
Enhancement of Numerical Wave

Propagation Through Deep

Learning

A Masterthesis submitted by

Miriam Schönleben

to the Institute of Mathematics

Julius-Maximilians-Universität Würzburg

for the degree of

Master of Science

in the subject of mathematics

Würzburg, August 2025

Supervisor: Prof. Dr. Christian Klingenberg

Acknowledgments

During the work on this thesis I received a lot of support and assistance.

I would like to express my gratitude to my supervisor, Prof. Dr. Christian Klingenberg

(University of Wuerzburg), for his guidance, expertise and feedback throughout the course

of this thesis.

I also extend my sincere thanks to the members of his research group for their feedback

and support during the work on this thesis.

I also express my gratitude to Prof. Yen-Hsi Richard Tsai (University of Texas at Austin)

for his expertise and valuable input.

2

Summary

The propagation of a wave field in heterogeneous media is a main component in many scien-

tific and engineering areas. It is, for example, used to model seismic and acoustic waves and

plays an important role in as medical imaging.

Therefore it is desired to compute the numerical solution of the wave equation fast and ac-

curate. Traditional approaches use fine spatial and time discretizations to achieve a high

accuracy to the true solution of a propagated wave field. This, however, results in high com-

putational costs when propagating a wave field.

Recent studies [18] have introduced a supervised deep learning framework to enhance the

numerical computation of wave propagation. This work builds upon the approach of Nguyen

and Tsai [18] from 2023. Their framework uses a numerical fine solver to generate data for

the training of a neural network, which is used to improve the accuracy of a coarse solver,

together with the parareal algorithm [13]. By combining these two methods they achieve

both, a high accuracy as well as a speedup through time parallelization.

This thesis generalizes the approach of Nguyen and Tsai [18] to three spatial dimensions

and additionally to a slightly different partial differential equation, the wave equation with

variable coefficients in two spatial dimensions. This thesis works as a proof of concept, that

these generalizations can be computed with both, high accuracy and time efficiency.

To show this, we present the mentioned approach with focus on the supervised deep learning

architecture. Furthermore, we present the results of a numerical study regarding the accuracy

and efficiency of this framework for the mentioned generalizations.

Our results show that the approach can be generalized and yields good results for both con-

sidered partial differential equations. However, we conclude, that it is important to combine

the neural network output with a parareal scheme to approximate the fine solution quite well.

Furthermore our results indicate that the choice of the training data set is important. While

the approach performs well for the three dimensional wave equation with a neural network

trained on parareal-like training data, our results show, that a simpler set of training data is

a better choice for the wave equation with variable coefficients in two spatial dimensions.

3

Zusammenfassung

Die Berechnung der Fortsetzung eines Wellenfeldes in heterogenen Medien ist ein wichtiger

Bestandteil vieler wissenschaftlicher und technischer Bereiche, beispielsweise um seismische

und akustische Wellen zu modellieren. Außerdem spielt sie eine wichtige Rolle in medizinis-

chen Bildgebungsverfahren. Deshalb benötigt man Methoden, um die numerische Lösung der

Wellengleichung schnell und akkurat zu berechnen. Traditionelle Verfahren nutzen eine feine

räumliche und zeitliche Diskretisierung um eine hohe Genauigkeit im Vergleich zur wahren

Lösung einer fortgesetzten Welle zu erreichen, was jedoch in hohem Rechenaufwand resultiert.

Neueste Forschungen [18] haben einen supervised Deep-Learning Ansatz präsentiert, der

die numerische Lösung der Fortsetzung eines Wellenfeldes verbessert. Diese Thesis baut

auf dem Ansatz von Nguyen und Tsai [18] aus dem Jahr 2023 auf, die einen feinen nu-

merischen Löser nutzen um Trainingsdaten für ein neuronales Netz zu generieren, das die

Genauigkeit eines groben Lösers verbessert. Danach wird dieses neuronale Netz mit einer

zeitlichen Parallelisierung, dem Parareal Algorithmus [13], kombiniert, wodurch sie sowohl

eine gute Genauigkeit als auch eine effizientere Berechnung erreichen.

Diese Thesis verallgemeinert den Ansatz von Nguyen und Tsai [18] auf drei Raumdimen-

sionen, sowie auf eine leicht abgewandelte partielle Differentialgleichung, die Wellengleichung

mit variablen Koeffizienten in zwei Raumdimensionen. Diese Arbeit dient als ”Proof of Con-

cept” dafür, dass diese Verallgemeinerungen in ähnlicher Weise sowohl numerisch genau als

auch effizient gelöst werden können. Um dies zu zeigen, präsentieren wir den erwähnten

Ansatz mit Fokus auf der Architektur des neuronalen Netzes. Weiterhin präsentieren wir die

Ergebnisse einer numerischen Untersuchung bezüglich der Genauigkeit und Effizienz dieses

Ansatzes für die betrachteten Verallgemeinerungen.

Aus unseren Ergebnissen schließen wir, dass der Ansatz verallgemeinert werden kann und

gute Ergebnisse für die beiden betrachteten partiellen Differntialgleichungen liefert. Wir se-

hen jedoch, dass es wichtig ist die Ausgabe des neuronalen Netzes mit dem Parareal Algorith-

mus zu kombinieren um eine gute Approximation an die feine Lösung zu erhalten. Weiterhin

zeigen unsere Resultate, dass die Wahl der Trainingsdatenmenge wichtig ist. Während der

Ansatz für die drei-dimensionale Wellengleichung gute Ergebnisse liefert, wenn das neuronale

Netz auf einer Menge von Daten trainiert wurde, die ähnliche Strukturen haben wie die Aus-

gaben des Parareal Algorithmus, zeigen unsere Resultate, dass eine einfachere Struktur der

Trainingsdaten bessere Ergebnisse für die Wellengleichung mit variablen Koeffizienten liefert.

4

Contents

1 Introduction 7

1.1 Related Work . 7

1.2 Key Contributions . 8

2 Wave Equation Preliminaries 10

2.1 3D Wave Equation . 10

2.2 2D Wave Equation with Variable Coefficients 11

2.3 Periodic Boundary Conditions . 11

3 General Approach 13

3.1 The Supervised Deep Learning Approach . 13

3.2 Energy Representation . 15

4 Numerical Solver 18

4.1 Velocity Verlet Method . 18

4.2 Varied Velocity Verlet Method . 20

4.3 Numerical stability . 20

5 Neural Network 22

5.1 Neural Network Architecture . 22

5.1.1 Supervised Learning . 22

5.1.2 Feedforward Neural Network . 23

5.1.3 Convolutional Neural Network . 25

5.1.4 The JNet Architecture . 26

5.2 Generating Training Data . 27

5.2.1 Generating Velocity Profiles . 27

5.2.2 Generating Standard Training Data 28

5.2.3 Generating Parareal-Like Training Data 30

5.3 Training . 30

5.3.1 Optimization Problem . 30

5.3.2 Optimization Algorithm . 31

5.4 Numerical Analysis . 32

5

6 Parareal Scheme 33

6.1 General Scheme . 33

6.2 Used Fine and Coarse Solver . 34

6.3 Pseudo-Code . 34

7 Results 35

7.1 Numerical Results for the 3D Wave Equation 35

7.2 Numerical Results for the 2D Wave Equation With Variable Coefficients . . . 38

7.2.1 Standard Training Data . 38

7.2.2 Parareal-Like Training Data . 40

8 Conclusion 43

Acronyms 45

Appendix 48

Versicherung zur Selbstständigen Leistungserbringung 66

6

1 Introduction

Wave propagation in multiscale media in two and three dimensions occurs as an important

part in a wide range of scientific areas with many applications in engineering and research.

For example, wave propagation is used for modeling sound waves underwater in marine bi-

ology. It is also used to forecast the movement of atmospheric waves in meteorology. In

addition, it often occurs as the forward problem when solving inverse problems, like in seis-

mology to determine the origin of a seismic wave or in medical imaging to compute the image

of an ultrasound.

Traditional numerical methods for wave propagation usually achieve higher accuracy the finer

the spatial and temporal discretization is. Computing the numerical solution with such fine

discretizations is computationally more expensive and therefore results in a trade-off between

solution accuracy and computation time. The challenges of numerical methods for wave prop-

agation in multiscale media are studied in detail in [23]. A better numerical computation of

wave propagation leads directly to a better imaging or forecasting in the corresponding appli-

cations of wave propagation. Therefore, there are multiple attempts to obtain a framework,

that numerically propagate a wave with both high accuracy and fast overall computation time.

1.1 Related Work

Many existing approaches to improve the efficiency of wave propagation reduce the complex-

ity of the problem by focusing on special features of the global structure, such as the medium.

Abdulle et al. [1] use a reduced basis method for the wave equation in heterogeneous media.

This method computes a set of basis functions, that span a domain, which closely approxi-

mate the original, more complex one. Since these basis functions are medium-depended such

models are designed to solve the wave equation on the same medium repeatedly with different

initial conditions.

Other approaches uses a so called heterogeneous multiscale method, that combines simu-

lations on microscales and macroscales for the different scales in the heterogeneous media.

Engquist et al. showed that this method reduces the complexity significantly, compared to

traditional techniques [6].

One main approach in the current research is to improve the accuracy and computation

time of traditional numerical solvers by using time parallelization frameworks. Bernacki et

al. present a discontinuous Galerkin method for parallelizing a velocity verlet time integra-

7

tion scheme for the heterogeneous wave equation in three dimensions [3]. In 2000, Lions et al.

introduced an algorithm, the parareal algorithm, as a time discretized parallel computation

for partial differential equations (PDE) [13]. However, this parareal algorithm can be instable

for hyperbolic PDEs. Nguyen and Tsai proposed in 2020 a stabilized parareal scheme for the

homogeneous wave equation [17].

Another approach for faster and more accurate wave propagation is to use different kinds

of neural networks, such as physics-informed neural networks. This type of neural network

respects the laws of physics by including the properties in their training process, to be precise

they use a loss function, that accounts for the physical properties of a given PDE. In 2019,

Raissi et al. introduced two types of physical-informed neural networks, one for problems

with data-driven solution and one for problems with data-driven discovery of PDEs [19].

Another approach, introduced by Moseley et al. [15], applied the physics-informed neural

networks specifically to the wave equation in heterogeneous media. Their approach uses a

deep learning framework for the wave solution, while considering the wave equation itself and

the boundary condition in the loss function.

In recent work, the combination of the parareal algorithm with a neural network was studied.

In 2023, Ibrahim et al. trained a physics-informed neural network as the coarse solver in the

parareal scheme to improve the efficiency of solving a PDE [8].

Meng et al. presented a parareal scheme by computing the output of a physical-informed

neural network in parallel [14].

In 2022, Nguyen and Tsai [18] introduced a parareal scheme for the second order wave

equation in two spatial dimensions on heterogeneous media. In this approach, they train a

neural network in a supervised deep learning framework on data, generated by a fine solver,

and apply this neural network as a correction operator to improve a given coarse solver. By

doing so, they achieve an enhanced solver, which is then used together with the fine solver

in a parareal scheme.

1.2 Key Contributions

This thesis works as a proof of concept that the approach, that combines a corrector neural

network and the parareal algorithm, introduced by Nguyen and Tsai [18], could be gener-

alized to the second order wave equation in three spatial dimensions. For this, we train a

neural network as a corrector for a given coarse solver and apply it to compute the wave

propagation with the considered approach. Afterwards, we compare the results with the nu-

merical solution computed by the given fine solver.

Furthermore, we study, whether the approach could be generalized to other PDEs. For that,

we consider the more complex wave equation with variable coefficients in two spatial dimen-

sions. We train a neural network and apply it to this equation. Afterwards we compare

8

the results with the numerical solution of the fine solver. Furthermore, when evaluating our

results, we also identify the type of training data, that gives the best results, especially in

terms of accuracy and size of the training data set.

Our main contributions are:

(i) The generalization of the two dimensional approach for the wave equation introduced

by Nguyen and Tsai [18] to three spatial dimensions, by applying the approach to this

equation and presenting our numerical results.

(ii) The proof of concept, that the generalization of the approach works for equations dif-

ferent to the standard wave equation. This is shown by applying the approach to the

two dimensional wave equation with variable coefficients and presenting our numerical

results.

This thesis is structured as follows:

In Chapter 1, we motivate our research and give an overview of the current state of research

and discuss other approaches for fast and accurate wave propagation. Chapter 2 gives an

introduction to the mentioned second order wave equation in three spatial dimensions and

to the wave equation with variable coefficients in two dimensions. In Chapter 3, we propose

the general approach and introduce the concept of the energy representation of a wave field.

In Chapter 4, we present the stable numerical solvers, which are problem dependent, in more

detail and present the stability criterion, that we have used. In Chapter 5, we introduce

important terminology in the field of neural networks and present the JNet architecture

to the reader. Furthermore we describe how we generate our training data and how the

neural network is trained. In Chapter 6, we present the parareal algorithm in more detail,

especially by giving the algorithm in pseudo code. Chapter 7 provides a detailed presentation

of the studied setups for the wave equation in three dimensions and the wave equation with

variable coefficients in two dimensions. This is followed by the numerical results, that we

have computed, and an interpretation thereof. Furthermore, we give an analysis about the

type of training data, that results in the best performance, especially in terms of accuracy

and size of the training data set. In Chapter 8 we give a short summary of this thesis and

an outlook to possible future work.

9

2 Wave Equation Preliminaries

Wave propagation in multiscale media is a very important aspect of many scientific areas

including seismology and meteorology and also plays a central role in applications such as

medical imaging. It frequently occurs as the forward model in inverse problems. Due to this

variety of research fields, there are many mathematical formulations to describe the move-

ment of a wave in space and time. Some of these are more simplified models for the movement

of a wave to reduce the computational complexity of wave propagation, whereas other models

are more realistic, but also more complex, due to additional terms.

