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Abstract In this article we focus on kinetic equations for gas mixtures since in
applications one often has to deal with mixtures instead of a single gas. In particular,
we consider an approximation of the Boltzmann equation, the Bhatnagar–Gross–
Krook (BGK) equation. This equation is used in many applications because it is
very efficient in numerical simulations. In this article, we recall a general BGK
equation for gas mixtures which has free parameters. Specific choices of these free
parameters lead to special cases in the literature. For this model, we provide an
overview concerning modelling, theoretical results and numerics.

1 Introduction

In this paper we shall concern ourselves with a kinetic description of gas mixtures.
For simplicity in notation and statements, we present it here for two species,
but the model can be extended to an arbitrary number of species since we only
consider binary interactions. A gas of mono atomic molecules and two species is
traditionally described via the Boltzmann equation for the distribution functions
f1 = f1(x, v, t), f2 = f2(x, v, t), see, for example, [19, 20]. Here, x ∈ R3 and
v ∈ R3 are the phase space variables, position and velocity of the particles, and
t ≥ 0 denotes the time. Assume that the particles of species 1 have mass m1 and the
particles of species 2 have mass m2. The Boltzmann equation for gas mixtures is of
the form

∂t f1 + v · ∇xf1 = Q11(f1, f1)+Q12(f1, f2),

∂t f2 + v · ∇xf2 = Q22(f2, f2)+Q21(f2, f1),
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where the intra-species collision operatorsQ11(f1, f1) andQ22(f2, f2) satisfy

∫
Qkk(fk, fk)




1

mkv

mk|v|2



 dv = 0, k = 1, 2 (1)

and the inter-species collision operatorsQ12(f1, f2) andQ21(f2, f1) satisfy

∫
Q12(f1, f2)dv =

∫
Q21(f2, f1)dv = 0,

∫ ((
m1v

m1|v|2
)
Q12(f1, f2)+

(
m2v

m2|v|2
)
Q21(f2, f1)

)
dv = 0.

(2)

These properties of the collision operator ensure conservation of the number of
particles, total momentum and total energy at the macroscopic level, (1) in intra-
species interactions, (2) in inter-species interactions. In addition, the collision
operators satisfy the inequalities

∫
Qkk(fk, fk) ln fkdv ≤ 0, k = 1, 2

∫
Q12(f1, f2) ln f1dv +

∫
Q21(f2, f1) ln f2dv ≤ 0.

(3)

The first inequality turns into an equality if and only if fk is a Maxwell distribution
Mk given by

Mk =
nk

(2π Tk
mk

)3/2
exp

(
− |v − uk|2

2 Tk
mk

)
. (4)

Here we define for any f1, f2 : # ⊂ R3 × R3 × R+
0 → R with (1 + |v|2)f1, (1 +

|v|2)f2 ∈ L1(R3), f1, f2 ≥ 0, the macroscopic quantities

∫
fk(v)




1
v

mk|v − uk|2



 dv =:



nk
nkuk
3nkTk



 , k = 1, 2, (5)

where nk is the number density, uk the mean velocity and Tk the mean temperature of
species k (k = 1, 2). For ease we write Tk instead of kBTk , where kB is Boltzmann’s
constant.

In the second inequality in (3), we have equality if and only if f1 and f2 are
Maxwell distributions M1 and M2 and additionally if and only if u1 = u2 and
T1 = T2.
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If we are close to equilibrium, the complicated interaction terms of the Boltz-
mann equation can be simplified by a so-called BGK approximation, consisting of
a collision frequency νkjnj multiplied by the deviation of the distributions from a
local Maxwell distribution

∂t f1 + v · ∇xf1 = ν11n1(M1 − f1)+ ν12n2(M12 − f1),

∂t f2 + v · ∇xf2 = ν22n2(M2 − f2)+ ν21n1(M21 − f2).
(6)

The collision frequencies per density νkj are assumed to be dependent only on x

and t and not on the microscopic velocity v. For references taking into account also
a dependency on the microscopic velocity v see [64] for the one-species case, [40]
for the gas mixture case and [41] for the numerics of the gas mixture case.

