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Abstract In this paper we study a one dimensional fluid modeled by the Burgers
equation influenced by an arbitrary but finite number of particles N(t) moving inside
the fluid, each one acting as a point-wise drag force with a particle related friction
constant λ . For given particle paths hi(t) we only assume finite speed of particles,
allowing for crossing, merging and splitting of particles. This model is an extension
of existing models for fluid interactions with a single particle, compare [3] and [10]:

∂tu(x, t)+∂x

(
u2

2

)
=

N

∑
i=1

λ (h′i(t)−u(t,hi(t))δ (x−hi(t))

Well-posedness for the Cauchy problem, as well as an L∞ bound is proven under
the weak assumption that particle paths are Lipschitz continuous. In this context,
an entropy admissibility criteria is shown, using the theory of L1-dissipative Germs,
compare [2], to deal with the moving interfaces resulting from the point-wise parti-
cles and the shockwaves from the fluid equation interacting with them.
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1 Introduction

We consider an inviscid fluid with velocity u(t,x) and a finite number of particles
moving inside. The fluid is modeled by the inviscid Burgers equation and the parti-
cles act as a point-wise drag force on the fluid, namely λ (h′i(t)− u(t,hi(t)), where
λ is the friction constant related to the particle and hi(t) the given path of the i-th
particle. The Cauchy problem writes

∂tu+∂x(u2/2) =
N

∑
i=1

λ (h′i(t)−u(t,hi(t))δ (x−hi(t)),

u(0,x) = u0(x)

(1)

with

u(x, t) velocity of the one-dimensional fluid
hi(t) the given position of the i-th particle at time t

λ the friction constant corresponding to a particle
N(t) arbitrary but finite number of particles at time t

u0 ∈ L∞(R) the given L∞ initial data for the fluid

Note that this model also bears the difficulty of interpretating the non-conservative
product u(t,hi(t))δ (x− hi(t)). This problem was tackled in [3] by a regularization
of the particle, using sequences of non-negative, compactly supported density func-
tions (see also [7] for a similar approach). However, an analysis of the behaviour of
the fluid at the position of the particle allows for a well-posedness proof considering
the influence of the particle as a condition on the behaviour of the fluid at a mov-
ing interface located at the particle position. The theory extends the analysis of the
fluid-solid interaction of [10], [3], where the original model also includes coupling
to an ordinary differential equation, to the case of multiple particles. Models of this
kind are of increasing interest theoretically, cf. [4], aswell as in applications like
trajectory tracking in traffic flow, cf. [5], [6].
We proceed in the following way. In section 2, we give an admissibility condition
for the selection of physical shockwaves and therefore a definition of entropy solu-
tions to the problem. At the end of section 2, we will state the main theorem, which
is the well-posedness result for problem (1) and a L∞ bound. Section 3 and 4 give
the proof to this theorem, where section 3 contains the existence proof aswell as the
L∞ bound and section 4 is devoted to the uniqueness proof using almost classical
Kruzkov-type arguments combinded with the notion of Germs, i.e. sets of admissi-
ble states connected by shockwaves, first introduced in [2].
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2 Definition of entropy solutions

The behaviour of a solution across one particle is dictated by the drag of the particle.
However, there might also be shockwaves originating from the fluid equation. A
traveling-wave study with respect to the particle speed was done in [10] regarding a
single particle and acts as a building block for the analysis of the behaviour in the
case of multiple particles. It is proven in [10] that the following definition of sets
describes the admissible jumps across the interface of a single particle.

Definition 1. Let Gλ be the set of possible states left and right of a particle with
friction λ . A case-by-case study with respect to ul ,uR,h gives the characterization

(uL,uR) ∈ Gλ

⇔ uR ∈


{uL−λ} if uL < h′,
[2h′−uL−λ ,h′] if h′ ≤ uL ≤ h′+λ ,

{uL−λ}∪ [2h′−uL−λ ,2h′−uL +λ ] if uL > h′+λ .

Increasing the number of particles means that the behaviour of the fluid at each
particle is governed by an interface admissibility condition Gi = Gλi , which impose
to traces of the solution at the left and right of each particle lie in Gλ . Thus we are
able to define entropy admissible solutions to the problem as long as the particle
paths do not intersect using the notion of admissible particle-related jumps and the
notion of Kruzkov entropy η , entropy flux Φ , defined by

η(a,c) = |a− c|
Φ(a,c) = sgn(a− c)( f (a)− f (c)),

which enable comparison to any constant c ∈ R.

