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ABSTRACT
Solving the Euler equations of ideal hydrodynamics as accurately and efficiently as possible is
a key requirement in many astrophysical simulations. It is therefore important to continuously
advance the numerical methods implemented in current astrophysical codes, especially also
in light of evolving computer technology, which favours certain computational approaches
over others. Here we introduce the new adaptive mesh refinement (AMR) code TENET, which
employs a high-order Discontinuous Galerkin (DG) scheme for hydrodynamics. The Euler
equations in this method are solved in a weak formulation with a polynomial basis by means
of explicit Runge-Kutta time integration and Gauss-Legendre quadrature. This approach of-
fers significant advantages over commonly employed finite volume (FV) solvers. In particu-
lar, the higher order capability renders it computationally more efficient, in the sense that the
same precision can be obtained at significantly less computational cost. Also, the DG scheme
inherently conserves angular momentum in regions where no limiting takes place, and it typ-
ically produces much smaller numerical diffusion and advection errors than a FV approach.
A further advantage lies in a more natural handling of AMR refinement boundaries, where
a fall back to first order can be avoided. Finally, DG requires no deep stencils at high order,
and offers an improved compute to memory access ratio compared with FV schemes, which
is favorable for current and upcoming highly parallel supercomputers. We describe the for-
mulation and implementation details of our new code, and demonstrate its performance and
accuracy with a set of two- and three-dimensional test problems. The results confirm that DG
schemes have a high potential for astrophysical applications.
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1 INTRODUCTION

Through the availability of ever more powerful computing re-
sources, computational fluid dynamics has become an important
part of astrophysical research. It is of crucial help in shedding light
on the physics of the baryonic part of our Universe, and contributes
substantially to progress in our theoretical understanding of galaxy
formation and evolution, of star and planet formation, and of the
dynamics of the intergalactic medium. In addition, it plays an im-
portant role in planetary science and in solving engineering prob-
lems related to experimental space exploration.

In the astrophysics community, most numerical work thus far
on solving the Euler equations of ideal hydrodynamics has been
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carried out with two basic types of codes. On the one hand, there is
the broad class of Eulerian methods which utilise classical hydro-
dynamic solvers operating on fixed Cartesian grids (e.g. Stone et al.
2008), or on meshes which can adjust their resolution in space with
the adaptive mesh refinement (AMR) technique (e.g. Fryxell et al.
2000; Teyssier 2002; Mignone et al. 2007; Bryan et al. 2014). On
the other hand, there are pseudo-Lagrangian discretisations in the
form of smoothed-particle hydrodynamics (SPH), which are other
flexible and popular tools to study many astrophysical problems
(e.g. Wadsley et al. 2004; Springel 2005).

Some of the main advantages and drawbacks of these meth-
ods become apparent if we recall the fundamental difference in
their numerical approach, which is that grid codes discretise space
whereas SPH decomposes a fluid in terms of mass elements. The
traditional discretisation of space used by Eulerian methods yields
good convergence properties, and a high accuracy and efficiency
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for many problems. Furthermore, calculations can be straightfor-
wardly distributed onto parallel computing systems, often allowing
a high scalability provided there is only little communication be-
tween the cells. The discretisation of mass used by SPH on the
other hand results in a natural resolution adjustment in converg-
ing flows such that most of the computing time and available res-
olution is dedicated to dense, astrophysically interesting regions.
Moreover, Lagrangian methods can handle gas with high advection
velocities without suffering from large errors. However, both meth-
ods have also substantial weaknesses, ranging from problems with
the Galilei-invariance of solutions in the case of grid codes, to a
suppression of fluid instabilities and noise in the case of SPH.

This has motivated attempts to combine the advantages of tra-
ditional grid-based schemes and of SPH in new methods, such as
moving mesh-codes (Springel 2010; Duffell & MacFadyen 2011)
or in mesh-free methods that retain a higher degree of accuracy
(Lanson & Vila 2008; Hopkins 2014) than SPH. Both of these new
developments conserve angular momentum better than plain Eu-
lerian schemes, while still capturing shocks accurately, a feature
that is crucial for many applications in astrophysics. However, these
new methods need to give up the simple discretisation of space into
regular grids, meaning also that their computational efficiency takes
a significant hit, because the regular memory access patterns pos-
sible for simple structured discretisations are ideal for leveraging a
high fraction of the peak performance of current and future hard-
ware.

In fact, the performance of supercomputers has increased ex-
ponentially over the last two decades, roughly following the em-
pirical trend of Moore’s law, which states that the transistor count
and hence performance of computing chips doubles roughly every
two years. Soon, parallel computing systems featuring more than
10 million cores and “exascale” performance in the range of 1018

floating point operations per second are expected. Making full use
of this enormous compute power for astrophysical research will re-
quire novel generations of simulation codes with superior paral-
lel scaling and high resilience when executed on more and more
cores. Also, since the raw floating point speed of computer hard-
ware grows much faster than memory access speed, it is imperative
to search for new numerical schemes that reduce the average num-
ber of memory accesses needed per compute operations.

A very interesting class of numerical methods in this context
are so-called discontinuous Galerkin schemes (DG), which can be
used for a broad range of partial differential equations. Since the
introduction of DG (Reed & Hill 1973) and its generalisation to
nonlinear problems (Cockburn & Shu 1991, 1989; Cockburn et al.
1989, 1990; Cockburn & Shu 1998), it has been successfully ap-
plied in diverse fields of physics such as aeroacoustics, electro-
magnetism, fluid dynamics, porous media, etc. (Cockburn et al.
2011; Gallego-Valencia et al. 2014). On the other hand, in the astro-
physics community the adoption of modern DG methods has been
fairly limited so far. However, two recent works suggest that this
is about to change. Mocz et al. (2014) presented a DG method
for solving the magnetohydrodynamic (MHD) equations on arbi-
trary grids as well as on a moving Voronoi mesh, and Zanotti et al.
(2015) developed an AMR code for relativistic MHD calculations.
The present paper is a further contribution in this direction and aims
to introduce a novel DG-based hydrodynamical code as an alterna-
tive to commonly employed schemes in the field.

DG is a finite element method which incorporates several as-
pects from finite volume (FV) methods. The partial differential
equation is solved in a weak formulation by means of local basis
functions, yielding a global solution that is in general discontinuous

across cell interfaces. The approach requires communication only
between directly neighbouring cells and allows for the exact con-
servation of physical quantities including angular momentum. Im-
portantly, the method can be straightforwardly implemented with
arbitrary spatial order, since it directly solves also for higher or-
der moments of the solution. Unlike in standard FV schemes, this
higher order accuracy is achieved without requiring large spatial
stencils, making DG particularly suitable for utilising massive par-
allel systems with distributed memory because of its favourable
compute-to-communicate ratio and enhanced opportunities to hide
communication behind local computations.

In order to thoroughly explore the utility of DG in real astro-
physical applications, we have developed TENET, an MPI-parallel
DG code which solves the Euler equations on an AMR grid to ar-
bitrary spatial order. In our method the solution within every cell
is given by a linear combination of Legendre polynomials, and the
propagation in time is accomplished with an explicit Runge-Kutta
(RK) time integrator. A volume and a surface integral has to be
computed numerically for every cell in every timestep. The surface
integral involves a numerical flux computation which we carry out
with a Riemann solver, similar to how this is done in standard Go-
dunov methods. In order to cope with physical discontinuities and
spurious oscillations we use a simple minmod limiting scheme.

The goal of this paper is to introduce the concepts of our
DG implementation and compare its performance to a standard FV
method based on the Reconstruct-Solve-Average (RSA) approach.
In this traditional scheme higher-order information is discarded in
the averaging process and recomputed in the reconstruction step,
leading to averaging errors and numerical diffusion. DG on the
other hand does not only update the cell-averaged solution every
cell, but also higher order moments of the solution, such that the
reconstruction becomes obsolete. This aspect of DG leads to im-
portant advantages over FV methods, in particular an inherent im-
provement of angular momentum conservation and much reduced
advection errors, especially for but not restricted to smooth parts
of the solutions. These accuracy gains and the prospect to translate
them to a lower computational cost at given computational error
form a strong motivation to investigate the use of DG in astrophys-
ical applications.

The paper at hand is structured as follows: In Section 2, we
present the general methodology of our DG implementation for
Cartesian grids. The techniques we adopt for limiting the numer-
ical solution are described in Section 3, and the generalisation to
a mesh with adaptive refinement is outlined in Section 4. These
sections give a detailed account of the required equations and dis-
cretization formulae for the sake of clarity and definiteness, some-
thing that we hope does not discourage interested readers. We then
validate our DG implementation and compare it to a standard Go-
dunov FV solver with two- and three-dimensional test problems in
Section 5. Finally, Section 6 summarises our findings and gives a
concluding discussion.

2 DISCONTINUOUS GALERKIN HYDRODYNAMICS

2.1 Euler equations

The Euler equations are conservation laws for mass, momentum,
and total energy of a fluid. They are a system of hyperbolic partial
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differential equations and can be written in compact form as

∂u
∂t

+

3∑
α=1

∂ fα
∂xα

= 0, (1)

with the state vector

u =

 ρρv
ρe

 =

 ρ

ρv
ρu + 1

2ρv2

 , (2)

and the flux vectors

f 1 =


ρv1

ρv2
1 + p
ρv1v2

ρv1v3

(ρe + p)v1

 f 2 =


ρv2

ρv1v2

ρv2
2 + p
ρv2v3

(ρe + p)v2

 f 3 =


ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρe + p)v3

 . (3)

The unknown quantities are density ρ, velocity v, pressure p, and
total energy per unit mass e. The latter can be expressed in terms
of the internal energy per unit mass u and the kinetic energy of the
fluid, e = u + 1

2 v2. For an ideal gas, the system is closed with the
equation of state

p = ρu(γ − 1), (4)

where γ denotes the adiabatic index.

2.2 Solution representation

We partition the domain by non-overlapping cubical cells, which
may be refined using AMR techniques as explained in later sec-
tions. Moreover, we follow the approach of a classical modal DG
scheme, where the solution in cell K is given by a linear combina-
tion of N(k) orthogonal and normalised basis functions φK

l :

uK (x, t) =

N(k)∑
l=1

wK
l (t)φK

l (x). (5)

In this way, the dependence on time and space of the solution is
split into time-dependent weights, and basis functions which are
constant in time. Consequently, the state of a cell is completely
characterised by N(k) weight vectors wK

j (t).
The above equation can be solved for the weights by multiply-

ing with the corresponding basis function φK
j and integrating over

the cell volume. Using the orthogonality and normalisation of the
basis functions yields

wK
j =

1
|K|

∫
K

uKφK
j dV, j = 1, . . . ,N(k), (6)

where |K| is the volume of the cell. The first basis function is chosen
to be φ1 = 1 and hence the weight wK

1 is the cell average of the
state vector uK . The higher order moments of the state vector are
described by weights wK

j with j ≥ 2.
The basis functions can be defined on a cube in terms of scaled

variables ξ,

φl(ξ) : [−1, 1]3 → R. (7)

The transformation between coordinates ξ in the cell frame of ref-
erence and coordinates x in the laboratory frame of reference is

ξ =
2

∆xK (x − xK), (8)

where ∆xK and xK are edge length and cell centre of cell K, re-
spectively. For our DG implementation, we construct a set of three-
dimensional polynomial basis functions with a maximum degree of
k as products of one-dimensional scaled Legendre polynomials P̃:

{φl(ξ)}
N(k)
l=1 =

{
P̃u(ξ1)P̃v(ξ2)P̃w(ξ3)|u, v,w ∈ N0 ∧ u + v + w ≤ k

}
.

(9)

The first few Legendre polynomials are shown in Appendix A. The
number of basis functions for polynomials with a maximum degree
of k is

N(k) =

k∑
u=0

k−u∑
v=0

k−u−v∑
w=0

1 =
1
6

(k + 1)(k + 2)(k + 3). (10)

Furthermore, when polynomials with a maximum degree of k are
used, a scheme with spatial order p = k+1 is obtained. For example,
linear basis functions lead to a scheme which is of second order in
space.