We present the standard wave equation in three spatial dimensions in Section 2.1. Further-

more, in Section 2.2, we present a variation of the wave equation with variable coefficients

for two spatial dimensions, which accounts for the complexity of multiscale media by adding

additional terms. Moreover, we briefly present the concept of periodic boundary conditions

for two and three spatial dimensions in Section 2.3.

2.1 3D Wave Equation

The first equation, that we consider in this thesis, is the standard second order wave equation

(2.1) in heterogeneous media, which was also studied by Nguyen and Tsai [18]. However,

unlike Nguyen and Tsai, who focus on the two dimensional version of this equation, this

work considers the three dimensional case, generalizing the applicability of the approach to

more complex wave propagation scenarios.

This equation is given as a linear, hyperbolic second order partial differential equation. It

describes how a wave moves and oscillates through a given medium. Therefore the function u

describes a wave in space x ∈ [−1, 1]3 and in time 0 ≤ t ≤ T . Accordingly, the wave equation

is given as

utt(x, t) = c2(x)∆u(x, t)

u(x, 0) = u0(x)

ut(x, 0) = p0(x)

(2.1)

where ut and utt denotes the first and second time derivatives of u.

In this equation c(x) ∈ [−1, 1]3 denotes the piecewise smooth wave speed in three spatial

dimensions, whose exact values depend on the given heterogeneous medium. Furthermore

∆u denotes the Laplace operator of u, which is defined as ∆u :=
3∑

i=1

∂2u
∂2xi

for x = (x1, x2, x3).

10

The wave equation in (2.1) is given as an initial value problem in time. Therefore, for it to

be solvable with a unique solution, it is necessary to have two initial conditions with respect

to time, because the PDE is of second order. These initial conditions are given in Equation

(2.1) as u(x, 0) = u0(x) and ut(x, 0) = p0(x), where u0 and p0 are functions only in the space

variable x.

In our setups we consider the wave equation (2.1) with periodic boundary conditions for the

spatial variable x, which are explained in detail in Section 2.3.

2.2 2D Wave Equation with Variable Coefficients

With the second equation, that we consider in this thesis, we generalize the studies from

Nguyen and Tsai [18] and ours from equation (2.1) and consider a more complex, but also

more physically accurate wave equation in heterogeneous media. This equation provides a

more realistic simulation of the wave movement by adding a term, that accounts for the

gradient of the wave speed. This term simulates the changes in the wave speed in the

heterogeneous medium more accurately than the first equation (2.1).

We consider this second equation in the two dimensional case. Therefore, the wave is given

as a function u in time 0 ≤ t ≤ T and in space x ∈ [−1, 1]2. Accordingly, the wave equation

with variable coefficients is given as

utt(x, t) = ∇.(c2(x)∇u(x, t))

u(x, 0) = u0(x)

ut(x, 0) = p0(x)

(2.2)

As in the first Equation (2.1), ut and utt denote the first and second time derivatives of

u. Furthermore, the piecewise smooth wave speed is denoted by c(x) ∈ [−1, 1]2, where the

exact values depend on the given heterogeneous medium. The nabla operator ∇ is defined

as ∇ = (∂
∂x1

, ∂
∂x2

) for x = (x1, x2).

The equation (2.2) is given as an initial value problem in time. Therefore it occurs with two

initial conditions in time to be uniquely solvable, which are given as u(x, 0) = u0(x) and

ut(x, 0) = p0(x) in (2.2). Here are u0 and p0 functions only in the space variable x.

As in the first Equation (2.1), we use periodic boundary conditions for the space variable x.

2.3 Periodic Boundary Conditions

For equation (2.1) and (2.2) to be solvable with a unique solution, we need a boundary con-

dition for the spatial variable x. In general, a boundary condition describes how the solution

behaves on the edges of the computational domain. One type of boundary condition, which

is often used, is the periodic one. This type of boundary condition models a periodicity on

the edges of the spatial domain, meaning that the solution of a PDE repeats its behavior

periodically for each spatial dimension.

11

In our setups, where we consider the spatial variable x only in the interval [−1, 1] for each

dimension, the periodic boundary conditions are given by the following equations, depending

on whether the spatial domain is two or three dimensional.

In the two dimensional case, i.e. x = (x1, x2) ∈ [−1, 1]2, the periodic boundary conditions

are given for every point in time 0 ≤ t ≤ T by

u((−1, x2), t) = u((1, x2), t)

u((x1,−1), t) = u((x1, 1), t)
(2.3)

For x = (x1, x2, x3) ∈ [−1, 1]3 are the periodic boundary conditions in three spatial dimen-

sions given for every time t in 0 ≤ t ≤ T by

u((−1, x2, x3), t) = u((1, x2, x3), t)

u((x1,−1, x3), t) = u((x1, 1, x3), t)

u((x1, x2,−1), t) = u((x1, x2, 1), t)

(2.4)

This type of boundary condition is used because of its simplifying nature for the compu-

tation, but it does not represent the behavior of a wave on the edges of the domain in a

realistic way. However, the behavior of the wave movement is modeled realistically on the

inside of the computational domain. Therefore, we can compute the propagation of a wave

field realistically by using the periodic boundary conditions.

12

3 General Approach

In this chapter we follow Section 1.1 and parts of Section 1.3 of Nguyen and Tsai [18] and

introduce the supervised deep learning approach. We first derive a parareal scheme for wave

propagation and then stabilize it by enhancing a given coarse solver with a neural network.

Secondly, we introduce a representation of a wave field as energy components, which are used

as a way to reduce computation errors. Furthermore, we provide formulas to compute the

energy components of a wave field, when given the physical components, and vice versa.

3.1 The Supervised Deep Learning Approach

In our approach we assume that we have given two numerical solvers for the wave equation

(2.1) or (2.2), respectively. Both solvers propagate a given wave field u := (u, ut) from time

t to time t+∆t∗ on an also given, heterogeneous wave speed profile, which is denoted by c.

We use these two solvers in a supervised deep learning framework, where the trained neural

network enhances the propagation of the coarse solver G∆t∗ . The fine solver F∆t∗ serves to

generate the training data for this neural network.

First, we have given a coarse solver G∆t∗ . This solver operates on a coarse grid with spatial

step size ∆x. Therefore G∆t∗ has low computational costs, but may not represent the wave

field accurately. We require G∆t∗ to be time-reversible and stable.

Second, we have given a fine solver F∆t∗ , which operates on a grid with a higher resolution

than the coarse solver G∆t∗ . We denote the spatial step size of the fine grid with δx. This

solver yields a more accurate approximation to the true solution of the wave field, but has

also higher computational costs than the coarse solver due to the fact that the given PDE

has to be solved on a higher number of grid points. We require F∆t∗ to be stable and to have

a sufficiently high accuracy for wave propagation in the considered class of velocity profiles.

Both solvers depend on the given wave field u and on the wave speed profile c, but for brevity

of notation we write G∆t∗(u) instead of G∆t∗(u, c) and for the fine solver analogously, if c

is clear from the context. In Chapter 4, our choice of numerical solvers G∆t∗ and F∆t∗ is

presented in detail. We note that, while both solvers propagate the wave field from time t

to t + ∆t∗, the fine solver repeats its stepping scheme more times than the coarse solver to

propagate the wave field for one time step of size ∆t∗ due to the stability requirement for

both solvers.

13

Since we consider two grids, one for the fine solver with a finer resolution and one for the

coarse solver with a coarser resolution, we further introduce a restriction operator R and

a prolongation operator I. The restriction operator R maps functions defined on the fine

grid to ones defined on the coarse grid. R can for example be given as a projection from

the fine to the coarse grid. The prolongation operator I on the other hand maps functions

defined on the coarse grid to ones defined on the fine grid. I could for example be given as

an interpolation operator or as in this approach as a neural network. By defining these two

operators, we are able to compare both solvers on the same grid.

It is important to note, that IRu ̸= u in general.

For this approach, we consider the given wave field u on the fine grid. We aim to prop-

agate u for N time steps ∆t∗ from time t = 0 to a final time t = T with accuracy comparable

to that of the fine solver. We aim to obtain an approach with low computational costs, to be

precise, lower computational costs than the fine solver F∆t∗ . The number N of time steps and

thus the size of one time step ∆t∗ := ⌈ T
N ⌉ is usually determined by the hardware, specifically

by how many time steps can be computed in parallel.

We use the notation un for the wave field u at time step n, i.e. at time t = n ·∆t∗. Therefore

we aim to approximate

un+1 := F∆t∗(un) (3.1)

for all n = 0, . . . , N − 1. By adding zero and reorganizing this formula we obtain

un+1 = F∆t∗(IRun) + F∆t∗(un)−F∆t∗(IRun) (3.2)

The first step of the approach is to reduce the computational cost by deriving a parareal

scheme. For this, we replace F∆t∗(IRun) with a cheaper approximation IG∆t∗(Run) and

furthermore introduce a fixed point iteration as a self improving loop to equation (3.2). Thus

we obtain a parareal scheme where k = 0, . . . ,K − 1 denotes the parareal iteration

u0
n+1 = IG∆t∗(Ru0

n)

uk+1
n+1 = IG∆t∗(Ruk+1

n) + F∆t∗(u
k
n)− IG∆t∗(Ruk

n)
(3.3)

For each parareal iteration k, the wave field uk
0 is given by the initial conditions of the PDE

(2.1) or (2.2), respectively. The parareal scheme enables us to reduce the overall computation

time further, by allowing the fine solver to be computed for each time step ∆t∗ in parallel.

Chapter 6 presents the general parareal scheme in detail, including pseudo-code for its im-

plementation.

The second step of the approach is the stabilization of this parareal scheme. Since the

scheme needs IG∆t∗(Run) to be a close approximation of F∆t∗(IRun) to be stable, we im-

prove IG∆t∗(Run) by replacing I with a neural network, that approximates F∆t∗(IG−1
∆t∗(u)).

To further improve the approach, we introduce the energy representation of a wave field in

14

Chapter 3.2, where we define the functions Λh and Λ†
h, where h denotes the spatial step size

of the considered grid, i.e. h = ∆x for the coarse grid and h = δx for the fine grid. The

function Λh computes the energy components of a wave field on the respective grid and Λ†
h

denotes the pseudo inverse function on the respective grid. Since the energy representation

performed well in similar work [3], [18], we use these two functions to define the enhanced

solver on the fine grid as

G̃∆t∗(u, c) := Λ†
δxH

θ
∆t∗(Λ∆xG∆t∗(Ru, c)) (3.4)

where Hθ
∆t∗ denotes the function of a neural network with the trainable parameters θ. This

neural network is trained on input data of the form ((c,Λ∆xG∆t∗Ru),ΛδxF∆t∗u) for the time

step ∆t∗. For a shorter notation we write G̃∆t∗(u) instead of G̃∆t∗(u, c), when c is clearly

determined by the context. We remark that G̃∆t∗ propagate a wave field u for one time step

∆t∗ on the fine grid. Chapter 5 presents the design of the neural network and the generation

of the training data in detail.

Using the enhanced solver G̃∆t∗ in (3.3) we derive the following parareal scheme for the wave

propagation

u0
n+1 = G̃∆t∗(Ru0

n)

uk+1
n+1 = G̃∆t∗(Ruk+1

n) + F∆t∗(u
k
n)− G̃∆t∗(Ruk

n)
(3.5)

where the wave fields uk
0 are given through the initial conditions of the PDE for all parareal

iterations k = 0, . . . ,K − 1.

3.2 Energy Representation

To enhance the general idea further, we consider the energy semi-norm for a given wave field

u := (u, ut), where ut denotes the first time derivative ∂
∂tu, and the corresponding wave speed

profile c. This semi-norm is given by

E[u(x, t)] :=
1

2

∫
[−1,1]d

|∇u(x, t)|2 + c−2|ut(x, t)|2dx (3.6)

where x ∈ [−1, 1]d denotes the spatial variable in d = 2 or d = 3 spatial dimensions, depend-

ing on the setup. Furthermore, t denotes the time variable.

Due to the well-posedness of the wave equation in this semi-norm, we can choose it as a

metric for the comparison of wave fields. Since the wave equation is well posed in this semi

norm, it is a suitable metric to compare wave fields. Using this semi-norm we obtain a stable

metric for wave propagation, in the sense that small perturbations in the wave field results

only in small differences in the corresponding energy of the wave field.

We define the energy components of a wave field u as (∇u, c−1ut) and the corresponding

15

function Λ, which maps a wave field to its energy components, as

Λ: u 7→ (∇u, c−1ut) (3.7)

We observe that the representation of u as its energy components allow us to compute the

energy E[u] of u directly.

Furthermore, Λ† denotes the pseudo inverse of Λ. In our approach we compute a wave

field v = Hw
∆t∗(Λ∆xG∆t∗(Ru)) through the neural network. Therefore we need to compute

Λ†(v), where v is given as its energy components, i.e. v = (∇v, c−1vt). Moreover, the corre-

sponding velocity profile c is given. Following Appendix A.1. in [18], the definition of Λ† is

then given in the Fourier domain as

fft(v) =

−i(ξ · fft(∇v))|ξ|2 for |ξ| ≠ 0

C0 for |ξ| = 0
(3.8)

where ξ denotes the frequency variable and · denotes the scalar product.