The mixture Maxwell distributionsM12 andM21 are given by

M12(x, v, t) =
n12

(2π T12
m1

)3/2
exp

(

− |v − u12|2
2 T12
m1

)

,

M21(x, v, t) =
n21

(2π T21
m2

)3/2
exp

(

− |v − u21|2
2 T21
m2

)

,

(7)

where nkj , ukj and Tkj will shortly be defined.
This approximation should be constructed in a way such that it has the same main

properties as the Boltzmann equation mentioned above.
Now, the question arises how to choose the mixture quantities nkj , ukj and Tkj .

In this review article we present a general model which is published in [50] for two
species. This model contains a lot of proposed models in the literature as special
cases. Examples are the models of Gross and Krook [37], Hamel [42], Asinari [4],
Garzo et al. [34], Sofena [62], Cercignani [19], Greene [35] and recent models by
Bobylev et al. [11]; Haack et al. [38].

The second last [11] presents an additional motivation how the corresponding
model can be derived formally from the Boltzmann equation, whereas the last
[38] presents a derivation to macroscopic equations on the Navier-Stokes level and
numerical results.

BGK models give rise to efficient numerical computations, which are asymptotic
preserving, that is, they remain efficient even approaching the hydrodynamic regime
[7, 9, 25, 29, 31, 58]. However, the BGK approximation is incapable of reproducing
the correct Boltzmann hydrodynamic regime in the asymptotic continuum limit.
Therefore, a modified version called the ES-BGK approximation was suggested
by Holway for one species [44]. Then the H-Theorem of this model was shown
in [57] and existence and uniqueness of mild solutions in [66]. Alternatively, the
Shakov model [61] and a BGK model with velocity dependent collision frequency
[64] were suggested to achieve the correct Prandtl number. For the BGK model
with velocity dependent collision frequency, it is shown that a power law for the
collision frequency also leads to the proper Prandtl number. The standard BGK
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model is extended to a velocity dependent collision frequency while it still satisfies
the conservation properties. This works when replacing the Maxwell distribution
by a different function, for details see [64]. For this model an H-Theorem can
be proven. The existence of these modified functions is proven in [40]. However,
since BGK models form the basis to build extended models as ES-BGK models,
Shakov models and BGK models with velocity dependent collision frequency, we
will mainly review BGK models for gas mixtures of the form (6) in this paper.

Considerations of the hydrodynamic regime for an BGK model for gas mixtures
is considered, for example, in [38], a special case of the model presented in this
paper. It presents a Chapman–Enskog expansion with transport coefficients in
Sect. 5, a comparison with other BGK models for gas mixtures in Sect. 6 and a
numerical implementation.

Additionally, we want to mention that there is also another type of BGK model
for gas mixtures containing only one collision term on the right-hand side. Examples
for this are Andries, Aoki and Perthame [3] and the models in [18, 36]. A derivation
of the Navier-Stokes system in the compressible regime for the model in [3] and the
corresponding transport coefficients can be found in section 4 of [3]. The transport
coefficients of the hydrodynamic regime for the model in [18] can be found in
section 5 of [18]. A comparison of these models concerning their hydrodynamic
limit can be found in [15]. For gas mixtures there are also many results concerning
extensions to ES-BGK models, Shakov models and BGK models with velocity
dependent collision frequency [16, 36, 40, 65].

In the following, we will present theoretical and numerical results for this general
BGK model for two species with two interaction terms which captures all those
special cases in the literature. The outline of the paper is as follows: In Sect. 2 we
will present the general multi-species BGK model for two species. For this model,
we will give a review of recent theoretical results in Sect. 3. The physical meaning
and possible choices of the free parameters are discussed in Sect. 4. And recent
existing numerical schemes are given in Sect. 5.

