann solvers. By the remarks at the end
of Section 2.1, Roe and HLL5R exactly resolve the unperturbed initial configuration, while HLL3R smears out the velocity
shear slightly. HLLE smears out the material and magnetic contact discontinuities of the initial configuration, with the result
that the instability is entirely suppressed at early times. The presence of small perturbations to grid-aligned stationary dis-
continuities makes this test case particularly sensitive to these properties of the Riemann solvers. In particular, we see the
effect of exactly resolving the discontinuities, i.e. having a scheme that is ‘well-balanced’ with respect to the unperturbed
state. In non-stationary or non-grid-aligned cases, none of the schemes have this well-balancing property, hence we expect
differences to be less pronounced.

Fig. 4.4. Cloud-shock interaction with eight levels of refinement, corresponding to 1024 ! 2048 cells. Grid and mass density. Top: FLASH-Roe, bottom:
HLL3R.
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At late times of the instability development, it is harder to assess the performance of the schemes. Results from
FLASH-Roe and HLL5R are shown in Fig. 4.6. Both schemes give a similar structure of two larger vortices. FLASH-Roe produces

Fig. 4.5. Kelvin–Helmholtz instability at time t = 1. Top to bottom: FLASH-Roe, HLL5R, HLL3R, FLASH-HLLE.
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small-scale waves in the surrounding medium, which are possibly a numerical artefact. One possible source of spurious fea-
tures in FLASH-Roe is the central discretisation of the Powell source term. Such errors have been pointed out in [25,17,35]
and [72].

Finally, in order to demonstrate the robustness of HLL3R and HLL5R, we tested an isothermal case with a higher sonic
Mach number. The sound speed was set to 0.1, and the initial data were (v, w, By, Bz) = 0 everywhere,

q ¼ 1; u ¼ 0:5; Bx ¼ 2;

for y > 0, and

Fig. 4.6. Kelvin–Helmholtz at time t = 9, FLASH-Roe (left) and HLL5R (right).

Fig. 4.7. High sonic Mach number Kelvin–Helmholtz test for isothermal gas at time t = 1. Top: HLL3R. Bottom: HLL5R.
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q ¼ 1; u ¼ (0:5; Bx ¼ (2;

for y < 0. The perturbation was again given by Eq. (4.8). Hence, the relative sonic Mach number was 10, and the relative Alfvé-
nic Mach number was 1=

ffiffiffi
2

p
. Resolutionwas uniformwith 5122 grid cells. The standard schemes, FLASH-Roe and FLASH-HLLE

failed on this case due to unphysical states, but the new schemes,HLL3R andHLL5R produced physical results. Density profiles
from HLL3R and HLL5R are shown in Fig. 4.7. The resulting instability contains vortex-like structures with complicated inter-
nal features. Due to the chaotic nature of these solutions, we cannot evaluate the differences seen between the schemes.

5. Supersonic MHD turbulence

In this section we investigate the performance of three of the MHD schemes, FLASH-Roe, HLL3R and HLL5R on the mod-
elling of supersonic MHD turbulence. Testing the schemes in the regime of highly compressible turbulent flows is of partic-
ular interest for astrophysical applications ranging from molecular cloud formation on galactic scales down to scales of
individual star-forming accretion disks. These disks can launch powerful supersonic jets, driven by magneto-centrifugal
forces [1] and magnetic towers [45]. Here however, we concentrate on intermediate scales of molecular cloud evolution,
which is largely determined by the interplay of supersonic turbulence and magnetic fields. Understanding the nature and
origin of supersonic MHD turbulence is considered to be the key to understanding star formation in molecular clouds
[46,15,61,48].

