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Introduction by the Organizers

This workshop Structure-Preserving Discretizations, organised by Manuel Cas-
tro (Malaga), Bruno Després (Paris), Michael Dumbser (Trento) and Christian
Klingenberg (Würzburg) was attended by 25 participants with broad geographic
representation from all continents. We had 22 lectures, covering the wide gamut
of the topic at hand.

In this workshop we discussed progress in mathematical and numerical analysis
for involution-constrained hyperbolic partial differential equations on manifolds.
Many mathematical models of important physical phenomena are contained in this
class of problems, where the involution restricts the space of allowable solutions,
such as the well-known condition ∇ ·B = 0 in the Maxwell and MHD equations.
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While the underlying mathematical theory of many involution-constrained PDEs
has been studied, there remain relatively few numerical methods that can preserve
the known mathematical structure exactly also on the discrete level.

Examples of topics on structure-preserving schemes are novel well-balanced
steady-state preserving methods for conservation laws on manifolds, schemes that
respect a discrete entropy inequality, positivity-preserving schemes, as well as
Galilean- and rotation-invariant and angular momentum preserving methods on
moving meshes.

We had lectures that touched upon various aspects of this subject. Here we list
are a few examples. The question on how to properly find time-discretizations in
this context was addressed by Philippe Helly, Jean-Luc Guermond and Gabriella
Puppo. In lectures by Eric Sonnendrücker, Bruno Despres and Nicolas Crouseille
applications to plasma were discussed. Christian Klingenberg, Claudius Birke
and Elena Gaburro gave talks on now to maintain stationary solutions. The ex-
tended hydrodynamic model by Godunov, Peshkov and Romensky was discussed
by Michael Dumbser, Ilya Peshkov and Sergie Gavriluk.

Overall this workshop gave space to discuss the above circle of ideas in the won-
derful atmosphere of Oberwolfach.
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Abstracts

Structural similarities between the isothermal Euler equations and the
Einstein equations in vacuum with a cosmological constant

Yann Brenier

1. The isothermal potential Euler equations

The isothermal Euler equations for a gas with density ρ = exp(φ), potential ve-
locity v = ∇θ and constant speed of sound c read

(1) ∂tv +∇(|v|2/2) + c2∇φ = 0, ∂tφ+ v · ∇φ+∇ · v = 0.

We may introduce G = ∇φ and get the alternative system

(2) ∂tv +∇(
|v|2
2

) + c2G = 0, ∂tG+∇(v ·G+∇ · v) = 0,

which is quadratic and preserves the potential character of v and G. Let us
introduce the Lagrangian associated with the weak formulation of (2):

L =

∫

−∂tA · v − (∇ · A) |v|
2

2
+ c2A ·G− ∂tC ·G− (∇ · C)v ·G+∇(∇ · C) · v.

Differentiating in v and G, we get

−∂tA− (∇ · A)v − (∇ · C)G+∇(∇ · C) = 0, c2A− ∂tC − (∇ · C)v = 0.

Eliminating the t derivatives in L thanks to these equations, we get the new
Lagrangian

L2 =

∫

(∇ ·A) |v|
2

2
+ (∇ · C)v ·G.

It is convenient to set r = ∇ ·A and s = ∇ · C for which we get

(3) L2 =

∫

r
|v|2
2

+ sv ·G,

(4) ∂tr +∇ · (rv) +∇ · (sG) = ∆s, ∂ts+∇ · (sv) = c2r.

Let us consider the variational principle of finding the critical points (v,G, s, r)
of (3) subject to (4). Introducing α and β as Lagrange multipliers, we get the
Lagrangian

∫

r
|v|2
2

+ sv ·G− ∂tαr −∇α · (rv + sG)− s∆α− ∂tβs−∇β · (sv)− c2βr

and get as optimality equations

rv + sG− r∇α − s∇β = 0, sv − s∇α = 0,

|v|2
2

− ∂tα−∇α · v − c2β = 0, v ·G−∇α ·G−∆α− ∂tβ −∇β · v = 0.
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Assuming s 6= 0, we get

v = ∇α, G = ∇β, −|v|2
2

− ∂tα− c2β = 0, −∆α− ∂tβ −∇β · v = 0,

and by setting α = θ, β = log ρ we recover (1). So, we conclude that the isothermal
potential Euler equations (1) can be derived from the variational principle (3,4).

2. The free Schrödinger equation

Using the Madelung transform ψ(t, x) =
√

ρ(t, x) exp(iθ(t, x)), and setting v =
∇θ, G = ∇ log ρ, the free Schrödinger equation in suitable units reads

(5) ∂tv +∇(
|v|2 − |G|2

2
) = ∇(∇ ·G), ∂tG+∇(v ·G) = −∇(∇ · v).

Using the same method as for the isothermal potential Euler equations, we get for
the free Schrödinger equation

(6) L2 =

∫ |v|2 − |G|2
2

r + sv ·G

under constraint

(7) ∂tr +∇ · (rv − sG) = −∆s, ∂ts+∇ · (sv + rG) = ∆r,

i.e., in complex notations C = r+ is ∈ C, Vk = vk+ iGk ∈ C, pour k ∈ {1, · · ·, d},

L2 =

∫

Re(
d

∑

k=1

CV 2
k ), s.t. ∂tC +

d
∑

k=1

∂k(CVk) = i∆C.

3. The Einstein equations in vacuum with a cosmological constant

A solution to the Einstein equations in vacuum with cosmological constant Λ is
defined as a Lorentzian metric g whose Ricci curvature is equal to Λg. By setting

V k
i (x, ξ) = −Γk

ij(x)ξ
j , Φ(x, ξ) = log detg(x) +

1

2
gijξ

iξj , (x, ξ) ∈ R
4 × R

4,

where Γk
ij denote the Christoffel symbols, this may be expressed by the system

∂xkV k
j + ∂ξj (V

q
k V

k
q )− ∂xjV k

k − ∂ξk(V
q
j V

k
q ) + Λ∂ξjΦ = 0,

∂xjΦ+ V m
j ∂ξmΦ+ ∂ξjV

m
m = 0,

which is striking similar to the isothermal Euler equations (1), where (x, ξ) ∈
R4 × R4 substitutes for (t, x) ∈ R × R3 while Φ, V and Λ substitute for φ, v and
c2. Then we may perform (in a work in progress with Philippe Anjolras) the same
analysis for the Einstein equations as the one we have just done for the Euler and
Schrödinger equations. In the special case of a null cosmological constant (i.e.
Λ = 0), we already obtained in [1]:
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Theorem 1. Let g be a Lorentzian metric on R4 of zero Ricci curvature and set

Aj(x, ξ) = ξj detg(x) cos(
gαβ(x)ξ

αξβ

2
), V j

k (x, ξ) = −Γj
kγ(x)ξ

γ ,

Cj
k(x, ξ) = ∂ξkA

j(x, ξ)− ∂ξqA
q(x, ξ) δjk, (x, ξ) ∈ R

4 × R
4.

Then (C, V ) is a critical point (with respect to compactly supported perturbations)
of

∫

trace(C(x, ξ)V 2(x, ξ))dxdξ =

∫

(V k
γ C

γ
σV

σ
k )(x, ξ)dxdξ,

subject to

∂xjCj
k + ∂ξj (CV + V C)jk = 0,

∂ξiV
k
j = ∂ξjV

k
i , 3∂ξmC

j
k − ∂ξmC

γ
γ δ

j
k = 3∂ξkC

j
m − ∂ξkC

γ
γ δ

j
m.

References
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High-order well-balanced implicit and semi-implicit finite-volume
methods for systems of balance laws

Manuel J. Castro Dı́az

(joint work with Sebastiano Boscarino, Irene Gómez-Bueno, Carlos Parés and
Giovanni Russo)

Several physical systems are described by hyperbolic balance laws of the form

(1) Ut + F (U)x =
1

ǫ
S(U),

where U(x, t) ∈ RM and the right hand side may contain a stiff relaxation source
term as the parameter ǫ becomes small. Such systems are efficiently solved by
implicit-explicit schemes (IMEX) [1, 8, 2], which treat explicitly the non-stiff hy-
perbolic term, and implicitly the stiff source term. If S is a relaxation, this means
that as ǫ→ 0 the system formally relaxes to conservation law

(2) ut + f(u)x = 0,

where u(x, t) = QU(x, t) ∈ Rm, m < M , Q ∈ Rm×M , QS(U) = 0 ⇔ U = E(u),
f = QF (E(u)), which means that the originalM×M hyperbolic system of balance
laws relaxes to a m×m hyperbolic system of conservation laws as the relaxation
parameter vanishes (see [5, 6]).

A scheme for the numerical solution of system (1) which becomes a consistent
scheme for system (2) as the relaxation parameter vanishes is said to be Asymptotic
Preserving (AP) (see for example [7, 8]).
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If the source term contains a stiff relaxation and a non-stiff term, i.e. a system
of the form

(3) Ut + F (U)x =
1

ǫ
S(U) +G(U, x),

in the limit of vanishing ǫ relaxes to a lower dimensional system of balance laws
of the form

(4) ut + f(u)x = g(u, x),

where g(u, x) = QG(E(u), x). In such cases the limit equation admits non-trivial
equilibria that must be approximated accurately. Schemes that are able to preserve
the non-trivial steady states of system (4) are said to be well-balanced (see [3, 4]
and the references therein for a review of the subject).

Now, the goal is to design numerical schemes for system (3) which become
consistent and well-balanced schemes for system (4) as the relaxation parameter
vanishes, which are said to be Asymptotic Preserving and Well-Balanced (APWB).

Another interesting class of problems appears when both the flux and the source
term are (equally) stiff:

(5) ǫUt + F (U)x = G(U, x).