2 The General BGKModel for Gas Mixtures

In this section, we will concern the question of how to choose the mixture quantities
n12, n21, u12, u21, T12, T21 and the collision frequencies. The collision frequencies
ν11n1 and ν22n2 correspond to interactions of the particles of each species with
itself, while ν12n2 and ν21n1 are related to inter-species collisions. To be flexible in
choosing the relationship between the collision frequencies, we now assume

ν12 = εν21, 0 < ε ≤ 1. (8)

The restriction on ε is without loss of generality. If ε > 1, exchange the notation
1 and 2 and choose 1

ε . In addition, we assume that all collision frequencies are
positive. The Maxwell distributions M1 and M2 in (4) are chosen to have the
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same density, mean velocity and temperature as f1 and f2, respectively. With
this choice, we guarantee the conservation of mass, momentum and energy in
interactions of one species with itself (1) (see section 2.2 in [50]). The remaining
parameters n12, n21, u12, u21, T12 and T21 will be determined using conservation
of the number of particles, total momentum and energy (2), together with some
symmetry considerations. If we assume that

n12 = n1 and n21 = n2, (9)

we have conservation of the number of particles, see Theorem 2.1 in [50]. If we
further assume that u12 is a linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R, (10)

then we have conservation of total momentum provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1), (11)

see Theorem 2.2 in [50]. If we additionally assume that T12 is of the following form

T12 = αT1 + (1− α)T2 + γ |u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (12)

then we have conservation of total energy provided that

T21 =
[
1
3
εm1(1− δ)

(
m1

m2
ε(δ − 1)+ δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)T1 + (1− ε(1− α))T2,

(13)

see Theorem 2.3 in [50]. In order to ensure the positivity of all temperatures, we
need to restrict δ and γ to

0 ≤ γ ≤ m1

3
(1− δ)

[
(1+ m1

m2
ε)δ + 1− m1

m2
ε

]
, (14)

and

m1
m2
ε − 1

1+ m1
m2
ε
≤ δ ≤ 1, (15)

see Theorem 2.5 in [50]. For all these choices one can prove the entropy inequalities
(3), see Theorem 2.7 in [50]. We observe that we have free parameters α, δ, γ . We
keep the free parameters to be as general as possible. We will discuss the meaning
and possible choices in Sect. 4.
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3 Theoretical Results of This Model

In this section, we give an overview over recent theoretical results for the model
presented in Sect. 2 concerning existence of solutions and large-time behaviour. To
start with, one can prove an existence and uniqueness result of mild solutions in the
periodic setting in space under certain conditions on the initial data and the collision
frequencies. The proof is presented in [49]. Another existence result concerning
the existence of a unique global-in-time classical solution when the initial data
perturbed slightly from a global equilibrium can be found in [6].

Moreover, one can prove the following results on the large-time behaviour [25].
We denote the entropy of a function f by H(f ) =

∫
f ln f dv and the relative

entropy of f and g by H(f |g) =
∫
f ln f

g dv. Then one can prove the following
results on the large-time behaviour [25].

Theorem 1 Suppose that ν12 is constant in time. Then, in the space-homogeneous
case we have the following decay rate of the distribution functions f1 and f2

||fk −Mk||L1(dv) ≤ 4e−
1
2Ct [H(f 0

1 |M0
1 )+H(f 0

2 |M0
2 )]

1
2 , k = 1, 2,

where C is the constant given by

C = min{ν11n1 + ν12n2, ν22n2 + ν21n1},

and the index 0 denotes the value at time t = 0.

Theorem 2 Suppose that ν12 is constant in time. In the space-homogeneous case,
we have the following relaxation rate

∂t (u1 − u2) = ν12(1− δ)(n2 +
m1

m2
n1)(u2 − u1) (16)

and a decay rate of the mean velocities

|u1(t)− u2(t)|2 = e
−2ν12(1−δ)

(
n2+m1

m2
n1

)
t |u1(0)− u2(0)|2.

Theorem 3 Suppose ν12 is constant in time. In the space-homogeneous case, we
have the following relaxation rate

∂t (T1 − T2) = −C1(T1 − T2)+ C2|u1 − u2|2 (17)
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and a decay rate of the temperatures

T1(t)− T2(t) = e−C1t

[
T1(0)− T2(0)+

C2

C1 − C3
(e(C1−C3)t − 1)|u1(0)− u2(0)|2

]
,

where the constants are defined by

C1 = (1− α)ν12 (n2 + n1) ,

C2 = ν12

(
n2

(
(1− δ)2 + γ

m1

)
− n1

(
1− δ2 − γ

m1

))
,

C3 = 2ν12(1− δ)

(
n2 +

m1

m2
n1

)
.

