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Abstract

We present a new family of very high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV)
and Discontinuous Galerkin (DG) schemes for the solution of nonlinear hyperbolic PDE systems on moving Voronoi
meshes that are regenerated at each time step and which explicitly allow topology changes in time. The Voronoi
tessellations are obtained from a set of generator points that move with the local fluid velocity. We employ an AREPO-
type approach [1], which rapidly rebuilds a new high quality mesh exploiting the previous one, but rearranging the
element shapes and neighbors in order to guarantee that the mesh evolution is robust even for vortex flows and for very
long computational times. The old and new Voronoi elements associated to the same generator point are connected
in space–time to construct closed space–time control volumes, whose bottom and top faces may be polygons with a
different number of sides. We also need to incorporate some degenerate space–time sliver elements, which are needed
in order to fill the space–time holes that arise because of the topology changes in the mesh between time tn and time
tn+1. The final ALE FV-DG scheme is obtained by a novel redesign of the high order accurate fully discrete direct
ALE schemes of Boscheri and Dumbser [2, 3], which have been extended here to general moving Voronoi meshes and
space–time sliver elements. Our new numerical scheme is based on the integration over arbitrary shaped closed space–
time control volumes combined with a fully-discrete space–time conservation formulation of the governing hyperbolic
PDE system. In this way the discrete solution is conservative and satisfies the geometric conservation law (GCL) by
construction. Numerical convergence studies as well as a large set of benchmark problems for hydrodynamics and
magnetohydrodynamics (MHD) demonstrate the accuracy and robustness of the proposed method. Our numerical
results clearly show that the new combination of very high order schemes with regenerated meshes that allow topology
changes in each time step lead to substantial improvements over the existing state of the art in direct ALE methods.

Keywords: Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and Discontinuous Galerkin (DG) schemes,
arbitrary high order in space and time, moving Voronoi tessellations with topology change, a posteriori sub-cell finite
volume limiter, fully-discrete one-step ADER approach for hyperbolic PDE, compressible Euler and MHD equations

1. Introduction

The aim of this work is to present a novel family of arbitrary high order accurate direct ALE Finite Volume
(FV) and Discontinuous Galerkin (DG) schemes on moving Voronoi meshes that are regenerated at each time-step
and which consequently allow also topology changes of the computational grid during the time evolution of the PDE
system. The main novelty lies in the use of a space–time conservation formulation of the governing PDE system
over closed, non-overlapping space-time control volumes that are constructed from the moving, regenerated Voronoi
meshes between time tn and time tn+1. On these closed space–time control volumes the governing equations are then
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directly integrated by means of a high order fully discrete one-step ADER method. To the best knowledge of the
authors, this is the first time that arbitrary high order accurate direct ALE FV and DG schemes are developed with an
embedded mesh generator that builds a new mesh with a different topology at each time step.

1.1. State of the art
Lagrangian algorithms [4, 5, 6, 7, 8, 9, 10, 11, 12] are characterized by a moving computational mesh displaced

with a velocity chosen as close as possible to the local fluid velocity. In the Lagrangian description of the fluid,
the nonlinear convective terms disappear and, as a consequence, Lagrangian schemes exhibit virtually no numerical
dissipation at contact discontinuities and material interfaces. Therefore, the aim of these methods is to reduce the
numerical dissipation errors due to the convective terms, so that contact discontinuities are sharply captured and
material interfaces can be properly identified and tracked.

Lagrangian finite volume schemes [9, 13, 14, 15, 16, 17, 18] have been developed for the solution of nonlinear
hyperbolic systems of PDEs, using the conservation form of the equations based on the physically conserved quantities
like mass, momentum and total energy. Higher order Lagrangian-type schemes have been introduced in [19, 20, 21],
where high order of accuracy in space is achieved with the aid of a ENO/WENO reconstruction and Runge-Kutta time
stepping guarantees high order time discretization as well. Contrarily to the cell-centered methods listed so far, where
all variables are located at the cell center of the primal mesh, staggered Lagrangian schemes [22, 23, 24] define the
velocity at the grid vertexes and the other variables at the cell center, hence avoiding the need of a nodal solver to
compute the mesh velocity of the grid nodes.

Another option for the numerical solution of hyperbolic conservation laws is given by Discontinuous Galerkin
[25] and Finite Element (FE) schemes, where the numerical solution is approximated by piecewise polynomials
within each control volume. Lagrangian DG schemes up to third order have been proposed for the first time in
[26, 27, 28, 29], while high order FE methods applied to Lagrangian hydrodynamics and elasto-plasticity can be
found in [30, 31, 32, 33, 34].

Although these schemes are widely used, a common problem that affects almost all Lagrangian methods is the se-
vere mesh distortion or mesh tangling that happens in the presence of shear flows, which may even cause a breakdown
of the computation. This is the reason which led the development of the so-called Arbitrary-Lagrangian-Eulerian
(ALE) methods [14, 35, 36, 37, 38, 39, 40], where the mesh velocity can be chosen independently of the local fluid
velocity and thus the grid nodes can be moved at an arbitrary velocity. Cell-centered indirect ALE schemes aim at
improving the mesh quality and the overall scheme robustness by performing a purely Lagrangian phase with sub-
sequent rezoning (mesh optimization) [41, 42, 43] and remapping [44], where the numerical solution defined on the
old mesh is transferred onto the new grid. To overcome the problem of mesh tangling, sliding line techniques have
also been proposed [45, 46, 47], which deal with moving nonconforming meshes, whose element sides can slide in
order to accommodate the distortion induced by shear flows. In the context of indirect ALE schemes, an interesting
approach for handling the mesh motion has been introduced by the so-called Reconnection ALE (ReALE) algorithms
[48, 49, 50, 51], where the rezoning phase allows for topology changes at each time step of the computation. There,
moving Voronoi tessellations have been employed and the obtained numerical results demonstrate that the flow fea-
tures that have been computed in the Lagrangian phase can be better preserved compared to standard indirect ALE
methods.

Among the different approaches that have been presented in the literature (pure Lagrangian, indirect ALE based
on rezoning and remapping, ReALE as well as a peculiar nonconforming slide line treatments), a novel family of
methods has been proposed, so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes. Also in the framework
of direct ALE the mesh velocity can be chosen in an arbitrary way. Usually, it is chosen close to the local fluid
velocity. However, the mesh quality can be optimized by a rezoning phase which takes place before the computation
of the numerical fluxes, hence allowing the space-time control volumes to be defined for each computational cell
by connecting the element configuration at the current time level tn to the next time level tn+1. Next, the mesh
motion is taken into account directly in the numerical flux computation of the FV or DG scheme, without needing
any remeshing plus remapping strategy. Furthermore, such approaches naturally extend to unstructured meshes in
multiple space dimensions [52] and to slide line treatment with nonconforming meshes [53, 54]. Direct ALE schemes
have been recently presented in [55, 56, 2, 3, 57] by employing either very high order FV and DG schemes, also in
combination with time-accurate local time stepping (LTS), see [58, 59]. These works are characterized by a fixed mesh
topology, which makes it impossible to study phenomena affected by strong shear motion and vortex flows for very
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long simulation times, since mesh tangling would inevitably occur and lead to a breakdown of the simulation before
the final time is reached. Notice that direct ALE schemes, even when constrained to a fixed connectivity, already
ameliorate standard Lagrangian results for complex flow patterns.

From what was observed so far, the idea of allowing a change of topology at each time step within the direct
ALE framework arises. A seminal work along this direction is represented by the AREPO code of Springel and
collaborators [1, 60, 61, 62]. AREPO is a massively parallel second order accurate two- and three-dimensional direct
ALE finite volume scheme on moving Voronoi tessellations that are rebuilt at each time step from a set of generator
points which are moving with the local fluid velocity. The documented results obtained with the AREPO technique
clearly highlight the robustness and potential of that approach. Similar work in the context of finite element schemes
can be found in the well-known particle finite element method of Oñate and Idelsohn et al., see [63, 64, 65, 66, 67, 68].
In the above-mentioned references, the mesh is completely regenerated at each time step, thus naturally allowing for
large deformations and strong shear flows without causing mesh tangling and highly distorted elements.

1.2. Challenges of this work

Up to now the AREPO algorithm [1, 60] is at most second order accurate in space and time. We therefore believe
that its results can still be improved by (i) increasing the order of accuracy of the underlying FV scheme in both space
and time and by (ii) introducing a higher order DG method into the AREPO framework. However, above all, the
main difficulty arises from the fact that high order direct ALE schemes need a complete knowledge of the space–time
connectivity between two consecutive time steps tn and tn+1, and not only of the spatial connectivity at each time
level. Moreover, if a change of connectivity is allowed, the space-time connectivity does not coincide neither with the
connectivity at time tn, nor with the one at time tn+1. Hence, an automatic way to construct the missing space-time
connectivity from the available spatial connectivities at tn and tn+1 must be found. In addition, the space–time control
volumes should be allowed to have as bottom and top faces polygons with a different number of edges, and, moreover,
even degenerate space–time sliver elements must be incorporated in order to fill the space-time holes that are caused
by the changing topology. With sliver elements we refer to space–time elements whose areas at time tn and tn+1 are
null, but whose space–time volume is not zero, see Sections 2.5 and 2.6. In other words, sliver elements exist only
in the space-time volume strictly bounded between two consecutive time levels, therefore they must be taken into
account only if the numerical scheme requires the full space-time connectivity.

Finally, this kind of elements should be not only built, but also the one-step ADER finite volume and DG schemes
must be substantially modified to handle the integration of the PDE over these new types of space-time control vol-
umes. A proof of concept that direct ALE methods can work even on degenerate space-time elements was already
given in [53] for second order FV schemes on moving nonconforming meshes, but a much greater effort is necessary
for dealing with such a general situation as the one treated in this work.

1.3. Structure of the paper

The rest of the paper is organized as follows. In Section 2 we introduce our moving computational mesh and how
to deal with the topology changes that are caused by the regeneration of the Voronoi tessellation at each time step.
Then, we explain how to automatically construct the space–time connectivity and the space–time sliver elements.

Once this has been set up, in Section 3 we describe our direct ALE FV-DG scheme, namely an algorithm be-
longing to the class of direct ALE PN PM schemes [69], which allows us to formulate a Finite Volume (FV) and a
Discontinuous Galerkin (DG) scheme within a unique framework. The method is first presented for standard moving
Voronoi elements, i.e. Voronoi elements that are displaced without modifying their shape, i.e. the number of their
nodes remains the same at each time level. Then, the method is extended to Voronoi elements with different bottom
and top faces and finally to sliver elements in Sections 3.1.2 and 3.2.2.

In Section 4 we show a large set of numerical result, including convergence rates up to fifth order of accuracy
in space and time for smooth problems as well as a wide set of benchmark test cases solved with our ALE FV-DG
scheme on regenerated Voronoi meshes for different systems of hyperbolic equations, namely the Euler equations of
compressible gas dynamics, including the gravity source term, and the ideal MHD equations. The numerical results
are compared with available reference solutions where possible and widely commented.

The paper is closed by some conclusive remarks and an outlook to future work in Section 5.
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2. Numerical method I: handling a moving Voronoi tessellation with topology changes and data reconstruction

We consider a very general formulation of the governing equations in order to model a wide class of physical
phenomena, namely all those which are described by equations that can be cast into the following form,

∂Q
∂t

+ ∇ · F(Q) = S(Q), x ∈ Ω(t) ⊂ R2, Q ∈ ΩQ ⊂ Rν, (1)

where x = (x, y) is the spatial position vector, t represents the time, Q = (q1, q2, . . . , qν) is the vector of conserved
variables defined in the space of the admissible states ΩQ ⊂ Rν, F(Q) = ( f(Q), g(Q) ) is the non linear flux tensor,
and S(Q) represents a non linear algebraic source term.

To discretize the moving two-dimensional domain Ω(t) we employ a centroid based Voronoi-type tessellation
made of NP non overlapping polygons Pi, i = 1, . . .NP. The tessellation is firstly built at time t = 0 and then it is
regenerated at each time step tn. Data are represented via high order polynomials in each Voronoi polygon, which
are either given by a (C)WENO reconstruction procedure for FV schemes, or directly available from the numerical
solution when a DG method is considered.

2.1. Computational grid

At time tn = 0 we fix the position of NP points, called generator points: their coordinates are denoted as xn
ci
, i =

1, . . . ,NP and they are uniformly distributed inside the rectangular domain Ω(0) as well as on its boundary. Next, we
build a Delaunay triangulation having these generators xn

c as vertexes of the triangles. The defining property of the
Delaunay triangulation is that the circumcircle of each triangle is not allowed to contain any of the other generator
points in its interior. This empty circumcircle property distinguishes the Delaunay triangulation from the many other
triangulations of the plane that are possible for the point set. Furthermore, this condition uniquely determines the
triangulation for points in general position (except for circles with more than three generator points on them for
which the Delaunay triangulation contains degenerate cases where it may flip by an infinitesimal motion of one of
the points). For this step we follow the Delaunay algorithm presented in [70, 71], where the point location phase is
efficiently performed by employing a jump-and-walk method [72].