In such cases the system may relax to a stationary solution of the ODE system

F (U)x = G(U, x)

in a very short time. If one is interested in efficiently capturing the stationary
solution, then it is advisable to adopt an implicit (or semi-implicit) scheme which
is at the same time well-balanced.

The aim of this talk is to present a general framework to design well-balanced
high-order finite volume methods resulting from the combination of the recon-
struction technique introduced in [4] and fully implicit or implicit-explicit (IMEX)
time integrators introduced in [8, 2], that are suitable for the approximation of
problems (3) and (5).

The numerical experiments confirms the good properties of the proposed
schemes.
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Quasi-explicit, unconditionally stable, Discontinuous Galerkin solvers
for conservation laws

Philippe Helluy

(joint work with Pierre Gerhard, Victor Michel-Dansac)

1. Kinetic approximation of first order conservations laws

In this work, we are interesting in the numerical approximation of a hyperbolic
system of m conservation laws in dimension d

(1) ∂tW +

d
∑

i=1

∂iQ
i(W ) = 0,

where the unknown is a vector W (X, t) ∈ Rm depending on the space variable:
X = (x1 . . . xd) and the time variable: t. For the partial derivatives, we use the
notation ∂i =

∂
∂xi

, ∂t =
∂
∂t .

This kind of system are generally difficult to approximate numerically. One
of the difficulties is that explicit schemes are subject to restrictive time steps
conditions. Implicit schemes do not suffer from time step conditions but require
solving large sets of linear equations. In previous works (see [4] and included
references), we have proposed a method, based on a kinetic approach, for avoiding
this constraint. We first recall the principles of the kinetic representation.

We consider a set of d + 1 (or more) kinetic velocities Vk, k = 0 . . . d, associ-
ated to vectorial kinetic functions Fk(W ) ∈ Rm. We also define “Maxwellian”
equilibrium functions Mk(W ) ∈ Rm. The kinetic BGK representation is given by
transport equations with relaxation source terms [2, 1]

(2) ∂tFk + Vk · ∇XFk =
1

τ
(Mk(W )− Fk) .

When the relaxation time τ → 0+, the kinetic model (2) is formally equivalent to
the initial system of conservation laws (1) provided that

(3) W =
∑

k

Mk(W ),
∑

k

V i
kMk(W ) = Qi(W ), i = 1, . . . , d.

Conditions (3) constitute a set of m(d + 1) equations with m(d + 1) unknowns
for finding the Maxwellian. It possesses a unique solution. Theoretical arguments
show that the formal limit is a true limit, under a so-called sub-characteristic condi-
tion [2, 1]. This condition states that the kinetic velocities have to be greater than
the wave speeds λr of the underlying hyperbolic system: ∀k, |Vk| > maxr |λr | .
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In practice it is difficult to solve directly the BGK system (2). It is better to
split the equations into transport and a collision steps. This leads to the following
kinetic algorithm for advancing one time step:

(1) Solve for a duration ∆t the free transport equation

∂tFk + Vk · ∇XFk = 0.

(2) Solve, for the same duration, the relaxation (or collision) step

∂tFk =
1

τ
(Mk(W )− Fk) .

This algorithm is iterated in order to compute an approximation of W =
∑

k Fk.
The presented splitting algorithm is only first order accurate in time. But it is
possible to improve its order, for instance by using an over-relaxation algorithm
[4]. It has been observed, since a long time that these kinds of kinetic schemes are
free of CFL conditions. See for instance [3]. However, this interesting property is
rarely exploited in practical applications.

2. Unconditionally stable DG approximations

The kinetic algorithm presented in Section 1 relies on transport steps and relax-
ation steps. The relaxation step is generally easy to implement at each interpo-
lation point of the approximation. In addition, it is embarrassingly parallel. The
most complicated part of the kinetic algorithm requires solving transport equations
of the form

(4) ∂tf + V · ∇f = 0

If the computational domain has a simple shape and if the solution is computed
on a structured Cartesian grid, it is natural to solve this transport equation by
the characteristic method. With well-chosen time step ∆t and kinetic velocities
Vk, this approach leads to the so-called Lattice Boltzmann method.

In a domain Ω with a complex geometry and for unstructured grid, the char-
acteristic method is no more a good choice because it leads to difficulties such
as instabilities or loss of conservation. In addition, the treatment of boundary
conditions is not natural in this framework. In the unstructured case we prefer to
rely on a DG approximation of (4).

We consider an unstructured mesh of the computational domain Ω made of
tetrahedral cells. The transported function f is approximated in cell L by a linear
expansion on basis functions f(x, t) ≃ fL(x, t) =

∑

j fL,j(t)ψ
L
j (x), x ∈ L. The

unknowns are the coefficients fL,j(t) of the linear expansion. After a DG in space
approximation of (4), the DG scheme read as follows

(5) KF
′(t) = 0,

where F(t) is a large vector containing all the coefficients fL,j(t), and K is the
large matrix arising from the DG approximation of the transport equation. We
then have to solve a large set of linear Ordinary Differential Equations (ODE).
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Explicit-in-time approximations of this set of ODEs suffer from constraining
stability conditions on the time step ∆t. In order to suppress the stability condi-
tion, we can use an implicit time scheme for solving (5) for going from time step
n− 1 to time step n. For simplicity, we describe the case of an implicit first order
Euler method. The strategy can be extended to other more accurate schemes,
such as the Crank-Nicolson scheme (that we use) or DIRK (Diagonally implicit
Runge--Kutta) approaches. With Fn ≃ F(n∆t), the implicit Euler scheme reads

(6) (I+∆tK)Fn+1 = F
n

It seems that one would need to assembly and solve a large linear system for
computing Fn+1 from Fn. But the matrix K is block-triangular. In practice there
is thus an explicit algorithm, the downwind algorithm, for solving efficiently the
system (6). See [4].

3. Subdomain parallelism

We have implemented the downwind and the kinetic algorithms in a parallel soft-
ware based on a work stealing algorithm [4]. We have observed a decreasing
efficiency of the method when the number of threads increases. This is because
the parallel scaling of the downwind algorithm is limited, at a given point, by the
dependencies in the computations.

In order to increase the parallel scaling, we now describe a subdomain strategy
that relaxes the computation dependencies. The main idea is to apply the above
time-implicit downwind algorithm in each subdomain, but with a time-explicit
coupling between the subdomains, for suppressing some dependencies. Because
of the explicit coupling, it will be necessary to apply an iterative algorithm for
computing the exact solution in a stable way. The algorithm can be proved to
converge in a finite number of iterations. In most configurations three iterations are
sufficient. Let us now describe the principles of this subdomain iterative algorithm.
As in Section 2, the main task is the resolution of the transport equation in Ω ×
[0,∆t], with initial data:

∂tf + V · ∇f = 0, f(X, 0) = f0(X).

We assume that Ω is decomposed into a finite number of subdomains Ωi, i =
1 . . . nd. For the simplicity of the presentation, we assume that Ω is a periodic
domain or the whole space, in order to avoid the description of the boundary
conditions. However the approach is also valid also when ∂Ω 6= ∅.

We then denote by fi the restriction of f to subdomain Ωi, by Ni(X) the
outward normal vector on ∂Ωi, and by ∂Ω−

i the upwind part of the boundary of
Ωi:

∂Ω−
i = {X ∈ ∂Ωi, Ni(X) · V < 0} .

We initialize the algorithm by setting f0
i (X, t) = f0

i (X). Thus, the initial iteration
does not depend on time. We then consider an iterative algorithm for computing
successive time-dependent iterations fp

i in subdomain Ωi for p ≥ 1. For computing
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Figure 1. Subdomain algo-
rithm, in a generic subdomain
decomposition, with corners
shared by several subdomains.
In this case, the iterative algo-
rithm reaches the exact solution
in at most three iterations. First
iteration: the boundary value
on ∂Ω−

2 is updated. Second
iteration: the boundary value
on ∂Ω−

3 is updated. Third
iteration: the correct value is
transported.

fp
i from fp−1

i we solve the following time-dependent boundary value problems

∂tf
p
i + V · ∇fp

i = 0, in Ωi,(7)

fp
i (X, 0) = f0

i (X), X ∈ Ωi,(8)

fp
i (X, t) = fp−1

j (X, t), X ∈ ∂Ω−
i ∩ ∂Ωj .(9)

We can prove the following result.

Proposition let L be the maximum diameter of the subdomains. Under the
condition

∆t ≤ L

|V | ,

in the generic case, the above algorithm (7)-(9) converges to the exact solution in
at most three iterations: f3

i = fi.

The proof relies on the characteristic method. It is briefly sketched in Figure 1.

3.1. Stability. We have implemented the above iterative algorithm. The paral-
lelism within each subdomain is managed, as before, through the work stealing
strategy. The communications between the subdomains are managed through
calls to the MPI (Message Passing Interface) library. In our first experiments, we
have verified the stability properties of the transport solver. They indicate that
the number of iterations of the iterative algorithm is indeed important for the
stability of the method. For a general domain decomposition obtained with an
automatic partitioner, and with large time steps, the algorithm is stable provided
that three iterations are done for advancing one time step. An illustration is given
in Figure 2.

The objective of the subdomain algorithm was to relax the computational depen-
dencies and to achieve a better parallel (strong) scaling of the method.

We compare the time spent in the iterative algorithm with a varying number
of threads and subdomains. We define the efficiency e of the acceleration as the
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Figure 2. Stability of the subdomain iterative algorithm. Left:
subdomains structure, Middle: 2 iterations scheme, Right: 3 iter-
ations scheme. We observe that the iterative algorithm is stable,
even with large time step, but that three iterations seem to be
necessary.