Definition 2. Given u0 ∈ L∞,N > 0,hi(t)∈W 1,∞([0,T ]),hi(t) 6= h j(t)∀t ∈ [0,T ], i 6=
j. We call u ∈ L∞(R+×R) weak entropy solution to the Cauchy Problem, if for
N ∈ N the finite number of particles, hi(t) the position and h′i(t) the velocity of
particle i, with i = 1, . . . ,N, u satisfies for all c ∈ R and almost every time t∫ T

0

∫
R
|u− c|∂tφ +Φ(u,c)∂xφ)dxdt +

∫
R
|u0− c|φ(0,x)dx ≥ 0 (2)

with φ ∈C∞([0,T ]×R,R+),φ(t,hi(t)) = 0, and additionally

(γ−u (t,hi(t)),γ+u (t,hi(t))) ∈ Gλ (t), for a.e. t ∈ (0,T )

where we denoted the left an right traces of u(t,x) at the position of the particles
by γ−u (t,hi(t)),γ+u (t,hi(t)) respectively. Due to the nature of the Burgers equation,
these traces exist a priori, even for L∞ initial data, cf [11].
Note that whenever two particles are located at the same position, a careful new
definition of the particle related Germs has to be taken into account. This is not a
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problem for crossing, as the condition is enforced only almost everywhere in time,
however if two or more particles merge, the corresponding Germ changes, resulting
in the following definition of time-dependent interface-condition

Gλ (t) = Gni(t)×λ (h
′
i(t)), with ni(t) := #{ j ∈ [0,N],hi(t) = h j(t)}.

This definition makes sure that the interface condition really applies the drag of
both particles, and does not impose two (maybe contradictory) conditions at the
same position. The fact that the influence of the particles adds up like that uses the
specific form of the germ Gλ , was proven by the authors and can be found in the
upcoming publication [8].

Remark 1. The definition of entropy solution is done using the notion of Germs,
introduced in [2]. Furthermore the entropy condition can not be distinguished from
an entropy condition for a discontinuous flux problem with interfaces located at the
particle positions hi(t), emphasizing the pointwise influence of the particles.

At this point we state our main theorem.

Theorem 1. Given any finite time T , initial data u0(x) ∈ L∞(R) and Lipschitz con-
tinuous in time particles paths hi(t), i ∈ [1,N], then there exists a unique solution
u(t,x) ∈ L∞([0,T ]×R), entropy admissble in the sense of Definition 2. Addition-
ally, u(t,x) satisfies for all t ∈ [0,T ]

‖u(t, ·)‖L∞ ≤ ‖u0(·)‖L∞ +Nλ . (3)

The proof of this theorem is distributed between the next two sections.

3 Existence

We will prove existence of entropy admissible solutions in the following way. Given
initial data u0 ∈ L∞(R) and any finite time interval [0,T ], we divide the problem into
several local problems and use the following existence result for the problem with a
single particle, which is proven in [3].

Lemma 1. Given h ∈W 1,∞([0,T ]) and u0 ∈ L∞(R), then there exists a unique en-
tropy admissible solution u of (1) with N(t) = 1.

Several difficulties arise. Even though the behaviour of the fluid in the presence
of a single particle is known, each particle generates waves interfering with the other
particles, creating domains of unknown behaviour. Additionally, the possibility of
crossing, merging and splitting of particles seem to complicate some of the nice
properties that were holding as long as only one particle was present, e.g. the global
in time bound on the total variation.
The proof is done using an explicit construction algorithm based on the existence
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result in the presence of a single particle, which we will present here for the case of
two particles. Note however, that this can be easily extended to any finite number
of particles by simply choosing a good timestepping, creating domains where the
following analysis applies locally.
At the same time, we will prove the L∞ bound (3), justifying the existence of a
maximum speed of propagation, denoted L from here on, which, though a very
natural property of hyperbolic equations, needs to be checked in the presence of
source terms. Both the L∞ bound as well as the existence are constructed using
a time-stepping, which ensures that the cones of influence of two particles don’t
intersect.