The constant C0 should theoretically be the integral of the wave field v. Due to v being

only an approximation of the true wave field, C0 can subsequently only be defined as an

approximation as well. To be precise, C0 is given as

C0 :=

r∑
i=0

r∑
j=0

r∑
l=0

v(xi, xj , xl) (3.9)

for the three dimensional setups and as

C0 :=
r∑

i=0

r∑
j=0

v(xi, xj) (3.10)

for the two dimensional setups. Here denotes r the number of grid points of the fine grid in

each spatial dimension and for i, j, l ∈ {0, . . . , r}, xi denotes the i-th grid point in the first

spatial dimension, i.e. xi = x0 + iδt, and both xj and xl are defined analogously for the

second and third spatial dimension.

Since we employ a spatial discretization for the numerical solvers of the wave equation (2.1)

and (2.2), it is reasonable to also consider the discretized version of the energy semi-norm.

For this reason, we introduce the operator ∇h, which denotes the discretized version of the

nabla operator with discretization step size h. As a result we obtain the following discretized

energy semi-norm.

Eh[u(x, t)] :=
∑

x∈(hZ)d∩[−1,1]d

(
∥∇hu(x, t)∥22 + |c−1(x)ut(x, t)|2

)
h2 (3.11)

16

where d = 2 or d = 3 denotes the number of spatial dimensions in the setup.

We further define a discretized version of Λ and Λ†. For this we use the discretized nabla

operator ∇h instead of ∇ and thus derive the discretized Λ operator Λh as

Λh : u 7→ (∇hu, c
−1ut) (3.12)

We note, that Λ(u) could be computed directly by numerically computing the discretized

gradient of u.

We define the disrectized version Λ†
h of Λ† by discretizing the output of Λ† on the grid with

spatial step size h.

17

4 Numerical Solver

This chapter specifies the choice of the fine solver F∆t∗ and the coarse solver G∆t∗ used in

our setups. As described in Chapter 3, the approach requires the numerical solvers to be

stable and, additionally, the coarse solver to be time-reversible. Therefore the most suitable

numerical method depends on the given PDE.

Regarding the setup with the wave equation (2.1), the central difference scheme in space

combined with the Velocity Verlet time integration method is well suited. This second or-

der method was introduced by Verlet [24]. The resulting stepping scheme Sh,k is derived in

Chapter 4.1, where h denotes the spatial discretization step and k denotes the time step of

the stepping scheme.

Regarding the also considered wave equation with variable coefficients (2.2), a slightly adapted

variant of the stepping scheme is suitable. This second stepping scheme is derived in Chapter

4.2 and denoted by S̃h,k, where h and k denotes the spatial step and the time step of the

stepping scheme.

The spatial steps are given by the resolution of the fine and coarse grid. Due to the stability

requirement, we need to determine the time step for the stepping schemes Sh,k and S̃h,k for

both solvers and define the solvers by applying the stepping schemes repeatedly. This is

described in detail in Chapter 4.3.

4.1 Velocity Verlet Method

Given the second order PDE (2.1), we need to choose our fine and coarse solver such that

the resulting wave solution is a close approximation of the true wave solution. Therefore, in

our setup, we use a combination of the standard central difference scheme (CDS) and the

Velocity Verlet time integration method [24] as the stepping scheme for the fine and coarse

solver.

In a first step we use the CDS to find a good approximation Qh for the second order derivative

∆u on a spatial grid with step size h. In one spatial dimension the CDS of first order is given

as

∇u(x, t) =
u(x+ h

2 , t)− u(x− h
2 , t)

h
(4.1)

Applying this formula twice and considering that u is a three dimensional function in our se-

tups, we get the following approximation Qh for ∆u. For simplicity we introduce the following

18

notations: Let r denote the number of grid points in each spatial dimension, depending on the

grid resolution. Furthermore, for i, j, l ∈ {0, . . . , r}, xi is defined as the i-th grid coordinate in

the first spatial dimension, i.e. xi := x0+i·h, and xj , xl are defined analogously on the second

and third spatial dimension. Due to the periodic boundary conditions we identify x0 = xr

for each spatial dimension. At last we introduce the notation ui,j,l(t) := u(xi, xj , xl, t). Using

this, we derive

∆ui,j,l(t) ≈
1

h2

(
ui+1,j,l(t) + ui−1,j,l(t) + ui,j+1,l(t) + ui,j−1,l(t)

+ui,j,l+1(t) + ui,j,l−1(t)− 6 · ui,j,l(t)
) (4.2)

In a second step we use the Velocity Verlet method for a numerical integration in time with

discretization step size k. The Velocity Verlet time integration scheme is a second order

method for PDEs of the form utt = A(x) for a value A(x), which depends on the space

variable x. The method consists of updating the approximations for the values of u and ut

for all time steps. Therefore we need to derive a suitable updating scheme. We know that

the first three terms of the Taylor expansion provide a good approximation for u(t+ k), i.e.

u(t+ k) ≈ u(t) + ut(t) · k +
1

2
· k2 · utt(t) (4.3)

An approximation for utt is given by the wave equation (2.1) in combination with formula

(4.2), i.e.

utt(t) ≈ c2(x) ·Qh(t) (4.4)

In the following we use v as an approximation for ut given by the CDS of first order. Therefore

v is given by

v(t+ k) =
u(t+ 2k)− u(t)

2k
(4.5)

Thus, we have found an updating step for u(t+ k), i.e.

u(t+ k) = u(t) + v(t) · k +
1

2
k2 · c2(x) ·Qh(t) (4.6)

Applying (4.6) twice on (4.5), we also get the updating scheme for v(t+ k)

v(t+ k) = v(t) +
1

2
k · c2(x) ·

(
Qh(t) +Qh(t+ k)

)
(4.7)

Thus, we have derived the stepping scheme Sh,k by using the updating steps (4.6) and (4.7),

where the initial time steps u(0) and v(0) are given by the initial conditions in time of the

PDE (2.1). Using this stepping scheme in the approach, the coarse solver is time-reversible

as desired.

19

4.2 Varied Velocity Verlet Method

For the setups with the wave equation with variable coefficients (2.2) we only need to adapt

the above stepping scheme in the computation of the approximation of the second time

derivative utt(t). Let Lu(t) denote the approximation of utt(t) corresponding to the wave

equation with variable coefficients (2.2). In two spatial dimensions, by applying the product

rule we get. that (2.2) is equivalent to

utt(x, y, t) = 2 · ∂

∂x
c(x, y) · c(x, y) · ∂

∂x
u(x, y, t) + c2(x, y) · ∂

∂x

∂

∂x
u(x, y, t)

+ 2 · ∂

∂y
c(x, y) · c(x, y) · ∂

∂y
u(x, y, t) + c2(x, y) · ∂

∂y

∂

∂y
u(x, y, t)

(4.8)

We extend the previously introduced notation ui,j(t) := u(t, xi, yj) to ci,j := c(xi, yj), where

xi and yj denotes the grid points in the two spatial dimensions for i, j ∈ {0, . . . , r}. Due

to the periodic boundary condition we identify x0 = xr and y0 = yr. Applying the one

dimensional CDS with spatial step size h for each term of (4.8), we get the approximation

Lu as a function in time as

Lu :=
1

2h2

(
ci+1,jci,jui+1,j − ci+1,jci,jui−1,j − ci−1,jci,jui+1,j + ci−1,jci,jui−1,j

+ ci,j+1ci,jui,j+1 − ci,j+1ci,jui,j−1 − ci,j−1ci,jui,j+1 + ci,j−1ci,jui,j−1

+
1

2

(
c2i,jui+2,j + c2i,jui−2,j − 4c2i,jui,j + c2i,jui,j+2 + c2i,jui,j−2

)) (4.9)

In a second step we can apply the Velocity Verlet time integration scheme as above. Since

the Velocity Verlet scheme is independent of the number of spatial dimensions, we can derive

the following updating steps as in the first stepping scheme.

u(t+ k) = u(t) + k · v(t) + 1

2
k2 · Lu(t) (4.10)

v(t+ k) = v(t) +
1

2
k ·

(
Lu(t) + Lu(t+ k)

)
(4.11)

Thus, we have derived the stepping scheme S̃h,k by the updating steps (4.10) and (4.11),

where the start values for u(0) and v(0) are given by the initial values in time of the PDE

(2.2). Using this stepping scheme, the coarse solver is time-reversible as desired.

4.3 Numerical stability

As previously mentioned, the approach requires the numerical stability of the solvers. Nu-

merical stability intuitively means that small perturbations in the initial data cause only

small changes in the numerical solution. One necessary condition for the stability of a solver

is the Courant-Friedrichs-Lewy (CFL) condition, which was introduced in 1928 by Courant,

Friedrichs and Lewy [12]. This criterion describes a relation between the time step k, the

spatial step h of a numerical solver and the wave speed c. One time step c · k, multiplied

with the given wave speed, must be bounded by the spatial step h. To be precise, the CFL

20

condition states

C :=
c · k
h

≤ Cmax = 1 (4.12)

where C is called the Courant number. This condition describes that the physical wave speed

c must not exceed the speed h
k at which the numerical scheme can propagate information.

To satisfy the CFL condition, the simplest way is to rely on the fastest wave speed c in the

considered wave speed media.

As described in Chapter 3, the spatial discretization step h is given through the grid resolu-

tion as ∆x for the coarse solver and as δx for the fine solver. Due to the stability requirement

for G∆t∗ and F∆t∗ we have to choose the time step k of our stepping schemes Sh,k and S̃h,k

such that the CFL condition is satisfied. We denote the obtained time steps with ∆t for the

solver on the coarse grid and δt for the solver on the fine grid.

Since F∆t∗ and G∆t∗ are defined to propagate a wave field for a time step ∆t∗, we define

F∆t∗ := (Sδx,δt)
m (4.13)

G∆t∗ := (S∆x,∆t)
M (4.14)

for the setups with equation (2.1), where m := ⌈∆t∗

δt ⌉ and M := ⌈∆t∗

∆t ⌉ denotes the number

of times the stepping scheme is repeated until the time step ∆t∗ is reached. For the setups

with equation (2.2) we define F∆t∗ and G∆t∗ as

F∆t∗ := (S̃δx,δt)
m (4.15)

G∆t∗ := (S̃∆x,∆t)
M (4.16)

with m and M defined as above. Using these definitions for the fine and coarse solver we

provide stable and time-reversible numerical solver for the wave equation (2.1) and (2.2).

21

5 Neural Network

In this chapter, we introduce the important concepts from the domain of neural networks that

are relevant for this thesis. Section 5.1 explains our deep learning framework and especially

introduces our used neural network architecture. In Section 5.2, we present our approach for

generating the training data we used in two and in three spatial dimensions. In Section 5.3,

we explain our training algorithm with our choice of the loss function and the optimizer. In

the last section of this chapter, we present our choice of metric to measure the error of the

neural network output compared to the fine solver.

5.1 Neural Network Architecture

As described in Chapter 3, we consider a neural network to enhance the propagation of a wave

field. This neural network serves as a correction operator for the coarse solver. In general,

a neural network (NN) is a computational model to predict the unknown output for given

input data. A neural network consist of multiple interconnected nodes, so called neurons and

is designed to artificially model the neurons in the brain.

5.1.1 Supervised Learning

In our approach, we use a supervised deep learning framework for the considered neural net-

work. For this learning strategy, we have a set of training data {(x1, y1), . . . , (xn, yn)}, on
which the model is trained. xi denotes an input data point and yi denotes the desired output

for this input point. Supervised learning aims for the neural network to learn a relationship

between the input data and their corresponding labeled output. Furthermore, it should learn

the underlying structure in the data to generalize this relationship to be able to predict the

output for unseen input data accurately.

In our approach, the data points (xi, yi) are given in the form ((c,Λ∆xG∆t∗Ru),ΛδxF∆t∗u).

This means that the input of the NN is a tensor (c,Λ∆xG∆t∗Ru), whose size depends on

whether the setup is a two or three dimensional one. For the three dimensional setups, this

tensor is of size w×h× d× 5 and in the two dimensional setups, it is of size w×h× 4. Here,

w denotes the width, h the height and, in the three dimensional cases, d the depth of the

given input wave field. In this thesis they are given by the number of grid points of the coarse

grid in the corresponding dimension. The number 5 in the three dimensional case and 4 in

the two dimensional case denotes the number of channels of the input, which corresponds

22

to the wave speed profile c and the energy components of a wave field on the coarse grid.

The corresponding label is given as a tensor (ΛδxF∆t∗u)) of size w̃ × h̃ × d̃ × 4 in the three

dimensional setups and of size w̃ × h̃ × 3 in the two dimensional ones, where w̃ denotes the

width, h̃ the height and, for the three dimensional setups, d̃ the depth of the output wave

field, i.e. the number of grid points of the fine grid in the corresponding spatial direction.

The numbers 3 and 4 denote the number of channels of the output. It corresponds to the

size of the energy components of the output wave field. However, we note that in contrast to

the input tensor, the output tensor does not contain the velocity profile c.

The aim of the supervised learning paradigm in this thesis can be formulated as approximating

an unknown function

Hθ
∆t∗ : Rw×h×d×5 → Rw̃×h̃×d̃×4

Hθ
∆t∗((c,Λ∆xG∆t∗Ru)) = ΛδxF∆t∗u

in the three dimensional case and as approximating

H̃θ
∆t∗ : Rw×h×d×4 → Rw̃×h̃×d×3

H̃θ
∆t∗((c,Λ∆xG∆t∗Ru)) = ΛδxF∆t∗u

in the two dimensional case. In both functions, θ denotes the set of trainable parameters

corresponding to the neural network.

