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High order schemes

(from Coco, Russo, Semplice, JSC 2016)
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Central WENO
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Finite volume methods

Consider a hyperbolic system of balance laws of the form

∂tu +∇x · f(u) = s(u).

To integrate the system, one covers the computational domain with N elements
Ωj , j = 1, . . . , N . Define the cell average of the unknown

uj = 1
|Ωj |

∫
Ωj

u dx.
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Finite volume methods

Integrating the PDEs on each element, one finds the evolution equation for the cell
averages as

duj
dt = − 1

|Ωj |

∫
∂Ωj

f · n ds+ 1
|Ωj |

∫
Ωj

s(u) dx.

Quadrature rules to approximate the line and volume integrals.
High order reconstruction algorithm, to estimate the point values of u along
∂Ωj , and within Ωj , from the cell averages.
Approximation of the fluxes along ∂Ωj accounting for intercell communication
(approximate Riemann solvers).
Approximate integration in time.
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Reconstructions

The key point in finite volume schemes is the reconstruction, which provides
from the cell averages uj the point values along the boundary of Ωj , and at
the interior quadrature nodes.
The reconstruction must be

fast to compute: use polynomials to approximate the data;
high order accurate: choose a high degree interpolation polynomial, which
is based on a stencil, i.e. a set of cells around the cell Ωj ;
non oscillatory: choose only information coming from cells which do not
contain discontinuities: non linear algorithm;
efficient: recycle computations as much as possible.
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Weighted essentially
non-oscillatory reconstructions
(1D)
Given the cell averages uj−r, . . . , uj+r of a bounded function u(x),

Popt

P1
P2

Pr Pr+1

(Popt)j s.t. ∀i = −r, . . . , r : 1
|Ωj+i|

∫
Ωj+i

Popt(x)dx = uj+i

If Rj = (Popt)j , the accuracy is O(h2r+1) in smooth regions.
However (Popt)j is oscillatory if a discontinuity is present in its stencil.
Thus, downgrade, if needed, to a lower accuracy non-oscillatory alternative,
Rj = Pk, s.t. Pk contains no discontinuities∗.

∗Shu, 1997
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Example: WENO3
reconstruction in 1D

Third order linear reconstruction algorithm: R(x)
stencil of 3 cells: Ωj−1,Ωj ,Ωj+1;
∃!Popt ∈ P2 :

∫
Ωi
Poptdx = |Ωi|ui for i = j − 1, j, j + 1.

Instead, for each reconstruction point ξ:
find a convex combination: Popt(ξ) = dL(ξ)PL(ξ) + dR(ξ)PR(ξ);
compute nonlinear weights ωL and ωR such that
⇒ on smooth data: ωj ≈ dj and Rj(ξ) ≈ Popt(ξ)

⇒ otherwise either ωR ≈ 0 and Rj(ξ) ≈ PL(ξ)
or ωL ≈ 0 and Rj(ξ) ≈ PR(ξ);

set Rj(ξ) := ωL(ξ)PL(ξ) + ωR(ξ)PR(ξ)
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Summing up

WENO reconstructions are very popular and effective. The main ingredients can be
summarized as follows.

They are based on an optimal polynomial Popt which guarantees maximum
accuracy but is actually not directly computed.
The idea is to recover Popt when the flow is smooth, from lower degree
polynomials, but this can be achieved only at one reconstruction point at a time.
Since R = Popt when the flow is smooth, the reconstruction algorithm becomes
linear on smooth flows.
The presence of discontinuities triggers the non linearities of the scheme,
choosing lower degree polynomials, based on smooth stencils.
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The pain of several
reconstruction points

For a FV scheme in 2D, several reconstruction points are needed to update a single
cell. With WENO, the reconstruction must be repeated at each point.

