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We present a new numerical scheme that is a well-balanced and second-order accurate

for systems of shallow water equations with variable bathymetry. We extend in this
paper the subtraction method (resulting in well-balancing) to the case of unstaggered

central finite volume methods that computes the numerical solution on a single grid.
In addition, the proposed scheme avoids solving Riemann problems occurring at cell

boundaries as it employs intermediately a layer of ghost-staggered cells. The proposed

numerical scheme is then implemented and validated. We successfully manage to solve
classical SWE problems from the literature featuring steady states and other equilibria.

The results of the study are consistent with previous research, which supports the use

of the proposed method to solve shallow water equations.

Keywords: Shallow Water Equations, Subtraction method, Unstaggered central methods,

Well-Balanced discretizations.

1. Introduction

The Shallow Water Equations are a set of partial differential equations describing the
flow of an in-compressible shallow layer of fluid with a free surface over a bottom to-

pography under gravity. The bottom topography can either be flat or variable. Shallow

water equations are only admissible when the flow being studied is that of a shallow
layer of fluid, i.e. when the fluid depth is much smaller than the wavelength of the waves

being studied. They can model many natural phenomena such as tsunamis, tides, ocean
currents, river floods, etc.
Numerous numerical techniques have been employed to tackle shallow water problems

with flat and varying bottom topographies. For instance, numerical techniques based on

Riemann solvers were developed in [Greenberg and LeRoux (1996); Kim (2003)], and
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recently, in [Aleksyuk et al. (2022)], an exact Riemann solver for the SWE’s was de-

veloped. On another hand, well-balanced schemes were established in [Touma (2009);

Touma and Khankan (2012); Botta et al. (2004); Greenberg and LeRoux (1996)].
Additionally, authors in [Touma (2016); Audusse et al. (2004)] addressed the dry-

ing of domains, such as Audusse et al. [Audusse et al. (2004)] who used a hydro-

static reconstruction to obtain a well-balanced scheme that handles dry states (h =
0). There are also [Bryson et al. (2011)] whose authors developed central upwind

schemes, as well as [Shu and Xing (2005); Lu and Qiu (2011); Xing and Shu (2006);

Noelle et al. (2007)] whose authors used finite difference and finite volume WENO
schemes to tackle such problems. In [Guo et al. (2022)], the authors developped a new

well-balanced finite volume CWENO scheme for the shallow water equations. Also, the

authos of [Ciallela et al. (2022)] demonstrated a well-balanced finite volume WENO
method combined with the modified Patankar Deferred Correction time integration

method. Schemes based on relaxation models were presented in [Delis and Katsaou-

nis (2005); Delis and Katsaounis (2003)]. And recently, in [Gaburro et al. (2018);
Desveaux et al. (2016); Castro and Pares (2020); Arpaia and Ricchiuto (2020);

Busto and Dumbser (2022)], well-balanced schemes to solve the shallow water equa-
tions were presented. In [Kent et al. (2023)], the authors used an iterated semi-implicit

time-stepping scheme along with a finite-volume transport method, and the cubed sphere

grid, hence a mixed finite element discretization of the SWE’s. Whereas in [Kaptsov et al.
(2022)], the authors used conservative invariant finite difference schemes for the modified

shallow water equations in Lagrangian coordinates.

On another hand, many schemes and methods have been employed recently on solving
nonlinear PDE’s, and due to which many useful results have been found such as in [Gao

et al. (2023); Chen et al. (2023a); Zhao et al. (2022); Chen et al. (2023b); Liu et al. (2023);

Liu et al. (2023); Yin and Xing (2023); Yin et al. (2022); Yin et al. (2021); Lu et al.
(2021); Lu and Chen (2021); Dong (2023); Xin et al. (2021); Buachart et al. (2014);

Sepehrirahnama et al. (2020)].

As previously stated in [Touma and Khankan (2012)], the NT-scheme developed in
[Nessyahu and Tadmor (1990)] is a non-oscillatory central scheme that approximates

solutions to hyperbolic systems such as SWE systems. Its requirement for two staggered
grids is a disadvantage, though. Jiang et al. [Jiang et al. (1998)] created the first unstag-

gered outlook on NT-schemes. We can therefore think of the UCS (unstaggered central

schemes) developed in [Touma (2009)] as being inspired by the previously mentioned
schemes, with the advantages of avoiding Riemann solvers and staggered grids, working

with only one original grid, a staggered ghost grid, and projecting back the numerical

solution onto the original grid.
In this paper, we present a new numerical method for solving shallow water equation

(SWE) problems in one dimension. It is second-order accurate, well-balanced, unstag-

gered, and uses the subtraction method. Its extra advantage is the ability to apprehend
all types of steady states of the system at the discrete level.