2.3 Initial conditions

Given initial conditions u(x, t = 0) = u(x, 0), we have to provide an
initial state for the DG scheme which is consistent with the solution
representation. To this end, the initial conditions are expressed by
means of the polynomial basis on cell K, which will then be

uK (x, 0) =

N(k)∑
l=1

wK
l (0)φK

l (x). (11)

If the initial conditions at hand are polynomials with degree ≤ k,
this representation preserves the exact initial conditions, otherwise
equation (11) is an approximation to the given initial conditions.
The initial weights can be obtained by performing an L2-projection,

min{
wK

l,i(0)
}

l

∫
K

(
uK

i (x, 0) − ui(x, 0)
)2

dV, i = 1, . . . , 5, (12)

where i = 1, . . . , 5 enumerates the conserved variables. The projec-
tion above leads to the integral

wK
j (0) =

1
|K|

∫
K

u(x, 0)φK
j (x) dV, j = 1, . . . ,N(k), (13)

which can be transformed to the reference frame of the cell, viz.

wK
j (0) =

1
8

∫
[−1,1]3

u(ξ, 0)φ j(ξ) dξ, j = 1, . . . ,N(k). (14)

We solve the integral numerically by means of tensor product
Gauss-Legendre quadrature (hereafter called Gaussian quadrature)
with (k + 1)3 nodes:

wK
j (0) ≈

1
8

(k+1)3∑
q=1

u(ξ3D
q , 0)φ j(ξ3D

q )ω3D
q , j = 1, . . . ,N(k). (15)

Here, ξ3D
q is the position of the quadrature node q in the cell frame

of reference, andω3D
q denotes the corresponding quadrature weight.

The technique of Gaussian quadrature is explained in more detail
in Appendix B.

2.4 Evolution equation for the weights

In order to derive the DG scheme on a cell K, the Euler equations
for a polynomial state vector uK are multiplied by the basis function
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Figure 1. In the DG scheme, a surface and a volume integral has to be
computed numerically for every cell, see equation (17). In our approach,
we solve these integrals by means of Gauss-Legendre quadrature (Ap-
pendix B). This example shows the nodes for our third order DG method
(with second order polynomials) when used in a two-dimensional config-
uration. The black nodes indicate the positions where the surface integral
is evaluated, which involves a numerical flux calculation with a Riemann
solver. The white nodes are used for numerically estimating the volume in-
tegral.

φK
j and integrated over the cell volume,∫
K

∂uK

∂t
+

3∑
α=1

∂ fα
∂xα

 φK
j dV = 0. (16)

Integration by parts of the flux divergence term and a subsequent
application of Gauss’ theorem leads to

d
dt

∫
K

uKφK
j dV −

3∑
α=1

∫
K

fα
∂φK

j

∂xα
dV +

3∑
α=1

∫
∂K

fαnαφK
j dS = 0,

(17)

where n̂ = (n1, n2, n3)T denotes the outward pointing unit normal
vector of the surface ∂K. In the following, we discuss each of the
terms separately.

According to equation (6) the first term is simply the time vari-
ation of the weights,

d
dt

∫
K

uKφK
j dV = |K|

dwK
j

dt
. (18)

The second and third terms are discretised by transforming the in-
tegrals to the cell frame and applying Gaussian quadrature (Fig. 1,
Appendix B). With this procedure the second term becomes

3∑
α=1

∫
K

fα
(
uK(x, t)

) ∂φK
j (x)

∂xα
dV

=
(∆xK)2

4

3∑
α=1

∫
[−1,1]3

fα
(
uK(ξ, t)

) ∂φ j(ξ)
∂ξα

dξ

≈
(∆xK)2

4

3∑
α=1

(k+1)3∑
q=1

fα
(
uK(ξ3D

q , t)
) ∂φ j(ξ)

∂ξα

∣∣∣∣∣∣
ξ3D

q

ω3D
q . (19)

Note that the transformation of the derivative ∂/∂xα gives a factor
of 2, see equation (8). The volume integral is computed by Gaussian
quadrature with k + 1 nodes per dimension. These nodes allow the
exact integration of polynomials up to degree 2k + 1.

The flux functions fα in the above expression can be evaluated
analytically, this is not the case for the fluxes in the last term of the
evolution equation (17). This is because the solution is discontinu-
ous across cell interfaces. We hence have to introduce a numerical
flux function f̄

(
uK−,uK+, n̂

)
, which in general depends on the states

left and right of the interface and on the normal vector. With this
numerical flux, the third term in equation (17) takes the form

3∑
α=1

∫
∂K

fαnα(x)φK
j (x) dS

=
(∆xK)2

4

∫
∂[−1,1]3

f̄
(
uK−(ξ, t),uK+(ξ, t), n̂(ξ)

)
φ j(ξ) dS ξ

≈
(∆xK)2

4

∑
A∈∂[−1,1]3

(k+1)2∑
q=1

f̄
(
uK−(ξ2D

q,A, t),u
K+(ξ2D

q,A, t), n̂
)
φ j(ξ2D

q,A)ω2D
q .

(20)

Here for each interface of the normalised cell a two-dimensional
Gaussian quadrature rule with (k+1)2 nodes is applied. The numer-
ical flux across each node can be calculated with a one-dimensional
Riemann solver, as in ordinary Godunov schemes. For our DG
scheme, we use the positivity preserving HLLC Riemann solver
(Toro 2009).

In order to model physics extending beyond ideal hydrody-
namics, source terms can be added on the right hand side of equa-
tion (16). Most importantly, the treatment of gravity is accom-
plished by the source term

s =

 0
−ρ∇Φ

−ρv · ∇Φ

 , (21)

which by projecting onto the basis function φ j inside cell K and
discretising becomes∫

K
s(x, t)φK

j (x) dV

=
|K|
8

∫
[−1,1]3

s(ξ, t)φ j(ξ) dξ

≈
|K|
8

(k+1)3∑
q=1

s(ξ3D
q , t)φ j(ξ3D

q )ω3D
q . (22)

We have now discussed each term of the basic equation (17)
and arrived at a spatial discretisation of the Euler equations of the
form

dwK
j

dt
+ RK = 0, j = 1, . . . ,N(k), (23)

which represents a system of coupled ordinary differential equa-
tions. For the discretisation in time we apply an explicit strong sta-
bility preserving Runge-Kutta (SSP RK) scheme (Gottlieb et al.
2001) of the same order as the spatial discretisation. With a combi-
nation of a SSP RK method, a positivity preserving Riemann solver,
and a positivity limiter (see Section 3.4), negative pressure and den-
sity values in the hydro scheme can be avoided. The Butcher tables
of the first to fourth order SSP RK methods we use in our code are
listed in Appendix D.

2.5 Timestep calculation

If the Euler equations are solved with an explicit time integrator, the
timestep has to fulfil a Courant-Friedrichs-Lewy (CFL) condition
for achieving numericaltimestep stability. For the DG scheme with
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explicit RK time integration, the timestep depends also on the order
p = k + 1 of the scheme. We calculate the timestep ∆tK of cell K
following Cockburn & Shu (1989) as

∆tK =
CFL

2k + 1

(
|vK

1 | + cK

∆xK
1

+
|vK

2 | + cK

∆xK
2

+
|vK

3 | + cK

∆xK
3

)−1

, (24)

timestep where c =
√
γp/ρ is the sound speed and the denom-

inators in the bracket are the edge lengths of the cell. Since we
used only cubic cells, we have ∆xK

1 = ∆xK
2 = ∆xK

3 = ∆xK . In
this work we apply a global timestep given by the minimum of the
local timesteps among all cells. The CFL number depends on the
choice of flux calculation but in practice should be set to a some-
what smaller value as formally required. This is because especially
for a higher order RK time integrator a fundamental problem oc-
curs. For calculating the timestep (24), only the current velocity
and sound speed of the gas is known, whereas in principle the min-
imum speed occurring during all RK sub steps should be used to be
on the safe side. Unfortunately, this information is not readily avail-
able, and the only straight forward way to cope with this problem
is to reduce the CFL number. Consequently, we decided to adopt
a conservative choice of CFL = 0.2 for the tests presented in this
paper. If the positivity limiter is used, the hydro timestep ∆tK has
to be modified and can be slightly more restrictive, as described in
Section 3.4.

Source terms s(u, t) on the right hand side of the Euler equa-
tions can induce additional timestep criteria. In this case, positivity
of the solution can be enforced by determining the timestep such
that ρ(u′) > 0 and p(u′) > 0, with u′ = u + 2s(u, t) ∆t (Zhang
2006). For the gravity source term (21) this leads to the timestep
limit

∆tK
grav ≤

1√
2γ(γ − 1)

c
|∇Φ|

. (25)

The actual timestep has then to be chosen as the minimum of the
hydrodynamical and gravity timesteps.

2.6 Angular momentum conservation

A welcome side effect of the computation of higher order moments
of the solution in DG schemes is that angular momentum is inher-
ently conserved. Without loss of generality, we show this conser-
vation property explicitly for the two-dimensional case (z = 0). In
this case, the angular momentum density is defined as

L = xρvy − yρvx, (26)

and the flux momentum tensor in 2D is given by(
f1,2 f2,2

f1,3 f2,3

)
=

(
p + ρv2

1 ρv1v2

ρv1v2 p + ρv2
2

)
. (27)

The conservation law for angular momentum can be conveniently
derived from the Euler equations (1). Multiplying the x-momentum
equation by y and the y-momentum equation by x, applying the
product rule and subsequently subtracting the two equations gives

∂L
∂t

+
∂

∂x
(x f1,3 − y f1,2) +

∂

∂y
(x f2,3 − y f2,2) = 0. (28)

In order to obtain the angular momentum conservation law on a cell
basis, this can be integrated over element K, resulting in

d
dt

∫
K

L dV +

∫
∂K

x( f1,3n1 + f2,3n2) − y( f1,2n1 + f2,2n2) dS = 0.

(29)

On the other hand, for a DG scheme with order p > 1, we can
choose the test function to be φK = y in the x-momentum equation
and φK = x in the y-momentum equation in the weak formulation
(17) of the Euler equations:

d
dt

∫
K
ρv1y dV −

∫
K

f2,2 dV +

∫
∂K

f̄2y dS = 0, (30)

d
dt

∫
K
ρv2 x dV −

∫
K

f1,3 dV +

∫
∂K

f̄3 x dS = 0, (31)

where f̄2 and f̄3 are the momentum components of the numerical
flux function. By subtracting the above equations and using f1,3 =

f2,2 = ρv1v2 we get the angular momentum equation of DG, viz.

d
dt

∫
K

Ly dV +

∫
∂K

( f̄3 x − f̄2y) dS . (32)

This equation is consistent with the exact equation (29) and hence
DG schemes of at least second order accuracy are angular momen-
tum conserving. However, there is one caveat to this inherent fea-
ture of DG. In non-smooth regions of the solution a limiting scheme
has to be applied, which can slightly modify the angular momen-
tum within a cell and hence lead to a violation of manifest angular
momentum conservation. This is also the case for the simple lim-
iters we shall adopt and describe in the subsequent section.

3 SLOPE LIMITING

The choice of the slope limiting procedure can have a large ef-
fect on the quality of a hydro scheme, as we will demonstrate in
Section 5.2. Often different limiters and configurations represent a
trade-off between dissipation and oscillations, and furthermore, the
optimal slope limiter is highly problem dependent. Consequently,
the challenge consists of finding a limiting procedure which de-
livers good results for a vast range of test problems. For the DG
scheme this proves to be even more difficult. The higher order terms
of the solution should be discarded at shocks and contact discon-
tinuities if needed, while at the same time no clipping of extrema
should take place in smooth regions, such that the full benefit of
the higher order terms is ensured. In what follows we discuss two
different approaches for limiting the linear terms of the solution as
well as a positivity limiter which asserts non-negativity of density
and pressure.