MPI nodes Threads #CPU Time (s) Accel. e

1 2 2 1314 1
1 8 8 346 0.95
1 64 64 106 0.39
2 32 64 75 0.55
8 8 64 57 0.72

Table 1. Multithread and MPI scaling. For a computation done
with 64 threads, we observe that it is better to split the domain
into 8 subdomains instead of affecting all the threads to one single
subdomain.

ratio of the elapsed time of the algorithm with the time that we would get with an
ideal perfect scaling. The efficiency is perfect if e = 1. We observe, for instance,
that with a single subdomain the efficiency with 64 threads drops to e = 0.39,
while with 8 subdomains and 8 threads per subdomain the efficiency is better
e = 0.72. We have thus validated the efficiency of this approach. Of course, the
whole algorithm is impacted by a slowdown factor imposed by the additional iter-
ations. However the weak scaling of the method on a supercomputer for very large
computations is now certainly ensured. Indeed, explicit subdomain decomposition
methods are known to be well adapted to the architecture of supercomputers.
More measurements are given in Table 1.

4. Conclusion

We presented an adaptation of the kinetic DG method introduced in [4]. The
method can handle arbitrary conservation laws and complex unstructured meshes.
It is explicit in time but CFL-free. The method has good parallelization features,
for both shared memory and distributed memory computers. For improving the
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parallel scaling on distributed memory computers, we have proposed a subdomain
decomposition method that relaxes the task dependencies of the kinetic scheme
but keeps the possibility to use large time steps.

References

[1] Denise Aregba-Driollet and Roberto Natalini. Discrete kinetic schemes for multidimensional
systems of conservation laws. SIAM Journal on Numerical Analysis, 37(6):1973–2004, 2000.

[2] François Bouchut. Construction of BGK models with a family of kinetic entropies for a given
system of conservation laws. Journal of Statistical Physics, 95(1-2):113–170, 1999.

[3] Yann Brenier. Averaged multivalued solutions for scalar conservation laws. SIAM journal
on numerical analysis, 21(6):1013–1037, 1984.

[4] Pierre Gerhard, Philippe Helluy, and Victor Michel-Dansac. Unconditionally stable and par-
allel discontinuous galerkin solver. Computers & Mathematics with Applications, 112:116–
137, 2022.

Invariant-domain preserving high-order implicit-explicit Runge Kutta
time stepping for nonlinear conservation equations

Jean-Luc Guermond

(joint work with Alexandre Ern)

We consider high-order discretizations of the Cauchy problem for a generic con-
servation equation where the evolution operator comprises a hyperbolic part and
a parabolic part with diffusion and stiff relaxation terms. Assuming that the said
problem admits an invariant domain, we propose a technique that makes every
implicit-explicit (IMEX) time stepping scheme invariant domain preserving and
mass conservative. Following the ideas introduced in Part I on explicit Runge–
Kutta schemes (see [1]), the IMEX scheme is written in incremental form. At each
stage of the scheme, we first compute low-order hyperbolic and parabolic updates,
then compute the high-order counterparts, and finally apply a conservative limit-
ing technique to the explicit hyperbolic component and to the implicit parabolic
part. The proposed technique, which is agnostic to the space discretization, al-
lows to optimize the time step restrictions induced by the hyperbolic sub-step. To
illustrate the proposed methodology, we derive three novel IMEX schemes with op-
timal efficiency and for which the implicit scheme is singly-diagonal and L-stable.
We propose a third-order, four-stage scheme and two fourth-order schemes, one
with five stages and one with six stages. The novel IMEX schemes are evaluated
numerically on a stiff ODE system, and their explicit component is also tested on
hyperbolic problems. In the forthcoming third part of this work, we show how to
apply these schemes to nonlinear convection-diffusion problems with stiff reaction
and to compressible viscous flows possibly including gray radiation.
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Non intrusive low Mach schemes

Gabriella Puppo

(joint work with Andrea Thomann, Angelo Iollo)

In many hyperbolic systems of equations the Jacobian of the system can yield
eigenvalues of very different orders of magnitude. One can distinguish fast and
slow waves, and in many applications one is actually interested in slow waves,
although the stability restrictions on the time step for explicit schemes is given by
the fast waves. The most studied case is in gas dynamics, where the fast scale is
given by the acoustic waves, and therefore by the sound speed c, while the slow
scale coincides with material waves, and it is given by the actual gas speed, u.
Thus the system is stiff when M = ||ur||/cr << 1 (low Mach flow), where ur and
cr are reference values for the local velocity of the gas and its sound speed, and
their ratio M is the Mach number of the flow.

Low Mach schemes are designed to preserve at the discrete level the asymptotic
limit when M → 0, and, at the same time, to avoid the stiffness induced by the
low Mach number. The literature in this field is huge, for instance [2, 5] and [3] for
an approach based on relaxation. See also the review by [6] and references therein.

Adimensionalizing the equations with respect to the reference values ur and
cr, the Mach number appears as a parameter. Typical cases are the system of
isentropic gas dynamics, which, in adimensional form becomes

∂tρ+∇ · ρu = 0

∂tρu+∇ρu⊗ u+
1

M2
∇p = 0, p(ρ) = cργ .

In a low Mach discretization, the pressure is treated implicitly, thus a typical time
discretization takes the form, [8]

ρn+1 = ρn −∆t ∇ · (ρu)n+1

(ρu)n+1 = (ρu)n −∆t∇(ρu ⊗ u)n −∆t∇
(

1

M2
pn+1

)

.

Then, one substitutes the expression for momentum (ρu)n+1 in the density equa-
tion, and, using the fact that the pressure is a known function of the density, the
update of the continuity equation becomes an elliptic equation for the density.

The strategy is different if we include the energy equation. The adimensional
form of the equations is

∂tρ+∇ · ρu = 0

∂tρu+∇ρu⊗ u+
1

M2
∇p = 0, p(ρ) = (γ − 1)ρe

∂tE +∇(u(E + p)) = 0,

but now the dependence on the Mach number appears also in the expression of
the energy E = 1

γ−1p+M2ρ||u||2. Again, the pressure will be treated implicitly,
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and a possible strategy for the time discretization is [4]

ρn+1 = ρn −∆t ∇ · (ρu)n+1

(ρu)n+1 = (ρu)n −∆t∇(ρu ⊗ u)n +∆t
γ − 1

2
∇(ρ||u||2)n −∆t

γ − 1

M2
∇En+1

En+1 = En +∆tM2 γ − 1

2
∇(ρu||u||2)n −∆t γ∇

(

(ρu)n+1E
n

ρn

)

This time the momentum update is substituted in the energy equation, and the
elliptic equation to be solved for the low Mach scheme is in the energy.

We see therefore that the structure of low Mach schemes is typically intrusive,
in the sense that the design of the scheme is tailored to the structure of the system
of equations. An innovative approach could be to provide a general scheme which
depends weakly on the structure of the equations. We proposed a general strategy
in [10]. The idea is to rewrite the system as a relaxation system, as in [7], thus

∂tu+ ∂xv = 0,

∂tv +A2∂xu =
1

η
(f(u)− v),

where v are relaxation variables, A2 > 0 is a diagonal matrix of relaxation speeds
such that A2 > [f ′(u)]2 ∀u, and η > 0 is the relaxation rate. In [1], we used
this approach, with a fully implicit scheme, to obtain an asymptotic preserving
scheme for a multiscale model for elasto-plastic materials. There, we proved that
the resulting scheme is AP, provided η < M2. The drawback however is that one
must also update the relaxation variables. Now, we are proposing a new strategy
[10], where the relaxation system is split into a relaxation and a transport step.
Namely, we first solve

∂tu = 0

∂tv =
1

η
(f(u)− v).

In the limit η → 0, which is the regime of interest, this means immediate relaxation,
thus v∗ = f(u∗). Then, the convective step starts with initial data un, vn = f(un),
and is decoupled componentwise,

∂tui = −∂xvi
∂tvi = −A2∂xui.

Integrating this system implicitly, we find

un+1
i = uni − ∂xv

n+1
i

vn+1
i = vni −A2∂xu

n+1.

Substituting the relaxation variables vn+1
i in the first equation, we find the relaxed

implicit system
(

I − (∆t)2A2∂2xx
)

un+1 = un −∆t∂xf(u
n).
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This system is provably asymptotic preserving, and can be discretized in space to
ensure that the artificial diffusion satisfies the low Mach requirements. Note that
this approach does not depend on the particular structure of the system being
integrated. For a fully implicit scheme for hyperbolic systems in all regimes, see
[9].
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Hamiltonian models in plasma physics and their discretisation

Eric Sonnendrücker

Many kinetic and fluid models in plasma physics have been shown to have a non
canonical hamiltonian structure when collisional and dissipative effects are ne-
glected. See in particular the review paper [2]. The concept of geometric or struc-
ture preserving discretisation of such Hamiltonian systems has been in intensive
area of research in the last few years.

The aim of this talk is to review recent work on this topic. In particular for
long time scale computations as is the case in magnetic fusion devices like stellara-
tors and tokamaks, the conservation of the structure of the models and the main
invariants is essential.

A non canonical hamiltonian system is characterized by a Poisson bracket and
a Hamiltonian H, its abstract formulation being

dF
dt

= {F ,H}

for any functional F .
The guiding principle of geometric methods is to discretize the Poisson bracket

and the Hamiltonian rather than the partial differential equations resulting from
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them. This enables to get a finite dimensional Hamiltonian system, that can then
be solved by classical geometric methods for ordinary differential equations. Note
however that the discretisation of the Poisson bracket does not automatically lead
to a discrete Poisson bracket as the Jacobi identity is often hard to keep. Still even
in this case such a discretisation, which is sometimes called quasi-Hamiltonian in
the literature, has good properties and enables the exact conservation of some
invariants.

When collisional and dissipative effects become important, a degenerate dis-
sipative metric term can be added to the Poisson bracket. This framework is
called metriplectic in the plasma physics community and has been introduced in
the 1980s. See in particular [1]. Introducing a hamiltonian H which is conserved
and a free energy (or entropy) S which is dissipated, the metriplectic dynamical
system reads

dF
dt

= {F ,H}− (F ,S)
which can also be expressed as

dU

dt
= J(U)

δH
δU

−K(U)
δS
δU

with J a Poisson operator and K a symmetric semi-definite positive operator,
F ,S,H functionals of U .