The new method uses the same approach as the reconstruction technique previously

employed in [Kanbar et al. (2020)]. Instead of resolving for the unknown solution U,
here, we will be evolving the error function ∆U between U and a given steady state of
the system Ũ, such that ∆U = U− Ũ. The steady state we will use is the lake at rest

steady state.
Our paper will be sorted as follows. In section 2, we will present our UCS with the

subtraction method. In section 3, several common problems from the literature will be
solved using the well-balanced UCS method presented in [Touma and Khankan (2012)]

to compare their results to results obtained using UCS with subtraction. Some problems
will also be compared to different methods found in the literature. And finally, we will
have our concluding remarks in section 4.
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2. UCS with subtraction method

The shallow water equations system in one space dimension writes as:{
∂tU + ∂xf(U) = S(U),

U(x, 0) = U0(x)
(1)

where x ∈ D ⊂ ]−∞,∞[ and t ∈ R∗. The unknown vector solution, the flux function

and the source term in (1) are, respectively, as follows

U =

(
h

hu

)
, f(U) =

(
hu

hu2 + 1
2
gh2

)
, S(U) =

(
0

−gh db
dx

)
. (2)

In system (1)-(2), h(x, t), u(x, t), and b(x) denote the height of the water column, the

water velocity, and the topography (waterbed) function respectively. The constant g =

9.812 denotes the gravitational constant.
The derivation involves two main physical principles, mainly the conservation of mass

and the conservation of momentum.

By the definition of shallow waters, we assume that the wavelength is much bigger than
its average height. This allows us to assume that the water velocity is only horizontal,

where the vertical component of the velocity vector can be assumed to be zero. We

can also assume that the horizontal component is the same throughout the fluid depth.
Another assumption to be taken is that the density of the fluid ρ is constant. The fluid

to be studied is in-compressible.

Finaly, we can write the shallow water equations as follows:
(
h

hu

)
t

+

 hu

hu2 + g
h2

2


x

=

 0

−gh
db

dx

 . (3)

Note that this system becomes homogeneous if we have a flat bottom topography,

b(x) = constant.

Furthermore, the resulting homogeneous system of equations is hyperbolic, and the eigen-
values and eigenvectors are real and linearly independent.

We consider system (1)-(2) explicitly shown in system (3), and we assume that Ũ is

the lake at rest stationary solution of system (1). Then, the error between the unknown
solution U and this steady state Ũ is ∆U = U − Ũ , and so U = ∆U + Ũ .

Since Ũ is a stationary solution, then

Ũt = 0 and so f
(
Ũ
)
x

= S
(
Ũ
)
. (4)

Now, substitute U with ∆U + Ũ in system (1) along with the fact that Ũt = 0,

∆Ut + f
(

∆U + Ũ
)
x

= S
(

∆U + Ũ
)
. (5)

Performing a term by term subtraction in equations (4) and (5), we obtain

∆Ut +
[
f
(

∆U + Ũ
)
− f

(
Ũ
)]

x
= S

(
∆U + Ũ

)
− S

(
Ũ
)
.

The right-hand side simplifies as follows,

S
(

∆U + Ũ
)
− S

(
Ũ
)

=

(
0

−g
(

∆h+ h̃
)

db
dx

)
−
(

0

−gh̃ db
dx

)
=

(
0

−g∆h db
dx

)
.

Accordingly, instead of solving system (1) now, we will be solving the following initial
value problem:{

∂t∆U + ∂x
[
f
(

∆U + Ũ
)
− f

(
Ũ
)]

= S (∆U) , x ∈ D ⊂ R, t > 0

∆U(x, 0) = ∆U0(x).
(6)



October 18, 2023 13:19 WSPC/INSTRUCTION FILE IJCM2023

4

We divide the computational domain D in system (6) into control cells Ci =

[xi−1/2, xi+1/2] and staggered dual cells Di+1/2 = [xi, xi+1]. The control cells are cen-

tered at the nodes xi and have length ∆x. The staggered dual cells are centered at the

nodes xi+1/2 = xi +
∆x

2
and also have length ∆x. The time step is labeled as ∆t and

is used to increment the time variable following the rule tn+1 = tn + ∆t. ∆t is obtained
dynamically to ensure the stability of the numerical schemes.