3.1 Component wise limiter

In order to reduce or completely avoid spurious oscillations, we
have to confine possible over- and undershootings of the high order
solution of a cell at cell boundaries compared to the cell average
of neighbouring cells. For that purpose, the weights wK

2,i,w
K
3,i,w

K
4,i

which are proportional to the slopes in the x-, y-, and z-direction,
respectively, are limited by comparing them to the difference of cell
average values, viz.

w̃K
2,i =

1
√

3
minmod

(√
3wK

2,i, β(wK
1,i − wWK

1,i ), β(wEK
1,i − wK

1,i)
)
,

w̃K
3,i =

1
√

3
minmod

(√
3wK

3,i, β(wK
1,i − wS K

1,i ), β(wNK
1,i − wK

1,i)
)
, (33)

w̃K
4,i =

1
√

3
minmod

(√
3wK

4,i, β(wK
1,i − wBK

1,i ), β(wTK
1,i − wK

1,i)
)
.

Here, w̃K
2,i, w̃

K
3,i, w̃

K
4,i are the new weights, WK , EK , S K ,NK , BK ,TK

denote cell neighbours in the directions west, east, south, north,
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bottom, and top, respectively, and the minmod-function is defined
as

minmod(a, b, c) =

s min(|a|, |b|, |c|) s = sign(a) = sign(b) = sign(c)
0 otherwise.

(34)

Each component of the conserved variables, i = 1, . . . , 5, is
limited separately and hence treated independently. The

√
3-factors

in equation (33) account for the scaling of the Legendre polyno-
mial P̃1(ξ), and the parameter β ∈ [0.5, 1] controls the amount of
limiting. The choice of β = 0.5 corresponds to a total variation di-
minishing (TVD) scheme for a scalar problem but introduces more
diffusion compared to β = 1. The latter value is less restrictive and
may yield a more accurate solution.

If the limited weights are the same as the old weights, i.e.
w̃K

2,i = wK
2,i, w̃K

3,i = w̃K
3,i, and wK

4,i = wK
4,i, we keep the original compo-

nent of the solution uK
i (x, t) of the cell. Otherwise, the component

is set to

uK
i (x, t) = wK

1,i + w̃K
2,iφ

K
2 + w̃K

3,iφ
K
3 + w̃K

4,iφ
K
4 , (35)

where terms with order higher than linear have been discarded.
Note that for this limiting procedure the cell averaged values do
not change, and thus the conservation of mass, momentum, and en-
ergy is unaffected. However, the limiter may modify the angular
momentum content of a cell, implying that in our DG scheme it is
manifestly conserved only in places where the slope limiter does
not trigger. Clearly, it is a desirable goal for future work to design
limiting schemes which can preserve angular momentum.

3.2 Characteristic limiter

An improvement over the component wise limiting of the con-
served variables can be achieved by limiting the characteristic vari-
ables instead. They represent advected quantities, and for the Euler
equations we can define them locally by linearising about the cell
average value.

The transformation matricesLK
x ,LK

y , andLK
z are formed from

the left eigenvectors of the flux Jacobian matrix based on the mean
values of the conserved variables of cell K, ūK = wK

1 . We list all ma-
trices in Appendix E. The slopes of the characteristic variables can
then be obtained by the matrix-vector multiplications cK

2 = LK
x wK

2 ,
cK

3 = LK
y wK

3 , cK
4 = LK

z wK
4 , where wK

2 , wK
3 and wK

4 denote the slopes
of the conserved variables in the x−, y−, and z−directions, respec-
tively. The transformed slopes are limited as in Section 3.1 with the
minmod-limiting procedure, viz.

c̃K
2 =

1
√

3
minmod

(√
3cK

2 , βL
K
x (wK

1 − wWK
1 ), βLK

x (wEK
1 − wK

1 )
)
,

c̃K
3 =

1
√

3
minmod

(√
3cK

3 , βL
K
y (wK

1 − wS K
1 ), βLK

y (wNK
1 − wK

1 )
)
,

c̃K
4 =

1
√

3
minmod

(√
3cK

4 , βL
K
z (wK

1 − wBK
1 ), βLK

z (wTK
1 − wK

1 )
)
.

(36)

If the limited slopes of the characteristic variables are identical to
the unlimited ones (i.e. c̃K

2 = cK
2 , c̃K

3 = cK
3 , and c̃K

4 = cK
4 ) the orig-

inal solution is kept. Otherwise, the new slopes of the conserved
variables are calculated with the inverse transformation matrices
RK

x = (LK
x )−1, RK

y = (LK
y )−1, and RK

z = (LK
z )−1 via w̃K

2 = RK
x c̃K

2 ,
w̃K

3 = RK
x c̃K

3 , and w̃K
4 = RK

x c̃K
4 . In this case, the higher order terms

of the solution are set to zero and the limited solution in the cell

becomes

uK (x, t) = wK
1 + w̃K

2 φ
K
2 + w̃K

3 φ
K
3 + w̃K

4 φ
K
4 . (37)

The difference between the component wise limiting of the con-
served variables (Section 3.1) and the limiting of the more natural
characteristic variables is demonstrated with a shock tube simula-
tion in Section 5.2.

3.3 Total variation bounded limiting

The limiters discussed so far can effectively reduce overshoot-
ings and oscillations, however, they can potentially also trigger at
smooth extrema and then lead to a loss of higher order information.
Considering the goals of a higher order DG scheme, this is a severe
drawback that can negatively influence the convergence rate of our
DG code. In order to avoid a clipping of the solution at smooth ex-
trema, the minmod-limiter in Sections 3.1 and 3.2 can be replaced
by a bounded version (Cockburn & Shu 1998), viz.

minmodB(a, b, c) =

a if |a| ≤ M(∆xK)2

minmod(a, b, c) otherwise.
(38)

Here, M is a free parameter which is related to the second deriva-
tive of the solution. The ideal choice for it can vary for different test
problems. Furthermore, in the above ansatz the amount of limiting
depends on the resolution since |a| ∝ ∆xK , which is not the case
for the right hand side of the inequality. For reasons of simplicity
and generality we would however like to use fixed limiter parame-
ters without explicit resolution dependence for the tests presented
in this paper. Hence we define M̃ = M∆xK , and use a constant
value for M̃ to control the strength of the bounding applied to the
minmod limiter. With the minmod-bounded limiting approach, the
high accuracy of the solution in smooth regions is retained while
oscillations, especially in post-shock regions, can be eliminated.

3.4 Positivity limiting

When solving the equations of hydrodynamics for extreme flows,
care has to be taken in order to avoid negative pressure or density
values within the cells and at cell interfaces. A classical example
are high Mach number flows, for which in the pre-shock region the
total energy is dominated by the kinetic energy. Because the pres-
sure is calculated via the difference of total and kinetic energies, it
can easily become negative in numerical treatments without special
precautions.

The use of an ordinary slope limiter tends to be only of limited
help in this situation, and only delays the blow-up of the solution. In
fact, it turns out that even with TVD limiting and arbitrarily small
timesteps it is not guaranteed in general that unphysical negative
values are avoided. Nevertheless, it is possible to construct positiv-
ity preserving finite volume and discontinuous Galerkin schemes,
which are accurate at the same time. Remarkably, the latter means
that high order accuracy can be retained in smooth solutions and
furthermore the total mass, momentum, and energy in each cell is
conserved. For our DG code, we adopt the positivity limiting im-
plementation following Zhang & Shu (2010).

For constructing this limiter, a quadrature rule including the
boundary points of the integration interval is needed. One possible
choice consists of m-point Gauss-Lobatto-Legendre (GLL) quadra-
ture rules (Appendix C), which are exact for polynomials of degree
k ≤ 2m − 3. Let ξ1D

1 < . . . < ξ1D
k+1 ∈ [−1, 1] be the one-dimensional

Gauss quadrature points and ξ̂1D
1 < . . . < ξ̂1D

m ∈ [−1, 1] the GLL
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quadrature points. Quadrature rules for the domain [−1,−1]3 which
include the interface Gauss quadrature points can be constructed by
tensor products of Gauss and GLL quadrature points:

S x = {(ξ̂1D
r , ξ1D

s , ξ1D
t ) : 1 ≤ r ≤ m, 1 ≤ s ≤ k + 1, 1 ≤ t ≤ k + 1},

S y = {(ξ1D
r , ξ̂1D

s , ξ1D
t ) : 1 ≤ r ≤ k + 1, 1 ≤ s ≤ m, 1 ≤ t ≤ k + 1},

S z = {(ξ1D
r , ξ1D

s , ξ̂1D
t ) : 1 ≤ r ≤ k + 1, 1 ≤ s ≤ k + 1, 1 ≤ t ≤ m}.

(39)

The union S = S x ∪ S y ∪ S z of these sets constitutes quadrature
points of a rule which is exact for polynomials of degree k and
furthermore contains all the points for which we calculate fluxes
in equation (20). It can be shown that if the solution is positive
at these union quadrature points, the solution averaged after one
explicit Euler step will stay positive if a positivity preserving flux
calculation and an adequate timestep is used.

The positivity limiter is operated as follows. For a DG scheme
with polynomials of maximum order k, choose the smallest integer
m such that m ≥ (k + 3)/2. Carry out the following computations
for every cell K. First, determine the minimum density at the union
quadrature points,

ρK
min = min

ξ∈S
ρK(ξ). (40)

Use this minimum density for calculating the factor

θK
1 = min

{∣∣∣∣∣∣ ρ̄K − ε

ρ̄K − ρK
min

∣∣∣∣∣∣ , 1
}
, (41)

where ε ≈ 10−10 is a small number representing the target floor for
the positivity limiter. Then, modify the higher order terms of the
density by multiplying the corresponding weights with the calcu-
lated factor,

wK
j,1 ← θK

1 wK
j,1, j = 2, . . . ,N(k). (42)

At this point, the density at the union quadrature points is positive
(≥ ε), and as desired, the mean density ρ̄K = wK

1,1 and therefore the
total mass has not been changed.

In order to enforce pressure positivity at the union quadrature
points ξ ∈ S , we compute the factor

θK
2 = min

ξ∈S
τK(ξ), (43)

with

τK(ξ) =

1 if pK(ξ) ≥ ε
τ∗ such that pK(uK(ξ) + τ∗(uK(ξ) − ūK)) = ε,

(44)

and limit all higher order terms ( j >= 2) for all components of the
state vector:

wK
j,i ← θK

2 wK
j,i, j = 2, . . . ,N(k), i = 1, . . . , 5. (45)

The idea of the second case of equation (44) is to calculate a mod-
ification factor τ∗ for the higher order terms uK(ξ) − ūK , such that
the new pressure at the quadrature point equals ε. Furthermore, this
second case represents a quadratic equation in τ∗, which has to be
solved carefully by minimising round-off errors. In our implemen-
tation, we improve the solution for τ∗ iteratively with a small num-
ber of Newton-Raphson iterations.

The outlined method ensures positivity of pressure and density
of the mean cell state after the subsequent timestep under several
conditions: Firstly, a positivity preserving flux calculation has to
be used, e.g. the Godunov flux or the Harten-Lax-van Leer flux is
suitable. Secondly, when adopting a RK method it should be strong
stability preserving (SSP); these methods are convex combinations

◦
◦
◦

◦
◦
◦

◦
◦
◦

Figure 2. Quadrature points of an AMR boundary cell in our 2D, third
order (k = 2) version of the code. Interfaces with neighbouring cells on
a finer AMR level are integrated with the quadrature points of the smaller
cells. In this way no accuracy is lost at AMR boundaries and the order of
our DG code is unaffected.

of explicit Euler methods, and hence a number of relevant proper-
ties and proofs valid for Euler’s method also hold for these higher
order time integrators. Lastly, the local timestep for the DG scheme
has to be set to

∆tK = CFL ·min
{

1
2k + 1

,
ω̂1D

1

2

}
(
|vK

1 | + cK

∆xK
1

+
|vK

2 | + cK

∆xK
2

+
|vK

3 | + cK

∆xK
3

)−1

, (46)

where ω̂1D
1 is the first GLL weight. Compared to (Zhang & Shu

2010) we obtain an additional factor of 1/2 since our reference
domain is [−1, 1] and therefore the sum of the GLL weights is∑m

q=1 ω̂
1D
q = 2. The first GLL weight is ω̂1D

1 = 1 for our second
order DG method (k = 1) and ω̂1D

1 = 1/3 for our third and fourth
order method (k = 2, 3). Depending on the order, the timestep with
positivity limiting can be slightly more restrictive. We conclude this
section by remarking that the positivity limiting procedure is a local
operation and does not introduce additional inter-cell communica-
tion in the DG scheme.