Things can only get worse on nonuniform grids, as for a mesh created by an
adaptive algorithm, such as AMR.
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A single reconstruction for all
points
Recall, WENO3:

Given x̂ ∈ Ω, R(x̂) = dL(x̂)PL(x̂) + dR(x̂)PR(x̂) (WENO3)

is replaced by

∀x : R(x) = d0 P0(x) + dLPL(x) + dRPR(x) (CWENO3)

how? P0(x) := 1
d0

(
Popt(x)− dLPL(x)− dRPR(x)

)

why? dk do not depend on the reconstruction point
⇒ no dependence on mesh topology,

not even in 2d/3d, AMR, . . .
Levy, P., Russo
SISC (2000)
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CWENO, the general case
Let p = 2r+ 1 be the required accuracy, where r is the degree of the r+ 1 low
order polynomials Pk forming the standard WENO reconstruction. Now,
1. choose d0, d1, dr+1 ∈ (0, 1) such that

∑r+1
k=0 dk = 1;

2. compute P0(x) := 1
d0

(
Popt(x)−

∑r+1
k=1 dkPk(x)

)
;

3. compute WENO-style nonlinear weights dk ; ωk;
(no x dependence!)

4. compute the reconstruction polynomial (unif. accurate in the cell!)

R(x) =
r+1∑
k=0

ωkPk(x) = u(x) +O(h)p; ∀x ∈ cell

5. evaluate R(x) on each reconstruction point needed.

Cravero, P., Semplice, Visconti
Math. Comp. (2018)
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Spectral properties
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Spectral properties
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A more efficient reconstruction,
but...

The CWENO reconstruction we have proposed is more efficient than standard
WENO, but the natural question is:

does CWENO maintain the good properties of standard WENO?
One way to do it is to compare the spectral properties of the two
reconstructions, which means to study the discrete evolution of Fourier modes
of the form uk(x, t) = ûk(t)eikx in the linear advection equation.
This brought us to introduce the new concepts of distortion and temperature for
a numerical scheme for conservation laws.
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Von Neumann analysis

Consider the linear advection equation ut + aux = 0, with periodic initial and
boundary conditions on (0, 2π).

The evolution of a single Fourier mode uk(x, t) = ûk(t) exp(ikx) is given by

dûk
dt e

ikx = −ik a ûk(t) eikx, u(x, t = 0) = u0(x).

Then the exact solution can be written as

u(x, t) =
∑
k

ûk(0)eik(x−at), ûk(0) = 1
2π

∫ 2π

0
u0(x)e−ikx.
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Von Neumann analysis
Solving the same equation with a linear finite difference scheme on the stencil
{x`h}, ` = −r . . . r, for a single Fourier mode uk(x, t) = ûk(t)eikx yields

dûk
dt e

ikx = −a ûk(t)Dx(eikx),

and the discrete derivative Dx is given by

Dx(eikx) =

(
r∑

`=−r

c`e
ikh`

)
eikx = (ik + ω̃k) eikx.

So eikx is an eigenfunction also for the discrete derivative Dx, except that the
amplitude of a single Fourier mode is modified to

uk(x, t) = ûk(0)eik(x−at)e−aω̃kt.

Thus the quantity ω̃k measures the spurious effects due to the discrete
approximation, with ω̃k ≈ O(hp).
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Artificial diffusion

The real part of ω̃k induces a spurious damping of the amplitude of uk(x, t), which is
faster for high frequency modes (k >> 1).
This is called numerical diffusion: the small scale modes tend to disappear.

.

For first order Upwind

ω̃k = − 1
2k

2h+O(h2)

and

uk(x, t) ≈ ûk(0)eik(x−at)e− 1
2ak

2ht
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Artificial dispersion
The imaginary part of ω̃k induces a spurious propagation speed. Each mode uk(x, t)
moves with speed ã = a+ a

k
Im(ω̃k). Again, this effect is stronger for high frequency

modes (k >> 1).
This is called numerical dispersion: the small scale modes tend to move with high
relative speed with respect to the initial wave packet. Thus the Fourier modes
separate, and the solution becomes oscillatory.

For a second order scheme

ω̃k = − 1
6 ik

3h2 +O(h3)

and

uk(x, t) ≈ ûk(0)eik(x−a(1− 1
6h

2k2)t).