Given the numerical solution Un
i , an approximation to the exact solution U (xi, t

n), of

Fig. 1. Domain D partitioned into control cells Ci = [xi−1/2, xi+1/2] and staggered dual cells
Di+1/2 = [xi, xi+1].

system (1), and knowing a priori a steady state Ũ of system (1), we define the error

∆Un
i = Un

i − Ũi as a piecewise linear function at time tn over the cell Ci. Thus, the
exact solution ∆U (xi, t

n) will be approximated by ∆Un
i . Our goal is then to generate

the values of the numerical solution ∆Un+1
i at tn+1 on the control cells Ci.

We define the piecewise linear function Pi (x, t) approximating the exact unknown
error function ∆U (x, t) on the cells Ci:

∆Un
i =

1

∆x

∫
Ci

Pi (x, t) dx ≈
1

∆x

∫
Ci

∆Ui (x, t) dx,

and then,

Pi (x, tn) = ∆Un
i + (x− xi) (∆Un

i )′ , ∀x ∈ Ci

where
(
∆Un

i

)′
is an estimate to the partial derivative

∂∆U

∂x
(xi, t

n) obtained by applying

a limiting procedure of the numerical derivatives with the aid of the MC-limiter and given

by:

(∆Un
i )′ = MinMod

[
θ

∆Un
i −∆Un

i−1

∆x
,

∆Un
i+1 −∆Un

i−1

2∆x
, θ

∆Ui+1 −∆Un
i

∆x

]
,

where θ ∈ (1, 2) , and the MinMod function is defined in [Touma (2009)].
From system (6), we get the following balance law:

∆Ut +
[
f
(

∆U + Ũ
)
− f

(
Ũ
)]

x
= S (∆U) . (7)
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Now, we integrate the balance law (7) over the domain Rn
i+1/2

= [xi, xi+1] ×[
tn, tn+1

]
:∫∫
Rn

i+1/2

∆Ut +
[
f
(

∆U + Ũ
)
− f

(
Ũ
)]

x
dR =

∫∫
Rn

i+1/2

S (∆U) dR.

We apply Green’s formula to the double integral on the left-hand side. After a few

simplifications, fixing and rearranging the integrals, we obtain:

∫ xi+1

xi

−∆U(x, tn)dx

+

∫ tn+1

tn

[
f
((

∆U + Ũ
)

(xi+1, t)
)
− f

((
Ũ
)

(xi+1, t)
)]
dt

+

∫ xi

xi+1

−∆U(x, tn+1)dx+

∫ tn

tn+1

[
f
((

∆U + Ũ
)

(xi, t)
)
− f

((
Ũ
)

(xi, t)
)]
dt

=

∫ tn+1

tn

∫ xi+1

xi

S (∆U) dxdt. (8)

We estimate the integrals of the error function in the above equation by following the

mean value theorem for the integral with respect to space. This can be indeed performed
since ∆U(x, t) is supposed to be a piecewise linear function constructed at the center of

the control cells. The integrals become:∫ xi+1

xi

−∆U(x, tn)dx = −∆x∆Un
i+1/2

and

∫ xi

xi+1

−∆U(x, tn+1)dx = ∆x∆Un+1
i+1/2

. (9)

Next we approximate the integrals of the flux function with 2nd-order accuracy by ap-

plying the midpoint quadrature rule. This leads to:∫ tn+1

tn

[
f
((

∆U + Ũ
)

(xi+1, t)
)
− f

((
Ũ
)

(xi+1, t)
)]
dt

≈ ∆t
[
f
((

∆U + Ũ
)

(xi+1, t
n+1/2)

)
− f

((
Ũ
)

(xi+1, t
n+1/2)

)]
and∫ tn

tn+1

[
f
((

∆U + Ũ
)

(xi, t)
)
− f

((
Ũ
)

(xi, t)
)]
dt

≈ −∆t
[
f
((

∆U + Ũ
)

(xi, t
n+1/2)

)
− f

((
Ũ
)

(xi, t
n+1/2)

)]
. (10)

Plugging equations (9) and (10) into equation (8), dividing by ∆x, and rearranging, we
obtain the forward evolution of ∆Un

i onto the staggered grid at time tn+1:

∆Un+1
i+1/2

= ∆Un
i+1/2 −

∆t

∆x

[
f
(

∆U
n+1/2
i+1 + Ũi+1

)
− f

(
Ũi+1

)
− f

(
∆U

n+1/2
i + Ũi

)
+ f

(
Ũi

)]
+

1

∆x

∫ tn+1

tn

∫ xi+1

xi

S (∆U) dxdt. (11)