5.1.2 Feedforward Neural Network

In the following, in denotes the size of the input tensor x and out denotes the size of the output

tensor y. A Feedforward Neural Network (FNN) is a neural network, where the neurons are

organized in a sequence of multiple layers. Let L+ 2 denotes the number of layers. A FNN

contains one input layer, one output layer and L hidden layers. These layers are arranged as

shown in Figure 5.1. The FNN computes a function Hθ : Rin → Rout by processing the input

xl of each layer l = 0, . . . , L + 1 by a function hl. If not defined otherwise, we consider the

Layer l to be a fully connected layer, for which the function hl is given by

xl+1 = hl(x
l) = σ(W lxl +Bl)

where xl+1 denotes the output of layer l and the input of layer l + 1, except for l = L + 1,

where xl+1 denotes the neural network output. This type of layer requires the input tensor

xl to be a vector, i.e. in ∈ N.

Each such fully connected layer l depends on trainable parameters, which are denoted by

W l and Bl.

W l denotes the weight matrix of layer l, where each entry wi,j of this matrix represents how

much the j-th neuron in layer l impacts the i-th neuron of layer l + 1.

23

input
layer

hidden layer

output
layer

Fig. 5.1: The layers of a FNN with the input layer on the left, the output layer on the right
and three hidden layers in between. This figure is a modification of [16].

The weights W l in our considered neural network are initialized with the standard PyTorch

initialization, which is given as the Kaiming Initialization with a uniform distribution. This

initialization method was introduced by He et al. in 2015 [7].

Bl denotes the bias vector of the layer l. These trainable parameter are added to the weighted

input of a layer, before the activation function σ is applied. These parameters allow the neu-

ral network to better learn to fit the data.

In our approach the biases are initialized by the standard pytorch initialization, which is a

randomly initialization with a uniform distribution.

Additionally, we use an activation function σ to compute the layer output xl+1. After sum-

ming together the weighted inputs and the biases of a layer, we apply this function. It is used

to enhance the layers output, by introducing non-linearity, which results in the capability of

the neural network to model more complex pattern in the data.

One commonly used activation function is the Rectified Linear Unit (ReLu) activation func-

tion. It is defined as

ReLU(x) = max{0, x} (5.1)

This function maps all negative values to zero and keeps positive values unchanged. Since

this function is very simple, it is a common choice as the activation function. In our neural

24

network every layer uses the ReLU function as its activation function σ, since it has per-

formed well in similar work [18].

Note that the output layer normally uses the identity function id(x) = x as activation func-

tion, to allow negative output values.

5.1.3 Convolutional Neural Network

Another important layer type is the convolutional layer. It is defined for a multidimensional

input tensor x. For example, this type of layer is applied to the input tensor of our neural

network in the three dimensional setups, which is of size Rw×h×d×5. A convolutional layer

l uses a kernel K l
d and a convolution between this kernel and the layer input xl, which is

defined as

K l
d ∗ xl(i, j) :=

∑
m

∑
n

K l
d(m,n) · xl(i+m, j + n) (5.2)

for a two dimensional convolution and as

K l
d ∗ xl(h, i, j) :=

∑
m

∑
n

∑
p

K l
d(m,n, p) · xl(h+m, i+ n, j + p) (5.3)

for a three dimensional convolution. Then, the layer function of a convolutional layer in both

cases is given by

xl+1
d = σ(

∑
c

K l
d ∗ xlc +Bl

d) (5.4)

where c, d denote the channel numbers of the input and output of the convolutional layer.

In contrast to the fully connected layers, the weights of the convolutional layers are given

by the kernel K l
d and the bias Bl

d is given as a scalar value which is applied to every spatial

location. The activation function of a convolutional layer is defined in the same way as for

the fully connected layers.

A convolutional layer often occurs with a striding parameter. This parameter is used to

down sample the input of a layer. It denotes the fraction of the number of entries on which

the kernel is applied. For example a striding factor of 2 would result in considering only every

other entry of the input when applying the kernel.

Another parameter, which is used in the context of a convolutional layer, is the padding

parameter. Padding is applied to a convolutional layer before the actual convolution to

preserve the spatial dimension when managing boundary conditions. One common padding

strategy is to add zero entries around the input before applying the convolution, where the

padding parameter denotes the number of rows and columns which are added around the

input.

25

A FNN where most of the layers are convolutional ones, is called a Convolutional Neural

Network (CNN). CNNs are designed specifically for imaging, originally in two dimension,

but nowadays CNNs are are also applied for three dimensional imaging.

One main advantage of CNNs is that they have less parameters than a normal NN. Therefore

it is possible to train deep architectures efficiently.

In a CNN, a convolutional layer is normally combined with other layers, such as pooling

layers. A pooling layer is used to down sample the size of the input. It summarizes local

regions by also maintaining important features. In contrast to the fully connected and con-

volutional layers, the pooling layer does not have any trainable parameters.

Two commonly used pooling strategies are the max-pooling and the average pooling. The

first one projects a local region to the maximum value in it. The average pooling on the other

hand computes the mean of the values in a local region. In this thesis we use the average

pooling layers for the convolution blocks in the considered neural network.

For a FNN or a CNN, the set θ of trainable parameter is defined as the set of all weights

and biases of the used layers. These trainable parameters are optimized during the training

progress, which is described in detail in Chapter 5.3.

5.1.4 The JNet Architecture

The UNet architecture as a type of CNN was introduced by Ronneberger et al. [20], originally

for biomedical imaging. A UNet consist of a sequence of convolutional blocks. These blocks

are organized in a downsampling path, that encodes the input to a so called feature space,

followed by an upsampling path, that decodes the values to the final output.

Following the neural network architecture presented by Nguyen and Tsai in chapter 2.1 [18],

we consider a JNet as our neural network choice. A JNet is a special UNet, where the

downsampling path contains less blocks of layers than the upsampling path. Therefore the

output of a JNet has a higher resolution than the original input. The exact architecture of

the JNet can be found in Chapter 2.1 in [18]. For the two dimensional setups the design

of the chosen neural network is shown in Figure 5.2. The JNet architecture for the three

dimesional setups is similar, just with a three dimensional convolution in the convolutional

blocks and trilinear downsampling and upsampling layers.

We further introduce some skip connections to the JNet. These connections adds the output

ỹ of a block of layers of the downsampling path to the corresponding level on the upsampling

path, where we say that to blocks are on the same level, when their output has the same

resolution. Thus, the output y of a block of layers on the upsampling path is given as

y = h(y) + ỹ

where h denotes the concatenation of all functions of the layers between these two blocks.

26

Fig. 5.2: The architecture of the chosen JNet with the encoding downsampling path and
the decoding upsampling path. This figure is taken from Figure 4.4 in [9].

Using this technique we can preserve information from the downsampling layers, which could

otherwise be lost during the downsampling process.

5.2 Generating Training Data

As described in Chapter 5.1, the inputs of the neural network are a wave field in form of its

energy components and the corresponding velocity profile, both on the coarse grid. To be

more precise, the input tensor of the neural network has 4 channels in the two dimensional

case and 5 channels in the three dimensional one. These channels are for the spatial deriva-

tives of u, for ut and for the velocity profile c. The output of the neural network are the

energy components of the input wave field propagated by one time step ∆t∗ on the fine grid.

Therefore, the output tensor has 3 channels in the two dimensional case and 4 channels in

the three dimensional one. These channels are for the spatial derivatives of u and for ut.

5.2.1 Generating Velocity Profiles

For a high accuracy of the trained neural network we need sufficiently representative training

examples for our considered class of wave speed.

We consider two wave speed profiles for our training data. The first one is the Marmousi

profile [5], which was introduced by Bourgeois et al. This profile is a complex two dimensional

wave speed model based on the geology in parts of Angola and was designed for generating

synthetic seismic data. The second considered wave speed profile is the BP profile [4] which

was introduced in 2004 by Billette and Brandsberg-Dahl. This profile is also a complex two

dimensional wave speed model. It is based on the geology of the Gulf of Mexico and is de-

signed for generating realistic and synthetic seismic data.

27

Fig. 5.3: This figure shows the process of sampling two dimensional velocity profiles from
the Marmousi profile (top) and BP profile (bottom). The red squares mark randomly selected
subregions. On the right side are some examples of velocity profiles, that are generated with
this method. This figure is a modification of Figure 3. and Figure 4. in [18].

For our two dimensional setups we crop segments of both profiles in the size of our fine

grid resolution. For this, we follow Section 2.2 in [18] and choose randomly selected and ro-

tated subregions from the Marmousi and BP profile and rescale them by an integer to make

sure that the coarse solver is stable with the used ∆t and ∆x. We furthermore map these

subregions onto the spatial grid hZ2 ∩ [−1, 1]2, where h denotes the discretization step size

of the fine grid. This process is shown in Figure 5.3. For the three dimensional setups we

start with randomly cropping two dimensional subregions as described above. Afterwards we

extend these wave speed profiles to three spatial dimensions by replicating them along the

third dimension. This process is shown in Figure 5.4.

5.2.2 Generating Standard Training Data

We first generate a data set D0 which contains pairs of an initial wave field u0 = (u0, ∂tu0)

and its corresponding velocity profile c for every cropped wave speed profile, where c is

cropped as two or three dimensional velocity profile following the explanation above, where

the dimension depends on the setup. These initial wave fields are sampled from Gaussian

pulses of the following forms.

28

Fig. 5.4: The process of generating three dimensional velocity profiles: On the left is a
randomly cropped two dimensional segment of the marmousi profile and on the right is the
corresponding extended three dimensional velocity profile

For the two dimensional setups u0 is given by

u0(x, y) = exp
(
−x2 + y2

σ2

)
∂tu0(x, y) = 0

(5.5)

where (x, y) ∈ δxZ2 ∩ [−1, 1]2 and δx denotes the spatial discretization step size of the fine

grid. Similarly u0 in the three dimensional setups is given as

u0(x, y, z) = exp
(
−x2 + y2 + z2

σ2

)
∂tu0(x, y, z) = 0

(5.6)

where (x, y, z) ∈ δxZ3 ∩ [−1, 1]3 and δx denotes the spatial discretization step size of the fine

grid. In both cases, 1
σ2 follows a normal distribution, given by 1

σ2 ∼ N (250, 10)

The data set D0 contains all pairs (c,u0).

In a second step, we generate a set D(∆t∗) of standard training data. For this we prop-

agate each wave field u0 in D0 with the given fine solver F∆t∗ for N time steps of size ∆t∗,

i.e.

un+1 = F∆t∗un

for n = 0, 1, . . . , N − 1.

As previously mentioned, the input of the neural network are the energy components of

the wave field propagated by the coarse solver G∆t∗ on the coarse grid and the target output

of the neural network are the energy components of the wave field propagated by the fine

29

solver F∆t∗ on the fine grid. Thus we collect the pairs

((c,Λ∆xG∆t∗Run),ΛδxF∆t∗un)

for all n = 0, 1, . . . , N − 1 in the data set D(∆t∗).

5.2.3 Generating Parareal-Like Training Data

As described in Chapter 3, we combine the neural network with the parareal algorithm for the

considered approach. Consequently, the input data of the neural network is of a parareal-like

structure. To account for this structure in the actual data, we generate the training data set

using the parareal algorithm. In doing so, we get a higher similarity between the training

data and the actual data, on which the neural network is applied, compared to the training

data set D(∆t∗)

First we generate D0 as described above. Using this data set we develop a more complex data

set Dp
0(∆t∗), which contains parareal-like initial wave fields. To be precise, for all samples

(c,u0) from D0 and for k ∈ {0, 1, 2, 3, 4} and n ∈ {0, 1, . . . , N} we compute uk
n by the parareal

algorithm with a parareal time step ∆t∗. This algorithm is presented in detail in Chapter 6.

Afterwards all pairs (c,uk
n) are collected in Dp

0(∆t∗).

Afterwards we generate a set Dp(∆t∗) of parareal-like training data. For this we propa-

gate every wave field u in Dp
0(∆t∗) by one time step ∆t∗ by applying the coarse solver G∆t∗

to generate the input data and by one time step ∆t∗ by applying the fine solver F∆t∗ to

obtain the corresponding label. Finally, we collect the pairs

((c,Λ∆xG∆t∗Ru),ΛδxF∆t∗u)

for all u in Dp
0(∆t∗) in the data set Dp(∆t∗).

5.3 Training

5.3.1 Optimization Problem

The aim of the training process is to minimize the optimization problem

min
Hθ

∆t∗∈NN
L(θ,D) (5.7)

where D denotes the used training data set and NN denotes the considered class of neural

network, in our setups NN is the class of 3-Level JNets, also denoted as JNet(3,1). This

class contains JNets with 3 blocks of layers on the downsampling path and 3 + 1 blocks of

layers on the upsampling path. L denotes the loss function, which measures the difference

between the input data and their corresponding output label.

30

In other words, given a training data set D, the aim of the training process is to compute

the set of the trainable parameters θ of the NN such that the value of the loss function is

minimized.

A very commonly used loss function is the mean squared error (MSE), which is given by

L(θ,D) :=
1

|D|
∑

((c,x),y)∈D

∥∥∥Hθ
∆t∗((c, x))− y

∥∥∥2 (5.8)

where Hθ
∆t∗((c, x)) is the predicted output of the neural network and y denotes the desired

output label for an input value ((c, x)). In our setups we also use the MSE loss as the loss

function in our training process.