Pirozzoli
JCP (2006)
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Diffusion and dispersion for
WENO and CWENO

Re(ω̃k) and Im(ω̃k), as a function of ` = πk/N for WENO (black), CWENO (green)
and the modified version CWENOZ (red). Order 5.
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Clearly, for ` > π/2, no scheme can resolve the waves correctly: one has less
than 2 grid points per wave number.
All schemes are comparable, but with a definite edge for CWENOZ.
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Diffusion and dispersion in the
non linear case
In the non linear case, Fourier modes are coupled. But still one can study the effect
of the numerical derivative on each mode Dxeikx. Since we are working on real
functions, let

Dx

[
sin(kx)
cos(kx)

]
=

N∑
`=1

[
ω2`,2k ω2`,2k+1
ω2`+1,2k ω2`+1,2k+1

][
sin(`x)
cos(`x)

]
,

This defines a matrix Ω. The exact derivative is

D = diag
(
k

[
0 1
−1 0

])
, k = 1, . . . , N.

Thus E = Ω− D defines the error matrix.

Cravero, P., Semplice, Visconti
Comp. Fluids (2018)
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Diffusion, dispersion and
distortion

With the introduction of the error matrix E, we extend the previous analysis for linear
schemes to non linear schemes.

If the scheme is linear, the ma-
trix E is block-diagonal with 2× 2
blocks along the diagonal. These
blocks contain the artificial diffu-
sion and dispersion information of
the scheme.
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Diffusion, dispersion and
distortion

With the introduction of the error matrix E, we extend the previous analysis for linear
schemes to non linear schemes.

If the scheme is non linear, still the
2×2 blocks along the diagonal give
information on how the k-th mode
is transformed. But now there are
non-zero terms also away from the
main diagonals: the size of these
terms measures distorsive effects

WENO3
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Distortion for CWENO schemes

The amplitude of the coefficients of the error matrix E shows that as the order is
increased, distorsive effects decrease. .

CWENO3 CWENO7
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Comparing different high order
schemes
We study the distortion errors (i.e. the norm 1 of off diagonal terms in E) of
CWENO and WENO schemes for different orders of accuracy.

3rd order 7th order

WENO (black), CWENO (red), CWENOZ (blue).
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Temperature

The size of the spurious modes determines the distortion of a scheme, but another
interesting parameter is also how far, in frequency space, are the spurious modes
from the exact mode.
We quantify this idea with the notion of Temperature on the k-th mode

Tk = 1
N3

N∑
`=1

(ΩC)`k
(
k − `
π

)2
.

CWENOZ are the coolest schemes retaining non oscillatory properties.
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Temperature
The size of the spurious modes determines the distortion of a scheme, but another
interesting parameter is also how far, in frequency space, are the spurious modes
from the exact mode.
We quantify this idea with the notion of Temperature on the k-th mode

Tk = 1
N3

N∑
`=1

(ΩC)`k
(
k − `
π

)2
.

Order 7 Order 9

CWENOZ are the coolest schemes retaining non oscillatory properties.
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Cool WENO schemes

A scheme for conservation laws cannot be cold (I mean, with zero
temperature), because it would be oscillatory. Some distortion is necessary to
prevent spurious oscillations. In this sense, CWENO schemes are cool.
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Semi-conservative schemes

30/61 [High order finite volume schemes
G. Puppo | la Sapienza Università di Roma



Let’s go back to finite volume
schemes...

Consider a hyperbolic system of equations in 1D

∂tu + ∂xf(u) = 0.
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Let’s go back to finite volume
schemes...

Consider a hyperbolic system of equations in 1D

∂tu + ∂xf(u) = 0.

The evolution equation for the cell averages in 1D is

duj
dt = − 1

h

(
Fj+1/2(t)− Fj−1/2(t)

)
,

where Fj+1/2(t) = F (u−
j+1/2, u

+
j+1/2) is the numerical flux.
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Let’s go back to finite volume
schemes...