The term ∆Un
i+1/2

occurring in the above equation is the forward projected value of

∆Un
i onto the cells of the staggered grid. It is genereated by expanding ∆U (x, tn) in a

Taylor series in space and then projecting the series onto the staggered grid:

∆Un
i+1/2 =

1

2

(
∆Un

i + ∆Un
i+1

)
+

∆x

8

(
(∆Un

i )′ −
(
∆Un

i+1

)′)
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where
(
∆Un

i

)′
is the numerical derivative estimating the spatial derivative of ∆U (xi, t

n)

calculated using a derivative limiting step.

The predicted values ∆U
n+1/2
i in equation (11) are calculated at the intermediate time

tn+1/2 by expanding ∆U (x, tn) in a Taylor series in time and then using the first-order

term:

∆U
(
xi, t

n+1/2
)

= ∆U

(
xi, t

n +
∆t

2

)
≈ ∆U (xi, t

n) +
∆t

2
∆Ut (xi, t

n) .

Using the balance law (7), we obtain:

∆U
n+1/2
i ≈ ∆Un

i +
∆t

2
(−T1 + T2)

where the terms T1 and T2 are given by

T1 =
[
f
(

∆U + Ũ
)
− f

(
Ũ
)]

x

∣∣
(xi,tn)

,

T2 = [S (∆U)]
∣∣
(xi,tn)

.

Hence we obtain

∆U
n+1/2
i = ∆Un

i +
∆t

2

[
− (fni )′ + f̃ ′i + Sn

i

]
(12)

where
(
fni
)′

along with f̃ ′i denote the estimates to the derivatives in space at the point

(xi, t
n) of f = f

(
∆U + Ũ

)
and f̃ = f

(
Ũ
)

, respectively.

Note that
(
fni
)′

and f̃ ′i can be calculated using the MC-limiter or by using their respective

Jacobians, such that

(fi)
′ =

∂f

∂U
·
∂U

∂x

∣∣
i

= J(f) · (Ui)
′.

Next we use the following discretization of the source term at time tn :

Sn
i = S (∆U)

∣∣
(xi,tn)

=

 0

−g∆hni
∂b

∂x

∣∣
i

 .

On the other hand, we estimate the integral on the right-hand side of equation (11) with
2nd−order accuracy. For that we employ the trapezoidal quadrature rule along with
centered differences, and the midpoint quadrature rule to obtain:∫ tn+1

tn

∫ xi+1

xi

S (∆U) dxdt ≈ ∆t∆xS
(

∆U
n+1/2
i ,∆U

n+1/2
i+1

)
.

The term to the right-hand side of the above equation is given by

S
(

∆U
n+1/2
i ,∆U

n+1/2
i+1

)
=

(
0
c2

)
, (13)

with c2 is given by c2 = −g
(
bi+1 − bi

∆x

)
∆h

n+1/2
i+1 + ∆h

n+1/2
i

2
.

Finally, the term ∆Un+1
i denotes the backward projected value of the generated solu-

tion ∆Un+1
i+1/2

on the cells of the original mesh. It is calculated by expanding ∆U
(
x, tn+1

)
in a Taylor series in space and then projecting the series onto the original grid

∆Un+1
i =

1

2

(
∆Un+1

i−1/2
+ ∆Un+1

i+1/2

)
+

∆x

8

((
∆Un+1

i−1/2

)′
−
(

∆Un+1
i+1/2

)′)
(14)

where
(

∆Un+1
i+1/2

)′
is the limited numerical derivative of ∆Un+1

i+1/2
calculated using the

MC-limiter.
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So, now that we have ∆Un+1
i , we can find the solution Un+1

i at the cell-center of Ci at

the next time step tn+1 as follows:

Un+1
i = ∆Un+1

i + Ũi.

We will summarize our scheme steps in order:

• Knowing the numerical solution Un
i at time tn and the lake at rest steady state Ũi, we

set ∆Un
i = Un

i − Ũi.

• Find the forward projected values

∆Un
i+1/2 =

1

2

(
∆Un

i + ∆Un
i+1

)
+

∆x

8

(
(∆Un

i )′ −
(
∆Un

i+1

)′)
where

(
∆Un

i

)′
is found using MC-limiter.