There are also results in the space-inhomogeneous case for the linearized
collision operator, see [51]. In their article, the authors study hypocoercivity for the
linearized BGK model for gas mixtures in continuous phase space. By constructing
an entropy functional, they prove exponential relaxation to global equilibrium with
explicit rates. The strategy is based on the entropy and spectral methods adapting
Lyapunov’s direct method as presented in [1] for the one-species linearized BGK
model.

4 Possible Choices and Meaning of the Free Parameters

In this section, we deal with the meaning and possible choices of the free parameters.
One possibility is that we can choose the parameters such that we can generate
special cases in the literature [4, 11, 19, 34, 35, 37, 38, 42, 62]. For instance, if we

choose ε = 1, δ = m1
m1+m2

, α = m2
1+m2

2
(m1+m2)2

and γ = m1m2
(m1+m2)2

m2
3 , we obtain the

model by Hamel in [42].
Another possibility is to choose the parameters in a way such that the macro-

scopic exchange terms of momentum and energy can be matched in a certain way,
for example, that they coincide with the ones for the Boltzmann equation. For this,
we first present the macroscopic equations with exchange terms of the BGK model
(6). If we multiply the BGK model for gas mixtures by 1,mjv,mj

|v|2
2 and integrate

with respect to v, we obtain the following macroscopic conservation laws

∂t n1 + ∇x · (n1u1) = 0,

∂t n2 + ∇x · (n2u2) = 0,

∂t (m1n1u1)+ ∇x ·
∫

m1v ⊗ vf1(v)dv + ∇x · (m1n1u1 ⊗ u1) = fm1,2 ,

∂t (m2n2u2)+ ∇x · P2 + ∇x · (m2n2u2 ⊗ u2) = fm2,1 ,
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∂t

(
m1

2
n1|u1|2 +

3
2
n1T1

)
+ ∇x ·

∫
m1|v|2vf (v)dv = FE1,2 ,

∂t

(
m2

2
n2|u2|2 +

3
2
n2T2

)
+ ∇x ·Q2 = FE2,1 ,

with exchange terms fmi,j and FEi,j given by

fm1,2 = −fm2,1 = m1ν12n1n2(1− δ)(u2 − u1),

Fm1,2 = −Fm2,1

=
[
ν12

1
2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2))+

1
2
ν12n1n2γ (u1 − u2)

]
· (u1 − u2)

+ 3
2
εν21n1n2(1− α)(T2 − T1).

Here, we can observe a physical meaning of α and δ. We see that α and δ show
up in the exchange terms of momentum and energy as parameters in front of the
relaxation of u1 towards u2 and T1 towards T2. So they determine, together with
the collision frequencies, the speed of relaxation of the mean velocities and the
temperatures to a common value. This can already be observed in Theorem 2 and
Theorem 3.

Next we follow Chapter 4.1 in [38] and compare the relaxation rates in the space-
homogeneous case to the relaxation rates for the space-homogeneous Boltzmann
equation. In [38], they find values for νkj such that either the relaxation rate for
the mean velocities (16) or the relaxation for the temperatures (17) coincides with
the corresponding rate of the Boltzmann equation. But using the free parameters
α, δ and γ we are able to match both of the relaxation rates at the same time. For
this, we compare the coefficients of the terms u2 − u1, T2 − T1 and |u2 − u1|2 in
these Boltzmann relaxation rates and the BGK relaxation rates (16) and (17), and
we derive the values of the parameters for this model:

(u2 − u1)-term: δ = 1− α12

ν12

m1 +m2

2
m1n1 +m2n2

m1n1m2n2

(
n1

m1

m2
+ n2

)−1
,

(T2 − T1)-term: α = 1− α12

ν12n2n1
,

|u2 − u1|2-term: γ = 1
3
(n1 + n2)

−1
[
α12

ν12

m2n2 −m1n1

n2n1
−m1n2(1− δ)2 +m1n1(1− δ2)

]
,

where α12 is a coefficient for energy transfer coming from Boltzmann equation, see
[38] and references therein. Additionally, the constraints (12), (14) and (15) need to
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be satisfied. This can be verified by a corresponding choice of νkj . One possibility is

νkj = 1
2
αkj

nknj

(mk +mj )
2

mkmj
(18)

and for 1 ≥ ε = mj

mk
(cf. in a plasma).