The evolution equation for the cell averages in 1D is

duj
dt = − 1

h

(
Fj+1/2(t)− Fj−1/2(t)

)
,

where Fj+1/2(t) = F (u−
j+1/2, u

+
j+1/2) is the numerical flux. One can integrate with

Runge Kutta schemes

un+1
j = unj − λ

∑ν

k=1 bk

(
F

(k)
j+1/2 − F

(k)
j−1/2

)
,

here the numerical flux is evaluated at reconstructed stage values, (u(k)
j+1/2)±,

and the stage values are again computed evolving the solution.

The important point is that there is no need that the stage values and the
final update are computed from the same equation.
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Semi-Conservative schemes

The possibility of using different equations for the stage values, while enforcing
the conservative equation only in the final step, is a tool that we applied
initially to central schemes based on staggered grids.

The computation of the correct shock speeds is assured by the Lax
Wendroff theorem, which uses only the consistency of the numerical fluxes
Accuracy instead can be obtained only on the smooth pieces of the
solution. And where the solution is smooth, several formulations of the
PDE can be equivalent, thus yielding the same solution (up to O(h)p
terms).

Pareschi, P., Russo
SISC (2005)
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Example

Consider the following two scalar conservation laws, which have the same
characteristic form, but with different conservative formulations. Let uL, uR
denote the left and right state of a discontinuity, with shock speed s′,

ut +
( 1

2u
2)
x

= 0, =⇒ s′ = 1
2 (uL + uR)

( 1
2u

2)
t

+
( 1

3u
3)
x

= 0, =⇒ s′ = 2
3
u2
L + uLuR + u2

R

uL + uR

If the initial data is u0(x) > 0, the characteristic form is the same,
ut + uux = 0, but the shock speeds are different.
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First equation (Burgers),
f(u) = 1

2u2

Suppose you are given the cell averages Un

Reconstruct the point values Unj
Compute the stage values, using the characteristic form and a
reconstruction Dx of the space derivative

U
(k)
j = Unj −∆t

k−1∑
i=1

U
(i)
j Dx(U (i))(xj)

Reconstruct the boundary extrapolated data, using the point values of the
stages, (

U
(k)
j+1/2

)±
Apply the conservative corrector step, evaluating the numerical flux F ,
consistent with f = 1

2u
2, obtaining the new cell averages

U
n+1
j = U

n

j − λ
ν∑
k=1

bk

(
F

(k)
j+1/2 − F

(k)
j−1/2

)
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Second equation (no name?),
v = 1

2u2, vt + (1
3

√
(2v)3)x = 0

Suppose you are given the cell averages V n

Reconstruct the point values V nj and get Unj =
√

2V nj .
Compute the stage values, using the characteristic form ut + uux = 0

U
(k)
j = Unj −∆t

k−1∑
i=1

U
(i)
j Dx(U (i))(xj)

Find the stage values in v: V (k)
j = 1

2 (U (k)
j )2. Reconstruct the boundary

extrapolated data, (
V

(k)
j+1/2

)±

Apply the conservative corrector step, evaluating the numerical flux F ,
consistent with f = 1

3

√
(2v)3, obtaining the new cell averages

V
n+1
j = V

n
j − λ

ν∑
k=1

bk

(
F

(k)
j+1/2 − F

(k)
j−1/2

)
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Travelling discontinuity

We start with an initial step, and we apply a standard FV scheme, and the new
SC (Semi Conservative) scheme, using the two different equations. The correct
shock locations are x = 0.4 and x = 0.5, respectively.

The different shock speeds
are correctly caught by
both schemes.
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Shock formation

Starting with a smooth solution, we apply again a standard FV scheme, and
the new SC scheme, to the two different equations,

we again find that the SC
scheme gives the correct
shock speeds in both cases,
and the correct shock
formation time.
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Why does it work?
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Conservative schemes

Let us start from the definition of conservative scheme, for ut + fx(u) = 0. A
scheme is conservative if the numerical solution U can be written as

U
n+1
j = U

n

j −
k

h

(
Fj+1/2 − Fj−1/2

)
where Fj+1/2 = F (Unj−p, . . . , U

n

j+k), with k, p > 0 strictly positive integers,
is the numerical flux function,
such that:

F (U, . . . , U) = f(U), (consistency)
F (U, . . . , U) is at least Lipschitz continuous in all of its arguments.
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The Lax Wendroff theorem
Converging numerical solutions obtained with conservative schemes converge
to correct weak solutions, because of Lax Wendroff theorem.