• Find the estimated values at the fractional time step tn+1/2

∆U
n+1/2
i = ∆Un

i +
∆t

2

[
− (fni )′ + f̃ ′i + Sn

i

]
where

(
fni
)′

and f̃ ′i denote estimates to the spatial partial derivatives of f = f
(

∆U + Ũ
)

and f̃ = f
(
Ũ
)

, respectively.

• Find the solution on the staggered dual cells at time tn+1

∆Un+1
i+1/2

= ∆Un
i+1/2 −

∆t

∆x
[f

n+1/2
(sum)i+1

− f̃i+1 − f
n+1/2
(sum)i

+ f̃i]

+ ∆tS
(

∆U
n+1/2
i ,∆U

n+1/2
i+1

)
where

(1) f(sum) = f
(

∆U + Ũ
)

(2) f̃ = f
(
Ũ
)

(3) S
(

∆U
n+1/2
i ,∆U

n+1/2
i+1

)
=

(
0
c2

)
.

• Find the solution needed on the original grid at time tn+1 by back-projecting ∆Un+1
i+1/2

∆Un+1
i =

1

2

(
∆Un+1

i−1/2
+ ∆Un+1

i+1/2

)
+

∆x

8

((
∆Un+1

i−1/2

)′
−
(

∆Un+1
i+1/2

)′)
where

(
∆Un+1

i+1/2

)′
is found using the MC-limiter.

Any numerical method used to solve the shallow water equations (SWE) must have
the C-property, which means that it must preserve rest. In other words, a lake at rest in

the real world must also be at rest in the numerical model. This means that the steady
state of a lake at rest must be preserved at the discrete level, i.e. h + b = constant

and u = 0. This new scheme we are developing, UCS with subtraction, satisfies the

C-property because it preserves all steady states up to machine accuracy.
In fact, if Un

i is a stationary solution of system (1), Un
i = Ũi, i.e. ∆Un

i = 0, we want to

show that the updated numerical solution Un+1
i at time tn+1 does not change over time,

meaning that it is a stationary solution of the system of equations (1), i.e. ∆Un+1
i = 0.

To show that, we must show that:



October 18, 2023 13:19 WSPC/INSTRUCTION FILE IJCM2023

8

(1) ∆U
n+1/2
i = 0,

(2) ∆Un+1
i+1/2

= 0,

(3) ∆Un+1
i = 0.

Proof:

(1) Using equation (12) and the fact that ∆Un
i = 0,

∆U
n+1/2
i = ∆Un

i +
∆t

2

[
−f
(

∆Un
i + Ũi

)′
+ f

(
Ũi

)′
+ S (∆Un

i )

]
=

∆t

2

[
−f
(
Ũi

)′
+ f

(
Ũi

)′]
= 0.

(2) Similarly, using equations (11,13) and the fact that ∆U
n+1/2
i = 0,

∆Un+1
i+1/2

= 0.

(3) Similarly, using equation (14) and the fact that ∆Un+1
i+1/2

= 0,

∆Un+1
i = 0.

3. Numerical Experiments

The partial differential equation in (7) can be written as:

∆Ut + F (∆U)x = S(∆U),

where F (∆U) = f(∆U + Ũ)− f(Ũ).

It was shown in [Rogers et al. (2003)] that the jacobian matrix J(F ) =
∂F

∂∆U
is the same

as the jacobian matrix J(f) =
∂f

∂U
corresponding to the pde in system (1); and this will

be used in the CFL condition below: In all the following examples, the numerical results

shown are made with a CFL=0.485 such that

∆t = CFL×
∆x

α

where α = max
i
|λi| where λi are the eigenvalues of the jacobian matrix

Ji(fi) =
∂fi

∂Ui
over the cell Ci:

λi = ui ±
√
ghi.

In this section, we will be solving some problems common in the literature. We
will mainly compare our computed solution with those previously obtained with a well-

balanced unstaggered central scheme presented in [Touma and Khankan (2012)]. We will

also compare our solutions to other results presented in the literature.

The steady state Ũ taken is that of a lake at rest:

Ũn
i =

(
h̃ni
h̃ni ũ

n
i

)
such that h̃ni + bi = constant and ũni = 0.

We will use the following abbreviations: ‘IC’ stands for initial condition, ‘WL’ stands
for water level H = h + b, u0 stands for the initial water velocity u(x, 0), h0 stands for
initial water height h(x, 0), b stands for bottom topography b(x), H0 stands for initial

water level H0 = h0 + b, tf stands for final time, t0 stands for initial time, ‘WB-UCS’

stands for the well-balanced unstaggered central scheme, and ‘UCS-Sub’ stands for the
unstaggered central scheme with the subtraction method.
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3.1. One-dimensional Toro’s problem

We consider a simplified version of Toro’s dam break problem, where the flow is only in

the x-direction as defined in [Touma and Khankan (2012)], originally from [Toro (2001)].