5.1. Numerical setup and post-processing

We start with a short description of the type of setup often adopted in numerical models of molecular cloud turbulence. It
is called turbulence-in-a-box, because a three-dimensional boxwith periodic boundary conditions and random forcing is used
to excite turbulence. We use an isothermal equation of state throughout all turbulence-in-a-box runs, i.e. the pressure, pth, is
related to the density by pth ¼ c2sq with the constant sound speed, cs. For these tests we used an initially uniform density,
hqi = 1.93 ! 10(21 g cm(3, corresponding to a mean particle number density of hni = hqi/(lmp) * 500 cm(3, with the mean
molecular weight, l = 2.3 and the proton mass, mp, and a box size of L3 = (4pc)3. The sound speed for the typical gas temper-
atures in molecular clouds (about 11 K) is roughly cs = 0.2 km s(1. For driving the turbulence we use the same forcing module
as used in [18,19,64,58], which is based on the stochastic Ornstein–Uhlenbeck process [16]. The spectrum of the forcing
amplitude is a paraboloid in Fourier space in a small wavenumber range 1 < jkj < 3, peaking at jkj = 2. This corresponds to
injecting most of the kinetic energy on scales of half of the box size. The turbulence forcing procedure is explained in detail
in [20]. We use a solenoidal (divergence-free) forcing throughout this study unless noted otherwise. For the comparison of the
different MHD schemes the forcing amplitude was set such that the turbulence reaches a root-mean-squared (RMS) Mach
number,M * 2 in the fully developed, statistical steady regime. The resolution was fixed at 2563 grid cells. We also consider
a highly supersonic case withM * 10 in Section 5.6, for which we investigate the resolution dependence by comparing runs
with 1283, 2563 and 5123 grid zones. This study, however, could only be followedwith the new types of solvers presented here
(HLL3R and HLL5R), because the Roe solver is numerically unstable for highly supersonic turbulence. As shown in previous
studies [19,64,20] turbulence is fully developed after about two large-scale eddy turnover times, 2T, where one large-scale
eddy turnover time is defined as T ¼ L=ð2McsÞ. The RMS velocity is thus defined as V ¼ L=ð2TÞ ¼ Mcs.

In order to test the MHD schemes in a strongly magnetised case, we set the initial uniform magnetic field strength to
B0 = 8.8 ! 106 Gauss in the z-direction, which gives an initial plasma beta, b = pth/pm,0 * 0.25, with the magnetic pressure,
pm;0 ¼ B2

0=ð8pÞ. No initial fluctuations of the magnetic field were added, such that the initial RMS magnetic field is equal
to B0. However, the turbulence twists, stretches, and folds the initially uniform magnetic field, such that the RMS field
strength increases due to turbulent dynamo amplification until saturation (see the review by Brandenburg and Subramanian
[7]; and Section 5.7). The Alfvénic Mach number is MA ¼ V=vA ¼ M

ffiffiffiffiffiffiffiffi
b=2

p
* 0:7, i.e. we consider slightly sub-Alfvénic tur-

bulence. The HLL3R scheme, however, was used in both the highly sub-Alfvénic ðMA - 1Þ and the highly super-Alfvénic
ðMA . 1Þ turbulent regimes by [10,9], who modelled turbulent flows with b ¼ 0:01 . . .10; MA ¼ 0:4 . . .50 andM ¼ 2 . . .20.

All results were averaged over one eddy turnover time, T, in the regime of fully developed turbulence, t > 2T [20]. Since we
produced output files every 0.1T, we computed Fourier spectra and probability distribution functions for each individual
snapshot and averaged afterwards over 11 snapshots for 2.3 6 t/T 6 3.3. The averaging procedure allows us to study the tem-
poral fluctuations of all statistical measures and to improve the statistical significance of the similarities and the differences
seen between the different schemes. This is an important advantage over comparing instantaneous snapshots, because it
must be kept in mind that individual snapshots can be different due to intermittent turbulent fluctuations. These fluctua-
tions can either make the results look very similar or very different between the different schemes, if one compares instan-
taneous snapshots only. Thus, a meaningful comparison can only be made by time averaging the results and considering the
statistically average behaviour of the schemes (see also, [58]).

5.2. Time evolution

Fig. 5.1 shows the time evolution of the RMS Mach number, M ¼
ffiffiffiffiffiffiffiffiffi
hu2i

p
=cs. The magnetised fluid is accelerated from rest

by the random stochastic forcing as discussed in the previous section. It reaches a statistical steady state at around t * 2T,
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such that turbulence is fully developed for t J 2T (see also, [19,20]). We can thus safely use time-averaging for 2.3 6 t/
T 6 3.3 of the Fourier spectra discussed in the next section.