4 DG WITH ADAPTIVE MESH REFINEMENT

Many astrophysical applications involve a high dynamic range in
spatial scales. In grid based codes, this multi-scale challenge can
be tackled with the adaptive mesh refinement technique (AMR). In
this approach, individual cells are split into a set of smaller sub-
cells if appropriate (see Fig. 3 for a sketch of the two-dimensional
case), thereby increasing the resolution locally. We adopt a tree-
based AMR implementation where cubical cells are split into 8
subcells when a refinement takes place. This allows a particularly
flexible adaption to the required spatial resolution.

Our implementation largely follow that in the RAMSES code
(Teyssier 2002). The tree is organized into cells and nodes. The root
node encompasses the whole simulation domain and is designated
as level l = 0. A node at level l always contains 8 children, which
can be either another node on a smaller level l′ = l + 1, or a leave
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cell. In this way, the mesh of leave cells is guaranteed to be volume
filling. An example of such an AMR mesh in 2D is shown in Fig. 2.

To distribute the work load onto many MPI processes, the tree
is split into an upper part, referred to as ‘top tree’ in the follow-
ing, and branches that hang below individual top tree nodes. Every
MPI process stores a full copy of the top tree, whereas each of the
lower branches are in principle stored only on one MPI rank. How-
ever, some of the branch data is replicated in the form of a ghost
layer around each local tree to facilitate the exchange of bound-
ary information. The mesh can be refined and structured arbitrarily,
with only one restriction. The level jump between a cell and its 26
neighbours has to be at most ±1. This implies that a cell can either
have 1 or 4 split cells as direct neighbours in a given direction. In
order to fulfil this level jump condition additional cells may have
to be refined beyond those where the physical criterion demands a
refinement.

To simplify bookkeeping, we store for each cell and node the
indices of the father node and the 6 neighbouring cells or nodes. In
case of a split neighbour, the index of the node at the same level is
stored instead. To make the mesh smoother and guarantee a buffer
region around cells which get refined due to the physical refinement
criterion, additional refinement layers are added as needed. In the
AMR simulations presented in this work, we use one extra layer of
refined cells around each cell flagged by the physical criterion for
refinement.

4.1 Refinement criterion

Many different refinement strategies can be applied in an AMR
code, for example, the refinement and derefinement criterion may
aim to keep the mass per cell approximately constant. Another
common strategy for refinement is to focus on interesting regions
such as shocks, contact discontinuities, or fluid instabilities. In this
work, we apply the mesh refinement simply at locations where the
density gradient is steep. To be precise, cell K is refined if the fol-
lowing criterion is met:

max(wK
2,0,w

K
3,0,w

K
4,0) > α · wt. (47)

Here, wK
2,0, wK

3,0, and wK
4,0 are the density changes divided by

√
3

along the x−, y−, and z− directions, respectively. The refinement is
controlled by the target slope parameter wt and a range factor α. We
have introduced the latter with the purpose of avoiding an oscillat-
ing refinement-derefinement behaviour. In this work, we adopt the
values wt = 0.01 and α = 1.1. The reason for using the density
changes instead of the physical slopes is that in this way a runaway
refinement can be avoided.

Leave nodes of the AMR tree are kept refined if the following
equation is true:

max(wL
2,0,w

L
3,0,w

L
4,0) >

1
α
· wt. (48)

The weights on the left hand side are the leave node weights cal-
culated with a projection of the 8 subcell solutions. If inequality
(48) does not hold, the node gets derefined and the 8 subcells are
merged into one.

4.2 Mesh refinement

Let K = {ξ|ξ ∈ [−1, 1]3} be the cell which we want to refine into
8 subcells, and A, B, C, . . . , H denote the daughter cells, as illus-
trated in Fig. 3 for the two-dimensional case. The refinement can be

K

A B

C D

Figure 3. Refinement (arrow to the left) and coarsening (arrow to the right)
of a cell in the 2D version of TENET. In both operations the solution on the
new cell structure is inferred by an L2-projection of the current polynomial
solution. In doing so, no information is lost in a refinement, and as much
information as possible is retained in a derefinement.

achieved without higher-order information loss if the solution poly-
nomial of the coarse cell is correctly projected onto the subcells. In
the following, we outline the procedure for obtaining the solution
on subcell A = {ξ|ξ ∈ [−1, 0] × [−1, 0] × [−1, 0]}, the calculations
for the other subcells are done in an analogous way.

The weights of the solution on subcell A are obtained by solv-
ing the minimisation problem

min{
wA

l,i

}
l

∫
A

(
uK

i − uA
i

)2
dV, i = 1, . . . , 5, (49)

where uK =
N(k)∑
l=1

wK
l φ

K
l is the given solution on the coarse cell and

uA =
N(k)∑
l=1

wA
l φ

A
l are the polynomials of the conserved variables on

cell A we are looking for. The minimisation ansatz (49) is solved
by projecting the solution of the coarse cell onto the basis functions
of subcell A,

wA
j =

1
|A|

∫
A
uKφA

j dV, j = 1, . . . ,N(k). (50)

We can plug in the solution uK and move the time- but not space-
dependent weights in front of the integral,

wA
j,i =

N(k)∑
l=1

wK
l,i

1
|A|

∫
A
φK

l φ
A
j dV, i = 1, . . . , 5 , j = 1, . . . ,N(k). (51)

If we define the projection matrix

(PA)l, j =
1
|A|

∫
A
φA

l φ
K
j dV, (52)

and introduce for each conserved variable i = 1, . . . , 5 the weight
vector ŵi = (w1,i,w2,i, . . . ,wN,i)>, the weights of the sub-cell solu-
tion uA are simply given by the matrix-vector multiplications

ŵA
i = PAŵK

i i = 1, . . . , 5. (53)

The matrix (52) can be computed exactly by transforming the inte-
gral to the reference domain of cell A,

(PA)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 − 1

2
,
ξ2 − 1

2
,
ξ3 − 1

2

)
φ j(ξ1, ξ2, ξ3) dξ, (54)

and applying a Gaussian quadrature rule with (k + 1)3 points. The
projection integrals for the other subcells (B, C, . . ., H) are given in
Appendix F. The refinement matrices are the same for all the cells,
we calculate them once in the initialisation of our DG code.
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K K

SK

NK

EKWK

Figure 4. Definition of neighbours in the slope limiting procedure at AMR boundaries, shown for the 2D version of TENET. The neighbours of cell K on the
left are on a finer level. For the slope limiting of cell K, the node weights are used, which are calculated by projecting the solutions of the subcells onto the
encompassing node volume WK . The right neighbour of cell K on the other hand is here a coarser cell, in this case the solution of this neighbour has to be
projected onto the smaller volume EK . In the slope limiting routine of TENET, this is only done in a temporary fashion without actually modifying the mesh.

4.3 Mesh derefinement

When the 8 cells A, B, . . ., H are merged into one coarser cell K,
some information is unavoidably lost. Nevertheless, in order to re-
tain as much accuracy as possible, the derefinement should again
be carried out by means of an L2-projection,

min{
wK

l,i

}
l

∫
A

(
uK

i − uA
i

)2
dV +

∫
B

(
uK

i − uB
i

)2
dV + . . .+

∫
H

(
uK

i − uH
i

)2
dV, i = 1, . . . , 5. (55)

Here, uA, uB, . . ., uH denote the given solutions on the cells to be
derefined, and uK is the solution on the coarser cell we are looking
for. The minimisation problem is solved by the weights

wK
j =

1
|K|

(∫
A
uAφK

j dV +

∫
B
uBφK

j dV + . . . +

∫
H

uHφK
j dV

)
,

j = 1, . . . ,N(k). (56)

We insert the solutions on the cells A, B, . . ., H and use the defini-
tion of the refinement matrices,

wK
j,i =

1
|K|

∫
A

N(k)∑
l=1

wA
l,iφ

A
l φ

K
j dV + . . . +

∫
H

N(k)∑
l=1

wH
l,iφ

H
l φ

K
j dV


=

1
|K|

N(k)∑
l=1

wA
l,i|A|(PA) j,l + . . . +

N(k)∑
l=1

wH
l,i|H|(PH) j,l

 ,
i = 1, . . . , 5 , j = 1, . . . ,N(k). (57)

If we again use the vector ŵK
i consisting of the weights of the solu-

tion for the conserved variable i, the weights of the solution on cell
K can be computed with the transposed refinement matrices,

ŵK
i =

1
8

(
P>A ŵA

i + P>BŵB
i + . . . + P>HŵH

i

)
, i = 1, . . . , 5. (58)

Here we have used the fact that the cells to be merged have the
same volume, |A| = |B| = . . . = |H| = 1

8 |K|. While the refinement
of 8 cells into a subcell preserves the exact shape of the solution,
this is not the case for the derefinement. After derefining we limit
the solution before further calculations are carried out, especially
for asserting positivity.

4.4 Limiting with AMR

In the case of AMR boundary cells, the limiting procedure has to be
well defined. For the limiting of cell K, the slope limiters described
in Sections 3.1 and 3.2 need the average values of the neighbouring
cells in each direction in order to adjust the slope of the conserved
variables. However, if the cell neighbours are on a different AMR
level, they are smaller or larger compared to the cell to limit, and a
single neighbouring cell in a specific direction is not well defined.

Fortunately, there is a straight forward way in DG to cope
with this problem. If a neighbouring cell is on a different level, the
polynomials of the neighbour are projected onto a volume which is
equal to the volume of the cell to refine, see Fig. 4. This can be done
with the usual refinement and derefinement operations as described
in Sections 4.2 and 4.3. By doing so, the limiting at AMR bound-
aries can be reduced to the limiting procedure on a regular grid. In
AMR runs, we also slightly adjust the positivity limiting scheme.
For cells which have neighbours on a higher level, the positivity
limiter is not only applied at the locations of the union quadrature
points (39), but additionally at the quadrature points of the cell in-
terfaces to smaller neighbours. By doing so, negative values in the
initial conditions of the Riemann problems are avoided, which have
to be solved in the integration of these interfaces.

4.5 Main simulation loop

Our new TENET code has been developed as an extension of the
AREPO code (Springel 2010), allowing us to reuse AREPO’s input-
output routines, domain decomposition, basic tree infrastructure,
neighbour search routines, and gravity solver. This also helps to
make our DG scheme quickly applicable in many science applica-
tions. We briefly discuss the high-level organisation of our code and
the structure of the main loop in a schematic way, focussing on the
DG part:

(i) Compute and store quadrature points and weights,
basis function values, and projection matrices.

(ii) Set the initial conditions by means of an L2-projection.

(iii) Apply slope limiter.
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(iv) Apply positivity limiter.

(v) While t < tmax:

(a) Compute timestep.

(b) For every Runge-Kutta stage:

(1) Calculate RK of the differential equation (23)
(inner and outer integral).

(2) Update solution to next RK stage.

(3) Update node data.

(4) Apply slope limiter.

(5) Apply positivity limiter.

(c) Do refinement and derefinement.

(d) t = t + ∆t.

The basis function values and the quadrature data are com-
puted in a general way for arbitrary spatial order as outlined in Ap-
pendices A, B, and C. For the time integration, our code can be
provided with a general Butcher tableau (Table D1), specifying the
desired RK method. By keeping these implementations general, the
spatial order and time integrator can be changed conveniently.