The computational domain, which is the region of space that is being simulated, is
divided into equal-sized segments using 200 grid points. The total length of the compu-

tational domain is 40 units.

The riverbed is flat (b = 0), u0 = 0, H0 = h0 + b = h0 where

h0 =

{
2.5, 17.5 < x < 22.5,

0.5, otherwise.

The final time is tf = 1.4.

Fig. 2. One-dimensional Toro’s problem: Initial water level at t0 = 0.

Figure (2) shows the water level initially at time t0 = 0. Figure (3) shows different

snapshots of the water level obtained using WB-UCS (solid line) and UCS-Sub (dotted
line). Figure (4) shows the water level at the final time. We can observe in figures (3,4)

an outward-propagating shock wave and an inward-propagating rarefaction wave. Both

schemes lead to the same results at all times.

3.2. Lake at rest test case

We consider this one-dimensional water flow over variable bottom topography problem.

The computational domain is the range of x-values from 0 to 10. It is divided into 100
grid points. The waterbed function b = b(x) is defined by:

b =


0.25, 0 ≤ x < 1,

g(x), 1 ≤ x ≤ 9,

0.30, 9 < x ≤ 10,

where

g(x) =
(

10e−x2
+ 15e−(x−2.5)2 + 10e−(x−5)2/2 + 6e−2(x−7.5)2 + 16e−(x−10)2

)
/20.

The initial conditions are H0 = 1 and u0 = 0. The final time is tf = 1.
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Fig. 3. Toro’s problem: Water level obtained using WB-UCS (solid line) and UCS-Sub(dotted line)

at different times before the final time.

Fig. 4. Toro’s problem: Water level obtained using WB-UCS (solid line) and UCS-Sub(dotted line)

at tf = 1.4.
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Fig. 5. Lake at rest problem: Initial water level at t0 = 0.

Fig. 6. Lake at rest problem: Water level obtained using WB-UCS (solid line) and UCS-Sub (dotted

line) at tf = 1.

Figure (5) shows the water level initially at time t0 = 0. Figure (6) shows the water

level obtained at the end of the simulation, at time tf = 1 using WB-UCS (solid line) and
UCS-Sub (dotted line). The UCS-Sub method was able to produce a numerical solution

that perfectly met the steady state requirement. This is a strong indication that the
method is accurate and reliable. The numerical solution is in perfect agreement with the
results obtained using the WB-UCS method and with the analytic equation solution.
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3.3. Water flow test case over variable waterbed

We consider next the water flow test case on variable bathymetry as presented earlier in

[Touma (2009)]. The computational domain is set to be the region on the x-axis satisfying

|x| ≤ 10 which we mesh using 2000 grid points. The waterbed bathymetry b = b(x) is
piecewise described by

b =


1

5

(
1−

(x
2

)2)
, −2 ≤ x ≤ 2,

0, otherwise.

The initial water level H0 = 1 and u0 = 1. The final time is tf = 20.

Fig. 7. Water flow over variable bottom topography: Initial water level at t0 = 0.

Fig. 8. Water Flow over variable bottom topography problem: Water level obtained using WB-UCS

(solid line) and UCS-Sub (dotted line) at different times before the final time.

Figure (7) shows the water level initially at time t0 = 0. Figures (8,9) show the water
level obtained at different times and at the final time respectively using WB-UCS (solid
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Fig. 9. Water Flow over variable bottom topography problem: Water level obtained using WB-

UCS (solid line) and UCS-Sub (dotted line) at tf = 20.

line) and UCS-Sub (dotted line). The perfect alignment of results from the two schemes

confirms the robustness and potential of the proposed UCS-Sub.

Fig. 10. Water flow over variable bottom topography: Water level obtained using WB-UCS and

UCS-Sub compared with results obtained using the NT+SB method.

Figure (10) shows the water level at the final time obtained using WB-UCS and
UCS-Sub in comparison with results obtained using NT+SB; the results were those
presented in [Touma (2009)]. The results show a great match between all solutions.