5.3. Fourier spectra

As a typical measure used in turbulence analyses (e.g. [22,34,32]), we show Fourier spectra of the velocity and magnetic
fields in Fig. 5.2, decomposed into their rotational part, E\ and their longitudinal part, Ek. For the velocity spectra (top panel),
E?
u / ju?j2 is a measure for the rotational motions of the turbulent flow, while Ek

u / jukj2 is a measure for the compressions
induced by shocks. Since here we drive the turbulence with a solenoidal random force [20], and since the RMS Mach number
is only slightly supersonic ðM * 2Þ the bulk of the turbulent motions is in the rotational part, E?

u . From the velocity spectra
we conclude that FLASH-Roe is the least dissipative scheme of the three schemes tested. The HLL3R is slightly more dissipa-
tive, which is seen from the faster loss of kinetic energy at wavenumbers k J 20. The HLL5R is in between the FLASH-Roe
and the HLL3R spectrum. Given that the limited numerical resolution does not allow for an accurate determination of the
turbulence spectrum in the inertial range, the differences for k J 20 are acceptable (see also Section 5.6 below). [32] and
[20] find that about 30 grid cells are necessary to resolve the turbulence on the smallest scales. This means that the turbu-
lence on all wavenumbers k J N/30 * 8 may be affected by the limited resolution (here N = 256), which means that the dif-
ferences between the different schemes for k J 20 can be safely ignored.

Fig. 5.1. Time evolution of the RMS Mach number,M for FLASH-Roe, HLL3R and HLL5R, shown as solid, dotted and dashed lines, respectively. Turbulence is
fully developed for t J 2T, where T is the large-scale eddy turnover time.

Fig. 5.2. Comparison of the Fourier spectra of the turbulent velocity (top panel) and the turbulent magnetic field (bottom panel) for the FLASH-Roe, HLL3R
and HLL5R, shown as solid, dotted and dashed lines, respectively. The numerical resolution was 2563 grid cells. Both the velocity and the magnetic field
spectra were decomposed into their rotational and compressible parts, E\ and Ek, respectively. The temporal variations of the spectra are on the order of
three times the line width in this plot.
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The magnetic field spectra (Fig. 5.2, bottom panel) display small differences for k J 10. As for the velocity spectra the
differences occur on scales smaller than the scales that are affected by numerical resolution, which means that these differ-
ences are negligible in applications of supersonic MHD turbulence. The rotational part of the magnetic field, E?

m, shows
slightly less dissipation for the HLL3R and HLL5R compared FLASH-Roe. The longitudinal part, Ek

m, is a measure for
(r # B)2. The FLASH-Roe scheme keeps the divergence of the magnetic field smaller by an order of magnitude compared
to HLL3R and the HLL5R on all scales. However, all schemes maintain ther # B constraint within acceptable values. The ratioR
Ek
m dk=

R
ðEk

m þ E?
mÞdk < 5:5! 10(7 for all times, hence numerical r # B effects did not have any significant dynamical

influence.

5.4. Probability distribution functions

To further investigate the dissipative properties of the different schemes we show probability distribution functions
(PDFs) of the vorticity, jr ! uj, in Fig. 5.3 (top left panel). The vorticity is a measure of rotation in the turbulent flow. Stronger
numerical dissipation leads to a faster decay of small-scale eddies. Fig. 5.3 (top left panel) shows that the most dissipative
among the three schemes tested, HLL3R produces smaller values of the mean vorticity by about 10% compared to the FLASH-
Roe. The mean vorticity achieved with HLL5R is equivalent to FLASH-Roe. The RMS values of the vorticity for HLL3R and
HLL5R are 11% and 1%, respectively smaller than for FLASH-Roe. This confirms the expected ranking of the schemes in terms
of their numerical dissipation from the previous section: the HLL3R is the most dissipative, while the HLL5R is only margin-
ally more dissipative than FLASH-Roe.

The PDF of the divergence of the velocity field, r # u is shown in the top right panel of Fig. 5.3. The asymmetry between
rarefaction (r # u > 0) and compression (r # u < 0) is typical for compressible, supersonic turbulence (see, e.g. [54,64]).
FLASH-Roe produces slightly more zones with higher compression, which can be attributed to its lower numerical dissipa-
tion compared to HLL3R and HLL5R (cf., the Fourier spectra discussed in the previous subsection). However, all schemes
agree to within the error bars, indicating strong temporal variations of compressed regions due to the intermittent nature
of the shocks.