The first step of a RK stage consists of calculating RK of the
differential equation (23), including possible source terms. This in-
volves computing the inner integral by looping over the cells and
the outer integral by looping over the cell interfaces. After updating
the solution weights for every cell, the hydrodynamical quantities
on the AMR nodes have to be updated, such that they can be subse-
quently accessed during the slope-limiting procedure (Section 4.4).
After the RK step, all cells are checked for refinement and derefine-
ment and the mesh is adjusted accordingly.

5 VALIDATION

In this section we discuss various test problems which are either
standard tests or chosen for highlighting a specific feature of the
DG method. For most of the test simulations we compare the results
to a traditional second-order FV method. For definiteness, we use
the AREPO code to this end, with a fixed Cartesian grid and its
standard solver as described in Springel (2010). The latter consists
of a second-order unsplit Godunov scheme with an exact Riemann
solver and a non-TVD slope limiter. Recently, some modifications
to the FV solver of AREPO have been introduced for improving
its convergence properties (Pakmor et al. 2015) when the mesh is
dynamic. However, for a fixed Cartesian grid this does not make a
difference and the old solver used here performs equally well.

There are several important differences between FV and DG
methods. In a FV scheme, the solution is represented by piecewise
constant states, whereas in DG the solution within every cell is a
polynomial approximation. Moreover, in FV a reconstruction step
has to be carried out in order to recreate higher order information.
Once the states at the interfaces are calculated, numerical fluxes
are computed and the mean cell values updated. In the DG method,
no higher order information is discarded after completion of a step
and therefore no subsequent reconstruction is needed. DG directly
solves also for the higher order moments of the solution and up-
dates the weights of the basis functions in every cell accordingly.

For all the DG tests presented in this section we use a SSP
RK time integrator of an order consistent with the spatial discreti-
sation, and the fluxes are calculated with the HLLC approximate

Riemann solver. Furthermore, if not specified otherwise, we use
for all tests the positivity limiter in combination with the charac-
teristic limiter in the bounded version with the parameters β = 1
and M̃ = 0.5. Specifically, we only deviate from this configura-
tion when we compare the limiting of the characteristic variables
to the limiting of the conserved variables in the shock tube test in
Section 5.2, and when the angular momentum conservation of our
code is demonstrated in Section 5.5 with the cold Keplerian disc
problem. The higher order efficiency of our DG code is quantified
in the test problem of Section 5.1, and the 3D version of our code
is tested in a Sedov-Taylor blast wave simulation in Section 5.3.
In Section 5.4 we show that advection errors are much smaller for
DG compared to FV. Finally, the AMR capabilities of TENET are
illustrated with a high-resolution Kelvin-Helmholtz instability test
in Section 5.6.

5.1 Isentropic vortex

In this first hydrodynamical test problem, we verify the correctness
of our DG implementation by measuring the convergence rate to-
wards the analytic solution for different orders of the scheme. Ad-
ditionally, we investigate the precision of the FV and DG schemes
as a function of computational cost.

An elementary test for measuring the convergence of a hydro-
dynamical scheme is the simulation of one-dimensional traveling
waves at different resolutions (e.g. Stone et al. 2008). However, the
DG scheme performs so well in this test, especially at higher or-
der, that the accuracy is very quickly limited by machine precision,
making the traveling sound wave test impractical for convergence
studies of our DG implementation. We hence use a more demand-
ing setup, the stationary and isentropic vortex in two dimensions
(Yee et al. 1999). The primitive variables density, pressure, and ve-
locities in the initial conditions are

p(r) = ργ,

ρ(r) =

[
1 −

(γ − 1)β2

8γπ2 exp(1 − r2)
] 1
γ−1

,

vx(r) = −(y − y0)
β

2π
exp

(
1 − r2

2

)
,

vy(r) = (x − x0)
β

2π
exp

(
1 − r2

2

)
,

with β = 5, and the adiabatic index γ = 7/5. With this choice for
the primitive variables, the centrifugal force at each point is exactly
balanced by the pressure gradient pointing towards the centre of the
vortex, yielding a time invariant situation.

The vortex is smooth and stationary, and every change during
the time integration with our numerical schemes can be attributed
mainly on numerical truncation errors. In order to break the spher-
ical symmetry of the initial conditions, we additionally add a mild
velocity boost of vb = (1, 1) everywhere. The simulation is carried
out in the periodic domain (x, y) ∈ [0, 10]2 with the centre of the
vortex at (x0, y0) = (5, 5) and run until t = 10, corresponding to
one box crossing of the vortex. We compare the obtained numeri-
cal solution with the analytic solution, which is given by the initial
conditions. The error is measured by means of the L1 density norm,
which we define for the FV method as

L1 =
1
N

∑
i

|ρ′i − ρ
0
i |, (59)

where N is the total number of cells, and ρ′i and ρ0
i denote the den-
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Figure 5. Left panel: L1 error norm as a function of linear resolution for the two-dimensional isentropic vortex test. Each data point corresponds to a
simulation, different colours indicate the different methods. We find a convergence rate as expected (dashed line) or slightly better for all schemes, indicating
the correctness of our DG implementation. Right panel: L1 error norm versus the measured run time of the simulations. The second order FV implementation
and the second order DG (DG-2) realisation are approximately equally efficient in this test, i.e. a given precision can be obtained with a similar computational
cost. In comparison, the higher order methods can easily be faster by more than an order of magnitude for this smooth problem. This illustrates the fact that an
increase of order (p-refinement) of the numerical scheme can be remarkably more efficient than a simple increase of grid resolution (h-refinement).

sity in cell i in the final state and in the initial conditions, respec-
tively. This norm should be preferred over the L2 norm, since it is
more restrictive.

For DG the error is inferred by calculating the integral

L1 =
1
V

∫
V
|ρ′(x, y) − ρ0(x, y)| dV, (60)

with the density solution polynomial ρ′(x, y) and the analytic ex-
pression ρ0(x, y) of the initial conditions. We compute the integral
numerically with accuracy of order p + 2, where p is the order of
the DG scheme. In this way, we assert that the error measurement
can not be dominated by errors in the numerical integration of the
error norm.

The result of our convergence study is shown in the left panel
of Figure 5. For every method we run the simulation with several
resolutions, indicated by different symbols. The L1 errors decrease
with resolution and meet the expected convergence rates given by
the dashed lines, pointing towards the correct implementation of
our DG scheme. At a given resolution, the second order DG code
achieves a higher precision compared to the second order FV code,
reflecting the larger number of flux calculations involved in DG.
The convergence rates are equal, however, as expected. The higher
order DG formulations show much smaller errors, which also drop
more rapidly with increasing resolution.

In the right panel of Fig. 5, we show the same plot but substi-
tute the linear resolution on the horizontal axis with the measured
run time, which directly indicates the computational cost.1 By do-
ing so we try to shed light on the question of the relative speed of

1 The simulations were performed with four MPI-tasks on a conventional
desktop machine, shown is the wall-clock time in seconds. A similar trend

the methods (or computational cost required) for a given precision.
Or alternatively, this also shows the precision attained as a function
of the computational cost.

For the following discussion, we want to remark that the isen-
tropic vortex is a smooth 2D test problem; slightly different con-
clusions may well hold for problems involving shocks or contact
discontinuities, as well as for 3D tests. The finite volume method
consumes less time than the DG-2 method when runs with equal
resolution are compared. On the other hand, the error of the DG-2
scheme is smaller. As Fig. 5 shows, when both methods are quanti-
tatively compared at equal precision, the computational cost is es-
sentially the same, hence the overall efficiency of the two second-
order schemes is very similar for this test problem. Interestingly,
the 642 cells FV run (yellow triangle) and the 322 cells DG-2 simu-
lation (green square) give an equally good result at almost identical
runtime.

However, the higher order schemes (DG-3, DG-4) show a sig-
nificant improvement over the second order methods in terms of
efficiency, i.e. a prescribed target accuracy can be reached much
faster by them. In particular, the third order DG scheme performs
clearly favourably over the second order scheme. The fourth order
DG method uses the SSP RK-4 time integrator, which has already
5 stages, in contrast to the time integrators of the lower order meth-
ods, which have the optimal number of p stages for order p. More-
over, the timestep for the higher order methods is smaller, accord-

could also be observed for larger parallel environments; while DG is a
higher order scheme, due to its discontinuous nature the amount of re-
quired communication is comparable to that of a traditional second-order
FV method.
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Figure 6. Left panels: Sod shock tube problem calculated with third order DG and different limiting approaches. We show the full polynomial DG solutions
of the density, where the different colours correspond to different cells. The best result is achieved when the limiting is carried out based on the characteristic
variables. As desired, the numerical solution is discontinuous and of low order at the shock. If the conserved variables are limited instead, the obtained solution
is much less accurate, including numerical oscillations. The bottom left panel shows the result without a slope limiter. The solution is of third order in every
cell (parabolas) leading to an under- and overshooting at the shock as well as spurious oscillations. Right panels: Comparison of the mean cell values with the
analytic solution for the characteristic variables limiter. Advection errors wash out the solution at the contact rapidly, until it can be represented smoothly by
polynomials. Overall, we find a very good general agreement with the analytic solution, especially at the position of the shock.
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ing to equation (24) it is proportional to 1/(2p − 1). Nevertheless,
DG-4 is the most efficient method for this test. Consequently, for
improving the calculation efficiency in smooth regions, the increase
of the order of the scheme (p-refinement) should be preferred over
the refinement of the underlying grid (h-refinement).

For FV methods this principle is cumbersome to achieve from
a programming point of view, because for every order a different
reconstruction scheme has to be implemented, and moreover, there
are no well established standard approaches for implementing ar-
bitrarily higher order FV methods. Higher order DG methods on
the other hand can be implemented straightforwardly and in a uni-
fied way. If the implementation is kept general, changing the or-
der of the scheme merely consists of changing a simple parameter.
In principle, it is also possible to do the p-refinement on-the-fly.
In this way, identified smooth regions can be integrated with large
cells and high order, whereas regions close to shocks and other dis-
continuities can be resolved with many cells and a lower order in-
tegration scheme.

5.2 Shock tube

Due to the non-linearity of the Euler equations, the characteristic
wave speeds of the solution depend on the solution itself. This
dependency and the fact that the Euler equations do not diffuse
momentum can lead to an inevitable wave steepening, ultimately
producing wave breaking and the formation of mathematical dis-
continuities from initially smooth states (Toro 2009, and references
herein). Such hydrodynamic shocks are omnipresent in many hy-
drodynamical simulations, particularly in astrophysics. The proper
treatment of these shocks is hence a crucial component of any nu-
merical scheme for obtaining accurate hydrodynamical solutions.

In a standard finite volume method based on the RSA ap-
proach, the solution is averaged within every cell at the end of each
timestep. The solution is then represented through piece-wise con-
stant states that can have arbitrarily large jumps at interfaces, conse-
quently allowing shocks to be captured by construction. Similarly,
the numerical solution in a DG scheme is discontinuous across cell
interfaces, allowing for an accurate representation of hydrodynamic
shocks. We demonstrate the shock-capturing abilities of our code
with a classical Sod shock tube problem (Sod 1978) in the two-
dimensional domain (x, y) ∈ [0, 1]2 with 642 cells. The initial con-
ditions consist of a constant state on the left, ρl = 1, pl = 1, and
a constant state on the right, ρr = 0.125, pr = 0.1, separated by a
discontinuity at x = 0.5. The velocity is initially zero everywhere,
and the adiabatic index is chosen to be γ = 7/5.

In Figure 6 we show the numerical and analytic solution at
tend = 0.228 for third order DG (DG-3), and for different limit-
ing strategies. Several problems are apparent when a true discon-
tinuity is approximated with higher order functions, i.e. the rapid
convergence of the approximation at the jump is lost, the accuracy
around the discontinuity is reduced, and spurious oscillations are
introduced (Gibbs phenomenon, see for example Arfken & Weber
2013). In the bottom left panel of Fig. 6, we can clearly observe
oscillations at both discontinuities, the contact and the shock. Here
the result is obtained without any slope limiter, merely the posi-
tivity limiter slightly adjusts higher order terms such that negative
density and pressure values in the calculation are avoided. Never-
theless, the obtained solution is accurate at large and has even the
smallest L1 error of the three approaches tested.