Each generator point xn
ci

is then associated to a centroid based Voronoi element Pn
i by connecting counterclock-

wise the barycenters of all the Delaunay triangles having this generator point as a vertex. Note that the use of
barycenters (instead of circumcenters) to construct these Voronoi-type elements avoids degenerate situations caused
by the violation of the empty circumcircle property, thus it does not need to be resolved. We refer to Figure 1
for a graphical interpretation (generator points are always plotted in red and Voronoi vertexes in blue). In partic-
ular, given a Voronoi polygon Pn

i we denote by V(Pn
i ) = {vn

i1
, . . . , vn

i j
, . . . , vn

iNn
Vi

} the set of its Nn
Vi

Voronoi neigh-

bors, by E(Pn
i ) = {en

i1
, . . . , en

i j
, . . . , en

iNn
Vi

} the set of its Nn
Vi

edges, and by D(Pn
i ) = {dn

i1
, . . . , dn

i j
, . . . , dn

iNn
Vi

} the set of

its Nn
Vi

vertexes, consistently ordered counterclockwise. Finally, the barycenter of a Voronoi polygon Pn
i is noted as

xn
bi

= (xn
bi
, yn

bi
) (note that usually it does not coincide with the generator point, and it is always plotted in orange).

By connecting xn
bi

with each vertex of D(Pi) we subdivide the Voronoi polygon Pn
i in Nn

Vi
subtriangles denoted as

T (Pn
i ) = {T n

i1
, . . . ,T n

i j
, . . . ,T n

iNn
Vi

}.

2.2. Spatial representation of the numerical solution

The numerical solution for the conserved quantities Q in (1) is represented via a cell-centered approach inside
each Voronoi polygon Pn

i at the current time tn by piecewise polynomials of degree N ≥ 0 denoted by un
h(x, tn) and

defined in the spaceUh,

un
h(x, tn) =

N−1∑
`=0

ϕ`(x, tn) ûn
`,i := ϕ`(x, tn) ûn

`,i, x ∈ Pn
i , (2)

where ϕ`(x, tn) are modal spatial basis functions used to span the space of polynomialsUh up to degree N. In the rest
of the paper we will use classical tensor index notation based on the Einstein summation convention, which implies
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Figure 1: In these three panels we report the Delaunay triangulation and the generator points in red. The barycenters of the Delaunay triangles and
the Voronoi tessellation are represented in blue. Finally, the barycenters of the Voronoi polygons are represented with orange crosses. Note that to
each generator point corresponds a Voronoi polygon which is obtained by connecting the barycenters of the triangles having this generator point as
a vertex. Note also that we employ its barycenter to construct the sub–triangulation of each Voronoi element (orange dotted line in the right panel).

summation over two equal indices. The total number N of expansion coefficients (degrees of freedom) ûn
l for the

basis functions depends on the polynomial degree N and is given by N = L(N, d), with

L(N, d) =
1
d!

d∏
m=1

(N + m), (3)

where d = 2 in this paper, since we are dealing only with two-dimensional domains. As basis functions ϕ` in (2) we
employ a Taylor series of degree N in the variables x = (x, y) directly defined on the physical element Pn

i , expanded
about its current barycenter xn

bi
and normalized by its current characteristic length hi

ϕ`(x, tn)|Pn
i

=
(x − xn

bi
)p`

p`! hp`
i

(y − yn
bi

)q`

q`! hq`
i

, ` = 0, . . . ,N − 1, 0 ≤ p` + q` ≤ N, (4)

hi being the radius of the circumcircle of Pn
i . The unknown expansion coefficients ûn

`,i in (2) are the rescaled deriva-

tives hp`
i hq`

i
∂p`+q`

∂xp`∂yp
`
Q

(
xn

bi

)
of the Taylor expansion about xn

bi
. The time dependence of ϕ(x, tn) derives from the time-

dependence of the cell barycenter xn
bi

.
The discontinuous finite element data representation (2) leads naturally to both a Discontinuous Galerkin (DG)

scheme if N > 0, but also to a Finite Volume (FV) scheme in the case N = 0. This indeed means that for N = 0 we
have ϕ`(x) = 1, with ` = 0 and (2) reduces to the classical piecewise constant data representation that is typical of
finite volume schemes:

un
h(x, tn) = 1 · ûn

0,i, x ∈ Pn
i , ûn

0,i =
1
|Pn

i |

∫
Pn

i

Q(x, tn)dx. (5)

Here, the only degree of freedom per element Pn
i is the usual cell average ûn

0,i. Note also that in the case N > 0 the
representation given by (2) already provides a spatially high order accurate data representation with accuracy N + 1,
which is not the case when N = 0. If we are interested in increasing the spatial order of accuracy of a finite volume
scheme, up to M + 1 for example, we need to perform a spatial reconstruction that generates a spatially high order
accurate reconstruction polynomial wn

h(x, tn) of degree M > N (see the CWENO procedure presented in 2.3) that
reads

wn
h(x, tn) =

M−1∑
`=0

ψ`(x, tn) ŵn
`,i := ψ`(x, tn) ŵn

`,i, x ∈ Pn
i , M = L(M, d), (6)

where we simply employ the same basis functions ψl(x, tn) = ϕl(x, tn) for the reconstruction according to (4), but with
0 ≤ ` ≤ M− 1 rather than 0 ≤ ` ≤ N − 1, see also [69].
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With this notation, our method falls within the more general class of PN PM schemes introduced in [69] for fixed
unstructured simplex meshes in two and three space dimensions. In [69, 73, 74, 75] a new family of hybrid, recon-
structed discontinuous Galerkin methods was proposed, in which a Hermite-type reconstruction of degree M ≥ N is
performed on cell data represented by polynomials of degree N. In this paper, however, we restrict ourselves to the
two most common situations: (i) N = 0, with arbitrary high order reconstruction of degree M > N, which indeed
corresponds to a FV scheme of order M + 1, and (ii) N = M, which corresponds to a DG scheme of accuracy N + 1.
Within the general PN PM formalism one can simultaneously deal with arbitrary high order FV and DG schemes inside
a unified framework, with only very few differences between the two schemes.

For the sake of uniform notation, when N > 0 and hence M = N, we trivially impose that the reconstruction
polynomial is given by the DG polynomial, i.e. wn

h(x, tn) = un
h(x, tn), which automatically implies that in the case

N = M the reconstruction operator is simply the identity.

2.3. CWENO reconstruction
For finite volume schemes (N = 0) the reconstruction procedure allows us to compute a high order non-oscillatory

polynomial representation wn
h(x, tn) of the solution Q(x, tn) for each Voronoi polygon Pn

i , starting from the values of
un

h(x, tn) in Pn
i and its neighbors. It should be employed in the case N = 0,M > 0. As already stated above, the total

number of unknown degrees of freedom wn
h(x, tn) isM = L(M, d), with M denoting the degree of the reconstruction

polynomial wh.
In order to achieve high accuracy, a large stencil centered in Pn

i is required, but this choice produces oscillations
close to discontinuities, the well-known Gibbs phenomenon. Indeed, for linear reconstruction operators, the require-
ments of high order of accuracy and non-oscillatory behavior are in contrast with each other, due to the well-known
Godunov theorem [76]. In order to fulfill also the requirement of non-oscillatory behavior, a nonlinear reconstruc-
tion operator has to be adopted. In this paper we rely on the CWENO reconstruction strategy first introduced in
[77, 78, 79], and which can be cast in the general framework described in [80]. Here, we closely follow the work
outlined in [81] for unstructured triangular and tetrahedral meshes. For the sake of completeness, we report here the
entire algorithm: the differences with respect to [81] are highlighted in the last paragraph of this section.

The reconstruction starts from the computation of a so-called central polynomial Popt of degree M. In order to
define Popt in a robust manner, following [81, 82, 83, 84], we consider a stencil S0

i which is filled with a total number
of ne = f · M = f · L(M, d) elements, containing cell Pn

i and its neighbors

S0
i =

ne⋃
k=1

Pn
ik , (7)

with the safety factor f ≥ 1.5. Stencil S 0
i includes the current Voronoi polygon Pn

i , the first layer of Voronoi neighbors
(node neighbors of Pn

i ) denoted by V(Pn
i ), and is filled by recursively adding neighbors of elements that have been

already selected, until the desired number ne is reached. The polynomial Popt(x, tn) is then defined by imposing that its
average on each cell Pn

ik
matches the known cell average ûn

0,ik
. Since ne >M, this of course leads to an overdetermined

linear system, which is solved using a constrained least-squares technique (CLSQ) [85] as

Popt(x, tn) = argmin
p∈Pi

∑
Pn

ik
∈S0

i

ûn
0,ik −

1
|Pn

ik
|

∫
Pn

ik

p(x, tn)dx

2

, with Pi =

p ∈ PM :
1
|Pn

i |

∫
Pn

i

p(x, tn)dx = ûn
0,i

 , (8)

where PM is the set of all polynomials of degree at most M. In other words, the polynomial Popt has exactly the
cell average ûn

0,i on the polygon Pn
i and matches all the other cell averages of the remaining stencil elements in the

least-square sense. The polynomial Popt is expressed in terms of the basis functions (4) of degree M, hence

Popt(x, tn) =

M−1∑
`=0

ψ`(x, tn)p̂n
`,i, (9)

and the integrals appearing in (8) are computed in each Voronoi polygon Pn
ik

by summing the contribution of each
of its sub-triangles T ∈ T (Pn

ik
). On the sub-triangles we employ (M + 1)2 quadrature points defined by the conical

product of the one-dimensional Gauss-Jacobi formula, see [86].
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To stabilize the reconstruction operator, the CWENO algorithm makes use of other polynomials of lower degree.
Given a Voronoi polygon Pn

i with Nn
Vi

Voronoi neighborsV(Pn
i ), we construct Nn

Vi
interpolating polynomials of degree

Ms = 1 referred to as sectorial polynomials. More precisely, we consider Nn
Vi

stencils S s
i with s ∈ [1,Nn

Vi
], each of

them containing exactly n̂e = L(Ms, d) = (d+1) cells. Each S s
i includes always the central cell Pn

i and two consecutive
neighbors belonging to V(Pn

i ). An example of stencils S 0
i and S s

i for a polygon with Nn
Vi

= 5 and M = 2 is reported
in Figure 2.

Figure 2: Stencils for the CWENO reconstruction of order three (M = 2) with f = 1.5 for a pentagonal element Pn
i . Top-left: central stencil made

of the element itself Pn
i (in violet) and ne − 1 = 8 of its neighbors (in blue). In the other panels we report the Nn

Vi
= 5 sectorial stencils containing

the element itself and two consecutive neighbors belonging toV(Pn
i ).

For each stencil S s
i we compute a linear polynomial Ps(x, tn) by solving the reconstruction systems

Ps(x, tn) ∈ P1 s.t. ∀Pn
ik ∈ S s

i :
1
|Pn

ik
|

∫
Pn

ik

Ps(x, tn) dx = ûn
0,ik , (10)

which are not overdetermined and therefore have a unique solution for non-degenerate locations of the Voronoi
barycenters. Following the general framework introduced in [80], we select a set of positive coefficients λ0, . . . , λNp

such that
Nn

Vi∑
s=0

λs = 1 (11)

and we define a new polynomial

P0(x, tn) =
1
λ0

Popt(x, tn) −
Np∑
s=1

λsPs(x, tn)

 ∈ PM , (12)
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so that the linear combination of the polynomials P0, . . . ,PNn
Vi

with the coefficients λ0, . . . , λNp is equal to Popt and
conservation is ensured. Specifically, we consider the linear weights used in [87], namely λ0 = 105 for S0

i and λs = 1
for the sectorial stencils. These weights are then normalized in order to sum to unity, according to the requirement
(11). Finally, the sectorial polynomials Ps with s ∈ [1,Nn

Vi
] are nonlinearly hybridized with P0, as it is done also in

other WENO schemes [88, 89, 90]. We thus obtain wh(x, tn) in Pn
i as

wh(x, tn) =

Np∑
s=0

ωsPs(x, tn), x ∈ Pn
i , (13)

where the normalized nonlinear weights ωs are given by

ωs =
ω̃s

Nn
Vi∑

m=0
ω̃m

, with ω̃s =
λs

(σs + ε)r . (14)

In the above expression the non-normalized weights ω̃s depend on the linear weights λs and the oscillation indicators
σs with the parameters ε = 10−14 and r = 4 chosen according to [85]. Note that in smooth areas, ωs ' λs and
then whi ' Popt, so that we recover optimal accuracy. On the other hand, close to a discontinuity, P0 and some of
the low degree polynomials Ps would be oscillatory and have high oscillation indicators, leading to ωs ' 0 and in
these cases only lower order non-oscillatory data are employed in whi , guaranteeing the non-oscillatory property of
the reconstruction. The oscillation indicators σs appearing in (14) are simply given by

σs =
∑

l

(
p̂n,s

l,i

)2
. (15)

The CWENO procedure adopted in this work is similar to the one presented in [81] and it has been adapted
to Voronoi polygons and their connectivity. The needed modifications concern the computation of integrals in (8),
the number of sectorial polynomials, and the fact that basis functions are rescaled Taylor monomials referred to
the physical element and not to the reference element, hence yielding a different and very simple evaluation of the
oscillation indicators (15).

2.4. Evolution of the computational domain
At this point we have a high order spatial representation of the solution Q(x, tn) at the current time tn given by the

polynomial wn
h = wh(x, tn) of degree M. We recall that if N = M > 0 then wn

h = un
h; if instead N = 0 then wn

h is
obtained through the reconstruction procedure described in the previous Section 2.3.