The entropy is preserved by the Poisson bracket and the energy is preserved by
the dissipative bracket

{S,H} = 0, (H,S) = 0.

This implies in particular that the energy is preserved and the entropy dissipated:

dH
dt

= {H,H}− (H,S) = 0,
dS
dt

= {S,H} − (S,S) ≤ 0.

Our main application of geometric discretisations in the talk is the Vlasov-
Maxwell-Landau model. It fits into the metriplectic framework with

dF
dt

= {F ,H}+ (F ,S),

H =
m

2

∫

fv2dxdv +
ǫ0
2

∫

E2dx+
1

2µ0

∫

B2dx,

S =

∫

f ln fdxdv.

The metriplectic bracket preserves mass, momentum, total energy, the divergence
constraints on E and B, and satisfies an H-theorem, implying monotonic dissipa-
tion of entropy, and the existence of a unique equilibrium state.

A discretisation of the brackets, the hamiltonian and the entropy, instead of the
associated partial differential equations guarantees these properties at the discrete
level and can be achieved by different numerical methods. We used in particular
Finite Element Exterior Calculus to discretize the fields and a Particle-In-Cell
approximation of the Vlasov equation [3]. A generalization of this method has
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been described in [5] and an implicit formulation in [4]. A variational stochastic
formulation for collisional operators has been derived in [6].
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tromagnetic particle-in-cell methods. Journal of Plasma Physics, 83(4), (2017)
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Vlasov equations (for plasmas) and Friedrichs systems

Bruno Després

(joint work with Frédérique Charles, Ruiyong Dai, Sever Hirstoaga)

This contribution describes the structure of the new anisotropic moment model
(12) written at the end of this contribution. The model is under development at
the Muffin project (funded by ANR project MUFFIN).

The starting point is a model Vlasov equation with non constant magnetic field

(1) ∂tf + v · ∇xf + (E(x) + v ×B0(x)) · ∇vf = 0.

In this equation x ∈ R3 is the space variable, v ∈ R3 is the velocity variable, t > 0
is the time variable and f = (x,v, t) is the unknown. The magnetic field is written
as

B0(x) =
ωc(x)

ε
b0(x)

where |b0(x)| = 1 and the magnitude of the magnetic field is ωc(x)
ε where ωc(x) > 0

is the cyclotron frequency and ε ∈ (0, 1] allows to study the regime of strong
magnetic field ε→ 0+. We quote that ∇v · (E(x) + v ×B0(x)) = 0.

Recent mathematical results on such models are in [8, 7]. The method of mo-
ments for the discretization of kinetic equations for particles in plasma is studied
in [1, 2, 3, 4, 6]. Trefftz methods applied to moment models of kinetic equations
for neutral particles with scattering an absorption [5] have a similar structure.
With respect to these works, the originality of this contribution is the anisotropy
brought by the non constant magnetic field. A new expansion is proposed in terms
of anisotropic shape functions aligned with the direction of the magnetic direction
b0(x).
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1. Construction of the method

The Hermite functions are well adapted to the Gaussian kernel which describe the
underlying statistical equilibrium of a plasma. They are denoted as

ϕn(v) = (−1)n(2nn!
√
π)−

1
2 e

v2

2
dn

dvn
e−v2

= (2nn!
√
π)−

1
2 e

−v2

2 Hn(v), n ∈ N,

where (Hn)n∈N is the family of Hermite polynomials. The first terms in the series
are
(2)

ϕ0(v) = π− 1
4 e−

v2

2 , ϕ1(v) =
√
2π− 1

4 ve−
v2

2 , ϕ2(v) =
(√

2π
1
4

)−1

(2v2 − 1)e−
v2

2 .

A generating formula is ϕn(v) = (−1)n(2nn!
√
π)−

1
2 e

v2

2
dn

dvn e
−v2

. The Hermite func-

tions form an orthonormal family
∫

R
ϕm(v)ϕn(v)dv = δmn which is complete

in the space of quadratically integrable functions L2(R). For all g such that
∫

R
g2(v)dv <∞, one has the identity in L2(R)

g(v) =
∑

n∈N

gnϕn(v)dv where gn =

∫

R

ϕn(v)g(v)dv.

Two important formulas are satisfied

(3) vϕn(v) =

√

n+ 1

2
ϕn+1(v) +

√

n

2
ϕn−1(v), n ∈ N,

and

(4) ϕ′
n(v) = −

√

n+ 1

2
ϕn+1(v) +

√

n

2
ϕn−1(v), n ∈ N.

As in [1, 2], it is convenient to define the asymmetric basis ψn(v) = e−
v2

2 ϕn(v) =

(2nn!
√
π)

1
2 e−v2

Hn(v) and ψn(v) = e
v2

2 ϕn(v) = (2nn!
√
π)

1
2Hn(v). A generic no-

tation for a multi-index with three components is

n = (n0, n1, n2) ∈ N
3 with |n| = n0 + n1 + n2.

To be compatible with the notion of physical Maxwellians [1] and to take into
account the anisotropy brought by the magnetic field B0(x), we rescale the parallel
direction

(5) d0(x) =
b0(x)√
T

where T > 0 is the temperature, assumed to be constant in space and time in this
simple modeling. We complete b0(x) as a local direct orthonormal basis

bi(x) · bj(x) = δij

and rescale the orthonormal directions as

(6) di(x) =
bi(x)√
T
, i = 1, 2.
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We define

(7) ϕ
n
(x,v) = ϕn0

(v · d0(x))ϕn1
(v · d1(x))ϕn2

(v · d2(x)) ,

which is an orthonormal and complete family with respect to the velocity vari-
able v with continuous dependance with respect to the space variable x. The
corresponding asymmetric families are

(8) ψ
n
(x,v) = ψn0

(v · d0(x))ψn1
(v · d1(x))ψn2

(v · d2(x))

and

(9) ψn (x,v) = ψn0 (v · d0(x))ψ
n1 (v · d1(x))ψ

n2 (v · d2(x))

By construction

(10) ψ
n
(x,v) = e−

|v|2

2T ϕ
n
(x,v) and ψn (x,v) = e

|v|2

2T ϕ
n
(x,v) .

The functions ψn with the upper-script n are polynomials.
The approximation method is based on a finite expansion coupled with many

equations
(11)
fN (x,v, t) =

∑

|m|≤N um(x, t)ψ
m
(x,v),

∫

v

(

∂tf
N(x,v, t) + v · ∇xf

N(x,v, t) + F(x,v) · ∇vf
N (x,v, t)

)

ψn(x,v)dv = 0

∀(x, t) and |n| ≤ N.

where the force is F(x,v) = E(x) + v ×B0(x).

2. Structure of the final anisotropic Moment model

Let us decompose E = (E1, E2, E3). It is easily shown that the moment model
(11) is equivalent to the Friedrichs system
(12)

∂tU(x, t)+

3
∑

i=1

∂xi
(Ai(x)U(x, t))−B(x)U(x, t)+C(x)U(x, t)+

3
∑

i=1

Ei(x, t)Di(x)U = 0

coupled with the Poisson equation. The unknown is the vector of moments U(x, t).
The point is that all matrices can be calculated explicitly and that the large
magnetic field limit (ε→ 0) is compatible with the recent results [8].
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Comparison of high-order Eulerian methods for electron hybrid model

Nicolas Crouseilles

(joint work with Anais Crestetto, Yingzhe Li, Josselin Massot)

In this work [1], we focus on the numerical approximation of a hybrid fluid-kinetic
plasma model for electrons, in which energetic electrons are described by a Vlasov
type model whereas a fluid model is used for the cold population of electrons.
The two models are coupled through the current in the Maxwell equations for the
electromagnetic fields.

First, we study the validity of this hybrid modelling in a two dimensional context
(one dimension in space and one dimension in velocity) against the full (stiff)
Vlasov model and second, a four dimensional configuration is considered (one
dimension in space and three dimensions in velocity) following [3].

To do so, we consider two numerical Eulerian methods. The first one is based
on the Hamiltonian structure of the hybrid model which enables us to design
Hamiltonian splitting. It turns out that each subsystem of this splitting can be
solved exactly in time, and high order methods are used to discretize the phase
space. This approach leads to very good conservation of the total energy for
large time, but turns out to be very costly when one is interested in high order
splittings in the four dimensional case. A second approach is based on exponential
integrators [2] where the linear terms of the hybrid model are solved exactly in
time. This approach enables to derive high order time integrators still removing
the CFL condition induced by the linear part (which is the most stringent one).
We also propose a Padé technique to approximate the exponential of the matrix
involved in the exponential integrators.

The accuracy and efficiency of these methods, which are combined with an
adaptive time stepping strategy, are discussed in the different configurations and
in the linear and nonlinear regimes.
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Structure preserving numerical methods for the Euler equations
with gravity

Christian Klingenberg

This report summarizes some of the work that resulted from the collaboration
with the astrophysicist Fritz Röpke (Heidelberg) (click here for Röpke). He does
numerical simulations of convection inside a star. At the heart of his PDE model
are the compressible Euler equations with gravity:







∂tρ+∇x · (ρu) = 0
∂tρu+∇x(ρu⊗ u+ p) = −ρ∇Φ
∂tE +∇x ((E + p)u) = −uρ∇Φ,

where Φ is a given gravitational potential, ρ the density, u the velocity, p = p(ρ, e)
is the pressure, which is a given function of density and internal energy e.

In Röpke’s astrophysical applications (see for example [6]) the flow is near a hy-
drostatic equilibrium and also tends to have very low Mach number. A hydrostatic
equilibrium is a stationary solution with zero velocity, the Mach number represents
the speed of the flow compared to the sound speed. It can be shown that solutions
of the compressible flow equations converge to solutions of the incompressible flow
equations, see [7].