Lax Wendroff theorem

Let Uh(x, t) be a numerical solution obtained on a grid of width h.
Suppose that

Uh has bounded variation;
Uh → U as h goes to zero;
Uh was obtained with a conservative scheme

Then the limit solution for h→ 0 is a weak solution of the conservation
law.
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Conservative schemes

In the proof:
multiply the conservative form of the scheme by φnj = 1

h∆t
∫
V n

j
φ, where φ

is a smooth test function, sum over all grid points in space-time;∑
j,n

[
(Un+1

j − Unj )φnj − λ(Fnj+1/2 − F
n
j−1/2)φnj

]
= 0

sum by parts, discharging the differences from U and Fj+1/2 on φ;
transform the sums in integrals, exploiting the definition of φnj , and the
fact that the numerical quantities are just numbers.
pass to the limit for h,∆t→ 0, and hopefully get the weak form of the
Conservation law.
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Conservative schemes

To transform this argument in a proof, you need to bound terms of the form∣∣∣∣∣
∫
V n

j

[
F (Unj−p, . . . , U

n

j+k)− f(U(x, t))
]

(φ(x+ h, t)− φ(x, t))

∣∣∣∣∣
≤

∫
V n

j

K max
−p≤l≤k

|U(xj + lh, t)− U(x, t)| |φ(x+ h, t)− φ(x, t)|

where we used the consistency and Lipshitz regularity (with constant K) of
the numerical flux.
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Conservative schemes

To transform this argument in a proof, you need to bound terms of the form∣∣∣∣∣
∫
V n

j

[
F (Unj−p, . . . , U

n

j+k)− f(U(x, t))
]

(φ(x+ h, t)− φ(x, t))
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≤

∫
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K max
−p≤l≤k

|U(xj + lh, t)− U(x, t)| |φ(x+ h, t)− φ(x, t)|

where we used the consistency and Lipshitz regularity (with constant K) of
the numerical flux.

Thus, the final conservative step is enough to ensure that the
requirements of the Lax Wendroff theorem are satisfied.
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Lax’ shock tube

Riemann Problem in gas dynamics. This is a standard test due to Lax.

Density Velocity
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Lax’ shock tube, Second order

Density profiles with second order schemes

Standard FV SC scheme

The solutions of the two schemes are almost identical.
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Lax’ shock tube, 4th order

Standard 4th order Finite Volume. Zoom on the density peak

Standard FV High order schemes produce small
oscillations, whose amplitude
decreases under grid refinement
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Lax’ shock tube, 4th order

Standard 4th order Finite Volume, and new SC

Standard FV SC scheme

This spurious effect is less pronounced on the SC profile.
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Lax’ shock tube, 4th order

To diminish spurious oscillations, reconstruct projecting on characteristic
directions
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Lax’ shock tube, 4th order

To diminish spurious oscillations, reconstruct projecting on characteristic
directions

Standard FV without CP Standard FV with CP

The oscillations have considerably decreased, with characteristic projection,
and again the solution improves under grid refinement.
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Lax’ shock tube, 4th order

Standard 4th order Finite Volume, and new SC scheme

Standard FV with CP SC scheme with CP

The spurious oscillations are flattened out on the SC profile.
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A new family of schemes

We have shown the performance of a new class of schemes, which work under
somewhat non-standard conditions.

We understand why the SC schemes work. It is less apparent why they
seem to be slightly less oscillatory than standard schemes.
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Is that all?