The PDF of the gas density is an essential ingredient for analytic models of star formation (e.g. [52,37,29]). All those mod-
els need the density PDF to estimate the mass fraction above a given density threshold by integrating the PDF. Thus, many
studies have focused on investigating the density PDF in a supersonic turbulent medium (e.g. [71,53,54,33,51,43,31,40,18]).
Fig. 5.3 (bottom left panel) shows the PDF of the logarithmic density, s = ln(q/hqi), where hqi is the mean volume density. In
this transformation of the density, the PDF follows closely a Gaussian distribution, i.e. a log-normal distribution in q with a

Fig. 5.3. Probability distribution functions of the vorticity, jr ! uj (top left), the divergence of the velocity,r # u (top right), the logarithmic density, s = ln (q/
hqi) (bottom left), and the magnetic pressure, pm=pm;0 ¼ B2=B2

0 (bottom right), for FLASH-Roe, HLL3R and HLL5R, shown as solid, dotted and dashed lines,
respectively. The numerical resolution was 2563 grid cells. The grey hatched regions indicate the 1-r temporal fluctuations of the distributions.
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standard deviation of r2
s ¼ lnð1þ b2M2Þ (see, e.g. [20]). From this expression we derive a turbulence forcing parameter of

b = 0.35 ± 0.05 for the given RMS Mach number,M ¼ 2:3) 0:2 and rs = 0.71 ± 0.04 for all three schemes. This is in very good
agreement with the expected forcing parameter for purely solenoidal forcing as applied in this study, b = 1/3 (see [18,20]).

Finally, we show the PDF of the magnetic pressure, pm = B2/(8p) in units of the initial magnetic pressure, pm,0, in Fig. 5.3
(bottom right panel). No significant differences are seen between the three different schemes. Thus, the magnetic pressure
distribution is quite robust.

5.5. Computational performance of the MHD schemes

All runs with the three different schemes, FLASH-Roe, HLL3R and HLL5R were performed on the same machine, the HLRB
II at the Leibniz Supercomputing Center in Munich in a mode of parallel computation (MPI) with 64 CPUs. In Table 3 we list
the wall clock time per step, the total number of steps, the total amount of CPU hours spent, and the CFL number used for
each scheme in our driven MHD turbulence experiments with a numerical resolution of 2563 grid cells. Only for FLASH-Roe
we had to use a CFL number of 0.2 instead of 0.8 (both HLL3R and HLL5R), because it became unstable for CFL numbers > 0.2
and crashed due to the production of cells with negative densities. The time per step was estimated from averaging over 0.1T
within the last turnover time, i.e. between 3.2 6 t/T 6 3.3 by averaging over 309, 70 and 71 steps for the FLASH-Roe, HLL3R
and HLL5R, respectively to avoid variations produced by I/O processing. Considering the time per step, HLL3R and HLL5R are
about 4% and 3%, respectively faster than FLASH-Roe. This speed-up of HLL3R is slightly less than the speed-up measured for
the Orszag–Tang test (cf. Table 2). The difference between HLL3R and HLL5R is almost negligible. Indeed, the two corre-
sponding solvers have a very similar structure, except that the HLL5R solver typically goes through one more if-test com-
pared to the HLL3R solver. HLL5R goes through a few more time steps, which is either because of its slightly more
restrictive CFL constraint, or flow features such as local differences Alfvén speed.

The total number of steps and the total CPU time spent by tend = 3.3T for each run are shown in the third and fourth col-
umn of Table 3. Given the factor of 4 between the CFL number used with FLASH-Roe compared to HLL3R and HLL5R it is not
surprising that the total number of steps is much higher for FLASH-Roe. However, the number of steps for FLASH-Roe is about
8.6 and 8.0 times higher compared to HLL3R and HLL5R, respectively, which is more than the difference in the CFL numbers.
The reason for this is that FLASH-Roe is close to being unstable even with CFL = 0.2. This produces timesteps that are often
significantly smaller than necessary. Taken altogether, for the problem setup discussed in this section, HLL3R and HLL5R are
factors of 8.9 and 8.2, respectively faster than FLASH-Roe, which is reflected by the total amount of CPU time spent for a suc-
cessful MHD turbulence run withM * 2. For higher Mach number runs, however, FLASH-Roewas extremely unstable, which
did not allow us to make this comparison of the schemes at higher Mach number.