The oscillations can however be reduced by limiting the sec-
ond order terms of the solution, either expressed in the charac-
teristic variables (upper left panel), or in the conserved variables

(middle left panel). Strikingly, the numerical solution has a consid-
erably higher quality when the characteristic variables are limited
instead of the conserved ones, even though in both tests the same
slope limiting parameters are used (β = 1, M̃ = 0.5). The for-
mer gives an overall satisfying result with a discontinuous solution
across the shock, as desired. The contact discontinuity is less sharp
and smeared out over ∼5 cells. This effect arises from advection
errors inherent to grid codes and can hardly be avoided. Neverthe-
less, the DG scheme produces less smearing compared to a finite
volume method once the solution is smooth, see also Section 5.4.
Hence the higher order polynomials improve the sharpness of the
contact. In the right panels of Fig. 6, we compare the mean den-
sity, pressure, and velocity values of the numerical solution calcu-
lated with the characteristic limiter with the analytic solutions, and
find good agreement. Especially the shock is fitted very well by the
mean values of the computed polynomials. To summarise, limiting
of the characteristic variables is favourable over the limiting of the
conserved variables. With the former our DG code produces good
results in the shock tube test thanks to its higher order nature, which
clearly is an advantage also in this discontinuous problem.

5.3 Sedov-Taylor blast wave

The previous test involved a relatively weak shock. We now con-
front our DG implementation with a strong spherical blast wave by
injecting a large amount of thermal energy E into a point-like re-
gion of uniform and ultra cold gas of density ρ. The well-known
analytic solution of this problem is self-similar and the radial po-
sition of the shock front as a function of time is given by R(t) =

R0(Et2/ρ)1/5 (see for example Padmanabhan 2000). The coefficient
R0 depends on the geometry (1D, 2D, or 3D) and the adiabatic in-
dex γ, it can be obtained by numerically integrating the total energy
inside the shock sphere. Under the assumption of a negligible back-
ground pressure the shock has a formally infinite Mach number
with the maximum density compression ρmax/ρ = (γ + 1)/(γ − 1).

Numerically, we set up this test with 643 cells in a three-
dimensional box (x, y, z) ∈ [0, 1]3 containing uniform gas with
ρ = 1, p = 10−6, and γ = 5/3. The gas is initially at rest and the
thermal Energy E = 1 is injected into the 8 central cells. Figure 7
shows numerical solutions obtained with FV as well as with second
and third order DG at t = 0.05. The density slices in the top panels
indicate very similar results, only the logarithmic colour-coding re-
veals small differences between the methods in this test. Unlike La-
grangian particle codes, Cartesian grid codes have preferred coor-
dinate directions leading to asymmetries in the Sedov-Taylor blast
wave problem, especially in the inner low density region. FV pro-
duces a characteristic cross in the center. In DG the asymmetries
are a bit weaker, but traces of the initial geometry of energy injec-
tion are clearly visible as well. These effects can be minimised by
distributing the injected energy across more cells, but they cannot
be avoided in our grid codes for a point-like injection.

In the bottom panels of Fig. 7 we compare the numerical re-
sults to the analytic solution obtained with a code provided by
Kamm & Timmes (2007), in particular we have R0 ≈ 1.152 for
γ = 5/3 in 3D. Due to the finite and fixed resolution of our grid
codes, the numerical solutions do not fully reach the analytic peak
compression of ρmax = 4. More importantly, the DG method does
not provide a visible improvement in this particular test, and fur-
thermore, the results obtained with second order DG and third or-
der DG are very similar. The reason behind these observations is
the aggressive slope limiting due to the strong shock, suppressing
the higher order polynomials in favour of avoiding over- and un-
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Figure 7. Three-dimensional Sedov-Taylor shock wave simulations at t = 0.05 calculated on a 643 cells grid with FV as well as with second and third
order DG. The panels on top display central density slices (z = 0) on a logarithmic scale. In this test, Cartesian grid codes deviate noticeably from spherical
symmetry in the central low density region, and the shape of this asymmetry depends on details of the different methods. In the bottom panels, we compare the
numerical results with the analytic solution. For each method we plot the mean density of about every 200-th cell, and for DG also the solution polynomials in
the diagonal direction along the coordinates from (0.5, 0.5, 0.5) to (1, 1, 1). The obtained results are very similar in all three methods considered here, and DG
does not give a significant improvement over FV for this test.

dershootings of the solution. We note that a better result could of
course be achieved by refining the grid at the density jump and
thereby increasing the effective resolution. However, arguably the
most important outcome of this test is that the DG scheme copes
with an arbitrarily strong shock at least as well as a standard FV
scheme, which is reassuring given that DG’s primary strength lies
in the representation of smooth parts of the solution.

5.4 Square advection

SPH, moving mesh and mesh-free approaches can be implemented
such that the resulting numerical scheme is manifestly Galilean in-
variant, implying that the accuracy of the numerical solution does
not degrade if a boost velocity is added to the initial conditions. On
the other hand, numerical methods on stationary grids are in general
not manifestly Galilean-invariant. Instead, they produce additional
advection errors when a bulk velocity is added, which have the po-
tential to significantly alter, e.g., the development of fluid instabili-
ties (Springel 2010). While the numerical solution is still expected
to converge towards the reference solution with increasing resolu-
tion in this case (Robertson et al. 2010), this comes at the price of a
higher computational cost in the form of a (substantial) increase of

the number of cells and an accompanying reduction of the timestep
size.

We test the behaviour of the DG method when confronted with
high advection velocities by simulating the supersonic motion of
a square-shaped overdensity in hydrostatic equilibrium (following
Hopkins 2014). For the initial conditions we choose a γ = 7/5 fluid
with ρ = 1, p = 2.5, vx = 100, and vy = 50 everywhere, except
for a squared region in the centre of the two-dimensional periodic
box, (x, y) ∈ [0, 1]2 with side lengths of 0.5, where the density is
ρs = 4. The test is run with a resolution of 642 cells until t = 10,
corresponding to 1000 transitions of the square in x-direction and
500 in the y-direction.

In Figure 8 we visually compare the results obtained with sec-
ond order DG, third order DG, and the finite volume scheme. Al-
ready at t = 1, the finite volume method has distorted the square to
a round and asymmetric shape, and at t = 10, the numerical solu-
tion is completely smeared out2. In comparison, DG shows fewer

2 In our finite volume method the overdensity moves slightly faster in the
direction of advection and is clearly not centered any more at t = 10. We
have investigated this additional error and find that its occurrence depends
on the choice of the slope limiter. Either way, the solution is completely
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Figure 8. Density maps and centred slices for the advection test with 642 cells: a fluid with a square-shaped overdensity in hydrostatic equilibrium is advected
supersonically, crossing the periodic box several hundred times. The second order finite volume method (FV) shows large advection errors in this test and the
square is smeared out completely by t = 10. On the other hand, the advection errors in the DG method become small once the solution is smooth. Third order
DG (DG-3) shows less diffusion than second order (DG-2) due to the higher order representation of the advected shape. The time evolution of the density
errors for the three simulations is shown in Fig. 9.

advection errors and a better approximation of the initial shape can
be sustained for a longer time. Especially the run with third order
accuracy produces a satisfying result. Note that due to the high ad-
vection speed the CFL timestep is very small, leading to around 1.7
and 3.3 million timesteps at t = 10 with DG-2 and DG-3, respec-
tively.

washed out and the finite volume method does not provide a satisfying result
in this test.

In the bottom panels of Fig. 8 we show one-dimensional
slices of the density solution polynomials from (x, y) = (0, 0.5) to
(x, y) = (1, 0.5), and in grey the initial conditions as reference. With
second order DG, an immediate over- and undershooting at the dis-
continuity can be observed owing to the adopted non-TVD slope
limiter (β = 1, M̃ = 0.5). More interestingly, while in the finite
volume method the solution is only washed out by diffusion, for
second order DG it is also steepened, which leads to a higher max-
imum density at t = 10 than present in the initial conditions. This
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Figure 9. Time evolution of the L1 density error norm for the square ad-
vection test. The gray lines indicate the initial slopes of error growth, and
the encircled data points correspond to the plots shown in Fig. 8. Interest-
ingly, second order finite volume (FV) and second order DG (DG-2) have
the same polynomial growth, though the absolute error is smaller by a fac-
tor of ≈ 1.5 for DG. On the other hand, the third order DG method (DG-3)
does not only decrease the absolute error in this test, but the error growth
rate is also significantly smaller.

difference arises from the updating of the slopes in DG instead of
reconstructing them, and moreover, it vanishes if we use TVD lim-
iter parameters. With the latter the slopes are reduced aggressively,
resulting in pure diffusion with a result similar to the finite volume
method.

We quantify the quality of each scheme in this test by mea-
suring the time evolution of the L1 density error norm, the result
of which is presented in Figure 9. The second order finite volume
and second order DG codes show the same initial polynomial er-
ror growth, ∝ t0.28, however, the absolute error is much smaller
for DG, i.e. the finite volume error at t = 1 is reached with DG-2
only at a much later time, at t = 10. With the third order DG code
(quadratic basis functions), the error grows only as ∝ t0.12, leading
to an acceptably small error even until t = 70, which corresponds
to 23 million timesteps. Also with this higher order approximation
the solution is transformed to a smooth numerical solution, but the
mean cell values are less modified compared to the second order
code with linear basis functions.

As demonstrated above, DG produces far smaller advection
errors compared to a finite volume method. But how can this be
understood, especially since the DG scheme is also not Galilean
invariant? A powerful tool for studying the behaviour of discreti-
sations in computational fluid dynamics is the modified equation
analysis. Here, the discrete equations are expanded by means of a
Taylor series, leading to a so-called modified equation which in-
cludes the target equation to solve and additional terms. For exam-
ple, the modified equation of the first order upwind method for the
scalar advection equation is an advection-diffusion equation (LeV-
eque 2002). The scheme solves the advection equation to first or-
der by construction, but at the same time it effectively solves this
advection-diffusion equation to second order accuracy, explaining

the large diffusion errors when adopting this simple scheme, and
pointing towards an explanation for the observed diffusion in our
second order finite volume method. Such an analysis proves to be
more difficult for DG, nevertheless Moura et al. (2014) recently ac-
complished a modified equation analysis for the second order DG
scheme applied to the linear advection equation. In this case, the
modified equation consists of a physical mode and an unphysical
mode moving at the wrong speed, which is however damped very
quickly. For upwinded fluxes the leading error term of the physical
mode is diffusive and of third order, which is better than naively ex-
pected for a second order method, and this is likely one of the keys
for the improved behavior of DG we find. A heuristic argument for
the superiority of DG in this test is that after an initial smoothing
of the global numerical solution, it is not only continuous inside
every cell but also at the cell interfaces. If the solution is perfectly
continuous across cell interfaces, the left and right state entering
the Riemann solver are identical, and the calculated flux is always
related by a simple Galilei boost to the flux calculated in any other
frame of reference. In this case no manifest differences in the con-
served quantities in a cell due to the flux calculation of the surface
integral (20) can arise under a Galilei transformation, implying that
advection errors must be minimal. Nevertheless, some small aver-
aging errors will arise in practice if the current profile can not be
represented exactly at an arbitrary grid position with the given set
of cell basis functions.

5.5 Keplerian Disc

Rotating gas discs are omnipresent in our Universe, for example
in galaxies, accretion discs around black holes, or protostellar and
protoplanetary discs. Numerically, such objects are ideally mod-
elled either with a Lagrangian method, or with a grid code which
operates with a suitably tailored mesh geometry and furthermore
accounts for part of the angular rotation in the solver (Masset 2000).
If a simulation contains however several rotating objects at different
locations and with different orientations, as for example is the case
in cosmological galaxy formation simulations, no preferable grid
geometry exists. In this case, Cartesian grids are often adopted, op-
tionally with adaptive mesh refinement, making it much more chal-
lenging to avoid spurious errors in differentially rotating gas flows.