3.4. Dam break flow, no bottom topography

We consider now the one-dimensional dam break problem previously presented in [Delis
and Katsaounis (2003)]. Consider a channel of Length L = 2000. A dam is located at
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x = 1000. At the time t0 = 0, the dam collapses. The goal is to find the solution at time

tf = 50. The computational domain is the range of x-values from 0 to 2000. It is divided

into 101 grid points to get ∆x = 20.
The riverbed is flat (b = 0), u0 = 0, H0 = h0 + b = h0 where

h0 =

{
h1, x ≤ 1000,

h2, x > 1000,

with h1 = 10 > h2. The solution to this problem features a shock wave propagating

downstream and a rarefaction wave propagating upstream. The type of flow changes be-
tween subcritical, supercritical, and strongly supercritical according to the water height

downstream, as follows:

• if h2/h1 ≥ 0.5: subcritical flow,

• if h2/h1 < 0.5: subcritical upstream, supercritical downstream,

• if h2/h1 << 0.5: strongly supercritical downstream.

Fig. 11. Dam break flow: Initial water level at t0 = 0. Subcritical stands for h0/h1 = 0.5, Super-

critical stands for h0/h1 = 0.05, and Strongly Supercritical sands for h0/h1 = 0.005.

Figure (11) shows the water level initially at time t0 = 0. Figure (12) shows the

water level obtained at the final time tf = 50 using WB-UCS (solid line) and UCS-
Sub (dotted line). The numerical results are consistent across all three cases: subcritical,

supercritical, and strongly supercritical.

In figure (13), the initial conditions are adjusted and we compare our results with
those shown in [Kim (2003)]. Now, the channel length is L = 100 and the dam is located

at its center. Upstream water height is h1 = 1 and downstream water height is h2 = 0.1.

Figure (13) shows the water level at time tf = 8. On the left, we show the water level
computed by WB-UCS and UCS-Sub as compared with the analytic solution ([Kim

(2003)],[Toro (2001)]). On the right, we show the water level computed by WB-UCS
and UCS-Sub as compared with the solutions obtained using the HLLC approximate
Riemann solver [Kim (2003)]. The precise results reveal excellent agreement across all of

the solutions, confirming the potential of our scheme.

3.5. Steady flow over a bump

We consider now steady flow over a bump previously considered in [Xing and Shu (2006)].
This problem aims to study convergence in time toward steady flow over a bump. The
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Fig. 12. Dam break flow problem: Subcritical, Supercritical, Strongly Supercritical respectively.

Water level obtained using WB-UCS (solid line) and UCS-Sub (dotted line) at tf = 50.

Fig. 13. Dam break flow: Water level obtained using WB-UCS and UCS-Sub compared with
analytical solution (left) and HLLC approximate Riemann solver (right).

numerical solution is computed on the region x ∈ [0, 25] of the x-axis, which we mesh
using 201 grid points leading to ∆x = 0.125. The bottom topography function b = b(x)
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N L1 error h L1 order

200 1.60e− 03

400 3.85e− 04 2.06

800 7.73e− 05 2.32

Table 1. L1 error and order of convergence of steady flow over a bump, subcritical case.

is given by

b =


1

5
−

1

20
(x− 10)2 , 8 ≤ x ≤ 12,

0, otherwise.

The initial conditions are u0 = 0 for the initial velocity and H0 = Hd for the initial

water level, where Hd is the water level downstream. The final time is tf = 200. We
can get 3 different cases: subcritical, transcritical without shock, and transcritical with

shock. They vary with different boundary conditions.

• Subcritical flow: (hu)up = 4.42, Hd = 2,

• Transcritical flow without shock: (hu)up = 1.53, Hd = 0.66(*),

• Transcritical flow with shock: (hu)up = 0.18, Hd = 0.33,

where (hu) is the discharge, up stands for upstream, and (*): Hd = 0.66 is imposed only

when the flow is subcritical.

Fig. 14. Steady flow over a bump: Initial water level at t0 = 0.

Figure (14) shows the water level initially at time t0 = 0. Figures (15-17) show
the water level obtained in different cases using WB-UCS (solid line) and UCS-Sub
(dotted line) at the final time tf = 200. We have excellent superposing solutions, which
demonstrate the validity of our approach.

We see in figure (18) a comparison between the solutions obtained using WB-UCS
and UCS-Sub compared with the analytic solutions [Xing and Shu (2006)] (left) and

with the solutions obtained using WENO [Xing and Shu (2006)] (right). The figures
show excellent agreement between the results which proves how promising our scheme
is.
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Fig. 15. Steady flow over a bump: Case of a subcritical flow.Water level obtained using WB-UCS

(solid line) and UCS-Sub (dotted line) at tf = 200.