5 On Existing Numerical Schemes

In the literature, various approaches for the discretization of kinetic equations can
be found, including schemes for the one-species BGK model. Contributions in
numerics for multi-species BGK models have strongly increased in the last years.

To start with, we give a short overview over existing numerical methods for the
one-species BGK equation. Since the contributions are very crowded, we do not
claim completeness. Many ideas can be carried over to the discretization of multi-
species BGK equations, and we conclude with identified publications on numerical
schemes for multi-species BGK equations which can be written in the form (6).

The (one-species) Boltzmann equation captures physical phenomena very well at
the kinetic level [19]. Nevertheless, numerical computation is expensive. The fastest
algorithms for evaluating the Boltzmann collision operator are spectral methods
with special kernels [54]. This motivates the BGK equation as an approximation
of the Boltzmann equation: Even though the dimensionality is as high as for the
Boltzmann equation, the BGK interaction term is better to handle and explicitly
computable [31, 58]. Hence, the computational cost is much less compared to the
Boltzmann equation while maintaining most of the physical properties [44, 53, 64].

The computational advantages are also useful for penalization techniques [31]
where the BGK equation is solved as preconditioner for the numerical solution of the
Boltzmann equation. This idea is generalized to the multi-species setting in [47]. In
[27], the authors develop an improved Monte Carlo method for the BGK equation.
This is supposed to be a first step towards an improved Monte Carlo simulation
of the Boltzmann equation. Moreover, the BGK approach is useful when coupling
different domains in which the regimes range from equilibrium to very rarefied [2].

A fully discrete scheme requires the discretization in (microscopic) velocity,
space and time. First we consider the discretization in velocity before we look at
the space and time variables.

Having the microscopic velocities as independent variables introduces both more
degrees of freedom and more difficulties. Due to the high dimensionality, it is
recommendable to use coarse grids [59] which then poses challenges regarding
errors in the macroscopic quantities. This can be tackled when the conservation
properties (1) are fulfilled at the discrete level. The handling of discrete moments,
a discrete entropy and the corresponding discrete Maxwellians is discussed in [52].
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Another approach to fulfil the conservation laws at the discrete level is given by a
constrained L2-projection in [33].

Being interested in macroscopic quantities only, the Chu reduction is a possible
approach to lower the dimensionality if there are more degrees of freedom in
velocity than in space [22]. Using the Chu reduction, one follows the evolution
of appropriate integrals of the distribution functions, but these integrals do not
correspond to macroscopic quantities yet. This method reduces the computational
costs considerably.

When the mean velocities u(x, t) cover a wide range and small temperatures are
encountered, grid adaption becomes an important tool. This issue is tackled more
and more in the last decade, e.g., in [8, 13, 17, 43].

This leads us to another advantage of multi-species BGK equations. In case of
the multi-species Boltzmann equations, a large mass ratio of the species, which
results in very distinct thermal speeds, requires an expensive grid resolution [55].
As particles of different species only interact through moments in the BGK model,
the evolution of each species can be numerically solved on separate grids [38] which
might be an important ingredient for an efficient simulation.

There can be found many different approaches for the space discretization in
the literature as the BGK equation shares the same transport term with many other
kinetic equations such as Boltzmann, Fokker-Planck, Vlasov, etc.

The transport term being hyperbolic, a finite volume discretization is often used.
High-resolutions can be obtained by weighted essentially non-oscillatory (WENO)
or discontinuous Galerkin (DG) schemes. However, for orders higher than two the
corresponding formulation of the relaxation term requires additional care because it
does not suffice to consider the relaxation of the cell averages, but the cell averages
of the relaxation term need to be calculated. [5, 21, 45, 52, 58]

Another convenient choice is the semi-Lagrange method. The characteristics
are followed exactly which requires an interpolation for the evaluation of the
corresponding foot point. By conservative reconstructions or corrections, these
methods can be kept conservative also for higher orders [14, 26, 29, 60, 63].

In [28], the authors present an approach for an efficient scheme based on
discrete velocity models and semi-Lagrangian methods. In contrast to standard
semi-Lagrangian schemes, the distribution function needs not to be reconstructed
at each time step which of course accelerates numerical computations.