By evaluating wn
h at the generator points xn

c , i.e. wn
h(xn

c , t
n) with (6), we recover the local fluid velocity v(xn

c), that
can be used to compute the new coordinates of the generator points simply as

xn+1
ci

= xn
ci

+ ∆t v(xn
ci

). (16)

Note that in our ALE formalism, the mesh can be moved with any velocity, hence it is not necessary to integrate the
above relation (16) with high order of accuracy. The Delaunay triangulation connecting the new coordinates of the
generator points xn+1

c is now recomputed, as well as the corresponding updated Voronoi tessellation. Note that the
only connection between the tessellations at time tn and tn+1 is the number NP of generator points (i.e. of Voronoi
polygons) and their global numbering. Instead, the shape of each polygon is allowed to change, i.e. Nn

Vi
, Nn+1

Vi
, and

consequently also the connectivities, i.e. for exampleV(Pn
i ) , V(Pn+1

i ).
This change of the grid topology is actually the strength of the present algorithm, since it allows to maintain a high

mesh quality without distorted elements, as depicted in Figures 7 and 8, where we show a comparison between the
results obtained by allowing topology changes and by imposing a fixed connectivity, respectively. However, more care
is needed in order to update the solution from time tn to tn+1. In particular, to obtain a high order direct ALE scheme
we need a complete knowledge of the space–time structure between the two time levels, i.e. we need to construct the
so called space–time control volumes and their space–time connectivity. We would like to underline that up to Finite
Volume schemes of order 2, one could avoid the procedure that we are going to introduce (see [1, 62]), but starting
from order 3 it is essential.
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2.5. Space–time connectivity
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tn+1

1
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(a)
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tn+1

P n
i

P n+1
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Cn
i

(b)

tn

tn+1
sCn

ij

T n
ij

T n+1
ij

(c)

Figure 3: Space time connectivity without topology changes. (a) The tessellation at time tn and time tn+1. (b) Pn
i is connected with Pn+1

i to construct
the space–time control volume Cn

i . (c) The sub-triangle T n
i j

is connected with T n+1
i j

to construct the sub–space–time control volume sCn
i j

.

For the sake of clarity, let us first consider the simple case in which no topology changes have occurred between tn

and tn+1, i.e. Nn
Vi

= Nn+1
Vi

andV(Pn
i ) = V(Pn+1

i ), as illustrated in Figure 3. Here, the space–time control volume Cn
i is

easily obtained by connecting each node of the polygon Pn
i via straight line segments with the corresponding node of

Pn+1
i . Moreover, each sub–triangle T n

i j
∈ T (Pn

i ) is connected with the corresponding T n+1
i j
∈ T (Pn+1

i ) obtaining a sub–
space–time control volume, denoted by sCn

i j
in the following, which has the form of an oblique prism in space–time,

with triangular faces on the bottom (tn) and the top (tn+1).
We underline that each space–time element Cn

i is given by a volume that is closed by the polygon Pn
i at time tn, the

polygon Pn+1
i at tn+1 and by the lateral space-time faces ∂Cn

i j
j = 1, . . . ,Nn,st

Vi
which are quadrilaterals in space–time

and represent the time evolution of the edges en
i j
∈ E(Pn

i ). Here, Nn,st
Vi

= Nn
Vi

= Nn+1
Vi

denotes the number of space–time
neighbors of Cn

i . The total surface of Cn
i is denoted with ∂Cn

i

∂Cn
i =

Nn,st
Vi⋃

j=1

∂Cn
i j
∪ Pn

i ∪ Pn+1
i . (17)

Technical details 1. We recall that the node numbering (i.e. the numbering of the blue points in Figure 3) could
be in principle different at the two time levels so the correspondence between the nodes at time level tn and tn+1 is
not obvious. Nevertheless, it can be recovered from the numbering of the Voronoi neighbors V(Pn/n+1

i ) that on the
contrary remains the same. Therefore, we loop over V(Pn/n+1

i ), we find the edges en/n+1
i j

shared between V(Pn/n+1
i j

)

and Pn/n+1
i , and we put in correspondence their end points, so that the space–time control volume Cn

i can be defined.
Besides, the surface obtained by connecting the end points of en

i j
and en+1

i j
is noted as ∂Cn

i j
, see Figure 6b. �

Let us now consider Pn
i and Pn+1

i in the case Nn
Vi
, Nn+1

Vi
. Now, the space–time connection between them induces

the appearance of degenerate elements of two types: (i) degenerate sub–space–time control volumes sCn
i j

, where either
their top or bottom faces are degenerate triangles that are collapsed just to a line, see Figures 4b-4c; (ii) and also sliver
space–time elements, see Figure 4d. Technical details on their construction (intended for the reader interested in
reproducing the algorithm) are reported in the following paragraph. The main characteristics of this kind of elements
are described in next Section 2.6.

Technical details 2. First, we orderV(Pn
i ) andV(Pn+1

i ) starting from the first common neighbor (evidences that this
choice does not affect the results are shown in Table 3). Then, we merge the two set of neighbors to compute V(Cn

i )
which, in this case, does not coincide neither withV(Pn

i ) nor withV(Pn+1
i ). V(Cn

i ) contains all the polygons ofV(Pn
i )
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and V(Pn+1
i ) counted once (i.e. without multiple entries) and counterclockwise ordered respecting the order of both

V(Pn
i ) andV(Pn+1

i ). It represents the set of Nn,st
Vi

space–time neighbors of Cn
i .

Next, we have to find the node connections in order to build Cn
i , which are not obviously determined and are

recovered fromV(Cn
i ). We loop on Pi j ∈ V(Cn

i ) and proceed as follows:

I. If Pi j belongs both to V(Pn
i ) and to V(Pn+1

i ), the node connection procedure falls into the previous one, and a
standard sCn

i j
and ∂Cn

i j
can be recovered by connecting the end points of the edges shared between Pn

i − Pn
i j

and
Pn+1

i −Pn+1
i j

. Referring to Pn
3 depicted in Figure 4, we could fix as first common neighbor Pn

1 because Pn
1 ∈ V(Pn

3)
and Pn

1 ∈ V(Pn+1
3 ): nodes 21 − 55 and 22 − 56 can be easily connected.

II. If Pi j ∈ V(Pn
i ) but Pi j < V(Pn+1

i ), then the end points of the edge shared between Pn
i − Pn

i j
will be connected

to a unique node at time tn+1, namely the top node which is common to Pi j−1 and Pi j+1 at time tn+1. Referring to
Figure 4, both nodes 22 and 23 will be connected with node 56. In this case , ∂Cn

i j
is degenerate: it does not

have a rectangular shape but a triangular one. Also sCn
i j

is degenerate because its top face is just given by a line
connecting the barycenter of Pn+1

i with the common top node (node 56 in Figure 4).

III. If Pi j ∈ V(Pn+1
i ) but Pi j < V(Pn

i ), then the end points of the edge shared between Pn+1
i − Pn+1

i j
will be connected

to a unique node ad time tn, namely the bottom node which is common to Pi j−1 and Pi j+1 at time tn. Referring to
Pn

4 shown in Figure 4, both nodes 56 and 60 will be connected with node 23. As in the previous case, ∂Cn
i j

has a
degenerate triangular shape and also sCn

i j
is degenerate because its bottom face is just given by a line connecting

the barycenter of Pn
i with the common bottom node (node 23 in Figure 4). �

Note that when a change of topology occurs in a Voronoi polygon, the same happens to three of its neighbors and
a total of four degenerate sub–space–time control volumes will be originated, two of type (II) and two of type (III),
refer to Figures 4b-4c. Moreover, a void is left between them: to fill it and recover a fully conservative discretization,
we insert a new element called space–time sliver element, depicted in Figure 4d, whose bottom and top faces just
coincide with an edge of the tessellation at time tn and tn+1, respectively. We denote this kind of element with S n

i , its
total lateral surface with ∂S n

i and each of the four lateral faces with ∂S n
i j
, j = 1, . . . , 4.

Technical details 3. The nodes of a sliver element are given by the end points of those edges that flip between the
two time steps and are ordered in such a way that the volume of S n

i is positive. Let us consider case (II) in which
Pi j ∈ V(Pn

i ) but Pi j < V(Pn+1
i ): the edge between Pn

i − Pn
i j

is taken as bottom face for the sliver. Then, we loop over
the edges outgoing from the common top node: two of them belong to Pn+1

i , the third one will be taken as top face of
the sliver element. If that edge connects Pn+1

i → Pn+1
i j

then one sliver element is enough to fill the space–time hole left
from the topology change.

If this is not the case, as illustrated in Figures 5b-5d, more consecutive sliver elements will be necessary to fill
the space–time holes. These consecutive sliver elements have the bottom face in common, given by the edge between
Pn

i − Pn
i j

, and the top faces given respectively by the edges composing the path connecting Pn+1
i → Pn+1

i j
. A similar

procedure is employed for situations depicted in Figures 5a-5c, corresponding to case (III). We allow a maximum of
three consecutive sliver elements. �

Two problems can arise while assembling the space–time connectivity: V(Cn
i ) could be not sortable respecting

both the order ofV(Pn
i ) andV(Pn+1

i ), or more than three sliver elements could be necessary to complete the connection
path. In this case a MOOD [91, 92] procedure described in Section 3.4 will be adopted.

2.6. Degenerate sub–space–time control volumes and sliver space–time elements
The change of topology induces the appearance of degenerate elements in the space–time connectivity.
As is evident from Figures 4b-4c, some of the sub–space–time control volumes sCn

i j
of Cn

i , are triangular prisms
with one of their top or bottom faces collapsed to just a line, and with the lateral space–time surface ∂Cn

i j
being of

triangular shape (instead of the standard quadrilateral shape). They do not pose particular problems because they are
part of a standard control volume, so everything is naturally well defined on them (basis functions, quadrature points,
values of un

h, wn
h, qn

h).
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Figure 4: Space time connectivity with topology changes, degenerate sub–space–time control volumes and sliver element. Panel (a): at time tn

the polygons Pn
2 and Pn

3 are neighbors and share the highlighted edge, instead at time tn+1 they do not touch each other; the opposite situation
occurs for polygons Pn

1 and Pn
4. This change of topology causes the appearance of degenerate elements of different types. The first type is given by

degenerate sub–space–time control volumes colored in violet in Panels (b) and (c). The second type of degenerate elements are called space–time
sliver elements, an example is colored in magenta in Panel (d). The sub–space–time control volumes of Panels (b) and (c) are triangular prisms with
one of their faces collapsed to just a line: they do not pose particular problems because they are part of a standard control volume, so everything
is naturally well defined on them (basis functions, quadrature points, values of un

h,w
n
h,q

n
h). On the contrary, the sliver element in panel (d) is a

completely new control volume which does neither exist at time tn, nor at time tn+1, since it coincides with an edge of the tessellation and, as such,
has zero areas in space. However, it has a non-negligible volume in space–time. The difficulties associated to this kind of element are due to the
fact that wh is not clearly defined for it at time tn and that contributions across it should not be lost at time tn+1 in order to guarantee conservation.
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Figure 5: Consecutive space–time sliver elements. Refer for example to Panel (d): Pn
3 and Pn

7 are neighbors at time tn but this is no longer the case
at time tn+1 and moreover Pn+1

4 , Pn+1
5 , Pn+1

6 and Pn+1
8 are among them; this complex change of topology causes the appearance of 3 space–time

sliver elements. A similar situation with 3 space–time sliver elements is depicted in Panel (c). In Panels (a) and (b) we show a change of topology
with 2 space–time sliver elements.
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On the contrary, the space–time sliver element in Figure 4d is a completely new control volume which does neither
exist at time tn, nor at time tn+1, since it coincides with an edge of the tessellation at the old and at the new time levels,
and, as such, has zero area in space at tn and tn+1. However, it has a non-negligible volume in space–time. The
difficulties related to this kind of elements are due to the fact that wh is not clearly defined for them at time tn and that
contributions across them should not be lost at time tn+1, in order to ensure conservation. Space–time sliver elements
always have four neighbors, namely the two Voronoi polygons that share their degenerate bottom face (edge) and the
two Voronoi polygons that share their degenerate top face (edge).

Note that the computation of numerical fluxes across degenerate triangular space–time faces has already been
treated in [53]. In the same paper a proof of concept was given, that situations like those shown in Figures 4b-4c could
be handled up to second order of accuracy. Instead, the treatment of sliver elements is a completely new topic.

3. Numerical method II: high order fully-discrete direct ALE FV-DG scheme

The governing equations (1) are now solved with the aid of a high order fully-discrete one-step predictor-corrector
ADER FV-DG method obtained by generalizing the scheme first presented in [69] to our regenerating moving geom-
etry. ADER finite volume schemes go back to the pioneering work of Toro and Titarev [93, 94, 95, 96, 97] on
approximate solvers of the generalized Riemann problem (GPR) and have been successfully developed and applied
to the Eulerian framework on fixed grids also in [98, 99] and subsequently extended to moving meshes in the ALE
context [57, 2, 52, 100].

We recall that high order of accuracy in space is provided by the polynomial data representation wn
h, which for

N = M > 0 coincides with the DG polynomial, i.e. wn
h = un

h, while, in the Finite Volume case (N = 0), wn
h is

obtained through the reconstruction procedure described in Section 2.3. In any case, wn
h only depends on the mesh

configuration at time tn, so that an eventual degeneracy of the space–time geometry does not affect this first step.
Then, the predictor step consists in a local solution of the governing PDE (1) in the small, see [101], inside

each space-time element Cn
i , thus including the sliver elements S n

i . It is called local because it is obtained by only
considering cell Cn

i with initial data wn
h on Pn

i , the governing equations (1) and the geometry of Cn
i , without taking

into account any interaction between Cn
i and its neighbors. It provides, for each space–time control volume Cn

i , a
polynomial data representation qn

h (see below for the details) of high order both in space and time, which serves as a
predictor solution, only valid inside Cn

i , to be used for evaluating the numerical fluxes and sources when integrating
the PDE in the final corrector step of the ADER scheme.