5.6. Resolution study

As outlined in the introduction, interstellar turbulence is highly supersonic with typical Mach numbers of the order of
M * 10. As discussed in the comparison of the different MHD schemes in the previous subsections, the FLASH-Roe scheme
turned out to be highly unstable even for low Mach number turbulence. This limitation is overcome with the HLL3R and
HLL5R schemes. In this section, we apply our new HLL3R scheme to MHD turbulence withM ¼ 10 as an example of the high
Mach number turbulence typical of the interstellar medium and discuss numerical resolution issues. The three runs analysed
in this section were run at numerical resolutions of 1283, 2563 and 5123 grid cells with a slightly smaller initial magnetic
field, B0 = 4.4 ! 10(6 Gauss, which gives an initial plasma beta of b * 1.

First, we show slices through the three-dimensional box at y = L/2 of the density and magnetic pressure fields in Fig. 5.4.
With increasing resolution more small-scale structure is resolved. The density and magnetic pressure are correlated due to
the compression of magnetic field lines in shocks. Vector fields showing the velocity and the magnetic field structure are
overlaid on the slices of the density and magnetic pressure, respectively.

Numerical dissipation becomes smaller with higher resolution. Since the inertial range of the turbulence is defined as all
the length scales much smaller than the forcing scale and much larger than the dissipation scale, a minimum numerical res-
olution of about 5123 grid cells is required to separate the inertial range from the forcing and dissipative scales. To see how
dissipation depends on numerical resolution we plot the velocity and magnetic field spectra in Fig. 5.5 for the three different
resolutions in analogy to Fig. 5.2. The turbulence is driven on large scales corresponding to k * 2 (injection scale, Linj), while

Table 3
Performance of the MHD schemes in driven MHD turbulence withM ¼ 2 for a numerical resolution of 2563 grid cells. All
runs were performed in a mode of parallel computation with 64 CPUs on the SGI Altix 4700 (HLRB II) at the Leibniz
Supercomputing Center in Munich. Note that the run with the FLASH-Roe scheme was unstable for CFL numbers > 0.2 in
this test.

Scheme Time per step [s] Total steps Total CPU hours CFL

FLASH-Roe 69.8 ± 0.5 16,502 20,480 0.2
HLL3R 67.3 ± 0.5 1920 2297 0.8
HLL5R 67.9 ± 0.5 2065 2493 0.8
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Fig. 5.4. Slices of the density (left) and magnetic pressure (right) at y = L/2 and t = 2T for numerical resolutions of 1283 (top), 2563 (middle), and 5123

(bottom).
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the spectra become steeper and begin dropping to zero at wavenumbers k J 10, 20, and 40 for 1283, 2563, and 5123, indi-
cating the onset of dissipation (on scales ‘dis), respectively. Thus, the range of scales separating the injection scale from the
dissipation scale increases with increasing resolution. However, the inertial range is defined as all scales, ‘ with
Linj . ‘. ‘dis. Purely hydrodynamical simulations of driven turbulence with up to 10243 grid cells show that the inertial
range just becomes apparent for resolutions J5123, which means that we cannot see a convergence of the slope in the spec-
tra shown in Fig. 5.5. However, measuring the power-law slope, E / kb of the velocity spectra in the wavenumber range
5[ k[ 10 at 5123 yields slopes of b * (1.6 ± 0.1, and b * (1.9 ± 0.1, for E?

u and Ek
u, respectively. The solenoidal part, E?

u
is in good agreement with the Kolmogorov spectrum (b = (5/3) [36,22], while the compressible part, Ek

u is significantly stee-
per and closer to Burgers turbulence (b = 2) [11], applicable to a shock-dominated medium. Note that Ek

m clearly decreases
with increasing resolution.

5.7. Turbulent dynamo

Magnetic fields are ubiquitous in molecular clouds, but it remains controversial whether these fields have an influence on
the cloud dynamics (see, e.g. [46]). However, it is widely accepted that magnetic fields play a significant role on the scales of
protostellar cores, where they lead to the generation of spectacular jets and outflows, launched from the protostellar disks, a
process for which a wound-up magnetic field seems to be the key [1,45]. Thus, we test in this section whether our new MHD
schemes can represent wound-up magnetic field configurations with the same turbulence-in-a-box approach as in the pre-
vious subsections.