For the Vlasov equation, the most used method is the Particle In Cell (PIC)
method [32]. But to our knowledge, it is less used for equations with interaction
terms when hydrodynamic effects become more important. In [32], the authors
shortly discuss different methods for the Vlasov equation and then introduce their
positive and flux conservative method (PFC).

For the interaction term, a time implicit formulation is often chosen since the
right-hand side becomes stiff when the collision frequencies become large (close
to the hydrodynamic regime). By the implicit discretization, one can avoid tiny
time steps coming from stability issues. Thanks to the special structure of the
interaction term, the implication is comparably easy manageable, and the equation
stays explicitly solvable [31, 58].
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Usually, the transport part is evaluated explicitly. It is combined with the
interaction term, e.g., by splitting methods [23, 39], implicit-explicit Runge-Kutta
(IMEX RK) schemes [56, 58] or IMEX multistep methods [30].

Splitting methods must be treated with care when the right-hand side becomes
stiff. In [46], the author shows that the (second-order) Strang splitting reduces
actually to a first-order approximation of the equilibrium equation in the hydro-
dynamic limit. This leads us to the so-called asymptotic-preserving (AP) schemes
which provide an adequate discretization also of the limiting equations. Using AP
schemes, the correct equilibrium solutions are preserved [9, 29, 31, 45, 59]. This
issue is addressed more and more in the recent years. In this context, we also
want to mention the micro-macro decomposition and the parity decomposition/AP
splitting. For the former approach, the distribution function is written as a sum of its
equilibrium (macro) part and the remnant which represents the kinetic (micro) part.
This results in one microscopic and one macroscopic equation which can be solved
by individual and adequate methods [24]. For the latter approach, the distribution
function is decomposed by an even and an odd parity. A new system of equations
can be derived with only one time scale where splitting techniques can be applied
[29, 48].

More physics is (re)introduced by multi-species models. At the discrete level,
many ideas can be carried over from the single-species schemes. In the following,
we give contributions of numerical schemes for multi-species BGK equations,
which can be written in the form of (6).

In [25], the authors extend the work of [24] for the multi-species model. They
perform a micro-macro decomposition and focus on the fluid limit. The micro part
is solved by a particle method, whereas the macro part (depicting the fluid part) is
solved by a standard finite volume approach. Here, an additional force term with an
electric field is considered.

In [38], the authors are interested in capturing physical transport coefficient.
They use the additional degrees of freedom in the multi-species setting to match
relaxation rates in the space-homogeneous case equivalent to the Boltzmann ones.
An extension to space-inhomogeneous simulations is done in [39] where they
additionally examine the coupling to electric fields.

In [12], the authors compare numerical results for different multi-species BGK
models, where one of these models is a special case of (6).

A BGK model for gas mixtures is extended to velocity dependent collision
frequencies in [40]. Collision frequencies influence the relaxation process and the
resulting hydrodynamic behaviour such that they also become important when
calculating transport coefficients. The class of models in [40] captures a model of
the form (6) as a special case, but in general the Maxwellians are replaced by more
sophisticated Gaussian functions. Numerical schemes for this kind of equations
have been developed in [41]. The key new ingredient is a solver based on a convex
entropy minimization problem which makes possible an implicit treatment of the
BGK operator.
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6 Conclusions and Outlook

We recalled a general BGK model for gas mixtures with two collision terms for
two species and its theoretical properties. We presented results on the H-Theorem,
existence of solutions and large-time behaviour. The special feature of the presented
model is the free parameters α, δ and γ . They influence the exchange of momentum
and energy and can be set such that the model’s behaviour matches the physics or
coincides with another (more specialized) model.

An overview over existing literature on numerics for this kind of models was
given.

However, BGK- type models often lack on correct parameters in the continuum
limit like the Prandtl number. Therefore these models can be used as a basis for more
extended models like ES-BGK models or BGK models with velocity dependent
collision frequency. As a future work the Chapman–Enskog expansion of such
models can be computed. Then the transport coefficients of all these models can
be compared and eventually extended to match all parameters in the macroscopic
equations. Here, the free parameters in the BGK model for monoatomic molecules
with a sum of interaction terms might be useful.
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