Lastly, the corrector step integrates the weak form of the PDE over the space-time control volumes Cn
i , making use

of the predictor solution qn
h, and returns un+1

h by taking care of the coupling with neighbors through the numerical flux
computations across ∂Cn

i . It ensures high order of accuracy in space and time, provided the high order of accuracy
of qn

h. The scheme is by construction conservative since it takes into account all the flux contributions over ∂Cn
i ,

including those across the sliver elements (see Section 3.2.2). Moreover, the method is stable if the time-step size ∆t
satisfies an explicit CFL stability condition, which reads

∆t < CFL

 |Pn
i |

(2N + 1) |λmax,i|
∑
∂Pn

i j
|`i j |

 , ∀Pn
i ∈ Ωn. (18)

In the above formula, `i j is the length of the edge j of Pn
i and |λmax,i| is the spectral radius of the Jacobian of the flux

F. On unstructured meshes the CFL stability condition requires the inequality CFL < 1
d to be satisfied, see [69].

3.1. High order in time: space–time predictor

In what follows, a predictor of the solution is recovered, which is valid locally inside Cn
i and is given by high order

piecewise space-time polynomials qn
h(x, t) of degree M that are expressed as

qn
h(x, t) =

Q−1∑
`=0

θ`(x, t)q̂n
` , (x, t) ∈ Cn

i , Q = L(M, d + 1). (19)
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with θ`(x, t) being a modal space–time basis of the polynomials of degree M in d + 1 dimensions (d space dimensions
plus time), which read

θ`(x, y, t)|Cn
i

=
(x − xn

bi
)p`

p`! hp`
i

(y − yn
bi

)q`

q`! hq`
i

(t − tn)q`

q`! hq`
i

, ` = 0, . . . ,L(M, d + 1), 0 ≤ p` + q` + r` ≤ M. (20)

The predictor qn
h is computed through an iterative procedure that looks for the polynomial satisfying a weak form

of (1) obtained for any control volume Cn
i as follows. We multiply the governing PDE (1), evaluated on qn

h, by a test
function θk and we integrate over Cn

i , hence∫
Cn

i

θk(x, t)
∂qn

h

∂t
dxdt +

∫
Cn

i

θk(x, t)∇ · F(qn
h) dxdt =

∫
Cn

i

θk(x, t) S(qn
h) dxdt. (21)

Differently from what has been proposed in [69, 98, 56, 2], here we do not integrate the first term in (21) by parts
in time. Instead, we take into account potential jumps of qh on the boundaries of Cn

i in the sense of distributions,
combined with upwinding of the fluxes in time. This approach is similar to the path-conservative schemes proposed
in [102, 103, 104], but much simpler, since the test functions are only taken from within Cn

i and there is no need to
define a non-conservative product on ∂Cn

i . Therefore, the integral containing the time derivative in (21) is rewritten as∫
Cn

i

θk(x, t)
∂qn

h

∂t
dxdt =

∫
Cn

i \∂Cn
i

θk(x, t)
∂qn

h

∂t
dxdt +

∫
∂Cn

i

θk(x, t)
(
qn,+

h − qn,−
h

)
ñ−t dS . (22)

Here, qn,−
h and qn,+

h denote the boundary-extrapolated inner and outer states across the jump on ∂Cn
i . Furthermore, ñ−

are only those outward pointing unit-normal vectors on ∂Cn
i that point back in time and ñ−t is their time component,

i.e. ñ−t = min(0, ñ · (0, 0, 1)) ≤ 0. Upwinding in time is therefore automatically guaranteed, since we only consider the
contributions coming from the past, according to the causality principle. In other words, only time fluxes that enter
the space–time control volume Cn

i contribute to the jump term in (22), and they are easily identified by checking the
sign of the time component of the space–time normal vector ñ.

3.1.1. Space–time predictor on standard space–time elements
For standard elements, we apply the jump term only on the bottom surface Pn

i of the space–time element Cn
i under

consideration, where it then simplifies to(
qn,+

h − qn,−
h

)
ñ−t

∣∣∣∣
Pn

i

= −
(
wn

h(x, tn) − qn
h(x, tn)

)
= qn

h(x, tn) − wn
h(x, tn), (23)

with qn,+
h = wh(x, tn) being simply given by the reconstruction polynomial at time tn and obviously ñ− = (0, 0,−1) on

Pn
i and thus ñ−t = −1. In this case, (22) reduces to∫

Cn
i

θk(x, t)
∂qn

h

∂t
dxdt =

∫
Cn

i \P
n
i

θk(x, t)
∂qn

h

∂t
dxdt +

∫
Pn

i

θk(x, tn)
(
qn

h(x, tn) − wh(x, tn)
)

dx (24)

for standard space–time elements. The reason for this choice is that in this manner, all space–time predictors of the
standard elements are decoupled from each other, since they only require the initial data wn

h and no information from
the neighbor elements. This will not be the case for sliver elements, for which we do not have any reconstruction
polynomial available at tn. If we considered the jump terms also on lateral surfaces of standard space–time elements,
the space–time predictors would no longer be independent of each other, since our mesh is moving and there will be
in general always a non–empty subset of ∂Cn

i with ñ−t < 0. This would require a proper ordering of the execution
sequence of the space–time predictors on the standard elements, but this is something we want to avoid. With the
following definitions

K1 =

∫
Cn

i \P
n
i

θk
∂θ`
∂t

dxdt, Kx =

∫
Cn

i

θk
∂θ`
∂x

dxdt, Ky =

∫
Cn

i

θk
∂θ`
∂y

dxdt,

M =

∫
Cn

i

θkθ` dxdt, F0 =

∫
Pn

i

θk(x, tn)ψ`(x, tn) dx, F1 =

∫
Pn

i

θk(x, tn)θ`(x, tn) dx, (25)
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Figure 6: Space–time quadrature points for third order methods, i.e. M = 2. (a) Quadrature points for the volume integrals and the space–
time predictor. (b) Quadrature points for the surface integrals, i.e. for flux computation. (c) Quadrature points for the volume integrals and the
space–time predictor for a sliver element.

the weak form (21)-(22) can be compactly rewritten as

(K1 + F1) q̂n
i = F0ŵn

i −Kx f(q̂n
i ) −Ky g(q̂n

i ) + M S(q̂n
i ), (26)

where q̂n
i and ŵn

i contain all the expansion coefficients of q̂n
`,i in (19) and ŵn

`,i in (6), respectively. The solution of (26)
can be found via a simple and fast converging fixed point iteration (a discrete Picard iteration), as detailed in [69, 105].
Here, as initial guess we simply impose q̂n

`,i = ŵn
`,i for the common spatial degrees of freedom (with ` ≤ M) and zero

for the other ones. For linear homogeneous systems, the discrete Picard iteration converges in a finite number of at
most M+1 steps, since the involved iteration matrix is nilpotent, see [106]. In the nonlinear case we allow a maximum
of 10 iterations if convergence is not reached before, being M + 1 iterations enough for obtaining the correct order M
of convergence.

Notice again that in (24) and therefore in (26) we have considered only one jump term, namely the contribution
coming from the past through the bottom face Pn

i of Cn
i , where wn

h = wh(x, tn) is known and well defined. This allows
us to couple (21) with the initial condition wh(x, tn)|Pn

i
via (24). No other information (as neighbors values) is taken

into account in this local phase. Indeed, neighbor data will be considered later in the corrector step (Section 3.2).
The integrals above are evaluated using multidimensional Gaussian quadrature rules of suitable order of accuracy,

see [86] and Figure 6 for details. In order to carry out the integration, we split the space-time volume Cn
i into a set of

sub–space-time volume sCn
i j

of Cn
i , whose shape is an oblique triangular prism. Note that for degenerate sub–space–

time control volumes, as those of Figures 4b and 4c, the above quadrature formulae remain well defined, hence the
predictor procedure over them does not pose any problem and does not need any adaptation.

We emphasize that we first carry out the space–time predictor for all standard elements, which can be computed
independently of each other, and only subsequently process the remaining space–time sliver elements. The reason for
this will become clear in the next section.

3.1.2. Space–time predictor on the space–time sliver elements
The predictor procedure on space–time sliver elements, as those shown in Figures 4d and 5, needs particular care.

The main problem connected with the space–time sliver elements is the fact that their bottom face is degenerate and
consists only in a line segment, hence the spatial integral over Pn

i vanishes, i.e. there is no possibility to introduce the
initial condition of the local Cauchy problem at time tn into the predictor for space–time sliver elements.

Furthermore, the degenerate bottom faces are the edges of the Voronoi tesselation at tn and are thus at the interface
between two adjacent elements, which have in principle a discontinuous solution wn

h. Therefore, an initial value for a
sliver element is in general not easy to define. Thus, in order to couple (21) with some known data from the past we
have to slightly modify the algorithm detailed previously.
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In particular, the upwinding in time approach is not only used for the surface Pn
i , as done in (23), but we actually

use the jump terms on the entire part of the space–time surface ∂Cn
i that closes a sliver control volume. As already

stated in the previous section, the information needed to feed the predictor is allowed to come only from the past, i.e.
only from those space–time neighbors Cn

j whose common surface ∂Cn
i j = Cn

i ∩Cn
j exhibits a negative time component

of the outward pointing space–time normal vector (ñ−t < 0). In this way, we can introduce information from the
past into the space–time sliver elements by considering also its neighbor elements, but respecting at the same time
the causality principle in time, hence using again upwinding for the flux evaluation of the jump term in (22). As a
consequence, the predictor solution qn

h is again obtained by means of (21), but treating the entire space–time surface
∂Cn

i with the upwind in time approach, hence leading to(
K∗1 − F∗1

)
q̂n

i = −
∑

j

F∗j q̂n
j −K∗x f(q̂n

i ) −K∗y g(q̂n
i ) + M∗ S(q̂n

i ), (27)

where the following definitions for the sliver element hold

K∗1 =

∫
Cn

i \∂Cn
i

θk
∂θ`
∂t

dxdt, K∗x =

∫
Cn

i

θk
∂θ`
∂x

dxdt, K∗y =

∫
Cn

i

θk
∂θ`
∂y

dxdt,

M∗ =

∫
S n

i

θkθ` dxdt, F∗1 =

∫
∂Cn

i

θkθ` ñ−t dS , F∗j =

∫
∂Cn

i j

θkθ` ñ−t dS . (28)

This is slightly different from what is done for standard elements in (26), where only the space–time surface at time
tn, i.e. Pn

i , is considered for introducing the initial condition wn
h. Here, the information from the past comes through

the upwind fluxes contained in the term F∗j q̂n
j in (27) and thus requires the knowledge of the predictor solution q̂n

j
in the neighbor Cn

j . This is the reason why the predictor step must first be performed over all the standard elements
using (26), so that the predictor solution qn

h is always available to feed the temporal fluxes with the quantities q̂n
j that

are needed for solving (27) in the case of the space–time sliver elements. We underline again that a space–time sliver
element has always four standard Voronoi elements as neighbors This closes the description of the predictor step for
the space–time sliver elements.

3.2. Corrector step: direct ALE FV-DG scheme

This section contains the core of our direct ALE FV-DG scheme used to solve (1) on regenerating moving meshes.
Following [56, 2, 100], the PDE system (1) is rewritten in a space-time divergence form as

∇̃ · F̃ = S, (29)

with ∇̃ =
(
∂x, ∂y, ∂t

)
denoting the space-time divergence operator and F̃ = (f, g, Q) being the corresponding space-

time flux tensor. Then, we multiply (29) by a set of moving spatial modal test functions ϕ̃k(x, t), which coincide with
(4) at t = tn and at t = tn+1, i.e. ϕ̃k(x, tn) = ϕk(x, tn) and ϕ̃k(x, tn+1) = ϕk(x, tn+1). The test functions are tied to the
motion of the barycenter xbi (t) and move together with Pi(t) in such a way that at time t = tn+1 they refer to the new
barycenter xn+1

bi
. Thus, the test functions explicitly read as follows:

ϕ̃`(x, y, t)|Cn
i

=
(x − xbi (t))

p`

p`! hp`
i

(y − ybi (t))
q`

q`! hq`
i

, with xbi (t) =
t − tn

∆t
xn

bi
+

(
1 −

t − tn

∆t

)
xn+1

bi
, (30)

` = 0, . . . ,N , 0 ≤ p + q ≤ N.

These moving modal basis functions are essential for the approach presented in this paper. They naturally allow for
topology changes, without the need of any remapping steps, which we want to avoid in a direct ALE formulation.

Next, integration over the closed space-time control volume Cn
i yields∫

Cn
i

ϕ̃k∇̃ · F̃(Q) dxdt =

∫
Cn

i

ϕ̃kS(Q) dxdt. (31)
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Application of the Gauss theorem leads to the following weak form that is the basis of our fully-discrete ALE scheme∫
∂Cn

i

ϕ̃kF̃(Q) · ñ dS −
∫

Cn
i

∇̃ϕ̃k · F̃(Q) dxdt =

∫
Cn

i

ϕ̃kS(Q) dxdt, (32)

where ñ = (ñx, ñy, ñt) denotes the outward pointing space-time unit normal vector on the space-time faces composing
the boundary ∂Cn

i of the space-time control volume. Moreover, the surface integral can be decomposed over the faces
of ∂Cn

i given by (17).