Lemma 2. Given any time ti ∈ [0,T ], there exists a time ti+1 > ti, such that given
problem (1) with two particles with particle paths h1,h2 ∈ Lip([ti, ti+1]) with h1(t) 6=
h2(t) ∈ [ti, ti+1] and initial data u(ti) ∈ L∞(R), then there exists a solution u(t,x) ∈
L∞([ti, ti+1]×R), entropy admissible in the sense of (2).
Additionally, if u(ti,x) satisfies for x ∈ R

cmin(ti,x)≤ u(ti,x)≤ cmax(ti,x),

then u(t,x) satisfies for almost every t ∈ [ti, ti+1], x ∈ R

cmin(t,x)≤ u(t,x)≤ cmax(t,x), (4)

with piecewise constant functions

cmin, max(t,x) =


c1

min, max for x ∈Ω1(t), t ∈ [ti, ti+1]

c2
min, max for x ∈Ω2(t), t ∈ [ti, ti+1]

c3
min, max for x ∈Ω3(t), t ∈ [ti, ti+1]

with

Ω1(t) := (−∞,h1(t))

Ω2(t) := (h1(t),h2(t))

Ω3(t) := (h2(t),∞)

such that for j = 1,2

c j
min, max = c j+1

min, max +λ

and ck1
min = inf

Ωk1 (ti)
u(ti,x), ck2

max(t,x) = sup
Ωk2 (ti)

u(ti,x) with

k1 = arg min
j=1,2,3

{
ess inf

x∈Ω1
u(ti,x), ess inf

x∈Ω2

(
u(ti,x)−λ

)
, ess inf

x∈Ω3

(
u(ti,x)−2λ

)}
k2 = arg max

j=1,2,3

{
esssup

x∈Ω1

u(ti,x), esssup
x∈Ω2

(
u(ti,x)−λ

)
, esssup

x∈Ω3

(
u(ti,x)−2λ

)}
.
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The last statement (4) is actually a stronger result than the L∞ bound, as (3)
follows directly from (4) as soon as it is established for all times t ∈ [0,T ]. To see
this, it is very important to note that the time dependence of cmin,cmax is only due to
the position of the particles and does not change the values of the two functions, cf.
Figure 1.

Proof. To be able to make use of the existing results for the case of a single particle,
i.e. Lemma 1, we choose ti+1 such that the waves propagating from the two particles
can not intersect in [ti, ti+1]×R. This is achieved by defining

ti+1 = ti +
h2(ti)−h1(ti)−2ε

2L
.

where L = L(‖u‖L∞ ,h′1,h
′
2) = max

x∈Ω

(cmax(0,x),−cmin(0,x)) denotes the finite speed

of propagation and ε > 0 can be chosen arbitrarily small. We define the superposi-
tion of [ti, ti+1]×R= B1∪P1∪B2∪P2∪B3 such that P1,P2 contain the particles and
all waves emanating from them.

P1,2(t) := [h1,2(ti+1)−L(ti+1− t),h1,2(ti+1)+L(ti+1− t)]

B1(t) := (−∞,h1(ti+1)−L(ti+1− t)]

B2(t) := [h1(ti+1)+L(ti+1− t),h2(ti+1)−L(ti+1− t)]

B3(t) := [h2(ti+1)+L(ti+1− t),∞).

From the analysis done for a single particle, we know that given u(ti, ·)∈ L∞(P1) and
given that the solution u(t,x) with x ∈ R \P1 in the adjacent regions to P1 satisfies
cmin(t,x)≤ u(t,x)≤ cmax(t,x), the bounds are also true in P1

1, namely

cmin(t,x)≤ u(t,x)≤ cmax(t,x) for x ∈ P1

x

u(ti,x)

h1(ti) h2(ti)

Ω1(ti) Ω2(ti) Ω3(ti)

u

cmin(ti,x)

cmax(ti,x)

Fig. 1 The boundaries cmin,cmax on the solution in the regions between the particles at time ti. As
time passes, the particles will change their position and the respective bounds will shift along the
x-Axis.