These problems can be exposed by the demanding problem
of a cold Keplerian disc, where real pressure forces are negligibly
small and any spurious hydrodynamic forces from numerical errors
result in readily visible perturbations of the system. We subject our
DG code to this test following a similar setup as recently used in
other works (Hopkins 2014; Pakmor et al. 2015). The ambient gas
of the disc has negligible density and pressure, and is initially con-
fined to lie between two radii. Every fluid element of the disc is
rotating on a Keplerian orbit where the centrifugal forces are bal-
anced by an external and static central gravitational potential. Gas
self-gravity is not included. Analytically, the system is in perfect
equilibrium and the initial state should not change in time. The dif-
ficulty for hydro codes applied to this test lies in the lack of pressure
support, as well as the differential rotation which leads to shearing
flows. Both can trigger numerical instabilities and the eventual dis-
ruption of the disk. In particular, it is clear that for codes which do
not conserve angular momentum exactly, this point will inevitably
be reached eventually. In SPH codes, angular momentum is con-
served but angular momentum transport is caused by the use of ar-
tificial viscosity, which typically is active at a small level in strong
shear flows. Using an improved switch for the viscosity, however,
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Figure 10. Density evolution in the cold Keplerian disc problem. The cen-
trifugal force acting on the rotating disc is balanced by an external static
central potential such that every fluid element is on a Keplerian orbit. This
test is very challenging for Cartesian grid codes, as shear flows without pres-
sure support are prone to numerical instabilities. Our finite volume method
is stable for around 10 orbits, at which point the disc gets disrupted eventu-
ally. In contrast, without a slope limiter DG conserves angular momentum
accurately and can handle this problem very well.

the Keplerian disc problem can be integrated accurately (Cullen &
Dehnen 2010).

For definiteness, the initial conditions we use for our DG test
are as follows. We use the computational domain (x, y) ∈ [0, 6]2

with periodic boundaries, and gas with an adiabatic index of γ =

5/3. The primitive variables are initially set to

p = p0,

ρ(r′) =



ρ0 if r′ < 0.5 − ∆r
2

ρD−ρ0
∆r (r′ − (0.5 − ∆r

2 )) + ρ0 if 0.5 − ∆r
2 ≤ r′ < 0.5 + ∆r

2

ρD if 0.5 + ∆r
2 ≤ r′ < 2 − ∆r

2
ρ0−ρD

∆r (r′ − (2 − ∆r
2 )) + ρD if 2 − ∆r

2 ≤ r′ < 2 + ∆r
2

ρ0 if r′ ≥ 2 + ∆r
2 ,

vx(x′, y′) =

−y′/r′3/2 if 0.5 − 2∆r < r′ < 2 + 2∆r
0 else,

vy(x′, y′) =

x′/r′3/2 if 0.5 − 2∆r < r′ < 2 + 2∆r
0 else,

where the coordinates x′, y′, and r′ are measured in a coordinate
system with the origin at the centre (x0, y0) = (3, 3) of the box. The
values used for the background gas are p0 = 10−5 and ρ0 = 10−5.
The disc has a density of ρD = 1 and a radial extent of [rmin =

0.5, rmax = 2], with a small transition region of width ∆r = 0.1. We
adopt a time independent external acceleration a = −∇Φ with the
components

ax(x′, y′) =

−x′/r′3 if 0.5 − 0.5∆r < r′

−x′/[r′(r′2 + ε2)] else,

ay(x′, y′) =

−y′/r′3 if 0.5 − 0.5∆r < r′

−y′/[r′(r′2 + ε2)] else,

where ε = 0.25 smoothes the potential in the very inner regions in
order to avoid a singularity there. The orbital period of the Keple-
rian disk depends on the radius and is given by T = 2πr3/2.

We evolve the system until t = 120, corresponding to around
20 orbits at r = 1, and present the results in Figure 10. When the FV
method is used, the edges of the disc are washed out immediately
but the disc is stable for around 10 orbits. Like the majority of FV
methods in use, our scheme does not manifestly preserve angular
momentum, resulting in secular integration errors and an eventual
breakdown of the quasi-static solution. The number of orbits the
disc survives depends mainly on how carefully the problem has
been set up, as well as on the choice of slope limiter and resolution
used. However, the disruption of the disc is inevitable and can only
be delayed with adjustments of these parameters.

On the other hand, DG schemes of second order and higher
are inherently angular momentum conserving and can hence po-
tentially handle this test problem much more accurately. To test for
this, we have disabled the slope limiter of the DG scheme and use
only the positivity limiter. This is because with our simple minmod
limiter, angular momentum conservation is also violated and would
result in a similar disruption as observed with FV. The construction
of an improved angular momentum preserving limiting scheme is
hence desirable and worthwhile subject for future work. With the
positivity limiter alone, the second order DG scheme can integrate
the disc stably and gives good results at t = 120, corresponding
to about 20 orbits at r = 1. Merely two fine rings with a slightly
higher density can be observed in the inner and outer regions of
the disc, which can be attributed to the gentle overshooting of the
solution at the rims of the disc. We have also carried out this simu-
lation with the third order DG code. In this case, the disc also does
not break down, but the solution shows some mild oscillations with
amplitude up to 20 percent of the initial density; without applying
a limiter these cannot be suppressed.
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0.8 1.2 1.7 2.1ρ

Figure 11. High-resolution Kelvin-Helmholtz simulation with fourth order DG and adaptive mesh refinement at time t = 0.8. The simulation starts with 642

cells (level 6) and refines down to level 12, corresponding to an effective resolution of 40962. We illustrate the AMR levels in Fig. 12. The mesh refinement
approach renders it possible to resolve fractal structures created by secondary billows on top of the large-scale waves. Furthermore, as can be seen in the
bottom panel, the solution within every cell contains rich information, consisting of a third order polynomial. A movie of the simulation until t = 2 may be
accessed online: http://youtu.be/cTRQP6DSaqA
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6 7 8 9 10 11 12

AMR level

Figure 12. Map of the AMR levels of the Kelvin-Helmholtz simulation at
t = 0.8. We here refine in space where the density gradient is steep, allow-
ing us to capture interesting regions with high resolution and save compu-
tational time in places where the solution is smooth.

5.6 Kelvin-Helmholtz instability

The Kelvin-Helmholtz (KH) instability is one of the most important
fluid instabilities in astrophysics, for example, it plays an important
role in the stripping of gas from galaxies falling into a galaxy clus-
ter. The instability is triggered by shear flows, often also involv-
ing fluids with different densities, and grows exponentially until
the primary billows break, subsequently leading to a turbulent mix-
ing of the two phases. The KH instability can be investigated with
initial conditions consisting either of a sharp surface between two
phases, or with a transition region separating the layers smoothly.
Analytic growth rates for the linear regime can be derived for both
cases (Chandrasekhar 1961; Hendrix & Keppens 2014), however
the thickness of a smooth transition layer sets a limit on the mini-
mum wave length which can become unstable in the linear phase.
This suppression is desired if one wants to compare growth rates
inferred from simulations with the analytic growth rate (McNally
et al. 2012), since the underlying mesh can trigger the instability of
waves at the resolution scale due to noise, a numerical effect which
does not vanish with increasing resolution. Nevertheless, we set up
a sharp discontinuity and use the Kelvin-Helmholtz instability as a
high-resolution test for the robustness of our AMR implementation
and DG’s capabilities of capturing small-scale turbulent structures.

The initial conditions are chosen as in Springel (2010), in the
periodic box (x, y) ∈ [0, 1]2 the primitive variables at t = 0 are set
to

p = 2.5,

ρ(x, y) =

2 if 0.25 < y < 0.75
1 else,

vx(x, y) =

0.5 if 0.25 < y < 0.75
−0.5 else,

vy(x, y) = w0 sin(4πx)
{

exp
[
−

(y − 0.25)2

2σ2

]
+ exp

[
−

(y − 0.75)2

2σ2

]}
,

with w0 = 0.1, σ = 0.05/
√

2, and the adiabatic index γ = 7/5. The
velocity perturbation in the y−direction supports the development
of a specific single mode on large-scales. We start with an initial
resolution of 642 cells (level 6) and refine where the density slope
is steep, as described in 4.1. The maximum refinement level is set to
12, corresponding to an effective resolution of 40962 cells. A sharp
discontinuity between the two layers in combination with AMR
leads to a fast transition into the non-linear regime and generates
secondary billows early on.

We illustrate the state of the simulation at t = 0.8 in Figure 11.
The panel on the top left shows the density for the whole two-
dimensional simulation box, in the following panels we zoom in
repeatedly. The DG scheme shows only little diffusion and mix-
ing thanks to the higher order and the avoidance of reconstruc-
tion steps, allowing the formation of very fine structures. Smaller
Kelvin-Helmholtz instabilities arise on top of the large-scale waves
demonstrating the fractal nature of this test problem. Self-similar
instabilities are present across different scales, and an ending of
this pattern is only set by the limited resolution.

The adaptive mesh used by the calculation is overlaid in the
bottom right panel, revealing 3 different AMR levels in this subbox.
The density gradients are well resolved with the finest AMR level
(level 12), whereas smooth regions are on smaller levels. Further-
more, technical features of the AMR mesh structure can be seen
in the plot: the level difference between neighbouring cells is at
most one, and the mesh smoothing algorithm introduces an addi-
tional cell layer around physically refined cells. Figure 12 shows
a map of the AMR levels of the whole simulation box at t = 0.8,
which can be directly compared to the top left panel of Fig. 11.
The number of cells at the displayed instance is around 1.8 million
cells, which corresponds to about 10 percent of the effective level
12 resolution 40962, highlighting the efficiency gain possible with
the AMR approach. Ideally, we would also like to use a correspond-
ing adaptiveness in time by utilizing local timesteps, something that
is planned as a code extension in future work.

6 SUMMARY

In this work, we have developed a 3D MPI-parallel higher order
DG code with AMR for solving the Euler equations, called TENET,
and investigated its performance in several astrophysically relevant
hydrodynamic test problems. DG methods are comparatively new
in astrophysics, despite a vast body of literature and long history of
these approaches in the applied mathematics community. A number
of highly attractive features of DG however suggest that it is timely
to introduce these methods as standard tools in computational astro-
physics. In particular, DG allows higher order to be reached with-
out introducing communication beyond the immediate neighbor-
ing cells, making it particularly well suited for parallel computing.
Also, the method is characterized by a higher compute to memory
access ratio, making it a better match for modern computer archi-
tectures, where floating point operations are “almost free” in com-
parison to slow and costly memory access. In addition, DG allows
an easy and flexible way to reach arbitrarily higher order, quite un-
like FV schemes. This makes it possible to also vary the order of
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a scheme in space, providing for additional flexibility in AMR ap-
proaches.

Our tests furthermore clearly show that it is computationally
worthwhile to employ higher-order methods. While in general it
depends on the problem which order is optimal, we have found in
our tests that third and fourth order DG implementations are typ-
ically computationally much more efficient compared with a sec-
ond order code, at least in regions where the solution is reasonably
smooth. Moreover, the numerical result is of higher quality also in
non-smooth regions, especially shocks are represented very well,
thanks to the discontinuous nature of the DG representation. These
discontinuities are captured within at most 2-3 cells, and spurious
oscillations in the pre- and postshock regions can be prevented ef-
fectively by limiting the slopes and discarding higher order terms
of the solution when appropriate.