This puts two requirements on the numerical scheme for such flows:

• the scheme should maintain a numerical discretization of the hydrostatic
equilibrium exactly, called well-balanced

• in the limit to incompressible equations the scheme should also be able to
discretize these limit equations.

We shall report on a number of schemes that well-balanced, see e.g. [3], [4], [6].
Numerical schemes that manage to to maintain stationary solutions should also

be able follow the low Mach limit. We study schemes that are able to do both. It
is important to pay attention to the interplay of these two properties. We shall
report on this as presented e.g. in [1], [5], [8].

This is joint work with among many others Wasilij Barsukow, Claudius Birke
and Fritz Röpke.
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A well-balanced and asymptotic-preserving relaxation scheme for the
Euler equations with gravity

Claudius Birke

(joint work with Christophe Chalons, Christian Klingenberg)

In physical applications, problems with large scale differences can occur, so that the
Mach number becomes very small. It is commonly known that for such problems
standard finite volume schemes suffer from excessive dissipation. This can be
explained by analysing the structure of numerical fluxes in finite volume methods.
In general, finite volume fluxes consist of a central flux combined with an artificial
dissipation term, i.e.

(1) F(UL,UR) =
1

2

(

F(UL) + F(UR)
)

− 1

2
D(UR −UL).

This dissipation term, introduced for stability, scales with the largest wave speed
of the underlying system. For the compressible Euler equations it therefore scales
with the inverse of the Mach number, i.e. D ∼ O(1/M). In combination with the
difference between left and right state of the velocity at the Riemann problem, this
leads to a very large dissipation which prevents an accurate resolution of the fluid
flow. Based on this problem analysis, low Mach fixes were introduced for various
approximate Riemann solvers to reduce dissipation. In low Mach versions of Roe’s
solver, the dissipation matrix is rescaled by multiplying by carefully chosen pre-
conditioning matrices [1, 2], while in HLL-type solvers it is sufficient to redefine
the intermediate state of the pressure [3]. When incorporating this low dissipation
strategy into the theory of Suliciu type relaxation solvers [4] as well, the subchar-
acteristic condition for stability has to be taken into account. Unfortunately, it
is not possible to simply rescale the already existing relaxation speed to reduce
dissipation, as this would violate the subcharacteristic condition. To circumvent
this conflict, Bouchut et al. add a second relaxation speed to their relaxation
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system for solving the homogeneous barotropic Euler equations [5]. The key idea
here is to not only to reduce dissipation on the velocity, but to simultaneously
increase dissipation on the density. So, in a way, a transfer of dissipation takes
place. As a result, the dissipation remains bounded for low Mach numbers, while
the subcharacteristic condition remains fulfilled. The additional dissipation on the
density does not result in a reduced accuracy since the density difference scales
with M2 and thus the dissipation remains bounded.

We extend this low Mach approach to the full Euler equations and consider ad-
ditionally gravitational source terms [6]. In this context one must also consider the
influence of the source term on steady solutions. For problems close to hydrostatic
equilibrium

{

u = 0,
∇p = −ρ∇Φ,

(2)

standard finite volume methods do not automatically satisfy a discrete equiva-
lent of (2) and therefore are not capable of resolving small perturbations on the
equilibrium accurately on coarse grids. In order to adress this we combine the two-
speed system with a well-balancing mechanism that was introduced in [7]. The
key idea of this approach is to add a transport relaxation equation for the grav-
itational potential to the relaxation system in order to include the gravitational
potential into the approximate Riemann solver. The additional equation in the
relaxation system leads to a Riemann problem that is under-determined, which
gives an additional degree of freedom and allows to introduce a closure equation
that is a discrete equivalent of (2). This technique makes it possible to preserve
all hydrostatic equilibria up to second order accuracy, certain families of equilibria
and a-priori known hydrostatic solutions even up to machine precision.

The resulting approximate Riemann solver is proven to be well-balanced and
asymptotic preserving. In the asymptotic-preserving proof, it becomes clear that
the asymptotic-preserving property is closely related to the well-balanced property.
In fact, in addition to the reduced dissipation coming from the Mach number
dependent scaling of the relaxation speeds, in the proof it is also exploited that
in the low Mach limit the hydrostatic equilibrium is satisfied up to errors of order
M2.

By respecting the subcharacteristic condition, the solver satisfies a discrete
version of the entropy inequality, with the help of which it can be proven that
no unphysical checkerboard modes can occur in the velocity and the pressure.
Additionally, the approximate Riemann solver preserves the positivity of density
and internal energy.
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Structure preserving schemes for general relativity

Elena Gaburro

(joint work with Simone Chiocchetti, Manuel Castro and Michael Dumbser)

The aim of the work presented during the seminar is the development of a new
family of numerical schemes able to simulate in a robust way and over very long
computational times the evolution of both the matter and the metric of the space
time according to the theory of general relativity.

To this scope the use of high order Finite Difference, Finite Volume (FV) and/or
Discontinous Galerkin (DG) schemes represents, unlikely, only the starting point.
Indeed, the high order of accuracy is a fundamental ingredient to reduce the nu-
merical errors and provide high accurate schemes, but is not enough to guarantee
the robustness. Thus, it is necessary to endow these methods with additional fea-
tures able to preserve also at the discrete levels many of the physical constraints
satisfied by the continuum model.

At this purposes, we have addressed three topics: i) well balanced schemes, i.e.
schemes able to preserve the equilibrium solutions of the studied systems up to
machine precision, ii) curl cleaning methods able to control the numerical errors
affecting variables which at continuum level have provable zero or constant curl,
and iii) a new family of direct Arbitrary-Lagrangian-Eulerian schemes allowing to
exploit the Galilean and rotational invariance of the system preserving at the same
time a high quality of the moving meshes.

Before moving to the details of these structure preserving numerical techniques, it
is worthy to provide the mathematical formulation of the studies systems, which
is given by systems of first order hyperbolic partial differential equations.

The evolution of the matter is given by the so called GRMHD system, see for
example [5]. This system of 19 equations can be considered alone, in this case the
metric is fixed and we are said to work in a so called Cowling approximation. The
evolution of the metric is given by the FO-CCZ4 Eistein field equations, see for
example [4]. This system of 59 equations can be considered alone, in this case the
matter is fixed and we are said to work in a so called anti-Cowling approximation.
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Figure 1. TOV star simulation with the CCZ4+GRHD fully
coupled model corresponding to an initial perturbation over the
pressure profile p. Left: we show the values of the Hamiltonian
and momentum constraints which are close to machine precision
and constantly maintained for long computational times with the
WB code, while they rapidly blow up with the not WB code.
Right: we plot the numerical results obtained with the new WB
scheme for the density of the star at an inner point with r = 0.5
which oscillates due to the initial pressure perturbations.

The two systems can also be considered together: in this case we can study
the joint evolution of metric and matter according to general relativity, see for
example [1].

However, the coupled system counts many equations with stiff sources and delicate
variables quite sensible to numerical errors. To allow its robust and long time
simulation we have started with the introduction of well balanced (WB) techniques.
The details on the construction of a second order well balanced FV scheme have
been given in the talk and can be found in [1]. A remarkable result of this work
is that the obtained numerical scheme allowed for the first time in literature to
study of the pulsation of a TOV neutron star subject to a pressure perturbation,
see Figure 1.

Then, the necessity of techniques able to preserve curl involution, for moving to
higher dimension simulations, has been addressed. The focus was put in particular
on a novel curl cleaning technique, see [4]. I refer to the talk given by Michael
Dumbser and Ilya Peshkov for more details.

Finally, a novel family of high order accurate direct Arbitrary-Lagrangian-Eulerian
(ALE) FV and DG schemes over moving Voronoi meshes with topology changes
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Figure 2. We compare the exact solution with the numerical
solutions obtained with different methods for a mass transport
over a Keplerian disk. For all the cases the employed numerical
flux is an Osher-type flux. The Lagrangian algorithms show their
ability in reducing the viscosity along the angular direction. The
well balanced methods do not diffuse the quantities in the radial
direction. When coupled together (top-right) we obtain a result
very close to the exact solution (top-left).

has been presented, see [3, 2]. This novel approach, involving high quality of
the grid moving in a way as much as possible Lagrangian together with high
order of accuracy, offers a robust framework with reduced dissipation errors on
convective terms, exceptionally suitable for the treatment of vortical flows around
central objects as black holes and neutron stars. Based on previous results of well
balancing coupled with direct ALE for simpler equations as Euler with gravity, see
[6] and Figure 2, the insertion of well balanced techniques inside this new family
of schemes represents a promising framework for further simulation of phenomena
involving general relativity.
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Time integration of the semi-discrete Active Flux method

Wasilij Barsukow

Hyperbolic systems of conservation laws are known to develop discontinuities in
finite time. At least in one spatial dimension, for systems such as the Euler equa-
tions, the behaviour of discontinuities can be computed analytically. In the quest
for reliable, i.e. stable and accurate numerical methods for hyperbolic conservation
laws, Godunov [7] suggested to interpret the discrete data as a piecewise constant
function with jumps at every cell interface, and to update the discrete data by
evolving this piecewise constant function exactly over a short period of time. To
this end, the Riemann problems at cell interfaces need to be solved, and the time
span is chosen such that waves from neighbouring Riemann problems cannot in-
teract. After this time span, the solution is averaged over the cells, i.e. projected
again on a piecewise constant function. Godunov’s method therefore is a fully
explicit method.

One observes that this approach, if applied to the linear advection equation,
yields the upwind method. At the same time, for nonlinear equations, the nu-
merical method can become fairly complicated, because the exact solution of the
Riemann problem appears as a part of it. At the same time, the usage of the exact
solution as a building block allows to prove a discrete entropy inequality easily.
Many works have been devoted to a derivation of approximate Riemann solvers,
e.g. [8, 5, 9].