3.2.1. Corrector step for standard space–time elements
We first describe the corrector step for standard space–time control volumes. After introducing the discrete solu-

tion uh, the space–time predictor qh and a two-point numerical flux function on the element boundaries of the type

F̃(Q) · ñ := F (qn,−
h ,qn,+

h ) · ñ, (33)

into (32), where qn,−
h and qn,+

h are the inner and outer boundary-extrapolated data, respectively, we obtain the final
direct ALE scheme:

∫
Pn+1

i

ϕ̃kuh(x, tn+1) dx =

∫
Pn

i

ϕ̃kuh(x, tn) dx−
Nn,st

Vi∑
j=1

∫
∂Cn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
Cn

i

∇̃ϕ̃k · F̃(qh) dxdt +

∫
Cn

i

ϕ̃kS(qh) dxdt, (34)

where the unknown solution at the new time step uh(x, tn+1) can be computed directly from the solution at the pre-
vious time step uh(x, tn) through the integration of the fluxes and source terms over Cn

i , without needing any further
remapping/remeshing steps.

Our scheme is high order accurate in space and time because the predictor solution qn
h, which is given by piecewise

space–time polynomials of degree M, is employed for a high order accurate space-time integration of all remaining
terms in (34), namely the numerical surface flux integral on ∂Cn

i j
and the volume integrals on Cn

i for the fluxes and the
source terms.

The boundary fluxes are obtained by a Riemann solver, thus providing the coupling between neighbors, which
was neglected in the predictor step. The ALE Jacobian matrix w.r.t. the normal direction in space reads

AV
n(Q) =

(√
ñ2

x + ñ2
y

) [
∂F
∂Q
· n − (V · n) I

]
, n =

(ñx, ñy)T√
ñ2

x + ñ2
y

, (35)

with I representing the identity matrix and V ·n denoting the local normal mesh velocity. Furthermore, n is the spatial
normalized normal vector, which is different from the space-time normal vector ñ. We adopt either a simple and
robust Rusanov-type [107] ALE scheme,

F (qn,−
h ,qn,+

h ) · ñ =
1
2

(
F̃(qn,+

h ) + F̃(qn,−
h )

)
· ñi j −

1
2

smax

(
qn,+

h − qn,−
h

)
, (36)

where smax is the maximum eigenvalue of AV
n(qn,+

h ) and AV
n(qn,−

h ), or a less dissipative Osher-type [108, 109] ALE flux

F (qn,−
h ,qn,+

h ) · ñ =
1
2

(
F̃(qn,+

h ) + F̃(qn,−
h )

)
· ñi j −

1
2

(∫ 1

0

∣∣∣AV
n(Ψ(s))

∣∣∣ ds
) (

qn,+
h − qn,−

h

)
, (37)

where we choose to connect the left and the right state across the discontinuity using a simple straight–line segment
path

Ψ(s) = qn,−
h + s

(
qn,+

h − qn,−
h

)
, 0 ≤ s ≤ 1. (38)

The absolute value of AV
n is evaluated as usual as R|Λ|R−1, where R, R−1 and Λ denote, respectively, the right

eigenvector matrix, its inverse and the eigenvalues matrix of AV
n.

17



Finally, using the definitions (2) and (6), our arbitrary high order one-step direct ALE FV-DG scheme becomes

∫
Pn+1

i

ϕ̃kϕ` dx
 ûn+1

` =

∫
Pn

i

ϕ̃kψ` dx
 ŵn

` −

Nn,st
Vi∑

j=1

∫
∂Cn

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
Cn

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
Cn

i

ϕ̃kS(qn
h)dxdt. (39)

The volume integrals in the above expression (39) can be easily computed directly on the physical space-time element
Cn

i by summing up the contributions on each sub-volume sCn
i j

and employing Gaussian quadrature rules of sufficient
precision, see [86]. The lateral space–time surfaces of ∂Cn

i j instead are parameterized using a set of bilinear basis
functions [56], that is

∂Cn
i j = x̃ (χ, τ) =

4∑
k=1

βk(χ, τ) X̃n
i j,k, 0 ≤ χ ≤ 1, 0 ≤ τ ≤ 1, (40)

where the X̃n
i j,k represent the physical space–time coordinates of the four vertexes of ∂Cn

i j
, and the functions βk(χ, τ)

are defined as follows

β1(χ, τ) = (1 − χ)(1 − τ), β2(χ, τ) = χ(1 − τ), β3(χ, τ) = χτ, β4(χ, τ) = (1 − χ)τ. (41)

The mapping in time is given by the transformation

t = tn + τ∆t, τ =
t − tn

∆t
. (42)

In this way, every ∂Cn
i j

(even if degenerate, i.e. with a triangular shape) can be mapped to a reference square [0, 1] ×
[0, 1] and surface integrals can be computed.

We close this section remarking that the integration of the governing PDE over the space-time volume Cn
i auto-

matically satisfies the geometric conservation law (GCL) for all test functions ϕ̃k. This simply follows from Gauss
theorem applied to closed space–time control volumes and we refer to [2] for a complete proof.

3.2.2. Corrector step on sliver elements
Let us now consider the numerical scheme given by (39) in the case of a sliver element Cn

i = S n
i :

0` ûn+1
` = 0`ŵn

` −

4∑
j=1

∫
∂S n

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
S n

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
S n

i

ϕ̃kS(qn
h)dxdt, (43)

Since for sliver elements |Pn
i | = |P

n+1
i | = 0, the first two terms vanish. However, since the method is explicit and qn

h
only depends on information coming from the past, the remaining terms in (43) are in general not equal to zero, i.e.

−

4∑
j=1

∫
∂S n

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
S n

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
S n

i

ϕ̃kS(qn
h)dxdt , 0. (44)

We underline that computing these quantities does not pose any problem, since qn
h on S n

i is well defined (refer to
Section 3.1.2), and the shape of a space–time sliver element is that of a tetrahedron in space–time, hence allowing
standard quadrature rules to be used for integral evaluations.

The problem here arises from the fact that, using (43), the non-null quantity (44) will be lost at time tn+1 because it
plays a role only in the evolution of S n

i , which exists between tn and tn+1, but is null at tn+1. In order to be conservative,
we must avoid losing any contribution from the sliver elements. We therefore couple the weak formulation on S n

i with
the weak form of one of its standard space–time neighbors. Here, we always choose the one with the biggest space–
time volume, referred to as Cbig. The choice of the biggest volume is not mandatory, it only represents our way to
uniquely fix the choice of a particular neighbor of the sliver element. The test function ϕ̃k of (43) is then referred
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to the barycenter of Cbig. Conservation is guaranteed by adding the contribution (44) of the sliver element S n
i to the

neighbor Cbig, hence

∫
Pn+1

big

ϕ̃kϕ` dx
 ûn+1

` =

∫
Pn

big

ϕ̃kψ` dx
 ŵn

` −

Nn,st
Cbig∑
j=1

∫
∂Cn

big j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
Cn

big

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
Cn

big

ϕ̃kS(qn
h)dxdt

+

4∑
j=1

∫
∂S n

i j

ϕ̃kF (qn,−
h ,qn,+

h ) · ñ dS +

∫
S n

i

∇̃ϕ̃k · F̃(qn
h) dxdt +

∫
S n

i

ϕ̃kS(qn
h)dxdt.

(45)
We would like to remark that sliver elements only exist in between two consecutive time levels and are degenerate

both at tn and tn+1, hence they introduce some complexity in the algorithm. In particular, i) the fact that they coincide
with an edge at time tn makes it difficult to fix a valid initial condition in the predictor step necessary for the high
order of accuracy in time, and ii) the fact that they coincide with an edge at time tn+1 could prevent conservation in
an explicit scheme. Nevertheless, with the strategy outlined in Sections 3.1.2 and 3.2.2, no space-time contributions
are lost while advancing the numerical solution in time, i.e. our proposed ADER ALE FV-DG schemes are fully
conservative and keep their formal high order of accuracy even in the presence of space–time sliver elements.

Furthermore, notice that the presence of degenerate elements is strictly unavoidable in order to connect meshes
in space and time that include topology changes. They are also needed to collect enough geometrical information
for ensuring high order of accuracy in a direct ALE framework. For comparison purposes, let us consider the work
presented in [110], where the authors, in order to connect meshes with topology changes (within a different framework
w.r.t. this work), have introduced some pyramidal degenerate elements instead of our sliver elements. The strategy
proposed in the aforementioned reference is indeed interesting and could in principle be applied also to the framework
of our explicit high order direct ALE schemes. However, besides the same complexities described for our sliver
elements, an additional difficulty would arise, since a degeneracy would occur at the midpoint of the time step.

3.3. A posteriori sub–cell finite volume limiter
Up to now, the presented PN PM scheme is high order accurate in space and time and, formally, the differences

between the FV case (N = 0) and the DG case (N = M) are only due to the procedure for achieving high order of
accuracy in space, which is obtained through a CWENO reconstruction in the FV case and is instead automatic for
DG. But there is actually one major difference, because the CWENO operator provides a nonlinear stabilization of
the FV scheme, while the DG scheme presented so far is unlimited and, as such, it is affected by the so-called Gibbs
phenomenon, i.e. oscillations are likely to appear in presence of shock waves or other discontinuities, which typi-
cally occur while solving nonlinear hyperbolic systems. These oscillations could be explained also by the Godunov
theorem [76], because the presented high order DG scheme is linear in the sense of Godunov.

As a consequence, a limiting technique is required. Our strategy is based on the MOOD approach [111, 112,
113], which has already been successfully applied in the framework of ADER finite volume schemes [114, 115, 92].
Specifically, the numerical solution is checked a posteriori for nonphysical values and spurious oscillations and,
instead of applying a limiter to the already computed solution, the solution is locally recomputed with a more robust
scheme in the so-called troubled cells. Troubled elements are those that do not pass the admissibility detection criteria,
given by both physical and numerical requirements which mark the numerical solution as acceptable or not acceptable.
If the solution in a cell is discarded, it is recomputed relying on a first order finite volume method applied to a fine
sub-grid generated within each troubled cell. A second order TVD scheme has been used as limiter in [116, 3, 117],
while higher order ADER-WENO subcell finite volume limiters are presented in [118, 119, 120, 121, 122].

We refer to the aforementioned references for an exhaustive description of the a posteriori finite volume subcell
limiter. Here, for the sake of clarity, we briefly recall the main concepts and we underline the differences introduced
for dealing with moving Voronoi elements and topology changes.

Firstly, using the notation adopted in [3], the numerical solution computed so far is assumed to be a candidate
solution and denoted with un+1,∗

h (x, tn+1). Then, we define a sub-triangulation of Pn
i made of a set of non-overlapping

so called small sub-triangles. Consequently, each control volume Cn
i is split into sub-triangular prisms, called small

sub-volumes, as follows.
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• For N = 1 we consider a total number of small sub-triangles Si which is equal to Nn
Ci

, i.e. Si = Nn
Ci

. The small
sub-triangles are given by T n

i j
and the associated small sub-volumes are sCn

i j
, as defined in Section 2.5.

• If a topology change happens with N = 1, i.e. V(Pn
i ) , V(Pn+1

i ), degenerate small sub-triangles/sub-volumes
are considered as well, thus including also sub-triangles which can be given by a line.

• For N ≥ 2 we further subdivide each T n
i j

into N2 small sub-triangles, which are defined through the sub-nodes
provided by standard nodes of classical high order conforming finite elements on triangular meshes. In this way,
a total number of Si = Nn

Ci
· N2 small sub-triangles is taken into account. The splitting of sCn

i j
is consequently

defined.

• Even in the case N ≥ 2, degenerate sub-triangles/sub-volumes are counted if a topology change happens, i.e.
V(Pn

i ) , V(Pn+1
i ). This results in small sub-triangles which may be given by a portion of a line.

We denote each small sub-triangle of Pn
i with sn

i,α, where α ∈ [1,Si]. Next, we define the corresponding subcell
average of the numerical solution at time tn

vn
i,α(x, tn) =

1
|sn

i,α|

∫
sn

i,α

un
h(x, tn) dx =

1
|sn

i,α|

∫
sn

i,α

ϕ`(x) dx ûn
l := P(un

h) ∀α ∈ [1,Si], (46)

where |sn
i,α| denotes the volume of subcell sn

i,α of element Pn
i and the definition P(uh) is the L2 projection operator. We

fix also the candidate subcell average of the numerical solution at time tn+1 as vn+1,∗
i,α (x, tn+1) = P(un+1,∗

h ).
Now, we mark the troubled cells. The candidate solution vn+1,∗

h (x, tn+1) is checked against a set of detection criteria.
According to [3], the first criterion is the requirement that the computed solution is physically acceptable, i.e. belongs
to the phase space of the conservation law being solved. For instance, if the compressible Euler equations for gas
dynamics are considered, density and pressure should be positive and in practice we require that they are greater than
a prescribed tolerance ε = 10−12. Then, a relaxed discrete maximum principle (DMP) is applied, hence we verify

min
m∈V(Cn

i )

(
min

β∈[1,Sm]
(vn

m,β )
)
− δ ≤ vn+1,∗

i,α ≤ max
m∈V(Cn

i )

(
max

β∈[1,Sm]
(vn

m,β )
)

+ δ ∀α ∈ [1,Si], (47)

where δ is a parameter which, according to [3, 118, 119], reads

δ = max
(
δ0 , ε ·

[
max

m∈V(Cn
i )

(
max

β∈[1,Sm]
(vn

m,β )
)
− min

m∈V(Cn
i )

(
min

β∈[1,Sm]
(vn

m,β )
)])
, (48)

with δ0 = 10−4 and ε = 10−3.
If a cell fulfills the detection criteria in all its subcells, then the cell is marked as good, otherwise the cell is

troubled. We emphasize that this step is performed independently in each element and thus the projection v∗h(x, tn+1)
does not need to be retained after the cell is assigned its mark.