1 This was a byproduct of constructing the L∞ bound in [3] and can be found in the proof of the
corresponding Lemma.
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and the same holds equivalently for P2. Also, we know for the regions B j, j = 1,2,3,
given u(ti, ·) ∈ L∞(B j), u(t,x) on the boundaries of B j and given that the solution
u(t,x) with x ∈ R \B j in the adjacent region to B j satisfies cmin(tin,x) ≤ u(t,x) ≤
cmax(tin,x), the bounds are also true in B j

cmin(t,x)≤ u(t,x)≤ cmax(t,x). for x ∈ B j,

as the Burgers equation with L∞ boundary data satisfies an L∞ bound for any finite
time. Piecing together the different regions, given cmin(ti,x) ≤ u(ti,x) ≤ cmax(ti,x),
we obtain (4).
Therefore, defining the new superposition of [ti, ti+1]×R= Σ1∪Σ2 with

Σ1(t) = (−∞,h2(ti)−L(t− ti)]

Σ2(t) = (h1(ti)+L(t− ti),∞)

Each of those regions contains only one particle, and therefore, applying Lemma 2
twice, we obtain existence of an entropy solution in [ti, ti+1]×R. ut

Iterating this by using ti = ti+1 as new starting time for Lemma 3 until reaching time
T gives the existence result of theorem 1 and the L∞ bound follows from property
(4) as long as the particle paths do not intersect.
It remains to investigate the case of particles being located at the same position at
some time t ≤ T . We choose to stop the current timestep whenever two particles
are located at the same position, thus from the three considered cases of particle
interactions, i.e. crossing, merging and splitting of particles, only the following two
cases need to be dealt with. Again, we restrict us to two particles for simplicity, as
the case of more particles follows using the same mechanism, see Figure 3.

1. Two particles are located at the same position at the end of a given time Interval
[t0,T ]. (Merging)

2. Two particles are located at the same position at the initial time of a given time
Interval [t0,T ]. (Splitting)

Case 1: h1(T ) = h2(T ) . The difficulty of this case lies in the timestepping, as at
first glimpse, it is unclear wether or not the proposed method of construction used
in the proof of Lemma 3 can actually reach time T . The reason is, that

ti+1− ti =
h2(ti)−h1(ti)−2ε

2L
,

meaning the length of each timestep depends on the distance between the particles
h2(ti)−h1(ti) which goes to zero as t goes to T .
However, the method of construction is equivalent to finding the root of the distance
between the particles, denoted d(t), by means of a simplified Newton method, which
can be seen by measuring the distance against time and including the method in the
picture, cf. Figure 2. Therefore, Lemma 3 holds for all timesteps where ti ∈ [t0,T ),
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reaching time T either in a finite number of timesteps or as the limit of n→∞ if the
particles have zero contact angle.

Case 2: h1(t0) = h2(t0) . This case is more delicate, as the method of construction
fails to construct any solution between the two particles because all information
about this region emanates from the two particles. There is no first timestep, as the
choice of each timestep depends on finding a superposition suitable in the sense that
each domain contains only waves coming from one particle (or none).
We solve this problem by shifting the particles apart, defining the particle paths of
the approximated problem by

hε
1(t) = h1(t),

hε
2(t) = h2(t)+ ε.

Therefore the particle paths do not intersect anymore and we meet the conditions
of Lemma 3. Using the method of construction we obtain existence and the L∞

bound for uε and any given, finite time T . It remains to show convergence of the
approximate solution uε to the solution of the original problem, which is done using
Helly’s theorem. In order to be able to apply the latter, a bound in the total variation

t

d(t)

t0 t1 t2 t3 t4 t5 T...

ti

ti+1

h1 h2

Fig. 2 On the left a visualization of the convergence for the construction method and ti→ T . The
method behaves like a simplified Newton method, where the slope corresponding to the maximal
speed of propagation remains fixed. On the right the construction of the length of a single timestep,
given by the longest possible time, s.t. waves propagating from the two particles don’t intersect.

t0

T

t0

T

u
x

Fig. 3 On the left a random movement of particles, including sections where particles merge,
corresponding to Case 1 (upper right), and split, corresponding to Case 2 (lower right). Whenever
there is one of the two special cases, the method of construction has to be adapted.
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has to be established, which can be proven using a bound on the total variation for
the problem with only a single particle, which was proven in [3] using a wave front
tracking method, and regularized initial data

uδ
0 (x) = u0(x)∗ρ

δ

with ρδ being a regularizing kernel such that uδ
0 ∈ L∞∩BVloc(R).

For a more in-depth analysis of the latter cases, which would exceed the purpose of
this article, we refer the reader to the upcoming publication [8].