If a shock is present in a numerical simulation, it is generally never resolved by
a single jump located at a cell interface. In general, it is approximated by several
jumps and smeared out over a number of cells. Moreover, smooth parts of the flow,
such as rarefactions, are ”cut“ by Godunov’s approach into piecewise constants at
every time step.

There exist many suggestions in the literature, how continuous interpretations
of discrete data can be constructed. One example are classical Finite Elements.
The Galerkin method with test and basis functions that are piecewise linear and
globally continuous, however, is unstable for hyperbolic problems if integrated
explicitly, as this method can be seen as a finite difference approximation that
employs central derivatives, i.e. no upwinding.
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The Active Flux method ([10, 6]) chooses a continuous interpretation of the data
as well, and allows to achieve stability naturally. Its degrees of freedom are cell
averages {q̄i : i ∈ Z} and point values {qi+ 1

2
: i ∈ Z} at cell interfaces. These point

values are shared, i.e. the natural interpretation of the discrete data is piecewise
parabolic, and globally continuous. The parabola qrecon,i ∈ P 2([−∆x

2 ,
∆x
2 ]) in cell

i fulfills

qrecon,i

(

±∆x

2

)

= qi± 1
2

1

∆x

∫ ∆x
2

−∆x
2

dx qrecon,i(x) = q̄i.(1)

Following [1], integration of the conservation law ∂tq+ ∂xf(q) = 0 over the cell
yields the evolution equation for cell averages:

d

dt
qi(t) +

f(qi+ 1
2
(t)) − f(qi− 1

2
(t))

∆x
= 0.(2)

This equation is exact; the order of accuracy of the method therefore is determined
by the order of accuracy of the point value update and the order of accuracy of
the time integration.

The classical update of point values ([10, 2]) is obtained by considering the
exact or approximate evolution of the reconstruction. While for linear problems
it is possible to use exact evolution operators ([4]), for nonlinear problems this
is cumbersome even for smooth solutions. When characteristics cross, in general,
extra care is required ([2]). This approach does not yield an ODE for each qi+ 1

2
(t),

but determines the value qi+ 1
2
(∆t) directly. The usage of characteristic tracing

therefore is mixing the spatial differentiation (essentially hidden in the evaluation
of the parabola at the foot point of the characteristic) with time integration (which
happens in the calculation of where that foot point would be). For linear advection
∂tq + c∂xq = 0, c > 0, one finds for example

q
n+ ℓ

2

i+ 1
2

= qni+ 1
2

(

1− 2λℓ+
3

4
λ2ℓ2

)

+ qni− 1
2

(

−λℓ+ 3

4
λ2ℓ2

)

− 3

2
λℓq̄ni (λℓ− 2)(3)

with ∆t = λ∆x/c. The reason for computing point values for several times is the
update of the average, which, upon integration of (2) over the time step [0,∆t]
requires time-quadratures of fluxes:

q̄n+1
i − q̄ni

∆t
+

1

∆t

∫ ∆t

0

dt
f(qi+ 1

2
(t))− f(qi− 1

2
(t))

∆x
= 0.(4)

These quadratures can easily be obtained via Simpson’s rule:

1

∆t

∫ ∆t

0

dtf(qi+ 1
2
(t)) ≃ 1

6

(

f(qni+ 1
2

) + 4f(q
n+ 1

2

i+ 1
2

) + f(qn+1
i+ 1

2

)
)

.(5)

This approach therefore is a leap-frog-type time integration: it uses the point
values at time n + 1 to perform the update of the averages. It is stable up to
λ = 1, i.e. up to the physical stability bound.
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In [1] it has also been suggested to write down an ODE for the evolution of the
point values. Leaving the time continuous, it thus requires an approximation to
the spatial derivative, e.g. as a finite difference formula. The resulting system of
ODEs (one for the point values and (4) for the averages) is solved with standard
time integrators, such as SSP-RK. Several such suggestions have been presented
in the talk. They generally are stable under slightly stricter CFL conditions than
the physical one, and the stability depends on the upwinding of the stencil. They
come at the advantage that an extension to e.g. nonlinear systems such as the
Euler equations is immediate, while the characteristic tracing algorithm depends a
lot on whether a scalar conservation law is solved, a system (in 1-d or in multi-d),
a homogeneous or an inhomogeneous problem ([3]), etc.

Future work will be devoted to the extension of these results to arbitrary order
of accuracy and to multiple spatial dimensions.
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A pressure-based model for two-phase flows with pressure and velocity
disequilibrium under generic equations of state

Barbara Re

(joint work with Rémi Abgrall)

Compressible multiphase flow fields are characterized by the presence of interfaces,
which separate two (or more) phases or components, distinguished by different
physical or chemical properties. Among the simulation tools specifically developed
to deal with them, diffuse-interface methods (DIMs) resort to an augmented sys-
tem of governing equations to dynamically capture the interfaces. Indeed, rather
than explicitly tracking the interface motion, its position is reconstructed from
an integral quantity, such as the volume fraction α. Derived through an average
process, the governing equations of DIMs include some interfacial terms, which
describe the exchange between phases. Among the different closure assumptions
proposed to describe the dynamics of immiscible two-phase flows, Baer-Nunziato
(BN) type models are the most general ones, which assume that each phase evolves
with its own pressure, velocity, and temperature. Despite the complexity arising
from the large number of equations, an important advantage of these models is
the use of a thermodynamic model for each phase, so there is no need to define an
equation of state for the mixture.

In this work, we derive a pressure-based BN-type model able to deal with any
equation of state written in the generic form P = P (e, ρ), with P the pressure, e
the internal energy per unit of volume, and ρ the density. The proposed model is
also well-suited to weakly compressible flows, as it is able to recover the correct
scaling of the pressure oscillations in the limit of the Mach number M going to 0.
This work aims to close a gap in the family of the BN-type model, as the proposed
one is the first pressure-based two-phase model with these features.

The pressure-based BN-type model is derived from the symmetric variant with
pressure and velocity relaxation proposed by Saurel and Abgrall [1]. To allow for
generic equations of state, the speed of sound for each phase i is defined as

(1) c2i = χi + κi
Pi + ei
ρi

, where χ =

(

∂P

∂ρ

)

e

and κ =

(

∂P

∂e

)

ρ

.

After deriving the pressure formulation, we apply a special pressure scaling
that filters out the acoustics associated to long waves. Performing a multiple
space scale asymptotic analysis, the pressure can be composed by three major
contributions, i.e., P = P (0) + MP (1) + M2P (2) + O(M3), among which: the
P (0) is the thermodynamic variable, P (2) is responsible for local force balance,
and P (1) is associated to long wave acoustics, which can be neglected in the zero
Mach number limit for bounded domains [2]. Hence, the dimensionless pressure is
defined as deviation from a reference pressure Pr, scaled with respect to reference
density ρr and velocity ur, that is P =

(

P̃ − Pr

)/

ρru
2
r. This definition affects

the scaling of all thermodynamic quantities. Notably, the relation between the
dimensionless speed of sound c and its dimensional counterpart c̃ (omitting the
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subscript i of the phase for brevity) is c̃2 =
[

c2 + κ
M2

r ρ

]

u2r where M2
r =

ρru
2
r

Pr

is the reference Mach number, which should be expression of the global level of
compressibility of the flow field.

The resulting dimensionless pressure-based BN-type model reads [3]

∂αi

∂t
= −uIN

∂αi

∂x
− µ∆iP(2)

∂(αiρi)

∂t
+
∂(αiρiui)

∂x
= 0(3)

∂(αiρiui)

∂t
+
∂(αiρiu

2
i + αiPi)

∂x
= PIN

∂αi

∂x
+ λ∆iu(4)

M2
r

[

αi
∂Pi

∂t
+ αiui

∂Pi

∂x
+ (αiρic

2
i )
∂ui
∂x

]

= κi

[

uIN
∂αi

∂x
+ µ∆iP − ∂(αiui)

∂x

]

+M2
r

[

ρic
2
i,IN(uIN − ui)

(

∂αi

∂x
+ µPIN∆iP

)

+ κiλ(uIN − ui)∆iu

](5)

where PIN and uIN are the interface pressure and velocity, defined as weighted
averages between the phases, and ci,IN is the interface speed of sound, a variable
without thermodynamic meaning, but defined as the speed of sound ci in (1),
considering PIN instead of Pi. The operator ∆i indicates the jump in the variable
phase i and the other, with opposite sign, and λ and µ are relaxation parameters.

The model (2)–(5) recovers the correct scaling in the zero-Mach limit thanks
to the peculiar shape of Eq. (5), which, for Mr → 0, reduces to ∂αi

∂t + ∂αiui

∂x = 0,
which expresses the multi-phase counterpart of the divergence-free condition for
single-phase incompressible flows.

To solve the governing equations (2)–(5), a splitting approach is adopted, so
the solution at the time tn+1 is obtained in two steps: first, the hyperbolic part of
the PDEs including the temporal, the convective and the non-conservative terms
is solved; then, the ODEs associated to the relaxation terms are integrated.

Standard numerical techniques are combined to build the hyperbolic operator,
which applies a segregate solution strategy, as it is common in pressure-based
solvers. Hence, after solving the volume fraction and mass equation for each phase,
the momenta for each phase are predicted evaluating the pressure gradient at the
time tn. Then, the pressure equations are solved and the momenta are updated.
A semi-implicit time integration is used to avoid an excessively stringent stability
condition on the time step due to the low Mach, treating implicitly the acoustic
terms. To integrated implicitly the divergence of the velocity in the pressure
equation, an approximation for the velocities un+1

i is derived by the momentum
update equations. As a consequence of this choice, due to the chosen definition of
PIN, the pressure equations of the two phases are coupled [3].