The fundamental difference between DG and FV is that DG
solves directly also for higher order moments of the solution,
whereas in FV all higher order information is discarded in the im-
plicit averaging at the end of each timestep, necessitating a subse-
quent reconstruction. This aspect of DG leads directly to two ma-
jor advantages over traditional FV methods. Firstly, DG produces
significantly less advection errors, and furthermore, if the solution
is smooth across cell interfaces the numerical solution does not
depend on the chosen Riemann solver. Secondly, DG inherently
conserves not only mass, momentum and energy, but also angular
momentum. The conservation of angular momentum is very desir-
able for many astrophysical applications, e.g. simulations involving
discs, or objects like stars or molecular clouds in rotation. There is
however one caveat which has to be kept in mind. The conservation
can be spoiled by the limiting procedure, which is reminiscent of
the situation in SPH, where angular momentum is spuriously trans-
ported by artificial viscosity. Improving the limiter with the goal
of global angular momentum conservation is hence desirable and a
promising direction for future improvements of the DG implemen-
tation. Finally, DG can also be comparatively easily generalised to
the AMR technique, and importantly, this can be done without loss
of accuracy, unlike in standard FV approaches. The higher order is
formally preserved due to the usage of ‘hanging nodes’, which are
the quadrature points of interfaces between cells of different sizes.

The present work has focussed on introducing our new code
and highlighting its differences relative to FV schemes. Future
developments will focus on developing more sophisticated limit-
ing schemes (e.g., Sonntag & Munz 2014), scaling improvements
through Open-MP hybrid parallelisation, as well as on incorporating
magnetic fields and astrophysical source terms relevant in galaxy
formation. The latter is greatly facilitated by the modular structure
of TENET and its parent code AREPO. In a first science application
of our DG code, we quantitatively analyse its capabilities of captur-
ing driven turbulence structures (Bauer et al. 2015, in preparation).
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APPENDIX A: LEGENDRE POLYNOMIALS

We use Legendre Polynomials as basis functions for our discontin-
uous Galerkin scheme. They can be calculated by solving Legen-
dre’s differential equation:

d
dξ

[
(1 − ξ2)

d
dξ

Pn(ξ)
]

+ n(n + 1)Pn(ξ) = 0, n ∈ N0. (A1)

The first Legendre Polynomials are

P0(ξ) = 1

P2(ξ) =
1
2

(3ξ2 − 1)

P4(ξ) =
1
8

(35ξ4 − 30ξ2 + 3)

P1(ξ) = ξ

P3(ξ) =
1
2

(5ξ3 − 3ξ)

P5(ξ) =
1
8

(63ξ5 − 70ξ3 + 15ξ).

(A2)

They are pairwise orthogonal to each other, and moreover, we de-
fine the scaled polynomials

P̃(ξ)n =
√

2n + 1P(ξ)n (A3)

such that∫ 1

−1
P̃i(ξ)P̃ j(ξ) dξ =

0 if i , j
2 if i = j.

(A4)

APPENDIX B: GAUSS-LEGENDRE QUADRATURE

The numerical integration of a function f : [−1,+1] → R with the
Gaussian quadrature rule of n points is given by a weighted sum,∫ +1

−1
f (ξ) dξ ≈

n∑
q=1

f (ξ1D
q )ω1D

q . (B1)

Here, ξ1D
q ∈ (−1,+1) are the Gaussian quadrature nodes and ω1D

q
are the corresponding weights. To integrate a 2D function f :
[−1,+1]2 → R the tensor product of the n Gauss points can be
used, viz.∫ +1

−1

∫ +1

−1
f (ξ1, ξ2) dξ1dξ2

≈

n∑
q=1

n∑
r=1

f (ξ1D
1,q, ξ

1D
2,r )ω1D

q ω1D
r =

n2∑
q=1

f (ξ2D
q )ω2D

q . (B2)

The n-point Gaussian quadrature rule is exact for polynomials of
degree up to 2n−1, and the one-dimensional nodes are given as the
roots of the Legendre polynomial Pn(ξ). We calculate them numer-
ically by means of the Newton-Raphson method. As starting values
of the iterative root finding approximate expressions for the roots
can be used (see for example Lether & Wenston 1995),

ξq ≈

(
1 −

1
8n2 +

1
8n3

)
cos

(
π

4q − 1
4n + 2

)
, q = 1, . . . , n. (B3)

c1
c2 a21
c3 a31 a32
.
.
.

.

.

.
.
.
.

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table D1. Runge-Kutta butcher tableau.

0
1 1

1
2

1
2

Table D2. SSP-RK2.

0
1 1
1
2

1
4

1
4

1
6

1
6

2
3

Table D3. SSP-RK3.

Furthermore, the corresponding weights can be calculated as
(Abramowitz & Stegun 2012)

ωq =
2

(1 − ξ2
q)P′n(ξq)2 , q = 1, . . . , n. (B4)

With this approach, we can compute and store the necessary
quadrature data in the initialisation routine of our DG code for ar-
bitrary spatial order.

APPENDIX C: GAUSS-LEGENDRE-LOBATTO
QUADRATURE

Compared with Gaussian quadrature, the GLL quadrature rule is
very similar but includes also the endpoints of the integration inter-
val. Therefore, the n-point GLL rule is exact for polynomials of de-
gree 2n−3. The nodes are the roots ξ̂q of the function (1−ξ2)P′n−1(ξ),
and the corresponding weights are given by (Abramowitz & Stegun
2012)

ω̂q =
2

n(n − 1)Pn−1(ξ̂q)2
, q = 2, . . . , n − 1. (C1)

The weights of the endpoints are equal, ω̂1 = ω̂n, and the sum of
the weights is

∑n
q=1 ω̂q = 2.

APPENDIX D: STRONG STABILITY PRESERVING
RUNGE-KUTTA METHODS

Let w(t) be the unknown scalar solution of the ordinary differential
equation

dw
dt

+ R(t,w) = 0. (D1)

The propagation of the numerical solution from timestep n to n + 1
with an s−stage explicit RK method can be written as

wn+1 = wn + ∆tn
s∑

i=1

biki. (D2)

The factors bi weight the sum over the solution derivatives ki, which
are evaluations of R(t,w), viz.

ki = −R(tn + ci∆tn,wn + ∆tn(ai1k1 + ai2k2 + . . . + ai,i−1ki−1)), (D3)

where the ci are nodes of the timestep interval. A RK scheme is
fully specified by the weights bi, the nodes ci, and the RK matrix
ai j, it can be represented in compact form by means of a Butcher
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0
0.39175222700392 0.39175222700392
0.58607968896779 0.21766909633821 0.36841059262959
0.47454236302687 0.08269208670950 0.13995850206999 0.25189177424738
0.93501063100924 0.06796628370320 0.11503469844438 0.20703489864929 0.54497475021237

0.14681187618661 0.24848290924556 0.10425883036650 0.27443890091960 0.22600748319395

Table D4. SSP-RK4.

tableau (Table D1). For our DG code we use strong stability pre-
serving RK methods, which are convex combinations of forward
Euler steps. In combination with a positivity preserving Riemann
solver and the positivity limiter outlined in Section 3.4 negative
pressure and density values can effectively be avoided in the hydro
scheme. For the second order DG code we use SSP RK2 Heun’s
method (D2), for our third order code the SSP RK3 from Table D3.
Theses methods are optimal in the sense that the number of stages is
equal to the order of the scheme. It can be proven that a fourth order
method with this feature does not exist (Gottlieb & Shu 1998), we
therefore adopt the 5-stage SSP RK 4 method tabulated in Table D4
(Spiteri & Ruuth 2002).

APPENDIX E: EIGENVECTORS OF THE EULER
EQUATIONS

The Eigenvalues of the flux Jacobian Matrix A1 =
∂ f1(u)
∂u are λi =

{v1 − c, v1, v1 + c, v1, v1}. The corresponding Eigenvectors are the
columns of the matrix

Rx =


1 1 1 0 0

v1 − c v1 v1 + c 0 0
v2 v2 v2 −1 0
v3 v3 v3 0 1

h − cv1 k h + cv1 −v2 v3

 , (E1)

with the specific kinetic energy k = 1
2 (v2

1 + v2
2 + v3

3) and the specific
stagnation enthalpy h = c2/(γ − 1) + k. The left eigenvectors of
A1 are the rows of the Matrix Lx = R−1

x . Lx is the linear transfor-
mation operator from the conserved to the characteristic variables,
c = Lxu, and can be calculated as

Lx =


β(φ + cv1) −β(γ1v1 + c) −βγ1v2 −βγ1v3 βγ1

1 − 2βφ 2βγ1v1 2βγ1v2 2βγ1v3 −2βγ1

β(φ − cv1) −β(γ1v1 − c) −βγ1v2 −βγ1v3 βγ1

v2 0 −1 0 0
−v3 0 0 1 0

 ,
(E2)

where the definitions γ1 = γ − 1, φ = γ1k, and β = 1/(2c2) have
been used. The eigenvector matrices for the flux Jacobians ∂ f2(u)

∂u

and ∂ f3(u)
∂u are

Ry =


1 1 1 0 0
v1 v1 v1 1 0

v2 − c v2 v2 + c 0 0
v3 v3 v3 0 −1

h − cv2 k h + cv2 v1 −v3

 , (E3)

Ly =


β(φ + cv2) −βγ1v1 −β(γ1v2 + c) −βγ1v3 βγ1

1 − 2βφ 2βγ1v1 2βγ1v2 2βγ1v3 −2βγ1

β(φ − cv2) −βγ1v1 −β(γ1v2 − c) −βγ1v3 βγ1

−v1 1 0 0 0
v3 0 0 −1 0

 ,
(E4)

and

Rz =


1 1 1 0 0
v1 v1 v1 −1 0
v2 v2 v2 0 1

v3 − c v3 v3 + c 0 0
h − cv3 k h + cv3 −v1 v2

 , (E5)

Lz =


β(φ + cv3) −βγ1v1 −βγ1v2 −β(γ1v3 + c) βγ1

1 − 2βφ 2βγ1v1 2βγ1v2 2βγ1v3 −2βγ1

β(φ − cv3) −βγ1v1 −βγ1v2 −β(γ1v3 − c) βγ1

v1 −1 0 0 0
−v2 0 1 0 0

 ,
(E6)

respectively.

APPENDIX F: REFINEMENT MATRICES

Below, we list the refinement matrices for merging the cells
A, B, . . . ,H into a coarser cell K = {ξ|ξ ∈ [−1, 1]3}. We calcu-
late the integrals by means of an exact numerical integration with
(k + 1)3 quadrature points before the main loop of our code.

Subcell A = {ξ|ξ ∈ [−1, 0] × [−1, 0] × [−1, 0]} :

(PA)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 − 1

2
,
ξ2 − 1

2
,
ξ3 − 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F1)

Subcell B = {ξ|ξ ∈ [0, 1] × [−1, 0] × [−1, 0]} :

(PB)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 + 1

2
,
ξ2 − 1

2
,
ξ3 − 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F2)

Subcell C = {ξ|ξ ∈ [−1, 0] × [0, 1] × [−1, 0]} :

(PC)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 − 1

2
,
ξ2 + 1

2
,
ξ3 − 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F3)

Subcell D = {ξ|ξ ∈ [0, 1] × [0, 1] × [−1, 0]} :

(PD)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 + 1

2
,
ξ2 + 1

2
,
ξ3 − 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F4)

Subcell E = {ξ|ξ ∈ [−1, 0] × [−1, 0] × [0, 1]} :

(PE)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 − 1

2
,
ξ2 − 1

2
,
ξ3 + 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F5)

Subcell F = {ξ|ξ ∈ [0, 1] × [−1, 0] × [0, 1]} :

(PF)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 + 1

2
,
ξ2 − 1

2
,
ξ3 + 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F6)
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Subcell G = {ξ|ξ ∈ [−1, 0] × [0, 1] × [0, 1]} :

(PG)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 − 1

2
,
ξ2 + 1

2
,
ξ3 + 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F7)

Subcell H = {ξ|ξ ∈ [0, 1] × [0, 1] × [0, 1]} :

(PH)l, j =
1
8

$
[−1,1]3

φl

(
ξ1 + 1

2
,
ξ2 + 1

2
,
ξ3 + 1

2

)
φ j(ξ1, ξ2, ξ3) dξ. (F8)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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