4 Uniqueness of entropy solutions

This section is devoted to proving the uniqueness of solutions to problem (1) when-
ever the admissiblity condition (2) is satisfied. Following the ideas of Kruzkov, this
is done by using the method of doubling of variables and the framework of germs,
introduced by Andreianov, Karlsen and Risebro [2]. They key property of an admis-
sibility germ to allow to conclude uniqueness, as proven in their paper, is dissipativ-
ity. We state this property of Gλ in the following Lemma

Lemma 3. The admissibility germ Gλ corresponding to the particle with velocity h′

and friction λ is dissipative in the sense that

(cl ,cr) ∈ Gλ ⇔
[
∀(bl ,br) ∈ Gλ : Φ(h′;cl ,bl)≥Φ(h′;cr,br)

]
(5)

where

Φ(h′;c,b) = Φ(c,b)−h′|c−b|.

Let Ω = [0,T ]×R, φ ∈C∞
c (Ω) be a classical, compactly supported testfunction

and

wε(x) =

{
0, when |x| ≤ ε

2 ,

1, when |x| ≥ ε.

a continuous function with w′ε(x) = sgn(x) 2
ε

for ε

2 ≤ |x| ≤ ε .
Given two entropy solutions u,v, with the same initial data u0 = v0, we apply the

method of doubling of variables, cf. [9], and choosing as a testfunction ψ(x, t) =
φ(x, t)×wε(t,x−h1(t))× ...×wε(t,x−hN(t)), we obtain∫

Ω

|u− v|∂t
(
φ × ∏

1≤i≤N
wε(x−hi(t)

)
+
∫
R
|u0− v0|

(
φ(0,x)× ∏

1≤i≤N
wε(x−hi(0)

)
dx

+
∫

Ω

Φ(u,v)∂x
(
φ × ∏

1≤i≤N
wε(x−hi(t)

)
≥ 0.
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Remark 2. Note that ψ is not C∞ and one should regularize wε using classical molli-
fiers to this aim, but this would introduce unnecessary heavy notations that we skip
for the sake of brevity.

Due to the choice of testfunction, we can not see the interfaces and the method
of Kruzkov works classically. Using chain rule and recognizing that

∂twε(x−hi(t)) = w′ε(x−hi(t))(−h′i(t))

∂xwε(x−hi(t)) = w′ε(x−hi(t))

gives

∫
Ω

|u− v|

(
∂tφ ∏

1≤i≤N
wε(x−hi(t))+φ

N

∑
i=1

∏
1≤ j 6=i≤N

(−h′i(t))w
′
ε(x−hi(t))wε(x−h j(t))

)

+
∫

Ω

Φ(u,v)

(
∂xφ ∏

1≤i≤N
wε(x−hi(t))+φ

N

∑
i=1

∏
1≤ j 6=i≤N

w′ε(x−hi(t))wε(x−h j(t))

)
+
∫
R
|u0− v0|

(
φ(0,x)× ∏

1≤i≤N
wε(x−hi(0)

)
dx ≥ 0.

Using that we know the form of the derivative of wε , namely w′ε(x− hi(t)) =
− 2

ε
1[hi−ε,hi− ε

2 ]
+ 2

ε
1[hi+

ε
2 ,hi+ε], we can pass to the limit ε → 0 and recognizing that

in the sense of distributions

lim
ε→0

wε(x−hi(t)) = 1

reincorporates the interfaces created by the particles and the related terms. Making
use of the traces γ

±
i (u),γ±i (v) respectively at the position of the interfaces hi(t), we

obtain∫
Ω

|u− v|∂tφ +Φ(u,v)∂xφ dxdt +
∫
R
|u0− v0|φ(0,x)dx

≥
N

∑
i=1

∫ T

0

(
Φ(h′i,γ

−
i (u),γ−i (v))φ(hi(s),s)−Φ(h′i,γ

+
i (u),γ+i (v))φ(hi(s),s)

)
ds.

Using the dissipativity of the germs for each particle, given by Lemma 3, we get the
good signs of the right-side terms of the last inequality, which we then can drop to
obtain the Kato inequality,∫

Ω

|u− v|∂tφ +Φ(u,v)∂xφ dxdt +
∫
R
|u0− v0|φ(0,x)dx≥ 0,

which classically gives uniqueness of entropy solutions. Furthermore, integrating
along the cone C := {(x, t), |x| = R+L(T − t), t ∈ [0,T ]} gives the L1-contraction
property.
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