A finite volume scheme over a staggered grid is used to spatially discretized the
governing equations. The non-conservative terms, involving the gradient of the
volume fraction, are discretized following the non-disturbance condition, stating
that a two-phase flow uniform in pressure and velocity at tn must remain uniform
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in these variables at time tn+1 [4]. This procedure leads to a discetization that
depends on the fluxes used for the convective terms, here the Rusanov fluxes, but
it is robust.

Finally, the relaxation operator uses a backward Euler scheme to integrate

dα1

dt
= µ∆1P ;

dαmi

dt
= −λ∆iu , for i = {1, 2}

M2
rαi

dPi

dt
= −

[

M2
r ρic

2
i,IN + κi

]

µ∆iP −M2
r κi(uIN − ui)λ∆iu , for i = {1, 2} .

The momentum equations are solved straightforwardly, whereas the system in-
volving the volume fraction and the pressure equations requires some care, as it is
highly non-linear, especially when using complex equations of state, and stiff.

The validity of the developed simulation tool is shown through one-dimensional
shock-tube tests, involving water-aluminum and almost pure flows. The numer-
ical results show a good agreement with reference ones, even at acoustic CFL
numbers greater than one, but some expected discrepancies across shocks, where
however the errors remain acceptable (within some percentage points). The effects
of different values of relaxation parameters are investigated: large values lead to
results similar to the one predicted by assuming mechanical equilibrium between
the phase, whereas a decrease of relaxation parameters (especially λ) leads to a
smoothing of the expansion and compression waves. Finally, a shock-tube con-
taining a two-phase CO2 mixture at saturation conditions is simulated, modeling
the fluids with the Peng–Robinson equation of state. The results illustrate how
the proposed full non-equilibrium BN-type model allows each phase to evolve in-
dependently according to its own thermodynamic model, although the equilibrium
is enforced at the interfaces: the state of each phase evolves in close proximity to
the saturation curve, but only the evolution of the mixture density develops in the
fully two-phase region.
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Godunov-Type Numerical Fluxes for Diffusion

Claus-Dieter Munz

(joint work with Steven Jöns, Johanna Hintz, Christoph Müller)

For finite volume or discontinuous Galerkin schemes, the use of the Riemann prob-
lem solution to construct the numerical fluxes is a standard approach that started
with the work of Godunov. Gassner et al. initiated in [1] the use of the Riemann
problem solution to construct diffusive fluxes later. This is an alternative to the
more common approach to reconstruct the gradients for the diffusive fluxes by
assuming continuity across the grid cell interfaces. The latter approach is moti-
vated by the regularizing property of the parabolic terms. If a phase interface is
approximated as a discontinuity within the macroscopic description the continu-
ity assumption is at least questionable. Here, the generalized diffusive Riemann
problem, which allows to determine directly heat and viscous flux from the dis-
continuous data seems to be more appropriate.

The procedure for the scalar case can be extended to the thermal and viscous
fluxes of the Navier Stokes into normal direction. Hence, we first consider the
one-dimensional diffusion equation with discontinuous coefficients for the scalar
diffusion equation

ut − (λuξ)ξ = 0(1)

with piecewise linear initial data

u(ξ, t = 0) =

{

u− + ξu−ξ for ξ < 0

u+ + ξu+ξ for ξ ≥ 0
(2)

and with the positive piecewise constant diffusion coefficient

λ(ξ) =

{

λ− for ξ < 0,

λ+ for ξ ≥ 0.
(3)

The nomination is such that ”-” and ”+” denote the values and functions on the
left hand and on the right hand side, respectively. Our considerations here are
based on the work of Lörcher et al. [1] with a generalization of the compatibility
condition.

By Laplace transformation one obtains a left second order ordinary differential
equation and a right one. The general solution of both sides can be calculated and
every solution has two integration constants. One constant at every side is set to
Zero to get the bounded part of the solutions only. The other two constants are
determined by compatibiliy conditions at ξ = 0, which state that the solution and
the diffusion flux is continuous.
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The dervivatives of the solution at ξ = 0 read as

∂ξu
−(0, t) =

u+ − u−√
πt(

√
λ− +

√
λ+)

+

√
λ+u+ξ +

√
λ−u−ξ√

λ−+
√
λ+

,(4a)

∂ξu
+(0, t) =

u+ − u−√
πt(

√
λ− +

√
λ+)

+

√
λ+u+ξ +

√
λ−u−ξ√

λ+ +
√
λ+

.(4b)

The diffusion fluxes are then obtained by taking the integral mean over one
time step. We note that the derivatives are singular at ξ = 0 as derivatives of a
discontinuous function. However, the time average exists as an improper integral
and reads as

g(u−, u+, u−ξ , u
+
ξ ) =

2
√
λ+λ−(u+ − u−)√

π∆t(
√
λ− +

√
λ+)

+

√
λ+u+ξ +

√
λ−u−ξ√

λ− +
√
λ+

.(5)

The time step ∆t has to satisfy the parabolic stability condition.

This solution is used to define a heat flux for the Navier Stokes equations. It turned
out that it is better to impose the continuity of the heat flux from the energy
equation before its reformulation into a temperature equation. The extension to
the viscous terms is more subtle. The viscosity matrix is evaluated at the weighted

ū =

√
λ+u+ +

√
λ−u−√

λ+ +
√
λ−

.(6)

Then the viscosity matrix can be diagonalized and the scalar approach is applied
to each characteristic field, see [2].

Riemann problems for the Navier Stokes equations which contain an material
interface with a temperature jump and a jump in the viscous terms indicate that
this approach works very well. This method is also applied to the two-phase
simulutions using the ghost flux mathod to keep the interface sharp that has been
developed in [3].
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On the preservation of curl involutions in Newtonian continuum
mechanics and general relativistic continuum phyiscs

Michael Dumbser

(joint work with Saray Busto, Simone Chiocchetti, Francesco Fambri, Elena
Gaburro, Sergey Gavrilyuk, Ilya Peshkov, Anne Reinarz)

In this report we discuss an extension of the generalized Lagrangian multiplier
method (GLM) of Munz et al. [9, 4], which was originally conceived for the
numerical solution of the Maxwell and MHD equations with divergence-type in-
volutions, to the case of hyperbolic PDE systems with curl-type involutions. The
key idea here is to solve an augmented PDE system, in which curl errors are
propagated away via an additional Maxwell-type subsystem that is coupled to the
PDE containing the involution at the aid of an additional cleaning vector. The
new approach is presented on a simple model problem, in order to explain the
basic ideas. We discuss the cleaning of homogeneous and non-homogeneous curl
involutions. Our new GLM curl cleaning method was already successfully applied
to a first order hyperbolic model for surface tension [13, 3] and to a first order
hyperbolic reformulation of the nonlinear Schrödinger equation of quantum hy-
drodynamics [5, 2]. The GLM cleaning proposed by Busto et al. in [2] is the first
one to be also thermodynamically compatible with the total energy conservation
law (thermodynamically compatible GLM curl cleaning) in the sense that the to-
tal energy conservation equation can be obtained as a linear combination of all
the other equations, including the cleaning vector, following the framework of Go-
dunov and Romenski of symmetric hyperbolic and thermodynamically compatible
(SHTC) systems, see e.g. [7, 12]. Finally, applications to a strongly hyperbolic
first order reduction of the CCZ4 formulation (FO-CCZ4) of the Einstein field
equations of general relativity, which is endowed with 11 curl constraints, can be
found in [6]. The main advantages of the proposed GLM approach are its com-
plete independence of the underlying numerical scheme and grid topology and its
easy implementation into existing numerical methods and computer codes. Fur-
thermore, in Newtonian continuum models we were able to show that the method
allows to restore strong hyperbolicity of originally weakly hyperbolic systems. It
is furthermore compatible with the conservation of total energy and momentum,
unlike the classical Godunov-Powell terms [8, 11]. However, this flexibility comes
at the price of needing to add for each curl involution one additional 3 vector plus
another scalar in the augmented system for homogeneous curl constraints, and
even two additional 3 vectors and 2 scalars for non-homogeneous curl involutions.

Here we briefly recall the original hyperbolic GLM divergence cleaning approach
of Munz et al. [9, 4] for the Maxwell and MHD equations. Throughout this paper
we employ the Einstein summation convention, which implies summation over two
repeated indices. Furthermore, we will use Latin indices ranging from 1 to 3. We
furthermore use the notation ∂t = ∂/∂t, ∂k = ∂/∂xk and εijk is the usual fully
anti-symmetric Levi-Civita symbol. The induction equation in electrodynamics
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reads

(1) ∂tBk + εkij∂iEj = 0,

with the magnetic field Bk and the electric field Ej . A consequence of the above
induction equation is the famous divergence-free condition

(2) I = ∂mBm = 0

of the magnetic field, which states that there exist no magnetic monopoles, or, in
other words, the magnetic field will remain divergence-free for all times if it was
initially divergence-free.