The following step consists in re-computing the solution only in the troubled cells with a first order FV scheme,
applied in each small sub-triangle/sub-volume, that evolves the cell averages vn

i,α in order to obtain vn+1
i,α .

We do not report the details on the very well-known first order ALE-FV scheme, but we add some remarks on
flux computation at the space–time lateral surfaces of each sn

i . i) The same numerical flux function, i.e. (36) or (37),
used in the rest of the scheme is adopted here as well. ii) The employed quadrature rule is a simple mid-point rule that
makes use of the space–time barycenters gn

i of the space–time lateral faces of the sub-volume. iii) The normal vectors
are also computed at gn

i . iv) Referring to (33), when computing the flux between the sub-volume α of Cn
i and the

neighboring sub-volume β (of Cn
i or of any other Cn

i j
), boundary data are simply given by qn,−

h = vn
i,α and qn,+

h = vn
i/i j, β

.
v) If instead the neighbor is not a troubled Voronoi element Cn

i j
(which thus has not been sub-triangulated), then

qn,−
h = vn

i,α and qn,+
h = qn

h|C
n
i j

(gn
i j

).

A first order finite volume scheme always provides a valid solution, hence vn+1
i,α is acceptable. Moreover, since the

FV scheme is not directly applied to the Voronoi element but to each of its sub-triangles, the sub-mesh resolution does
not completely spoil the solution of the DG scheme. Nevertheless, the method does not maintain the formal order
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of accuracy of the PN PM scheme, but it is only used and activated across shock waves and strong discontinuities.
Note also that for a troubled cell the mesh motion is not recomputed because it has been fixed using only information
coming from space at time tn, which are, as such, not affected by any problem.

Finally, the DG polynomial for the Voronoi cell Pn+1
i is recovered from the robust and stable solution on the

sub-grid level vn+1
i,α by applying the reconstruction operator R(vn+1

i,α (x, tn)), that is∫
S n

i,α

un+1
h (x, tn+1) dx =

∫
S n

i,α

vn+1
i,α (x, tn) dx := R(vn+1

i,α (x, tn)) ∀α ∈ [1,Si]. (49)

The reconstruction is imposed to be conservative on the main cell Pn
i , hence yielding the additional linear constraint∫

Pn
i

uh(x, tn+1) dx =

∫
Pn

i

vh(x, tn+1) dx. (50)

As a consequence, the projection operator P in (46) and the reconstruction operator R in (49) satisfy the property
P · R = I, with I being the identity operator.

If a cell Cn
i is good but has at least one bad neighbor cell Cn

i j
in itsV(Cn

i ), we cannot accept its candidate solution

un+1,∗
h (x, tn+1) because the scheme would become nonconservative. Indeed, at the common space–time lateral surface
∂Cn

i j
, the flux computed from Cn

i would be obtained through the DG scheme (i.e. high order predictor and high order
corrector), while the one coming from the troubled neighbor Cn

i j
would be updated using the first order FV scheme.

Thus, the DG solution in these cells is recomputed in a mixed way: the volume integral and the surface integrals on
good faces are kept, while the numerical flux across the troubled faces is always provided by the first order limiter.

Neighborhood of a sliver element.

At the subcell level, the difficulties associated with degenerate small sub-volumes are the same stated at the end of
Section 3.2.2 for degenerate big elements: how to impose an initial condition for cells with zero area at tn and how not
to lose any contribution computed through elements with zero area at tn+1. In order to activate and apply the limiter,
the following strategy is proposed.

Firstly, the sliver elements are not sub-triangulated. If one neighbor of a sliver S n
i is troubled, we mark as troubled

also the remaining three neighbors. Among the four neighbors of S n
i , we select the one with the biggest volume which

we call Cn
big.

Next, we need to provide the values q+,−
h when computing the fluxes (33).

• For a degenerate sn
i,α with zero area at tn we take the value obtained by evaluating un

h at the mid point of sn
i,α|tn

(this value is well defined because sn
i,α ⊂ Pn

i and so un
h is continuous).

• For a sliver element S n
i we take the value obtained by evaluating un

h of Cbig at the mid point of S n
i |tn ; this arbitrary

choice is justified by the fact that here we simply employ a first order method, which is stable even if the sliver
elements are neglected (see [1]).

Finally, we need to redistribute the fluxes computed across the degenerate elements when they disappear at tn+1.

• For a degenerate sn
i,α with zero area at tn+1 we assign the sum of the fluxes computed through its space–time

lateral surfaces to the closest sn
i,β that is not degenerate at tn+1 (the concept of closest is uniquely fixed through

a specific numbering of the sub-volumes).

• For a sliver element S n
i we assign its fluxes to Cn

big.

Besides, we remark that the space–time geometry definition in itself does not pose any problem: indeed, the
configuration of big elements has already been fixed in Section 2.5 and the subdivision has been deduced just above.
Therefore, quadrature formulae, normal vectors and bilinear mapping are always well defined.
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3.4. MOOD approach to verify the space-time connectivity consistency
As already stated at the end of Section 2.5, it may not always be possible to connect two consecutive meshes in a

consistent way if the associated topology changes are too strong. However, these situations are immediately detected
at the beginning of the new time step, when the space–time connectivity is built. Indeed, if i) the setV(Cn

i ) cannot be
ordered consistently with both the order ofV(Pn

i ) andV(Pn+1
i ), or if ii) more than three sliver elements are necessary

to complete a path between elements which are neighbors at one time level but not at the previous or at the next one,
then the algorithm detects the problem. To overcome it, the current time step is simply restarted with a smaller time
step size ∆t (reduced by a factor of 2 for example). Eventually, more restarts are needed, until the connection between
the two meshes is coherent.

Since the mesh generation and the connectivity construction are not expensive, the performances of the algorithm
are not negatively influenced by this additional MOOD-type procedure (which applies before the evolution in time).
However, future work will consider the possibility of remeshing only locally, in the neighborhood of a connectivity
problem without reducing the time step size. We underline that such problems are encountered very rarely.

4. Numerical results

The numerical results presented in this section will demonstrate the following properties of our algorithms.

i. Our method naturally leads to multi-physics applications, namely it is designed in such a way that any kind
of hyperbolic system cast in the general form (1) can be readily studied: for this reason we test it on several
models, namely the standard Euler equations of gas dynamics (Section 4.1), the Euler equations with gravity
source term (Section 4.2) and the magnetohydrodynamics (MHD) system (Section 4.3).

ii. Next, we show the capability of our scheme in maintaining a high quality mesh for very long computational
times, even in the case of strong shear flows and vortices, thanks to its high robustness and adaptability to
complex flow patterns, see Sections 4.1.1 and 4.3.1. We would like to underline that in this work we focus
on the quality of the mesh evolution in space–time in the sense of avoiding mesh tangling or persistent small
elements, without taking care of having an exceptional mesh quality in all time steps. Indeed, no optimization
procedures, as for examples Lloyd-type algorithms or rounder cells, have been applied in our algorithm, and the
initial discretization is never symmetric nor adapted to the initial flow condition; even without these measures,
the method achieves results beyond the current state of the art.

iii. Then, we compute numerically the order of convergence of both Finite Volume and Discontinuous Galerkin
schemes for two different test problems, see Tables 1, 2, 4 and 5.

iv. Finally, we study some more complicated test problems (see Sections 4.1.2, 4.1.3 and 4.3.2 ) to show the
robustness of our method, concerning both the mesh quality in presence of arbitrary and strong velocity fields
as well as the consistency/stability of our high order schemes. In particular, we test the a posteriori sub–cell
finite volume limiter used to stabilize the DG scheme that indeed avoids undesirable oscillations by activating
only where needed (see Figures 9 and 11).

The great variety of the presented tests is intended to show both the wide range of applicability of the proposed
high order ALE scheme on regenerating Voronoi meshes and its level of novelty with respect to the state of the art.
Moreover, for all the presented test cases we have numerically verified that mass and volume conservation is respected
up to machine precision at any time step, and that the same holds true for the GCL condition on each element.

4.1. Euler equations of gasdynamics
A well-known example of a hyperbolic system of the form (1) is given by the homogeneous Euler equations of

compressible gas dynamics with

Q =


ρ
ρu
ρv
ρw
ρE

 , F =


ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p
ρuw ρvw

u(ρE + p) v(ρE + p)

 , S = 0. (51)
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The vector of conserved variables Q involves the fluid density ρ, the momentum density vector ρv = (ρu, ρv) and the
total energy density ρE. The fluid pressure p is related to conservative quantities Q using the equation of state for an
ideal gas

p = (γ − 1)
(
ρE −

1
2
ρv2

)
, (52)

where γ is the ratio of specific heats so that the speed of sound takes the form c =
√

γp
ρ

. Where not otherwise specified
we employ the Rusanov-type ALE flux (36) as numerical flux function and we move the generator points using the
local fluid velocity obtained from wn

h (see Section 2.4). Furthermore, we set γ = 1.4.

4.1.1. Isentropic vortex

Figure 7: Stationary rotating vortex solved with our fourth order P3P3 ALE-DG scheme on a moving Voronoi mesh of 2116 elements with
dynamical change of connectivity. Density contours (top) and the position of a bunch of highlighted elements (bottom) are provided at different
times. The mesh is regenerated at every time step and connected in space time to reach high order of accuracy on a moving domain: this makes
it possible to substantially improve the mesh quality w.r.t. standard conforming ALE schemes without topology change, for which mesh tangling
would occur leading to a stop of the simulation.

To verify the order of convergence of the proposed ALE FV-DG scheme we consider a smooth isentropic vortex
flow according to [123]. The initial computational domain is the square Ω = [0; 10] × [0; 10] with wall boundary
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Figure 8: Stationary rotating vortex solved with a fourth order P3P3 ALE-DG scheme on a moving Voronoi mesh of 2116 elements with fixed
connectivity. Density contours (top) and position of a bunch of highlighted elements (bottom) are provided at different times. The mesh quality is
deteriorating already at time t ' 4 and the simulation ultimately stops at t ' 5.25 due to tangling elements.

P0P1 → O2 P0P2 → O3 P0P3 → O4 P0P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
3.8E-01 3.1E-02 - 3.8E-01 2.9E-02 - 1.9E-01 1.6E-03 - 4.7E-01 4.0e-02 -
2.0E-01 6.2E-03 2.4 1.9E-01 4.6E-03 2.8 1.3E-01 4.1E-04 3.4 3.8E-01 1.4e-02 4.8
1.3E-01 2.4E-03 2.4 1.3E-01 1.4E-03 2.9 9.9E-02 1.4E-04 3.8 1.3E-01 2.5e-04 3.8
9.9E-02 1.3E-03 2.3 9.9E-02 6.1E-04 3.0 7.9E-02 6.0E-05 3.9 9.9E-02 6.7e-05 4.6
8.0E-02 7.8E-04 2.2 7.9E-02 3.1E-04 2.0 6.7E-03 3.0E-05 3.8 7.9E-02 2.4e-05 4.7

Table 1: Isentropic vortex. Numerical convergence results for the finite volume algorithm on moving meshes with topology changes. The error
norms refer to the variable ρ at time t = 0.5 in L1 norm.

P1P1 → O2 P2P2 → O3 P3P3 → O4 P4P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
7.5E-01 6.3E-03 - 7.5E-01 1.4E-02 - 6.1E-01 1.4E-03 - 1.4E-00 1.1e-02 -
6.1E-01 4.2E-04 1.9 6.1E-01 7.2E-03 3.4 5.2E-01 7.4E-04 3.7 1.0E-00 2.0e-03 5.9
3.2E-01 9.9E-04 2.2 3.2E-01 9.3E-04 3.2 4.7E-01 4.1E-04 5.9 9.8E-01 1.6e-03 4.7
2.2E-01 4.4E-04 2.0 2.2E-01 2.8E-04 3.0 3.2E-01 7.7E-05 4.4 8.9E-01 9.0e-04 5.9
1.6E-01 2.5E-05 2.0 1.6E-01 1.2E-04 3.0 2.2E-01 1.6E-05 4.0 8.5E-01 7.0e-04 5.1

Table 2: Isentropic vortex. Numerical convergence results for the discontinuous Galerkin algorithm on moving meshes with topology changes. The
error norms refer to the variable ρ at time t = 0.5 in L1 norm.

conditions set everywhere. The initial condition is given by some perturbations δ that are superimposed onto a ho-
mogeneous background field Q0 = (ρ, u, v,w, p) = (1, 0, 0, 0, 1), assuming that the entropy perturbation is zero, i.e.
δS = 0. The perturbations for density and pressure are

δρ = (1 + δT )
1
γ−1 − 1, δp = (1 + δT )

γ
γ−1 − 1, (53)
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ordering from 1st common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217116 9.2414523328907E-04 -
0.242212163540348 3.9353901580992E-04 3.1
0.194949032600822 2.0616099552666E-04 3.0
0.163155447483668 1.1964571728528E-04 3.1
0.122985013713313 5.1270456290057E-05 3.0

ordering from 2nd common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217114 9.2414523328982E-04 -
0.242212163540348 3.9353901581037E-04 3.1
0.194949032600822 2.0616099552752E-04 3.0
0.163155447483668 1.1964571728459E-04 3.1
0.122985013713313 5.1270456288495E-05 3.0

ordering from 3rd common neighbor
h(Ω(t f )) ε(ρ)L2 O(L2)

0.319411631217116 9.2414523328907E-04 -
0.242212163540348 3.9353901580992E-04 3.1
0.194949032600822 2.0616099552666E-04 3.0
0.163155447483668 1.1964571728400E-04 3.1
0.122985013713313 5.1270456291299E-05 3.0

Table 3: Isentropic vortex. Numerical convergence results for the third order P2P2 discontinuous Galerkin algorithm on moving meshes with
topology changes. The error norms refer to the variable ρ at time t = 0.5 in L2 norm. The three groups of results refer to three different ways of
ordering the space–time neighbors of each element. The fact that the errors are exactly the same up to machine precision proves that the algorithm
is independent of the neighbor ordering used in the construction of the space–time elements.

with the temperature fluctuation δT = −
(γ−1)ε2

8γπ2 e1−r2
and the vortex strength is ε = 5. The velocity field is affected by

the following perturbations  δu
δv
δw

 =
ε

2π
e

1−r2
2

 −(y − 5)
(x − 5)

0

 . (54)

This is a stationary equilibrium of the system so the exact solution coincides with the initial condition at any time.