Fig. 16. Steady flow over a bump: Case of a transcritical flow without shock. Water level obtained

using WB-UCS (solid line) and UCS-Sub (dotted line) at tf = 200.
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Fig. 17. Steady flow over a bump: Case of a transcritical flow with a shock wave. Water level

obtained using WB-UCS (solid line) and UCS-Sub (dotted line) at tf = 200.

Fig. 18. Steady flow over a bump: Water level obtained using WB-UCS and UCS-Sub compared

with the analytic solution (left) and the solution obtained using the WENO scheme (right).

3.6. Dam break over a rectangular bump

We now study a one-dimensional problem with a fast-moving flow over an uneven

riverbed as discussed in [Touma and Khankan (2012)]. The computational domain is
[0, 1500] and it is divided into equal-sized segments using 600 grid points. The numerical

solution is resolved at the terminal time tf = 15.

The bottom topography function b = b(x) is given by

b =

{
8, |x− 750| < 375,

0, otherwise,
(15)
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and the initial conditions are

H0 =

{
20, x < 750,

15, otherwise,
(16)

for water level so we can deduce the water height function at t0 = 0 and the velocity u0
is set to be zero.

Fig. 19. Dam break over a rectangular bump: Initial water level at t0 = 0.

Fig. 20. Dam break over a rectangular bump: Water level obtained using WB-UCS (solid line) and

UCS-Sub (dotted line) at different times before the final time.
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Fig. 21. Dam break over a rectangular bump: Water level obtained using WB-UCS (solid line) and

UCS-Sub (dotted line) at tf = 15.

Figure (19) shows the water level initially at time t0 = 0. Figures (20,21) show the

water level obtained at different times and at the final time respectively using WB-UCS

(solid line) and UCS-Sub (dotted line). The results show excellent agreement between
both schemes.

3.7. Dam break over an inclined plane

We consider this one-dimensional problem featuring a dam break over inclined planes

with different angles of inclination as presented in [Touma (2016)]. We mesh the com-

putational domain [−15, 15] using 200 nodes and compute the numerical solution at the
terminal time tf = 2.

The waterbed function is defined by b = b(x) = xtan(β), where β represents the angle
of inclination. The initial conditions are u0 = 0 and

H0 =

{
1, x < 0,

0, otherwise.
(17)

In figure (22), we see 3 rows; each row stands for a different angle of inclination.
First row, β = 0, second row, β = π/60, and third row, β = −π/60. We see in each row

the initial condition and next to it, the water level obtained at the final time tf = 2

using WB-UCS with the wet and dry states (solid line) and UCS-Sub (dotted line). WB-
UCS results were extracted from [Touma (2016)]. The results show excellent agreement

between both schemes.

4. Conclusion

In this paper, we developed a new numerical method for solving the one-dimensional
shallow water equations (SWEs) on variable topographies. The method is second-order
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Fig. 22. Dam break problem over an inclined plane: Horizontally; the initial water level at time
t0 = 0 next to the water level obtained using WB-UCS + wet dry states (solid line) and UCS-Sub

(dotted line) at tf = 2.

accurate, unstaggered, and central, and it uses the subtraction approach to ensure well-

balanced solutions. The approach has the benefits of UCS methods in avoiding Riemann

solvers and staggered grid methods, as well as properly resolving any steady state of the
considered system. The key concept is to evolve the error between the vector solution

and any steady state of the system, rather than the unknown vector solution. We used

the lake at rest stationary solution as the steady state in the error function in our work.
The problems we resolved produced very encouraging outcomes, and our numerical re-
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sults are consistent with those found in other studies, thus validating the accuracy and

the capability of the blended unstaggered central method with the subtraction method.

In addition, the proposed numerical scheme showed a reduction in the computational
time of about 15% as compared to the time required by other well-balanced techniques

which usually necessitate building on special discretizations of the source term according

to the discretization of the water height derivative, whereas UCS-Sub does not need to
apply this as it has the C-property without any extra treatment. Not only does this

make it faster as mentioned, but it also makes it easier to implement.

Generalizations of the presented one-dimensional technique to the two-dimensional con-
text are currently being investigated. We also would like to test our scheme on different

problems including friction. Even though we validated our scheme on a problem includ-

ing a dry domain, but future work might check the treatment of the dry/wet states in
all types of problems with discontinuous bottom topography and bowls for instance.
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