Due to our choice of the loss function, the optimization problem (5.7) in our setups is therefore

given by

min
Hθ

∆t∗∈JNet(3,1)
L(θ,D) := min

Hθ
∆t∗∈JNet(3,1)

1

|D|
∑

((c,x),y)∈D

∥∥∥Hθ
∆t∗((c, x))− y

∥∥∥2 (5.9)

5.3.2 Optimization Algorithm

We train the JNet with a variant of the stochastic gradient descent algorithm, described

below. The stochastic gradient descent algorithm is an iterative method, designed to find the

global minimum of a convex function. In contrast to the normal gradient descent algorithm,

which consider the gradient of the loss for all points in the training data set, the stochastic

gradient descent algorithm consider the gradient of the loss for smaller subsets of the training

data set, the so called mini-batches with a batch size b. The algorithm computes the gradient

of the batch loss, denoted by J(θ). This is calculated as follows

∇J(θ) =
1

b
∇θL(θ,B) (5.10)

where L(θ,B) :=
∑b

i=1∇θL(θ, (xi, yi)) for the mini batch B = {(x1, y1), . . . (xb, yb)}.

We have given a learning rate η, which describes the step size of the algorithm. Then the

parameters are updated by the following step

θs+1 = θs − η∇J(θ) (5.11)

where s denotes the iteration of the stochastic gradient descent algorithm.

The variant of the stochastic gradient descent algorithm, which we use for the training of the

JNet is the so called Adam optimizer [11]. This algorithm is based on adaptive estimates,

31

meaning that the algorithm uses momentum to accelerate the training process by using past

gradients. It further allows us to use an adaptive learning rate.

5.4 Numerical Analysis

To measure the quality of our trained neural network we consider the relative energy MSE

error as metric, which is given by

e(σ, T) :=
1

|T |
∑

(u,v)∈T

∥∥∥∥Eδx[u− v]

Eδx[v]

∥∥∥∥2 (5.12)

where T denotes a set of test data, generated by a gaussian pulse (5.5) or (5.6), respectively.

For each pair (u,v) ∈ T , u denotes the propagated wave field computed by the enhanced

solver G̃∆t∗ and v denotes the corresponding labeled output computed by the fine solver

F∆t∗ . This error measures the accuracy of the neural network output by comparing it with

the labeled fine solution. The error is computed for several pairs to achieve an average of the

error. We measure this error in relation to the fine solution.

In terms of our trained neural network, v is given as the energy components of the fine

solution and u is given as the neural network output, therefore equation (5.12) is in our

setups given as follows

e(σ, T) :=
1

|T |
∑
w∈T

∥∥∥∥Eδx[Hω
∆t∗(c,G∆t∗(Rw))− ΛδxF∆t∗(w)]

Eδx[ΛδxF∆t∗(w)]

∥∥∥∥2 (5.13)

where w denotes a test wave field in the test set T , initialized by a gaussian pulse (5.5) or

(5.6), respectively, depending on the two or three dimensional case.

32

6 Parareal Scheme

6.1 General Scheme

For a given fine solver F and a given coarse solver G̃, both operating on the same grid, the

general idea of the parareal scheme introduced by [13] is to compute a good approximation of

the fine solution and therefore a good approximation of the wave solution u by simultaneously

reducing the necessary overall computation time.

For this, we split the time interval [0, T] into N equally distributed time intervals, each of

length ∆t∗. In practice the number N of time intervals, and thus the time step ∆t∗ = ⌈ T
N ⌉,

is typically chosen based on the number of parallel computations the hardware is able to

perform.

We can now compute an approximation for un, where un denotes the wave solution u at

time t = n · ∆t∗, for each time step n = 0, . . . , N − 1 using the given coarse solver G̃.
Therefore we get initial parareal guesses as

u0n+1 := G̃(u0n) (6.1)

where the start value u00 is given through the initial condition of the considered PDE. After-

wards we can update the approximations for each un, in a self improving loop, the so called

parareal updates

uk+1
0 = uk0 (6.2)

uk+1
n+1 = G̃(uk+1

n) + F(ukn)− G̃(ukn) (6.3)

where k = 0, . . . ,K−1 denotes the parareal iteration. The first term G̃(uk+1
n) serves as a new

approximation for un+1, using the cheaper coarse solver G̃. The second term F(ukn)− G̃(ukn)
serves as a correction term for the high frequencies, which are missing from the last iteration,

due to the lower accuracy of the coarse solver in the previous parareal iteration.

We recognize that the second term only relies on approximations from the previous parareal

iteration. Therefore we can compute F(ukn) and consequently also F(ukn) − G̃(ukn) for all

n ∈ {0, . . . , N − 1} in parallel. Thus using the parareal scheme in (6.1) and (6.3) we can

reduce the overall computation time for K ≪ N by computing the fine solver in parallel but

also achieve a high accuracy similar to the accuracy of the fine solver. The convergence of

the parareal scheme is studied a lot in recent work [2], [21]. We note that the accuracy of the

33

parareal scheme can only be as good as the accuracy of the fine solver and that the parareal

scheme needs less iterations to achieve a high accuracy if the given coarse solver G̃ provides

a solution close to the solution from the fine solver F .

6.2 Used Fine and Coarse Solver

In our setup we use the fine solver F∆t∗ defined in Chapter 4 as the fine solver of the parareal

scheme and the enhanced solver G̃∆t∗ defined in Chapter 3 as the coarse solver of the parareal

scheme. As described beforehand the enhanced solver is computed by applying the neural

network to the energy components of the coarse solution G∆t∗(Ru). Note that in contrast

to the originally assumed fine and coarse solver, which operate on a fine and a coarse grid,

the enhanced solver G̃∆t∗ is defined on the fine grid like the fine solver F∆t∗ . We apply the

parareal scheme to our approach since it performed well in similar work [18], [14].

One important change from the general parareal scheme is that our computed function

u = (u, ut) is given by its physical components and therefore by a tuple of two compo-

nents, instead of just one function, as described in Section 6.1.

Therefore the initial parareal guesses (6.1) and the parareal updates from (6.3) have to com-

pute both, the function u and its first time derivative ut.

6.3 Pseudo-Code

The following pseudo code contains the general parareal scheme with further improvements.

We save the solution of the coarse solver G for the parareal iteration k in a variable gk and

therefore we can reuse it in the parareal iteration k + 1.

The algorithm receives the coarse and fine solver for the general scheme, the initial wave field

u0, the number of parareal iterations K and the number of time steps N as input.

Algorithm 1 Parareal(G,F , u0,K,N)

u00 = u0
for n = 0, . . . , N − 1 do

Compute g0n = G(u0n)
Compute u0n+1 = g0n

end for
for k = 0, . . . ,K − 1 do

for n = 0, . . . , N − 1 do
Compute fk−1

n = F(uk−1
n) in parallel

end for
uk+1
0 = uk0

for n = 0, . . . , N − 1 do
Compute gk+1

n = G(uk+1
n)

Update uk+1
n+1 = gk+1

n + fk
n − gkn

end for
end for

34

7 Results

The first key contribution of our work is to numerically show that the considered approach,

introduced by Nguyen and Tsai [18], can be generalized from two spatial dimensions to the

standard wave equation (2.1) for three spatial dimensions. To achieve this we describe some

numerical comparisons between the fine solution and the approximation of it, computed by

the neural network combined with the parareal scheme. The results of this comparison are

shown in Chapter 7.1.

The second key contribution of our work is the generalization of the studied approach to a

broader range of PDEs by applying the approach to the wave equation with variable coeffi-

cients (2.2). We compare the solution of the fine solver and the solution that is computed by

the neural network combined with the parareal algorithm, numerically. The results of these

comparisons are shown in Chapter 7.2. Furthermore we study what type of training data set

is the best choice for the wave equation with variable coefficients.

All of the following computations were performed on an HP Proliant DL380 Gen9 server

equipped with 160 GB of RAM, an Intel Xeon E5-2687W v4 CPU (12 cores, 3.0 GHz) and

an Nvidia Tesla P100 GPU (16GB).

7.1 Numerical Results for the 3D Wave Equation

We have trained a JNet(3,1) for the three dimensional wave equation (2.1), which denotes

a JNet with 3 convolutional downsampling blocks on the downsampling path and 3+1 con-

volutional blocks of layers and trilinear interpolation layers on the upsampling path. The

convolutional blocks uses a three dimensional convolution, since we are studying a three di-

mensional setup.

The JNet is trained on the data set Dp(∆t∗) with 4000 samples of parareal-like training data

that are generated as described in Chapter 5.2. We choose the parareal step ∆t∗ to be 0.06

seconds, a stepping size of δx = 2.0
128.0 for the fine grid and a stepping size of ∆x = 2.0

64.0 for

the coarse grid. To generate the training data, we propagate each wave field for 10 time steps

∆t∗, therefore the final time T is 0.6 seconds.

According to the CFL-Condition, the time steps for the numerical solvers are chosen as

δt = (2.0
128.0)/20.0 seconds and ∆t = 1.0

600.0 . The training process of the neural network took

around 16 hours of computation time for 10 training epochs.

The results of this NN approach for a random generated velocity profile, shown in Figure 7.1

35

on a grid with 128 grid points for each spatial dimension are shown in Figure 7.2 (a) - (d).

Fig. 7.1: The randomly cropped velocity profile for the comparison of the fine solution and
the numerical solution, computed with the neural network and two parareal iterations, for
the three dimensional wave equation, that is shown in Figure 7.2.

Each of these pictures shows the solution of the fine solver F∆t∗ in the first row and the

output of the JNet(3,1) combined with 2 parareal iterations in the second row. Each picture

shows the wave field at one time step, ranging from t = ∆t∗ = 0.06 seconds in Figure 7.2 (a)

to t = 5 · ∆t∗ = 0.3 seconds in Figure 7.2 (d), where the pictures from left to right shows

different xy-slices of the three dimensional domain.

The computation of the fine solution for ten time steps of size ∆t∗ needs 28.0 seconds, whereas

the neural network only needs 21.9 seconds to compute its output.

We can see in Figure 7.2 that the output of the neural network does approximate the fine

solution quite well for the first time steps. We further note that the neural network misses

some parts of the wave field for z ≤ 48 for the later time steps. This could be due to the

small size of the training data with only 4000 samples. We assume that the neural network

can achieve a higher accuracy, also for later time steps, by training the neural network with

a larger set of parareal-like training data.

Figure 7.3 visualizes the accuracy of the neural network together with up to two parareal

iterations compared to the fine solver measured by the relative energy MSE error. The values

were computed by solving the wave equation in three dimensions for ten different velocity

profiles with the fine solver and with the neural network combined with the parareal scheme.

Figure 7.3 shows that the relative energy MSE error is large for the neural network without

the parareal scheme. However, we also see, that two parareal iterations significantly improve

the accuracy of the neural network output. Therefore we conclude that the approach, com-

bining the neural network and the parareal algorithm, can be generalized to three dimensions.

Note that the relative energy MSE error increases significantly in the later time steps. We

state as an open question for future work, whether the same holds, when using a multi step

loss, which measures the loss not only for one time step, but for multiple time steps and

consider this loss in the training process.

36

(a) t = ∆t∗ = 0.06

(b) t = 2 ·∆t∗ = 0.12

(c) t = 3 ·∆t∗ = 0.18

(d) t = 5 ·∆t∗ = 0.3

Fig. 7.2: Comparison of the fine solution (first row) and the numerical solution computed
by the neural network, trained on 4000 samples of parareal-like training data, combined with
two parareal iterations (second row) for the three dimensional wave equation (2.1) at different
times t.

37

0 1 2 3 4 5 6 7 8
0

500

1,000

1,500

2,000

number of time steps ∆t∗

re
la
ti
ve

en
er
g
y
M
S
E

er
ro
r

(a) The relative energy MSE error of the neu-
ral network, trained with parareal-like train-
ing data, without any parareal iteration for 8
time steps, computed as average of ten ran-
domly cropped velocity profiles

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

number of time steps ∆t∗

re
la
ti
ve

en
er
gy

M
S
E

er
ro
r

(b) The relative energy MSE error of the neu-
ral network, trained with parareal-like train-
ing data, combined with two parareal iteration
for 8 time steps, computed as average of ten
randomly cropped velocity profiles

Fig. 7.3: Comparison of the relative energy MSE error for a neural network, trained on
parareal-like training data, for the three dimensional wave equation

7.2 Numerical Results for the 2D Wave Equation With Vari-

able Coefficients

7.2.1 Standard Training Data

For the two dimensional wave equation (2.2) with variable coefficients we have trained a

JNet(3,1) with 20000 data points of the standard training data D(∆t∗) generated as de-

scribed in Chapter 5.2. The JNet uses two dimensional convolutions in its convolutional

blocks and the upsampling path uses bilinear interpolation.

The NN is trained for 10 time steps of size ∆t∗ = 0.06 seconds and therefore has a final time

T = 0.6. We choose the step size of the fine solver as δx = 2.0
128.0 and δt = (2.0

128.0)/20.0 seconds.

The coarse solver is defined with ∆x = 2.0
64.0 and ∆t = 1.0

600.0 seconds. With these time and

spatial step sizes the fine and coarse solver are stable, according to the CFL Condition as

described in Chapter 4.

We have trained the neural network for 10 training epochs, which took about 1 hour of

computation time. The results of this neural network combined with two parareal iterations

are shown in Figure 7.5 for a randomly cropped velocity profile shown in Figure 7.4 on a grid

with 128 grid points in each spatial dimension.

The Figure 7.5 shows the numerical solution computed with the fine solver in the first row,

and the solution of the neural network combined with the parareal algorithm in the second

row. The different time steps are shown from left to right, starting with t = ∆t∗ on the left

38

(a) Velocity profile for the computations of
the fine solver and the neural network, trained
with standard training data, for the two di-
mensional wave equation with variable coeffi-
cients corresponding to the results shown in
Figure 7.5.

(b) Velocity profile for the computations of
the fine solver and the neural nework, trained
with parareal-like data, for the two dimen-
sional wave equation with variable coefficients
corresponding to the results shown in Figure
7.7.