Convergence. Tables 1 and 2 report the convergence rates from second up to fifth order of accuracy for the vortex
test problem run on a sequence of successively refined meshes. For each element, its characteristic size hn

i at time
tn is given by the diameter of the circumcircle and we denote with h(Ω(t f )) the average of hn

i at the final time of the
simulation t f = 0.5. Thus, h(Ω(t f )) represents the characteristic mesh size of our mesh. The optimal order of accuracy
is achieved both in space and time for the FV schemes as well as for the DG schemes. We would like to underline
that this is not trivial for moving Voronoi meshes, because the changing characteristic mesh sizes could affect the
convergence results (the mesh is not stationary at all).

Quality. In Figure 7 we plot the density contours and the two-dimensional mesh configuration at various output
times obtained with our fourth order ALE-DG scheme. We would like to attract the attention on the endurance of
the simulation and on the high quality of the density profile obtained even after very long simulation times. The
correct density profile and a high quality mesh are conserved for at least sixty times longer with respect to standard
conforming ALE schemes, where mesh tangling would occur and stop the simulation much earlier (see Figure 8).
The obtained results are also superior with respect to existing ReALE codes, which are usually of very low order of
accuracy in space and time and are therefore affected by a much higher numerical dissipation.
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Figure 9: Explosion problem solved with our P2P2 method on a moving Voronoi mesh of 10201 elements. We show the density profile (left), the
pressure profile (center) and we color in red the cells on which the limiter is active (right) at time t = 0.25. We underline that the limiter activates
in particular on the external cylindrical shock wave.

The second row of Figure 7 shows the position of a bunch of highlighted elements at different times: this makes
clear how strong the rotation is to which the mesh elements are subject. It also highlights the importance of allowing
topology changes in the computational grid, which needs to provide enough topological flexibility in order to preserve
a high quality mesh over long computational times. Indeed, if the preservation of the connectivity had been imposed,
the elements would have been quite distorted after only rather short times (see Figure 8).

Independence of the neighbor numbering. To prove that our algorithm is also completely independent of the space–
time neighbor numbering chosen when connecting the old mesh to the new one (see Section 2.5), we have carried out
the following test. In the framework of a third order P2P2 DG scheme we have simulated the isentropic vortex up to
a final time of t = 0.5 on a series of meshes, namely composed by 961, 1681, 2601, 3721 and 6561 Voronoi elements
moving with the exact velocity computed at the generator point of each element. Then, we have run the algorithm for
each mesh configuration by ordering the space–time neighbors in three different ways, namely starting first with the
first common neighbor, next with the second common neighbor and last with the third common neighbor (if existing,
otherwise we have used the first one again).

Table 3 shows that not only the order of the algorithm does not depend on the neighbor numbering, but also that
the final errors are the same up to machine precision.

4.1.2. Explosion problem
The explosion problems can be seen as a multidimensional extension of the classical Sod test case. Here, we

consider as computational domain a square of dimension [−1.1; 1.1]×[−1.1; 1.1], and the initial condition is composed
of two different states, separated by a discontinuity at radius rd = 0.5ρL = 1, uL = 0, pL = 1, ‖x‖ ≤ rd

ρR = 0.125, uR = 0, pR = 0.1, ‖x‖ > rd.
(55)

The final time is chosen to be t f = 0.25, so that the shock wave does not cross the external boundary of the domain,
where a transmissive boundary condition is set. We run this problem with two different configurations.

(a) In the first case we use a third order P2P2 DG scheme on a mesh of 10201 Voronoi elements. The results are
depicted in Figure 9. In particular, one can notice that the limiter activates in proximity of the shock waves
where it is indeed essential, and only on a handful of other elements.

(b) Then, we test our FV algorithm by employing a fourth order P0P3 scheme on a finer mesh of 22801 Voronoi
elements.
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Figure 10: Explosion problem: we compare our numerical results (squares) with the reference solutions (line) at time t f = 0.25. Left: results
obtained with our P2P2 DG scheme on a moving Voronoi mesh of 10201 elements. Right: results obtained with our P0P3 FV scheme on a moving
Voronoi mesh of 22801 elements. The represented values (squares) are obtained from a cut of our numerical solutions along y = 0.

In both cases, we can observe a good agreement between the numerical results and the reference solution. The non
perfect symmetry is justified by the non symmetric initial meshes.

As in [2, 124], a reference solution can be obtained by making use of the rotational symmetry of the problem and
by solving a reduced one-dimensional system with geometric source terms using a classical second order TVD scheme
on a very fine one-dimensional mesh. The comparison between our numerical solutions and the reference solution is
given in Figure 10. In order to obtain a similar resolution, the FV scheme needs one order more of accuracy w.r.t. the
DG scheme and a finer mesh as well. We would like to underline that this test problem involves three different waves,
therefore it allows each ingredient of our scheme to be properly checked. Indeed, we have

• one cylindrical shock wave that is running towards the external boundary: our scheme does not exhibit spurious
oscillations thanks to the CWENO reconstruction, in the case (b), and to the a posteriori sub–cell finite volume
limiter, in case (a);

• a rarefaction fan traveling in the opposite direction, which is well captured thanks to the high order of accuracy;

• an outward-moving contact wave in between, which is not dissipated thanks to the Lagrangian framework of
our scheme, in which the mesh moves together with the fluid flow.

4.1.3. Sedov problem
This test problem is widespread in the literature [23] and it describes the evolution of a blast wave that is generated

at the origin O = (x, y) = (0, 0) of the computational domain Ω(0) = [0; 1.3] × [0; 1.3]. An exact solution based on
self-similarity arguments is available from [125] and the fluid is assumed to be an ideal gas with γ = 1.4, which is
initially at rest and assigned with a uniform density ρ0 = 1. The initial pressure is p0 = 10−6 everywhere except in the
cell Vor containing the origin O where it is given by

por = (γ − 1)ρ0
Etot

|Vor |
, with Etot = 0.979264, (56)

being Etot the total energy concentrated at x = 0. We solve this numerical test with a second order P1P1 DG scheme
on a mesh of 6399 Voronoi elements. The density profiles are shown in Figure 11 for various output times t =
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Figure 11: Sedov problem solved with our P1P1 scheme on a moving Voronoi mesh of 6399 elements. We depict the density profile and the mesh
configuration at times t = 0, 0.2, 0.5, 0.8, 1 and in the last images we show in red the cells on which the limiter is activated.

Figure 12: Sedov problem solved with our DG scheme of order 2 on moving Voronoi meshes. We compare the density profile of our numerical
solution (square) with the analytic density profile (line).

0, 0.2, 0.5, 0.8, 1.0. The obtained results are in good agreement with the literature and the symmetry is quite good
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despite a non symmetric initial mesh. Moreover, one can refer to Figure 12 for a comparison between our numerical
solution and the reference one: the position of the shock wave and the density high peak are perfectly captured. We
remark that this is quite a challenging benchmark because of the low pressure and the strong shock.

Finally, we refer to the last panel of Figure 11 for the behavior of our a posteriori sub–cell finite volume limiter,
which activates only and exactly where the shock wave is located.

4.2. Euler equations with source term

Next, we consider the Euler equations given in (51), but with a gravity source term of the form

S = (0, 0, −gρ, 0, −gρv)T . (57)

This kind of simple model is of interest not only in hydrodynamics [126, 127, 128, 129, 130], but also in the astro-
physical community [1, 60, 131].

Rayleigh-Taylor instability.

With this test case we study an important type of fluid instability that arises in stratified atmospheres in approx-
imate hydrostatic equilibrium if a denser fluid lies above a lighter phase. In such a Rayleigh-Taylor unstable state,
energy can be gained if the lighter fluid rises in the gravitational field, triggering buoyancy-driven fluid motions. We
consider here a simple test where we excite only one single Rayleigh-Taylor mode.

Our setup is a small variation of a similar test considered in [132] and in [1]. The computational domain is
[−0.15, 0.65] × [0, 1.5], with wall boundary conditions everywhere. The imposed initial condition is given by the
following hydrostatic equilibrium stateρB = 2, pB = P0 + g(y − 0.75)ρB, y ≤ 0.75

ρT = 1, pT = P0 + g(y − 0.75)ρT , y > 0.75,
(58)

with P0 = 2.5 and g = −0.1. The initial velocities are zero everywhere, i.e. u = (u, v,w) = 0, except for a small
perturbation that is designed to excite one single mode for the Rayleigh-Taylor instability

v(x, y) = ω0 (1 − cos(4πx)) (1 − cos(4πy/3)) if 0 ≤ x ≤ 0.5, (59)

where ω0 = 0.0025. Next, we smooth the initial discontinuity (in such a way that the limiter for the DG scheme will
not be necessary) with a classical smoother [133]

ρ(x) =
1
2

(ρB + ρT ) +
1
2

(ρT − ρB) erf
(

y − 0.75
ε

)
. (60)

We solve this problem deliberately on coarse meshes (M1 made of 2 706 elements and M2 made of 13 340 cells)
and we compare the resolution of the instabilities obtained with our ALE FV-DG scheme with different order of
accuracy, see Figure 13. Specifically, we compare second and third order FV and DG schemes, i.e. P0P1, P1P1, P0P2,
P2P2 and we employ the Osher-type ALE flux as approximate Riemann solver (37); we note that secondary instability
vortexes only appear within a high order DG method, being hidden by numerical dissipation in the other cases.

Comparing our results with those presented in [1], we underline the importance of coupling our new high order DG
and FV algorithms, which provide an increased resolution on a given mesh, with a highly sophisticated software such
as AREPO, which is able to maintain a high quality of the spatial mesh, to deal with periodic boundary conditions,
and doing this in a very efficient parallel HPC environment.

4.3. Ideal MHD equations

We also consider the equations of ideal classical magnetohydrodynamics (MHD) that result in a more complicated
system of hyperbolic conservation laws. The state vector Q and the flux tensor F for the MHD equations in the general
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(a) P0P1, M1 (b) P0P1, M2 (c) P0P2, M1 (d) P1P1, M1 (e) P2P2, M1

Figure 13: Rayleigh-Taylor instabilities. The results in the panel are obtained by using two meshes: M1 made of 2 706 elements and M2 which is
made of 13 340 elements and is 5 times finer than M1. We have employed our FV scheme of order 2 (a,b) and 3 (c) and our DG scheme of order 2
(d) and 3 (e). We would like to underline that the use of a high order DG scheme makes secondary structures appear even on the coarse mesh M1
(e) which cannot be seen with standard second order FV schemes not even by refining 5 times the initial mesh (b).

form (1) are

Q =


ρ
ρv
ρE
B
ψ

 , F(Q) =


ρv

ρv ⊗ v + ptI − 1
4πB ⊗ B

v(ρE + pt) − 1
4πB(v · B)

v ⊗ B − B ⊗ v + ψI
c2

hB

 . (61)

Here, B = (Bx, By, Bz) represents the magnetic field and pt = p + 1
8πB2 is the total pressure. The hydrodynamic

pressure is given by the equation of state used to close the system, thus

p = (γ − 1)
(
ρE −

1
2

v2 −
B2

8π

)
. (62)

System (61) requires an additional constraint on the divergence of the magnetic field to be satisfied, that is

∇ · B = 0. (63)

Here, (61) includes one additional scalar PDE for the evolution of the variable ψ, which is needed to transport di-
vergence errors outside the computational domain with an artificial divergence cleaning speed ch, see [134]. A more
recent and more sophisticated methodology to fulfill this condition exactly on the discrete level also in the context of
high order ADER WENO finite volume schemes on unstructured simplex meshes can be found in [135]. A similar
approach is adopted in [136, 55, 137].