The magnetic pressure can become comparable to the thermal pressure in dense cores due to the amplification of the
magnetic field through first, compression of magnetic field lines, and second, due to the winding, twisting and folding of
the field lines by vorticity, a process called turbulent dynamo (see [7] for a comprehensive review of turbulent dynamo ac-
tion in astrophysical systems). Magnetic field amplification in the early universe during the formation of the first stars and
galaxies was discussed analytically in [63], showing that the magnetic pressure can reach levels of about 20% of the thermal
pressure in primordial mini-halos, thus potentially influencing the fragmentation of the gas. Numerical simulations also
show that the turbulent dynamo is an efficient process to amplify small seed magnetic fields during the formation of the
first stars and galaxies ([74,66]). In present-day star formation the influence of magnetic fields on the scales of dense cores
were investigated in numerical work ([57,30]), concluding that magnetic fields strongly affect fragmentation of dense gas.
Understanding the magnetic field growth due to the turbulent dynamo is thus crucial for future studies of star formation.
Many studies have focused on subsonic turbulence (e.g. [62]), with only very few contributions on the supersonic regime.
For instance, [28] only studied the turbulent dynamo for mildly supersonic Mach numbers, MK2:5. For molecular clouds
however, the highly supersonic regime is more relevant.

Fig. 5.6 shows a comparison study of the turbulent dynamo operating in the supersonic regime ðM ¼ 5Þ. We used the
HLL3R for this test with a numerical resolution of 1283 grid cells. Unlike the previous turbulence runs discussed above

Fig. 5.5. Comparison of the Fourier spectra of the turbulent velocity (top panel) and the turbulent magnetic field (bottom panel) for HLL3R in M ¼ 10, b = 1
MHD turbulence. The influence of the grid resolution is shown: 1283 (dotted), 2563 (dashed) and 5123 (solid). Both the velocity and the magnetic field
spectra were decomposed into their rotational and compressible parts, E\ and Ek, respectively, as in Fig. 5.2.
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we started from an extremely small initial magnetic field, B0 = 4.4 ! 10(16 Gauss, which corresponds to an initial plasma beta
of b * 1020. We used two limiting cases to drive the turbulence: purely solenoidal (divergence-free) forcing as above, and
purely compressive (curl-free) forcing (see [20] for a detailed analysis of the differences of solenoidal and compressive tur-
bulence forcings and their role in the context of molecular cloud dynamics and star formation). Fig. 5.6 shows that the tur-
bulent dynamo leads to an exponential growth of the magnetic pressure over more than 15 orders of magnitude within
about 100 large-scale eddy turnover times, T. The dynamo growth rate is about twice as large for solenoidal forcing
(*0.60/T) compared to compressive forcing (*0.28/T), due to the higher average vorticity generated by solenoidal forcing
(see [20]), which makes the small-scale dynamo more efficient. The actual growth rates, however, depend on the kinematic
and magnetic Reynolds numbers. Since we did not add physical viscosity and magnetic diffusivity, these numbers are con-
trolled by numerical viscosity and diffusivity, and thus by numerical resolution. A resolution study of the dynamo in recent
FLASH simulations is presented in [66] and in [21], the kinematic and magnetic Reynolds numbers found in dynamo simu-
lations similar to the ones presented here are around 200 for a numerical resolution of 1283 grid cells. A more detailed anal-
ysis of the Mach number dependence of the turbulent dynamo amplification in solenoidal and compressive forcings is in
preparation. The dynamo saturates after about 70T and 140T for solenoidal and compressive forcing, respectively. The sat-
uration level is close to the thermal pressure in both cases. For compressive forcing the saturated magnetic pressure is about
5% of the thermal pressure, while it is 40% for solenoidal forcing. This numerical test shows that the turbulent dynamo works
with the new HLL3R scheme. This is an important test as it shows that the scheme reproduces the expected amplification of
the magnetic pressure due to the winding-up of magnetic field lines.