Fig. 7.4: The randomly cropped velocity profiles for the comparisons regarding the two
dimensional wave equation with variable coefficients.

Fig. 7.5: Comparison of the fine solution (first row) and the solution computed with the
neural network combined with the parareal algorithm (second row) for the wave equation
with variable coefficients for a NN trained on 20 000 data points of standard training data.
The results are shown for different time steps starting from t = ∆t∗ = 0.06 seconds on the
left and ending with t = 5 ·∆t∗ = 0.3 seconds on the right.

39

and ending with t = 5 ·∆t∗ on the right.

The Figure 7.5 shows that the NN approach does approximate the fine solution quite well, as

desired. We see that for example at time t = 4 ·∆t∗ = 0.24 seconds the fine solver does show

more details of the wave field in the upper right corner, which are missing in the second row.

The accuracy of the neural network to the fine solution is measured with the relative energy

MSE error. The results of this comparison are shown in Figure 7.6.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

number of time steps ∆t∗

re
la
ti
ve

en
er
gy

M
S
E

er
ro
r

(a) The relative energy MSE error of the neu-
ral network, trained with standard training
data, without any parareal iteration for 8 time
steps, computed as average of ten randomly
cropped velocity profiles

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

number of time steps ∆t∗

re
la
ti
ve

en
er
gy

M
S
E

er
ro
r

(b) The relative energy MSE error of the neu-
ral network, trained with standard training
data, combined with two parareal iteration for
8 time steps, computed as average of ten ran-
domly cropped velocity profiles

Fig. 7.6: Comparison of the relative energy MSE error for a neural network, trained on
standard training data, for the two dimensional wave equation with variable coefficients.

As Figure 7.6 shows, the relative energy MSE error is large for the neural network without

the parareal scheme as shown in Figure 7.6 (a). In comparison the relative energy MSE error

is far smaller after computing two parareal iterations, shown in Figure 7.6 (b). Furthermore,

we remark that the small relative energy MSE error for the first two time steps is 0. This is

due to computing two parareal iterations. For these two time steps, the parareal update is

computed only through the fine solver, since the terms of the coarse solver cancel each other

out, and thus, the relative energy MSE error results in 0 for these time steps.

7.2.2 Parareal-Like Training Data

In a second experiment for the wave equation (2.2) with variable coefficients, a JNet(3,1)

is trained with a set of 5000 data points of parareal-like training data Dp(∆t∗), that are

generated as described in Chapter 5.2. This JNet uses two dimensional convolutions in its

convolutional blocks and also bilinear interpolation for the upsampling path.

This NN is trained for 10 time steps of size ∆t∗ = 0.06 seconds. Therefore the final time T is

40

Fig. 7.7: Comparison of the fine solution (first row) and the solution computed with the
neural network combined with the parareal algorithm (second row) for the wave equation
with variable coefficients for a NN trained on 5000 data points of parareal-like training data.
The results are shown for different time steps starting from t = ∆t∗ = 0.06 seconds on the
left and ending with t = 5 ·∆t∗ = 0.3 seconds on the right.

given as T = 0.6 seconds. The fine solver has a spatial step size δx = 2.0
128.0 whereas the coarse

solver uses the step size ∆x = 2.0
64.0 . According to the CFL condition presented in Chapter

4, we choose the time step for the fine solver as δt = (2.0
128.0)/20.0 seconds and for the coarse

solver as ∆t = 1.0
600.0 .

The training process for this neural network took around 25 hours of computation time

for 10 training epochs. In Figure 7.7, we compare the fine solution with the solution com-

puted by this neural network combined with two parareal iterations for a randomly cropped

velocity profile, shown in Figure 7.4, on a grid with 128 grid points in each spatial dimension.

The Figure 7.7 shows the numerical solution, computed with the fine solver F∆t∗ , in the first

row and the solution, computed with the neural network combined with two parareal itera-

tions, in the second row. The pictures show different time steps from left to right, starting

with t = ∆t∗ = 0.06 seconds on the left and ending with t = 5 · ∆t∗ = 0.3 seconds on the

right.

We see that the neural network approximates the fine solution, but as one can see, there is

a discrepancy between the fine solution and the numerical solution, computed by the neural

network in combination with the parareal scheme. This discrepancy is shown in more detail

in the relative energy MSE error in Figure 7.8.

This Figure 7.8 shows that the relative energy MSE error is large for the neural network

without the parareal scheme as shown in Figure 7.8 (a). In comparison the relative energy

MSE error is far smaller after computing two parareal iterations, shown in Figure 7.8 (b).

Furthermore, we remark that the small relative energy MSE error for the first two time steps

is 0. As before, this is due to computing two parareal iterations.

In comparison to Figure 7.6 we see that the relative energy MSE error for the neural net-

work, trained on the parareal-like data set, is larger than the relative energy MSE error for

41

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

number of time steps ∆t∗

re
la
ti
ve

en
er
gy

M
S
E

er
ro
r

(a) The relative energy MSE error of the neu-
ral network, trained with parareal training
data, without any parareal iteration for 8 time
steps, computed as average of ten randomly
cropped velocity profiles.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

number of time steps ∆t∗

re
la
ti
ve

en
er
gy

M
S
E

er
ro
r

(b) The relative energy MSE error of the neu-
ral network, trained with parareal training
data, combined with two parareal iteration for
8 time steps, computed as average of ten ran-
domly cropped velocity profiles.

Fig. 7.8: Comparison of the relative energy MSE error for a neural network, trained on
parareal-like training data, for the two dimensional wave equation with variable coefficients.

the neural network trained on standard training data. Comparing these results and taking

the computation time of the training process for both neural network into concern, we con-

clude that the standard training data seems to be a better choice for the two dimensional

wave equation with variable coefficients. The main advantage of the standard training data

is that we can train the neural network a lot faster than with the parareal training data, even

if we use a significantly larger amount of training samples.

42

8 Conclusion

Nguyen and Tsai [18] show, that a supervised deep learning framework can be used to en-

hance the accuracy of a given coarse solver and therefore improve the overall computation

time for wave propagation in heterogeneous media while also approximating the true solution

quite well.

This work provides a proof of concept that the neural network approach from Nguyen and

Tsai [18] can be generalized to three spatial dimensions and furthermore to a broader range of

PDEs. This is shown by considering the three dimensional wave equation (2.1) and a slightly

different equation, the two dimensional wave equation with variable coefficients (2.2). This

proof of concept is given by presenting the approach with focus on the deep learning archi-

tecture and additionally presenting the results of a numerical study regarding the accuracy

and efficiency of this framework for the mentioned generalizations.

We compare the numerical solution, computed by a neural network for the three dimen-

sional wave equation with the numerical solution computed with the fine solver. This neural

network is trained with 4000 samples of parareal-like training data. We conclude, that this

neural network output can be used in a parareal scheme to improve the accuarcy further and

that it results in a quite accurate approximation of the fine solution after two parareal itera-

tions. Therefore, we conclude that the approach, introduced by Nguyen and Tsai [18], can be

generalized to three spatial dimensions and provides an accurate and efficient framework to

compute the wave propagation. However we remark, that our numerical studies show, that

the combination of the neural network with the parareal scheme is necessary to achieve high

accuracy.

An open question for future work is, whether it is possible for the neural network to achieve

a higher accuracy to the fine solution without the parareal scheme, when it is trained on

another set of training data, either larger in size or generated using a different approach.

Achieving this can also improve the approximation through the parareal scheme, since a

smaller difference between the fine solver and the enhanced solver results in a faster conver-

gence of the parareal scheme.

Furthermore, we considered the generalization of the approach to a slightly different PDE,

the two dimensional wave equation with variable coefficients. Our comparisons show that the

neural network trained with 20000 samples of standard training data performs much better

than the neural network trained on 5000 samples of parareal-like training data. However,

both neural networks must be combined with the parareal scheme to approximate the fine

43

solver well enough.

We conclude, that the approach from Nguyen and Tsai [18] can be generalized to PDEs

slightly different from the standard wave equation. However, we conclude, that the choice

of the training data set is important for the efficiency of the training process. In our case

the training with standard training data was both, much faster in training time and in the

accuracy of the resulting neural network. An open question for future work is, whether the

approach can be generalized further to other PDEs.

44

Acronyms

F∆t∗ fine solver

G∆t∗ coarse solver

G̃∆t∗ enhanced solver

CDS Central Difference Scheme

CFL Courant–Friedrichs–Lewy condition

CNN Convolutional Neural Network

FNN Feedforward Neural Network

MSE Mean Squared Error

NN Neural Network

PDE Partial Differential Equation

45

Bibliography

[1] A. Abdulle, Y. Bai, and T. Pouchon. Reduced basis numerical homogenization method

for the multiscale wave equation. Numerical Mathematics and Advanced Applications -

ENUMATH 2013, pages 397–405, 2014.

[2] G. Bal. On the convergence and the stability of the parareal algorithm to solve partial

differential equations. In T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose,

T. Schlick, R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and Jinchao

Xu, editors, Domain Decomposition Methods in Science and Engineering, pages 425–432,

Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[3] M. Bernacki, S. Lanteri, and S. Piperno. Time-domain parallel simulation of hetereoge-

neous wave propagation on unstructured grids using explicit, nondiffusive, discontinuous

galerkin methods. Journal of Computational Acoustics, 14:57–81, 2006.

[4] F.J. Billette and S. Brandsberg-Dahl. The 2004 bp velocity benchmark. 2005.

[5] A. Brougois, M. Bourget, P. Lailly, M. Poulet, P. Ricarte, and R. Versteeg. Marmousi,

model and data. 1990.

[6] B. Engquist, H. Holst, and O. Runborg. Multiscale methods for wave propagation in

heterogeneous media over long time. In Numerical Analysis of Multiscale Computations,

pages 167–186. Springer International Publishing, Berlin, Heidelberg, 2011.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification, 2015.

[8] A. Ibrahim, S. Götschek, and D. Ruprecht. Parareal with a physics-informed neural

network as coarse propagator. In Euro-Par 2023: Parallel Processing, pages 649–663.

Springer International Publishing, 2023.

[9] L. Kaiser. Fast, accurate and scalable numerical wave propagation: Enhancement by

deep learning. 2023.

[10] L. Kaiser. Github repository with code. github.com/utkaiser/masterthesis\

_masterthesis_notebooks, 2023.

[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2017.

[12] H. Lewy, K. Friedrichs, and R. Courant. Über die partiellen differenzengleichungen der

mathematischen physik. Mathematische Annalen, 100:32–74, 1928.

46

[13] J.-L. Lions, Y. Maday, and G. Turinici. A ”parareal” in time discretization of pde’s.

C.R. Math. Acad. Sci. 332, 661-668, 2001.

[14] X. Meng, Z. Li, D. Zhang, and G. Karniadakis. Ppinn: Parareal physics-informed

neural network for time-dependent pdes. Computer Methods in Applied Mechanics and

Engineering, 371, 2020.

[15] B. Moseley, A. Markham, and T. Nissen-Meyer. Solving the wave equation with pyhsics-

informed deep learning. 2020.

[16] I. Neutelings. Neural networks. https://tikz.net/neural_networks/, 2021. Ac-

cessed: 2025-08-02.

[17] H. Nguyen and R. Tsai. A stable parareal-like method for the second order wave equation.

Journal of Computational Physics, 405, 2020.

[18] H. Nguyen and R. Tsai. Numerical wave propagation aided by deep learning. Journal

of Computational Physics, 475, 2023.

[19] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[20] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical

image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors,

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages

234–241, Cham, 2015. Springer International Publishing.

[21] D. Ruprecht. Wave propagation characteristics of parareal. Computing and Visualization

in Science, 19:1–17, 2018.

[22] M. Schönleben. Code repository. github.com/schoenlebenM/Masterthesis, 2025.

[23] B. Verfürth. Numerical multiscale methods forwaves in high-contrast media. Jahres-

bericht der Deutschen Mathematiker-Vereinigung (2023), 2023.

[24] L. Verlet. Computer ”experiments” on classical fluids. i. thermodynamical properties of

lennard-jones molecules. Phys. Rev., 159:98–103, Jul 1967.

47

Appendix

This section presents the code for the three dimensional wave equation and the numerical

solver for the two dimensional wave equation. This code is modified from [18] and [10]. The

full implementation can be found in [22].