4.3.1. MHD vortex
For the numerical convergence studies, we solve the vortex test problem proposed by Balsara in [138]. The

computational domain is given by the box Ω = [0; 10] × [0; 10] with wall boundary conditions imposed everywhere.
The initial condition is given in terms of the vector of primitive variables V = (ρ, u, v,w, p, Bx, By, Bz,Ψ)T as

V(x, 0) = (1, δu, δv, 0, 1 + δp, δBx, δBy, 0, 0)T , (64)
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Figure 14: MHD vortex solved with our P0P3 FV scheme on a moving Voronoi mesh of 2601 elements: we depict the pressure profile (left) the x−
and y− components of the magnetic field (middle) and the position of a bunch of highlighted elements (right) at four different times t = 0.0, 2.25, 5.0
and 7.25. The connectivity changes and the high order methods allow to preserve the stationary MHD vortex for long times.

with δv = (δu, δv, 0)T , δB = (δBx, δBy, 0)T and

δv =
κ

2π
eq(1−r2)ez × r

δB =
µ

2π
eq(1−r2)ez × r,

δp =
1

64qπ3

(
µ2(1 − 2qr2) − 4κ2π

)
e2q(1−r2).

(65)
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P0P1 → O2 P0P2 → O3 P0P3 → O4 P0P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
4.6E-01 3.3E-02 - 3.2E-01 1.0E-02 - 4.7E-01 2.1E-02 - 6.0E-01 3.6e-0.2 -
3.9E-01 1.6E-02 1.8 2.4E-01 5.5E-03 2.3 3.2E-01 6.0E-03 3.2 5.8E-01 3.0e-0.2 5.8
2.4E-01 8.9E-03 2.3 1.9E-01 2.7E-03 3.3 2.4E-01 2.0E-03 3.9 5.6E-01 2.7e-0.2 3.6
1.9E-01 5.3E-03 2.4 1.6E-01 1.5E-03 3.1 2.2E-01 1.3E-03 3.6 5.5E-01 2.3e-0.2 5.9
1.6E-01 3.4E-03 2.5 1.4E-01 1.0E-03 2.9 1.9E-01 8.1E-04 4.8 5.2E-01 1.8e-0.2 4.8

Table 4: MHD vortex. Numerical convergence results for the finite volume algorithm on moving meshes with topology changes. The error norms
refer to the variable ρ at time t = 1.0 in L1 norm.

P1P1 → O2 P2P2 → O3 P3P3 → O4 P4P4 → O5
h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1) h(Ω(t f )) ε(ρ)L1 O(L1)
4.7E-01 8.5E-03 - 6.1E-01 2.8E-03 - 8.8E-01 1.1E-03 - 1.6E-00 6.9e-0.3 -
3.2E-01 3.2E-04 2.5 4.7E-01 1.3E-03 2.8 7.5E-01 6.2E-04 3.5 6.1E-01 1.3e-0.4 4.1
2.8E-01 2.1E-04 2.9 3.8E-01 7.3E-04 2.7 6.1E-01 3.1E-04 3.4 5.2E-01 4.7e-0.5 5.8
2.4E-01 1.6E-04 2.0 3.5E-01 5.6E-04 3.6 5.5E-01 1.9E-04 4.3 4.9E-01 3.1e-0.5 8.1
1.9E-01 9.7E-05 2.4 3.2E-01 4.1E-04 3.0 3.2E-01 2.3E-05 3.9 4.7E-01 2.4e-0.5 5.3

Table 5: MHD vortex. Numerical convergence results for the discontinuous Galerkin algorithm on moving meshes with topology changes. The
error norms refer to the variable ρ at time t = 1.0 in L1 norm.

We have ez = (0, 0, 1), r = (x − 5, y − 5, 0) and r = ‖r‖ =
√

(x − 5)2 + (y − 5)2. The divergence cleaning speed is
chosen as ch = 3. The other parameters are q = 1

2 , κ = 1 and µ =
√

4π, according to [138].

Convergence. Tables 4 and 5 report the convergence rates from second up to fifth order of accuracy for the MHD
vortex test problem run on a sequence of successively refined meshes up to the final time t = 1.0. The optimal order
of accuracy is achieved both in space and time for the FV schemes as well as for the DG schemes.

Quality. In Figure 14 we show the pressure profile and the magnetic field obtained with our fourth order P0P3 FV
scheme at different output times t = 0, 2.25, 5.0, 7.25. Once again, the profile of the vortex is simulated and conserved
for a longer computational time with respect to standard conforming ALE scheme, for which mesh tangling would
occur and stop the simulation earlier.

In the forth column of Figure 14 the position of a bunch of elements is highlighted at different times: this makes
it clear how strong the rotation is to which the mesh elements are subjected and the freedom that should be allowed to
them in order to preserve a high quality mesh.

4.3.2. MHD rotor problem
This last MHD test case is the classical MHD rotor problem proposed by Balsara and Spicer in [139]. It consists

of a rapidly rotating fluid of high density embedded in a fluid at rest with low density. Both fluids are subject to an
initially constant magnetic field. The rotor produces torsional Alfvén waves that are launched into the outer fluid at
rest, resulting in a decrease of angular momentum of the spinning rotor. The computational domain is taken to be
Ω = [−0.5, 0.5]× [−0.5, 0.5]. The density inside is ρ = 10 for 0 ≤ r ≤ 0.1 while the density of the ambient fluid at rest
is set to ρ = 1. The rotor has an angular velocity of ω = 10. The pressure is p = 1 and the magnetic field vector is set
to B = (2.5, 0, 0)T in the entire domain. As proposed by Balsara and Spicer we apply a linear taper to the velocity and
to the density in the range from 0.1 ≤ r ≤ 0.12 so that density and velocity match those of the ambient fluid at rest
at a radius of r = 0.12. The speed for the hyperbolic divergence cleaning is set to ch = 2 and γ = 1.4 is used. Wall
boundary conditions are applied everywhere. We run this problem with two different configurations: in all the cases a
mesh of 22801 Voronoi elements has been employed.

(a) For the first test case we have applied our fourth order P0P3 Finite Volume scheme on a mesh of 22801 moving
Voronoi elements, see the results in Figure 15.
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Figure 15: MHD rotor problem solved with our P0P3 FV scheme on a moving Voronoi mesh of 22801 elements. Top: we depict the density profile

(left) the pressure profile (middle) and the magnetic density profile M =
(B2

x+B2
y +B2

z )
(8π) (right). Bottom: we report the initial mesh (left), the final mesh

(middle) and a zoom on the central part of the final mesh (right).

(b) Then we have employed our third order accurate P2P2 DG scheme on a mesh of 22801 moving Voronoi elements,
see the results in Figure 16.

In all the cases, we can observe a good agreement between the obtained numerical results and those available in the
literature. The comparison between our test and the literature allows also to conclude that the DG scheme, even
though of one order of accuracy less w.r.t. the employed FV scheme, is more accurate. Future applications of our new
algorithm will also concern the unified first order hyperbolic formulation of continuum physics recently proposed in
[140, 141, 142].

5. Conclusion

In this work we have developed the worldwide first high order accurate direct Arbitrary-Lagrangian-Eulerian FV
and DG schemes on moving unstructured Voronoi meshes with topology change, in order to benefit simultaneously
from high order methods, high quality grids and substantially reduced numerical dissipation. Indeed, we would like to
underline that in the current literature at least one of the previous ingredients is always missing: Lagrangian methods,
which almost cancel advection errors, are usually affected by dangerous mesh distortions, and available algorithms
which are able to avoid it are only low order accurate; Eulerian methods are in general high order accurate, but
limited by dissipation errors due to the advective terms. In particular, the results on vortical flows give evidence of the
advantages conveyed by the proposed algorithm, and a large set of different numerical tests shows its robustness and
efficiency.

We recall that the key ingredient of our novel algorithm is the generalization of the PN PM scheme [69, 2] to
Voronoi and sliver space–time elements, which has required the investigation of several intricate steps. First, the
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Figure 16: MHD rotor problem solved with our P2P2 DG scheme on a moving Voronoi mesh of 22801 elements. Top: we depict the density profile

(left) the pressure profile (middle) and the magnetic density profile M =
(B2

x+B2
y +B2

z )
(8π) (right). Bottom: we report the initial mesh (left), the final mesh

(middle) and a zoom on the central part of the final mesh (right).

introduction of an automatic procedure to connect in space–time meshes with different topologies has never been
proposed before. Next, computations on Voronoi elements have required their subdivision into triangular prisms,
the adaptation of the basis functions, the neighbors search, the projection and reconstruction algorithms, and also a
change in the notions of areas, volumes and characteristic mesh sizes. Finally, the presence of sliver elements forced
us to revisit the core of the PN PM scheme, i.e. the space–time predictor and the update of the solution through flux
computations, in order to maintain the property of mass, momentum and energy conservation, essential for solving
non linear hyperbolic equations. We would like to underline that these last points (treated in Sections 3.1.2 and 3.2.2)
would represent a novelty already in one space dimension, since to the best knowledge of the authors, it is the first
time that degenerate elements are taken into account in better than second order accurate FV and DG schemes.

Future work will enhance the present algorithm in three directions. First, we plan to incorporate a path-conservative
method to treat non conservative products, so that also a well balanced treatment of sources and a proper well-
balanced preservation of stationary equilibria of the PDE system will be possible, following the ideas outlined in
[102, 104, 143, 54, 144, 145, 146]. Above all, we plan to incorporate the presented high order techniques inside
the massively parallel second order accurate ALE-FV code AREPO [1], which currently includes one of the most
advanced moving Voronoi mesh generators in 2D and 3D. In this way, we will ameliorate even more the quality of our
moving mesh (in AREPO both a Lloyd algorithm [147] to make cells rounder and an algorithm to automatically main-
tain constant mass per cell are already implemented), and we will gain a very efficient parallel environment which also
redistributes the moving elements among the CPU cores in a dynamic load balancing approach. At this point, even
challenging astrophysical simulations will be feasible in a reasonable amount of time. Finally, the extension to three-
dimensional domains is also envisaged. Although the AREPO code is already available in three space dimensions, it
is currently still low order accurate and does not yet provide any information about the space–time connectivity of
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the Voronoi meshes between two consecutive time levels, which is, however, needed by our high order DG and FV
schemes. In our opinion, the realization of a coherent 4D space–time connection will be complex, but feasible (a first
hint in this direction could be taken from [110]), and formally the PN PM direct ALE scheme will require the same
adaptations here introduced in order to deal with degenerate four dimensional space–time control volumes.
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[37] R. Liska, M. S. P. Váchal, B. Wendroff, Synchronized flux corrected remapping for ALE methods, Computers and Fluids 46 (2011)

312–317.
[38] M. Kucharik, J. Breil, S. Galera, P. Maire, M. Berndt, M. Shashkov, Hybrid remap for multi-material ALE, Computers and Fluids 46 (2011)

293–297.
[39] M. Berndt, J. Breil, S. Galera, M. Kucharik, P. Maire, M. Shashkov, Two–step hybrid conservative remapping for multimaterial arbitrary

Lagrangian–Eulerian methods, Journal of Computational Physics 230 (2011) 6664–6687.
[40] A. Barlow, P. Maire, , W. Rider, R. Rieben, M. Shashkov, Arbitrary LagrangianEulerian methods for modeling high-speed compressible

multimaterial flows, Journal of Computational Physics 322 (2016) 603–665.
[41] A. M. Winslow, Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh, J. Comput. Phys. 135 (1997)

128–138.
[42] P. Knupp, Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated quantities. part ii – a framework

for volume mesh optimization and the condition number of the jacobian matrix., Int. J. Numer. Meth. Engng. 48 (2000) 1165 – 1185.
[43] S. Galera, P. Maire, J. Breil, A two-dimensional unstructured cell-centered multi-material ale scheme using vof interface reconstruction.,

Journal of Computational Physics 229 (2010) 5755–5787.
[44] G. Blanchard, R. Loubère, High order accurate conservative remapping scheme on polygonal meshes using a posteriori MOOD limiting,

Computers and Fluids 136 (2016) 83–103.
[45] E. Caramana, The implementation of slide lines as a combined force and velocity boundary condition, Journal of Computational Physics

228 (2009) 3911–3916.
[46] S. D. Pino, A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates, Comptes Rendus de

l’Académie des Sciences - Series I - Mathematics 348 (2010) 1027–1032.
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[63] S. R. Idelsohn, E. Oñate, F. D. Pin, The Particle Finite Element Method: a powerful tool to solve incompressible flows with free-surfaces

and breaking waves, International Journal for Numerical Methods in Engineering 61 (2004) 964–984.
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[127] R. Käppeli, S. Mishra, Well-balanced schemes for the euler equations with gravitation, Journal of Computational Physics 259 (2014)

199–219.
[128] P. Chandrashekar, C. Klingenberg, A second order well-balanced finite volume scheme for Euler Equations with gravity, Journal on

Scientific Computing 37 (2015) B382–B402.
[129] V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, A well-balanced scheme to capture non-explicit steady states in the euler equations

with gravity, International Journal for Numerical Methods in Fluids 81 (2016) 104–127.
[130] C. Klingenberg, G. Puppo, M. Semplice, Arbitrary order finite volume well-balanced schemes for the Euler equations with gravity, SIAM

Journal on Scientific Computing 41 (2019) A695A721.
[131] A. Mignone, C. Zanni, P. Tzeferacos, B. Van Straalen, P. Colella, G. Bodo, The pluto code for adaptive mesh computations in astrophysical

fluid dynamics, The Astrophysical Journal Supplement Series 198 (2011) 7.
[132] R. Liska, B. Wendroff, Comparison of several difference schemes on 1d and 2d test problems for the euler equations, SIAM Journal on

Scientific Computing 25 (2003) 995–1017.
[133] M. Tavelli, M. Dumbser, A high order semi-implicit discontinuous galerkin method for the two dimensional shallow water equations on

staggered unstructured meshes, Applied Mathematics and Computation 234 (2014) 623–644.
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