OK, a nice toy. But does it have any real advantage over standard schemes?
In some cases, SC schemes are much faster than standard FV schemes.
To see why, we need to go
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Relativistic gas dynamics
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RGD, Relativistic Gas Dynamics
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RGD, Model equations

The system for RGD consists of conservation of mass D, momentum S and
energy τ in the laboratory frame of reference. The equations are given by

∂tu+∇ · f(u) = 0

In one space dimension, the system is

u =

 D
S
τ

 f(u) =

 Dv
Sv + p
S −Dv

 = 0

where v is the particle speed and p is the pressure.

Martì Müller
JCP (1996)
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RGD, computing the flux
The problem is that, once D,S, τ are known, to compute the flux, one needs
to find v, p, and this requires to solve the system

D = ρW

S = ρhW 2v W = 1√
1− v2

τ = ρhW 2 − p−D

W is the Lorentz correction (we are considering the speed of light c = 1), ρ
is mass at rest, and h is the enthalpy. We still need

p = (γ − 1)ρe
h = 1 + e+ p/ρ

As v → 0, classical mechanics holds, and one recovers standard compressible
gas dynamics.
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RGD, application of standard FV
schemes

It is not too difficult to see that to compute the flux once D,S, τ are known
requires to solve a non linear system of equations. More precisely, one needs to
solve a non-linear equation for the pressure, P(p(D,S, τ)) = 0. Fortunately,
P(p) is a monotone function, and it has a single zero, for admissible (D,S, τ).
So we have

For standard FV scheme, given the cell averages Dn
, S

n
, τn, one needs to

compute the ν stage values, and each stage value requires the solution of
P(p(D(i), S(i), τ (i))) = 0
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RGD, application of SC schemes

Again, we are given the cell averages Dn
, S

n
, τn. First, compute the point

values Dn, Sn, τn. It is then necessary to invert again P(p(D,S, τ)) = 0, but
this is done only once per time step.

The stages in fact are computed updating the non conservative system for
the primitive variables ρ, v, p ρ

v
p


t

+

 v ρV − v
hW 2V

0 vCV V
ρhW 4

0 ρhc2V vCV

 ρ
v
p


x

= 0

where c2 = γp/(ρh), V = 1/(1− c2v2) and C = 1− c2 Once the stage
values ρ(i), v(i), p(i)) are known, the stages for the conservative variables
are easily found, D(i), S(i), τ (i).
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RGD, summary

We have two sets of variables: conservative variables D,S, τ and primitive
variables ρ, v, p, linked by the diffeomorphism (D,S, τ) =M(ρ, v, p).

The direct mapM is easy to compute. The inverse mapM−1 is
computationally expensive.
Standard FV with Runge Kutta time integration requires to evaluate
M−1 at each stage.
For SC schemes with Runge Kutta time integration one needs to evaluate
M−1 at the beginning of each time step, and thenM at each stage.
Much faster.
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Relativistic shock tube, 4th order

Relativistic shock tube problem, VL = [10, 0, 13.3] while VR = [1, 0, 1]. Recall
that V = [ρ, v, p].

Velocity Zoom on the shock

Again the SC solution is less oscillatory
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Relativistic shock tube, 2nd
order

Relativistic 2D shock tube problem, second order schemes, N = 400.

Density, FV2
FC, N=400
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Relativistic shock tube, 3rd order

Relativistic 2D shock tube problem, third order schemes, N = 400.

Density, FV3
FC, N=400
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The third order reconstruction here is CWENO
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Ok, it works, but...

Does it pay?
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Ok, it works, but...

Does it pay?
Error vs Computational cost (seconds of CPU)
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We are almost there

We have presented an idea which introduces a large flexibility in schemes
based on the method of lines approach for hyperbolic problems.

We can optimize. I mean, primitive variables are not the only possible
choice to build SC schemes. One could use, for instance, characteristic
variables, possibly decreasing oscillations even further.
We plan to apply these ideas to implicit schemes, for instance in the low
Mach regime.
These computations prompt, once more, the need for really non
oscillatory high order reconstructions.
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Thank you!
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