A1 Generate Velocity Profile

from scipy.io import loadmat

from skimage.filters import gaussian

from skimage.transform import resize

import numpy as np

import scipy.ndimage

def generate_velocity_crops(resolution = 128, output_dir = ’data/

crop100_test.npz’, output_dir2 = ’data/crop100_test2.npz’,

num_crops = 10):

’’’

:param resolution: (int) resolution of the velocity profil ,

usually 128

:param output_dir: (string) path of the output file for 3D

velocity profiles , ending with ".npz"

:param output_dir2: (string) path of the output file for 2D

velocity profiles , ending with ".npz"

:param num_crops: (int) number of crops created from each image

:return: generates and saves the 2D- and 3D-velocity crops in an .

npz -file

’’’

load images

datamat = loadmat(’data/marm1nonsmooth.mat’) # Marmousi velocity

image

fullmarm = gaussian(datamat[’marm1larg ’], 4) # smoothing the

image

databp = loadmat(’data/bp2004.mat’) # BP velocity image

fullbp = gaussian(databp[’V’], 4) /1000 # smoothing the image and

different order of magnitude

48

randomly crop and save images at "output_dir"

twoD_profils = generate_velocity_profile_crop(v_images = [fullmarm

, fullbp], m = resolution , num_times = num_crops)

wavespeed_list = to_3D(twoD_profils , m = resolution)

#save the velocity profile in compressed .npz files

np.savez_compressed(output_dir , wavespeedlist=wavespeed_list)

np.savez_compressed(output_dir2 , wavespeedlist=twoD_profils)

def generate_velocity_profile_crop(v_images , m, num_times):

’’’

:param v_images: (tensor) full -size velocity profile that needs to

be cropped

:param m: (int) resolution , usually 128 (*1, *2 or *3)

:param num_times: (int) number of crops

:return: sample (num_times *(number of profils in v_images))-many 2

d-velocity profiles by cropping randomly rotated and scaled

images

’’’

#create list for velocity profiles

wavespeed_list = []

#for Marmousi and BP profiles

for img in v_images:

#crop num_times many velocity profiles

for j in range(num_times):

scale = (

0.08 + 0.04 * np.random.rand()

) # chose this scaling because performed well

angle = np.random.randint (4) * 22.5 # in degrees

M = int(m / scale) # how much we crop before resizing to

m

npimg = scipy.ndimage.rotate(img , angle , cval =1.0, order

=4, mode="wrap") # bilinear interp and rotation

h, w = npimg.shape

crop but make sure it is not blank image

while True:

xTopLeft = np.random.randint(max(1, w - M))

yTopLeft = np.random.randint(max(1, h - M))

newim = npimg[yTopLeft : yTopLeft + M, xTopLeft :

xTopLeft + M]

make sure it is not blank image

49

if (newim.std() > 0.005 and newim.mean() < 3.8 and

not np.all(newim == 0)):

npimg = 1.0 * newim

break

wavespeed_list.append(resize(npimg , (m, m), order =4))

return wavespeed_list

def to_3D(twoD_profils , m = 128):

’’’

:param twoD_profils: (np.array) 2d-velocity profils

:param m: (int) resolution of the velocity profil , usually 128

:return: (np.array) list with 3d-velocity -profils

’’’

#create list for 3D velocity profiles

wavespeed_list = []

for img in twoD_profils:

img_exp = np.expand_dims(img , axis =0)

wavespeed = np.tile(img_exp , (m, 1, 1))

wavespeed_list.append(np.copy(wavespeed))

return wavespeed_list

A2 Generate Standard Training Data

import numpy as np

import torch

from utils_visualize import visualize_one_velocity_crop ,

visualize_wavefield

from utils_generate_veloctiy import generate_velocity_crops ,

crop_center

from utils_energy import WaveSol_from_EnergyComponent_tensor

from utils_numericalSolver import initial_condition_gaussian ,

one_iteration_velocity_verlet_energy ,

one_iteration_velocity_verlet

device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

def generate_data_end_to_end(input_path = "data/crop_test.npz",

output_path = "data/datagen_test.npz", n_snaps = 10, res = 128,

n_it = 10, f_delta_x = 2. / 128., mode

50

= "energy_comp", visualize = True ,

save_img = False):

’’’

:param input_path: (string) velocity profile data path

:param output_path: (string) wave field data path

:param n_snaps: (int) amount of snapshots / dt_star steps to take

:param res: (int) resolution of wave field output

:param n_it: (int) number of generated wave fields

:param f_delta_x: (float) grid time stepping of fine solver

:param mode: (string) either "physical_components" or "energy_comp

"

:param visualize: (boolean) if true , than image will be plotted

:param save_img: (boolean) if true , the plotted image is saved in

a file

:return: saves generated wave propagation iterations in file

’’’

load velocity model created in function ‘generate_velocity_crops

()‘

velocities = np.load(input_path)[’wavespeedlist ’]

setup tensors to store wave energy components and velocity

profile

Ux, Uy, Uz, Utc = np.zeros ([n_it , n_snaps + 1, res , res ,res]), np.

zeros ([n_it , n_snaps + 1, res , res , res]), \

np.zeros ([n_it , n_snaps + 1, res , res , res]), np

.zeros([n_it , n_snaps + 1, res , res , res])

V = np.zeros ([n_it , n_snaps+1, res , res ,res])

training

for it in range(n_it): #for each velocity -profil do

...

if it >= len(velocities):

print("less velocity profils croped than iteration in

generating_data")

vel = velocities [0]

else:

vel = velocities[it]

computing initial wavefield using 3d gaussian pulse (switch

to pytorch tensor if needed)

if mode == "physical_components":

u0 , ut = initial_condition_gaussian(torch.from_numpy(vel),

mode="physical_components", res_padded=res)

else: # mode == "energy_comp"

u_energy , sum = initial_condition_gaussian(torch.

51

from_numpy(vel), mode="energy_comp", res_padded=res ,)

create and save velocity crop

vel_crop = crop_center(vel , res , 2)

V[it] = np.repeat(vel[np.newaxis , :, :, :], n_snaps + 1, axis

=0) # save velocity image (n_snaps + 1) times in V

if visualize == True:

visualize velocity profile used for iterations

visualize_one_velocity_crop(vel_crop , it)

integrate dt_star (step size) n_snaps times

for s in range(n_snaps +1): # for each time step dt_star

do...

visualize Wavefield (and if necessary get wave field

from energy components beforehand)

if visualize == True:

if mode == "physical_components":

if s>0:

u0, ut = u0.numpy (), ut.numpy ()

visualize_wavefield(u0 , ut , vel , f_delta_x , it , s,

xy = True , xz = True , yz = True , save =

save_img)

else: # mode == "energy_comp"

change energy components to wave field

representation

u_elapse , ut_elapse =

WaveSol_from_EnergyComponent_tensor(u_energy

[:,0], u_energy [:,1], u_energy [:,2], u_energy

[:,3],

torch.from_numpy(vel),

f_delta_x , sum)

u_elapse , ut_elapse = u_elapse.numpy(), ut_elapse.

numpy ()

visualize_wavefield(u_elapse , ut_elapse , vel ,

f_delta_x , it , s, save = save_img)

save current wavefield in output -vector

if mode == "physical_components":

Ux[it , s], Uy[it , s], Uz[it , s], Utc[it , s] = u0[0],

u0[1], u0[2], ut

else:

Ux[it , s], Uy[it , s], Uz[it , s], Utc[it , s] = u_energy

[0,0], u_energy [0,1], u_energy [0,2], u_energy [0,3]

52

integration step (done for all iterations only not for

last one)

if s < n_snaps + 1:

apply the velocity verlet solver

if mode == "physical_components":

u0, ut = one_iteration_velocity_verlet(torch.

from_numpy(u0), torch.from_numpy(ut), torch.

from_numpy(vel), mode = "physical_components")

else:

u_energy = one_iteration_velocity_verlet_energy(

torch.cat([u_energy , torch.from_numpy(vel).

unsqueeze(dim=0).unsqueeze(dim=0)], dim=1),

sum)

save tensors in a compressed file , accessible through key -value

queries

np.savez_compressed(output_path , vel=V, Ux=Ux , Uy=Uy , Uz=Uz , Utc=

Utc)

print("Data generated and saved")

A3 Generate Parareal-Like Training Data

import numpy as np

import torch

from utils_visualize import visualize_one_velocity_crop ,

visualize_wavefield

from utils_generate_veloctiy import generate_velocity_crops ,

crop_center

from utils_energy import WaveSol_from_EnergyComponent_tensor

from utils_numericalSolver import initial_condition_gaussian ,

one_iteration_velocity_verlet_energy ,

one_iteration_velocity_verlet

device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

def generate_parareal_data_end_to_end(input_path = "data/crop_test.

npz", output_path = "data/parareal_data.npz", n_crop= 10, res =

128,

n_snaps = 10, n_parareal = 4,

f_delta_x = 2. / 128.,

mode = "energy_comp",

visualize = True , save_img

= False):

53

’’’

:param input_path: (string) velocity profile data path

:param output_path: (string) wave field data path

:param n_crop: (int) amount of different wave fields

:param res: (int) resolution of wave field output

:param n_snaps: (int) amount of snapshots / dt_star steps to take

:param n_parareal: (int) number of parareal iterations

:param f_delta_x: (float) grid time stepping of fine solver

:param mode: (string) either "physical_components" or "energy_comp

"

:param visualize: (boolean) if true , than image will be plotted

:param save_img: (boolean) if true , the plotted image is saved in

a file

:return: saves generated wave propagation iterations in file

’’’

#step 1) generate velocity crops

load velocity model created in function above ‘

generate_velocity_crops ()‘

velocities = np.load(input_path)[’wavespeedlist ’]

setup tensors to store wave energy components and velocity

profile

Ux, Uy, Uz, Utc = np.zeros ([n_crop , n_parareal +1, n_snaps +1, res

, res ,res]), np.zeros ([n_crop , n_parareal +1, n_snaps + 1, res ,

res , res]), \

np.zeros ([n_crop , n_parareal +1, n_snaps + 1, res

, res , res]), np.zeros([n_crop , n_parareal

+1, n_snaps + 1, res , res , res])

V = np.zeros ([n_crop , n_parareal +1, n_snaps+1, res , res ,res])

sample training data

for it in range(n_crop): #for each velocity -profil do

...

print(f’start generating data for velocity crop {it +1}’)

sample velocity instance

if it >= len(velocities):

print("less velocity profils croped than iteration in

generating_data")

vel = velocities [0]

else:

vel = velocities[it]

#step 2) generate initial wave field via gaussian pulse

computing initial wavefield using 3d gaussian pulse (switch

54

to pytorch tensor if needed)

if mode == "physical_components":

u0 , ut = initial_condition_gaussian(torch.from_numpy(vel),

mode="physical_components", res_padded=res)

else: # mode == "energy_comp"

u_energy , sum = initial_condition_gaussian(torch.

from_numpy(vel), mode="energy_comp", res_padded=res ,)

create and save velocity crop

vel_crop = crop_center(vel , res , 2)

V[it] = np.tile(vel[np.newaxis , np.newaxis , :, :, :], (

n_parareal + 1, n_snaps + 1, 1, 1, 1))

if visualize == True:

visualize velocity profile used for iterations

visualize_one_velocity_crop(vel_crop , it)

integrate n_snaps time step dt_star (step size)

big_tensor = parareal_algo(torch.cat([u_energy , torch.

from_numpy(vel).unsqueeze(dim=0).unsqueeze(dim=0)], dim=1)

,

n_parareal , n_snaps)

Ux[it], Uy[it], Uz[it], Utc[it] = big_tensor [:, :, 0],

big_tensor [:, :, 1], big_tensor [:, :, 2], big_tensor [:, :,

3]

visualize Wavefield (and if necessary get wave field from

energy components beforehand)

if visualize == True:

if mode == "physical_components":

if s>0:

u0, ut = u0.numpy (), ut.numpy ()

visualize_wavefield(u0 , ut , vel , f_delta_x , it , s, xy

= True , xz = True , yz = True , save = save_img)

else: # mode == "energy_comp"

change energy components to wave field

representation

u_elapse , ut_elapse =

WaveSol_from_EnergyComponent_tensor(u_energy [:,0],

u_energy [:,1], u_energy [:,2], u_energy [:,3],

torch.from_numpy(vel),

f_delta_x , sum)

u_elapse , ut_elapse = u_elapse.numpy(), ut_elapse.

numpy()

visualize_wavefield(u_elapse , ut_elapse , vel ,

f_delta_x , it , s, save = save_img)

55

save tensors in file , accessible through key -value queries

np.savez_compressed(output_path , vel=V, Ux=Ux , Uy=Uy , Uz=Uz , Utc=

Utc)

print("Data generated and saved")

A4 Training the Neural Network

import numpy as np

import torch

import random

import os

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb :64"

device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

torch.backends.cudnn.deterministic = True

from utils_numericalSolver import one_iteration_velocity_verlet_energy

from utils_model import Model_end_to_end , get_params ,

fetch_data_end_to_end , save_model

def train_model(model_name = "test", learningrate = .001, batch_size

= 1, n_epochs = 10, downsampling_model = "Interpolation",

upsampling_model = "UNet3", data_paths = "data/

datagen.npz", datatype = ’normal ’):

’’’

:param model_name: (string) name of model , used as name for output

-file containing model parameters

:param learningrate: (float) learning rate of model

:param batch_size: (int) batch size

:param n_epochs: (int) number of iterations model sees all data; i

.e. amount of epochs model is trained

:param downsampling_model: (string) name of downsampling model

:param upsampling_model: (string) name of upsampling model

:param data_paths: (string) data path of the trainingsdata

:param datatype: (string) type of the training data , either ’

normal ’ or ’parareal ’

:return: trained model parameters in ".pt"-file

’’’

model setup

param_dict = get_params ()

model = Model_end_to_end(param_dict , downsampling_model ,

upsampling_model).double ()

if device == "cuda":

model = torch.nn.DataParallel(model).to(device) # multi -GPU

56

use

data setup

train_loader , val_loader , _ = fetch_data_end_to_end ([data_paths],

batch_size , datatype = datatype)

deep learning setup

optimizer = torch.optim.AdamW(model.parameters (), lr=learningrate)

initialize optimizer

loss_f = torch.nn.MSELoss () # initialize loss function

#for every training epoch

for epoch in range(n_epochs):

trainingsmode

model.train()

train_loss_list = [] # initialize list to store loss values

of training

for i, data in enumerate(train_loader): # iterate over data

points in train_loader

loss_list = [] # create tmp loss list for back

propagating multiple losses at once

if datatype ==’normal ’:

n_snaps = data [0]. shape [1] # number of snapshots

defined by data input

else:

n_snaps = len(train_loader)

data = data [0].to(device) # use GPUs if available for

faster training

if datatype ==’normal ’:

for input_idx in random.choices(range(n_snaps - 2), k=

n_snaps):

input_tensor = data[:, input_idx]. detach () #

detach because if not computation graph would

go too far back

for label_idx in range(input_idx + 1, input_idx +

2):

label = data[:, label_idx , :4]. detach () #

corresponding label is given as the fine

solver , i.e. the next time step in data

output = model(input_tensor) # apply end -to -

end model

loss_list.append(loss_f(output , label)) #

save loss

else: #datatype = ’parareal ’

input_tensor = data [0]. detach ()