6. Summary

We presented an implementation of an accurate, efficient and highly stable numerical method for MHD problems. The
method is reviewed here, and presented in detail in [72]. It is implemented as a modification of the FLASH code [24], which
enables large-scale, multi-processor simulations and adaptive mesh refinement. In [72] it was found that our method could
handle significantly larger ranges of the sonic Mach number and plasma b than a standard MHD scheme. This was confirmed
in this paper by comparisons with the standard FLASH code. The algorithmic changes underlying the increased stability can
be broken down into three parts:

(1) An entropy stable approximate Riemann solver that preserves positivity of density and internal energy [4,5].
(2) For second order accuracy, a reconstruction method that ensures positivity [72].
(3) In multidimensions, a stable discretisation of the Powell system [72].

All these ingredients were essential in obtaining the desired stability and efficiency of the overall scheme. The different
elements of the new scheme have been studied separately in previous papers. While [72] focused on the positive second-
order algorithm and multidimensionality, only a single approximate Riemann solver, HLL3R, was considered. The present
study contrasts a standard scheme to the combination of these three new ingredients.

The new scheme was implemented in two versions featuring the 3-wave (HLL3R) and 5-wave (HLL5R) approximate Rie-
mann solvers of [5] respectively, while there were two standard implementations of the FLASH code (version 2.5), using the
Roe and the HLLE approximate Riemann solvers. We observed some increase of numerical dissipation compared to the Roe
solver of FLASH, but it was minor, and due to the replacement of the Roe solver with the robust and efficient HLL-type solv-
ers. The HLLE solver was found to be the most dissipative, while HLL5R showed almost identical dissipation properties and
accuracy to the Roe solver. HLL3R was ranked between HLLE and Roe in terms of accuracy.

Fig. 5.6. The magnetic pressure as a function of time (for 200 eddy turnover times, T) for solenoidal forcing (solid line) and compressive forcing (dashed
line). The dash-dotted horizontal line shows the thermal pressure. The turbulent dynamo works with an exponential growth rate of about 0.60/T for
solenoidal forcing and 0.28/T for compressive forcing (dotted lines). For comparison, typical amplification rates found in subsonic, solenoidally driven
turbulence are about 0.5/T (e.g. [62]).

K. Waagan et al. / Journal of Computational Physics xxx (2011) xxx–xxx 19

Please cite this article in press as: K. Waagan et al., A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear
stability, implementation and tests, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.01.026

http://dx.doi.org/10.1016/j.jcp.2011.01.026


As a physical application, we have considered forced MHD turbulence at high sonic Mach number. We were able to com-
pare the new and old schemes at RMS sonic Mach number 2 with an initial plasma b = 0.25. The schemes were all found to
give similar and reasonable results, but the new schemes HLL3R and HLL5R were altogether about eight times more efficient
in this test. The Roe solver-based scheme in the FLASH code was slightly less dissipative, but had to be run at a four times
lower CFL number to be stable. At RMS sonic Mach number 10 only the new schemes yielded physical results. We found
reasonable dependence of dissipation on numerical resolution at this Mach number, and were able to infer a small inertial
range from the velocity power spectra at 5123 resolution. Finally, we studied the turbulent dynamo action at RMS Mach
number 5 with the new scheme. So far, there have been very few studies of turbulent dynamos in the supersonic regime.
We found dynamo-generated exponential growth rates of the magnetic pressure that differed according to the type of forc-
ing mechanism, i.e. solenoidal versus compressive forcing [18–20]. Turbulence simulations with the new scheme across a
wide range of modest to large sonic and Alfvénic Mach numbers have been presented in [10,9].

The two relaxation-based approximate Riemann solvers HLL3R and HLL5R have previously not been compared at high
order and in higher spatial dimensions than 1D. In many cases we found them to give similar results, with HLL3R being
slightly more efficient. However, we presented one case, a 2D Kelvin–Helmholtz instability, where the more detailed HLL5R
was significantly less viscous. This was because of velocity shears parallel to both the grid and the magnetic field lines. In a
three-dimensional turbulence run at Mach 2, we also found HLL5R to be somewhat less dissipative than HLL3R, giving results
that were very close to the Roe solver-based FLASH version.

The new FLASH MHD module is freely available upon contact with the corresponding author.
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