57

input_tensor = input_tensor.unsqueeze(dim =0)

label = data [0]. detach ()

#compute label as the wave field propagated by the

fine solver

fine_tensor = one_iteration_velocity_verlet_energy(

label , torch.sum(label[0, :, :, :]. clone()),

batchdimension=False)

label = fine_tensor.unsqueeze(dim=0)

train the model with input_tensor

output = model(input_tensor) # apply end -to -end model

output = output.float()

label = label.float ()

loss_list.append(loss_f(output , label)) # save loss

optimizer stepping

optimizer.zero_grad ()

sum(loss_list).backward ()

optimizer.step()

save loss to later print out

train_loss_list.append(np.array ([l.cpu().detach ().numpy ()

for l in loss_list]).mean())

save parameter for each training epoch as a backup

print(f"Training erfolgreich , Epoche {epoch + 1}")

save_model(model , model_name , f’t={epoch + 1}’, ’results/’)

print(f"parameter saved , Epoche {epoch + 1}")

validation

model.eval()

with torch.no_grad ():

initialize list to save losses

val_loss_list = []

for i, data in enumerate(val_loader): # iterate over data

points in val_loader

if datatype == ’normal ’:

n_snaps = data [0]. shape [1] # number of snapshots

defined by data input

else:

n_snaps = len(train_loader)

data = data [0].to(device) # use GPUs if available for

faster training

if datatype == ’normal ’:

58

input_tensor = data[:, 0]. detach () # detach

because if not computation graph would go too

far back

vel = input_tensor [:, 4]. unsqueeze(dim=1) #

access velocity profile in input_tensor

for label_idx in range(1, n_snaps): # advance a

wave field for (n_snaps - 1) time steps

label = data[:, label_idx , :4]

output = model(input_tensor.to(device)) #

apply end -to-end model

get and save loss (this could be optimized

by using a metric)

val_loss_list.append(loss_f(output , label).

item())

input_tensor = torch.cat((output , vel), dim =1)

else: # datatype = ’parareal ’

input_tensor = data [0]. detach ()

input_tensor = input_tensor.unsqueeze(dim =0)

#compute the corresponding label with the fine

solver

label = data [0]. detach ()

fine_tensor = one_iteration_velocity_verlet_energy

(label , torch.sum(label[0, :, :, :]. clone ()),

batchdimension=False)

label = fine_tensor.unsqueeze(dim=0)

#evaluate the neural network with the input_tensor

and the corresponding label

output = model(input_tensor.to(device)) # apply

end -to -end model

get and save loss

val_loss_list.append(loss_f(output , label).item())

print(f’epoch %d, train loss: %.8f, test loss: %.8f’

%(epoch + 1, np.array(train_loss_list).mean(), np.array(

val_loss_list).mean()))

save final model parameters after all training epochs as a ".pt

"-file

save_model(model , model_name , ’final ’, ’results/’)

A5 Applying the Parareal Scheme

import sys

import torch

import time

59

sys.path.append("..")

device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

from utils_numericalSolver import one_iteration_velocity_verlet_energy

def parareal_scheme(model , u_0 , n_parareal , n_snapshots ,

boundary_conditions , t=True):

’’’

:param model: (pytorch.model) trained model

:param u_0: (torch tensor) energycomponent of initial wavefield

:param n_parareal: (int) number of parareal iterations

:param n_snapshots: (int) number of timesteps delta_t_star

:param boundary_conditions: (string) ’periodic ’ or ’absorbing ’

:param t: (boolean): if true , time of parareal computation is

measured

:return: the parareal computation , for all pararal iterations and

time steps

’’’

u_n = u_0.clone()

vel = u_0[:, 4]. clone().unsqueeze(dim=0)

batch_size , channel , width , height , depth = u_n.shape

if boundary_conditions == "absorbing":

width , height , depth = width * 2, height * 2, depth * 2

create tensor to save results during iterations

big_tensor = torch.zeros ([n_parareal + 1, n_snapshots , batch_size ,

channel - 1, width , height , depth])

big_tensor [0, 0] = u_0[:, :4]. clone ()

initial guess , first iteration without parareal

start_time = time.time()

print(f"Performing initial guess.")

for n in range(n_snapshots - 1):

u_n1 = model(u_n)

big_tensor [0, n + 1] = u_n1

u_n = torch.cat((u_n1 , vel.to(device)), dim=1)

end_time = time.time()

run_time_NN = end_time - start_time

parareal iterations: k = 1, 2, ...

for k in range(1, n_parareal + 1):

print(f"Performing Parareal iteration {k}.")

big_tensor[k, 0] = u_0[0, :4]. clone ()

if t == True:

60

parareal_terms , time_parallel = get_parareal_terms(model ,

big_tensor[k].clone (), n_snapshots , vel.clone (), t=

True)

run_time_NN = run_time_NN + time_parallel

else:

parareal_terms = get_parareal_terms(model , big_tensor[k].

clone(), n_snapshots , vel.clone (), t=False)

new_big_tensor = torch.zeros([n_snapshots , batch_size , channel

- 1, width , height , depth])

new_big_tensor [0] = u_0[:, :4]. clone()

start_time = time.time()

for n in range(n_snapshots - 1):

u_n_k1 = torch.cat((new_big_tensor[n], vel), dim =1)

u_n1_k1 = model(u_n_k1).to("cpu") + parareal_terms[n]

new_big_tensor[n + 1] = u_n1_k1

end_time = time.time()

run_time_NN = run_time_NN + end_time - start_time

if k < n_parareal:

big_tensor[k + 1] = new_big_tensor.clone ()

if t == True:

return big_tensor , run_time_NN

else:

return big_tensor

def get_parareal_terms(model , big_pseudo_tensor , n_snapshots , vel , t=

True):

’’’

:param model: (pytorch.Model) trained end -to-end model to advance

a wave front

:param big_pseudo_tensor: (pytorch tensor) tensor containing

previous solution (high resolution due to pseudo -spectral

cropping)

:param n_snapshots: (int) number of iterations (number of

iterations with length dt_star), i.e. number of timesteps

:param vel: (pytorch tensor) velocity profile

:param t: (boolean) if true , compute time for pararaeal iteration

:return: get Parareal terms that can be computed in parallel

’’’

with torch.no_grad ():

parareal_terms = torch.zeros(big_pseudo_tensor.shape)

for s in range(n_snapshots):

if s == 1:

start_time = time.time()

61

parareal_terms[s] = compute_parareal_term(model , torch.cat

([big_pseudo_tensor[s], vel], dim =1))

if s == 1:

end_time = time.time()

run_time_para = end_time - start_time

if t == True:

return parareal_terms , run_time_para

else:

return parareal_terms

def compute_parareal_term(model , u_n_k):

’’’

:param model: (pytorch.Model) end -to-end model to advance a wave

front

:param u_n_k: (pytorch tensor) current wave field

:return: difference between Parareal terms of right -hand side of

main Parareal equation

’’’

res_fine_solver = one_iteration_velocity_verlet_energy(u_n_k , sum=

torch.sum(u_n_k[:, 0])) # = F(u_n^k)

res_model = model(u_n_k) # = G(u_n^k)

return res_fine_solver.to(device) - res_model.to(device) # = F(

u_n^k) - G(u_n^k)

A6 Numerical Solver for 3D Wave Equation

import torch

def velocity_verlet_tensor(u0 , ut0 , vel , dx , dt , delta_t_star ,

batchdimension = False , boundary_c="periodic"):

’’’

:param u0: (pytorch tensor) physical wave component , displacement

of wave

:param ut0: (pytorch tensor) physical wave component derived by t,

velocity of wave

:param vel: (pytorch tensor) velocity profile dependent on x_1 and

x_2 and x_3

:param dx: (float) time step in both dimensions / grid spacing

:param dt: (float) temporal step size

:param delta_t_star: (float) time step a solver propagates a wave

and solvers are compared

:param batchdimension: (boolean) True , if batch is added as a

dimension to u

62

:param boundary_c: (string) choice of boundary condition , "

periodic" or "absorbing"

:return: propagate wavefield using velocity Verlet in time and the

second order discrete Laplacian in space

’’’

def _periLaplacian_tensor(v, dx , batchdimension = False):

’’’

:param v: (pytorch Tensor) Wave Solution u for time t

:param dx: (float) grid spacing in x_1 , x_2 and x_3 dimension

:param batchdimension: (boolean) tells , if u contains a

dimension for batches , If true , change number from 0 to 1

:return: compute discrete Laplacian with periodic boundary

condition

’’’

number = 0

if batchdimension == True:

number = 1

Lv = (torch.roll(v, 1, dims=1 + number) - 2 * v + torch.roll(v

, -1, dims=1 + number)) / (dx**2) + \

(torch.roll(v, 1, dims=0 + number) - 2 * v + torch.roll(v

, -1, dims=0 + number)) / (dx**2) + \

(torch.roll(v, 1, dims=2 + number) - 2 * v + torch.roll(v

, -1, dims=2 + number)) / (dx**2)

return Lv

Nt = round(abs(delta_t_star / dt))

c2 = torch.mul(vel , vel) # = c^2

u, ut = u0 , ut0

if boundary_c == "periodic":

for i in range(Nt):

#compute Velocity Verlet Stepping Scheme

ddxou = _periLaplacian_tensor(u, dx, batchdimension =

batchdimension)

u = u + dt * ut + 0.5 * dt**2 * torch.mul(c2, ddxou)

ddxu = _periLaplacian_tensor(u, dx , batchdimension=

batchdimension)

ut = ut + 0.5 * dt * torch.mul(c2 , ddxou + ddxu)

return u, ut

else:

raise NotImplementedError("this boundary condition is not

implemented")

63

A6 Numerical Solver for 2D Wave Equation

import torch

device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

def varied_velocity_verlet_tensor(u0 , ut0 , vel , dx , dt , delta_t_star ,

boundary_c="periodic", batchdimension = False):

’’’

:param u0: (pytorch tensor) physical wave component ,

displacement of wave

:param ut0: (pytorch tensor) physical wave component derived by

t, velocity of wave

:param vel: (pytorch tensor) velocity profile dependent on x_1

and x_2 and x_3

:param dx: (float) time step in both dimensions / grid spacing

:param dt: (float) temporal step size

:param delta_t_star: (float) time step a solver propagates a

wave and solvers are compared

:param boundary_c: (string) choice of boundary condition , "

periodic"

:param batchdimension: (boolean) True , if batch is added as a

dimension to u

:return: propagate wavefield using velocity Verlet in time and

the second order discrete Laplacian in space

’’’

def _varied_periLaplacian_tensor(v, vel , dx , batchdimension =

False):

’’’

:param v: (pytorch tensor) Wave Solution u for time t

:param vel: (pytorch tensor) velocity profile

:param dx: (float) grid spacing in x_1 , x_2 and x_3 dimension

:param batchdimension: (boolean) tells , if u contains a

dimension for batches , If true , change number from 0 to 1

:return: compute discrete Laplacian with periodic boundary

condition

’’’

number = 0

if batchdimension == True:

number = 1

c2 = torch.mul(vel , vel)

additional_sum = torch.mul(torch.roll(vel , 1, dims=1 + number)

64

, torch.roll(v, 1, dims=1 + number)) \

- torch.mul(torch.roll(vel , 1, dims=1 +

number), torch.roll(v, -1, dims=1 +

number))\

- torch.mul(torch.roll(vel , -1, dims=1 +

number), torch.roll(v, 1, dims=1 + number

))\

+ torch.mul(torch.roll(vel , -1, dims=1 +

number), torch.roll(v, -1, dims=1 +

number))\

+ torch.mul(torch.roll(vel , 1, dims=0 +

number), torch.roll(v, 1, dims=0 + number

))\

- torch.mul(torch.roll(vel , 1, dims=0 +

number), torch.roll(v, -1, dims=0 +

number))\

- torch.mul(torch.roll(vel , -1, dims=0 +

number), torch.roll(v, 1, dims=0 + number

))\

+ torch.mul(torch.roll(vel , -1, dims=0 +

number), torch.roll(v, -1, dims=0 +

number))

sum = torch.mul(vel , additional_sum)

Lu_sum= torch.roll(v, 2, dims=1 + number) - 2 * v + torch.roll

(v, -2, dims=1 + number) \

+ torch.roll(v, 2, dims=0 + number) - 2 * v + torch.

roll(v, -2, dims=0 + number)

Lu = 0.5 * torch.mul(c2 , Lu_sum)

Lv = (0.5 * (sum +Lu)) / (dx**2)

return Lv

Nt = round(abs(delta_t_star / dt))

u, ut = u0 , ut0

if boundary_c == "periodic":

for i in range(Nt):

Compute stepping scheme for Varied Velocity Verlet

ddxou = _varied_periLaplacian_tensor(u, vel , dx,

batchdimension = batchdimension)

u = u + dt * ut + 0.5 * dt**2 * ddxou

ddxu = _varied_periLaplacian_tensor(u, vel , dx ,

batchdimension=batchdimension)

ut = ut + 0.5 * dt * (ddxou + ddxu)

return u, ut

else:

raise NotImplementedError("this boundary condition is not

implemented")

65