One way to preserve a divergence-free magnetic field within a numerical scheme
is the use of an exactly divergence-free discretization on appropriately staggered
meshes, see e.g. [14, 1]. However, the implementation of such exactly structure-
preserving methods into an existing code is rather invasive and often requires sub-
stantial changes in the algorithm structure of existing general purpose solvers for
hyperbolic conservation laws that were not right from the beginning designed for
the solution hyperbolic PDE with involution constraints. The very popular GLM
method proposed by Munz et al. in [9, 4] is an alternative to exactly constraint–
preserving schemes and requires only a rather small change at the PDE level, where
simply an additional equation for a cleaning scalar φ is added to the system, so
that divergence errors cannot accumulate locally any more, but instead are trans-
ported away under the form of acoustic-like waves with finite speed. This approach
is very easy to implement in any general purpose CFD code and is completely in-
dependent of the underlying numerical scheme or mesh topology. The role of the
cleaning scalar φ is the one of a generalized Lagrangian multiplier (GLM) that ac-
counts for the involution constraint. The way how it works can best be explained
with a physical example, which is the role of the pressure in the compressible Euler
equations: for low Mach numbers (i.e. for large sound speed compared to the flow
speed), the coupling of the momentum equation with the pressure equation drives
the divergence of the velocity field to zero for M → 0. In the same manner, the
evolution equation of the additional cleaning scalar φ coupled with the induction
equation drives the divergence of the magnetic field to zero if the cleaning speed
is chosen large enough. The augmented induction equation according to the GLM
approach of Munz et al. [9, 4] therefore reads

∂tBk + εkij∂iEj + ∂kϕ = 0,(3)

∂tϕ+ a2d ∂mBm = 0,(4)

with the new cleaning scalar ϕ, an artificial cleaning speed ad. The new terms
in the augmented system (3) and (4) with respect to the original equation (1) are
highlighted in red, for convenience. It is easy to see that for ad → ∞ the equation
(4) leads to ∂mBm → 0, which is the above involution (2).

We show the basic idea of our new GLM curl cleaning approach on a simple
toy model, in order to ease notation and to facilitate the understanding of the
underlying concepts. For details and successful applications to complex systems,
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the reader is referred to [6, 3, 2]. Consider the following evolution system for one
scalar ρ and two vector fields vk and Jk,

∂tρ+ ∂i (ρvi) = 0,(5)

∂t(ρvk) + ∂i
(

ρvivk + ρc20JiJk
)

= 0,(6)

∂tJk + ∂k(vmJm) + vm (∂mJk − ∂kJm) = 0,(7)

with c0 a given constant. Defining a scalar quantity χ = vmJm and with the use
of the Schwarz theorem ∂k∂mχ = ∂m∂kχ (symmetry of second derivatives) it is
very easy to see that the second PDE above, eqn. (7), is endowed with the linear
involution constraint

(8) Imk = ∂mJk − ∂kJm = 0.

This means that if Imk = 0 at the initial time, it will remain zero for all times.
Indeed, one can immediately notice that the term ∂k(vmJm) is the gradient of a
scalar, the curl of which is zero, and that the involution itself is contained in the
third term on the left hand side of eqn. (7), which is needed to make the system
Galilean invariant.

As already mentioned before, the main advantage of the GLM approach of Munz
et al. [9, 4] for divergence constraints is not only the ease of implementation, but
also its great flexibility and its compatibility with all types of mesh topologies and
numerical schemes, since it only requires the solution of an additional scalar PDE
for the cleaning scalar, which can easily be added to an existing code.

The extended GLM curl cleaning proposed in this paper can now be explained
on the toy system (6)-(7) as follows. The original governing PDE system (6) and
(7) is simply replaced by the following augmented system

∂tρ+ ∂i (ρvi) = 0,(9)

∂t(ρvk) + ∂i
(

ρvivk + ρc20JiJk
)

= 0,(10)

∂tJk + ∂k(vmJm) + vm (∂mJk − ∂kJm) + εklm∂lψm = 0,(11)

∂tψk − a2c εklm∂lJm+∂kϕ = 0(12)

∂tϕ+ a2d ∂mψm = 0,(13)

where ac is a new cleaning speed associated with the curl cleaning. The new terms
associated with the curl cleaning are highlighted in blue. Since the evolution
equation for the cleaning field ψk has formally the same structure as the induction
equation (1) of the Maxwell equations, it is again endowed with the divergence-
free constraint ∂mψm = 0, which is taken into account via the classical GLM
method (red terms). It is easy to see that from (12) for ac → ∞ we obtain
ǫklm∂lJm → 0 in the limit, thus satisfying the involution in the sense Imk → 0.
The augmented system (9)-(13) can now be solved with any standard numerical
method for nonlinear systems of hyperbolic partial differential equations.

In case the curl involutions are not homogeneous, but where the curl has to
assume a prescribed non-zero value, which is the case when the evolution equation
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(7) for Jk contains a nonlinear source term Sk whose curl does not vanish,

(14) ∂tJk + ∂k(vmJm) + vm (∂mJk − ∂kJm) = Sk,

see [10], then the following strategy can be used: We first define the curl of J to
be equal to another quantity

(15) Bi = εijk∂jJk,

which according to [10] is the so-called Burgers vector. Its evolution equation can
be obtained by taking the curl of (14), leading to the following additional evolution
equation (see Appendix C of [10]):

(16) ∂tBi + ∂k (Bivk − viBk − εikjSj) + vi ∂kBk = 0.

Directly from its definition (15) it is obvious that the Burgers vector must be
divergence-free, i.e. ∂kBk = 0. The divergence constraint on the Burgers vector
is explicitly contained in (16) in order to achieve a Galilean invariant formulation.
Therefore, the GLM approach for a general, non-trivial curl of Jk reads as follows:

∂tρ+ ∂i (ρvi) = 0,(17)

∂t(ρvk) + ∂i
(

ρvivk + ρc20JiJk
)

= 0,(18)

∂tJk + ∂k(vmJm) + vm (∂mJk − ∂kJm) + εklm∂lψm = Sk,(19)

∂tBi + ∂k (Bivk − viBk − εikjSj) + vi∂kBk + ∂iχ = 0,(20)

∂tψk − a2c εklm∂lJm+∂kϕ = −a2cBk(21)

∂tϕ+ a2d ∂mψm = 0,(22)

∂tχ+ a2b ∂mBm = 0.(23)

Here, we have used the usual blue color for the curl cleaning, the red color
for the divergence cleaning and the green color due to the additional terms and
equations that are necessary in the case the curl of J is equal to a non-zero Burgers
vector. It is again obvious that for ac → ∞ we obtain εijk∂jJk → Bi, i.e. the
involution (15).

We illustrate the effectiveness of the proposed GLM cleaning approach on a
numerical example taken from [3], i.e. the dynamics of an oscillating bubble. The
governing equations are endowed with a curl involution and without GLM cleaning
or Godunov-Powell terms the system is only weakly hyperbolic. From Figure 1
it can be clearly seen that the original weakly hyperbolic system is unstable after
short time, the Godunov-Powell terms, which restore strong hyperbolicity, but
which are not conservative for total energy and momentum are able to stabilize
the simulation, while the best results are obtained with the new hyperbolic GLM
curl cleaning, which does not only restore strong hyperbolicity, but which also
conserves momentum and total energy.
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Figure 1. Time evolution of global dynamics and of curl errors
for an oscillating bubble. Top row, left to right: total kinetic
energy and L1 norm of the gradient field ∇b over time. Bottom
row: the timeseries for the L1 and L2 norms of the curl error.
The simulations employed a sixth order ADER-DG scheme with
third order ADER-WENO subcell finite volume limiter uniform
Cartesian grid composed of 642 elements.
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The role of curl-type involutions in continuum physics

Ilya Peshkov

In the nonlinear elasticity theory, the curl ∂iA
A

k − ∂kA
A

i of the distortion field

AA

k = ∂ξA

∂xk , A = 1, 2, 3, i, k = 1, 2, 3 vanishes and is known as the so-called
compatibility condition, which, if holds initially, should stay so for all later times.
This is a typical example of a curl-type involution constraint. In this talk, we
generalize this idea and show that this spatial involution constraint and the time
evolution of the distortion field are, in fact, projection of a space-time identity

(1) ∂µA
a
ν − ∂νA

a
µ = 0,

a = 0, 1, 2, 3, µ, ν = 0, 1, 2, 3, with ∂0 being the time derivative.
We shall discuss that, if generalized to

(2) ∂µA
a
ν − ∂νA

a
µ = T a

µν ,

i.e. we admit that the 4-curl of the four-distortion Aa
µ is not zero, this type of time

evolution equations is fundamentals for such a physical theory as the Yang-Mills
gauge theory and mathematical theory as the Riemann-Cartan geometry.

From the perspective of modeling in continuum mechanics, (2) was fundamental
for building the unified inelasticity theory [1] which is able to describe in a uni-
fied manner elastic/inelastic solids and viscous fluids in a single system of PDEs.
Moreover, we shall discuss how the evolution equations of the type (2) can be
used for modeling turbulence flows and modeling dispersive phenomena such as a
frequency band-gap in acoustic metamaterials [2].
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Finally, we also pay certain attention to a discussion of the importance of de-
veloping structure preserving numerical methods in order to properly discretize
the curl-type evolution equation of the form (2).

References

[1] M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, High order ADER schemes for a unified
first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids
and elastic solids, Journal of Computational Physics 314 (2016), 824–862.

[2] I. Peshkov, E. Romenski, M. Dumbser, Continuum Mechanics and Thermodynamics, Con-
tinuum Mechanics and Thermodynamics 31(5) (2019), 1517–1541.

Generalized Rankine – Hugoniot relations for multi-dimensional
shocks in dispersive media

Sergey Gavrilyuk

The Euler equations of compressible fluids, hyperelasticity, MHD, etc. are typical
examples of hyperbolic systems of conservation laws admitting shock solutions,
i.e. discontinuous solutions satisfying the governing equations in a weak sense.
The corresponding equations of motion are the Euler-Lagrange equations for a
functional which is the Hamilton action. The dispersive regularizations of these
models based on the modification of the corresponding Lagrangian aim at avoiding
discontinuities by replacing them by “dispersive shocks”, i.e. by strongly oscillating
non stationary fronts.

We show that in some cases dispersive regularization produces solutions that
are “almost” classical shocks. Such solutions must necessarily satisfy special jump
relations (generalized Rankine-Hugoniot relations) that follow naturally from the
variational structure of the governing equations.

I will consider the Benjamin-Bona-Mahony (BBM) equation as a toy model to
study these unusual shock solutions. The BBM equation is a simplest unidirec-
tional model of shallow water waves. As we will see, it has stable discontinuous
solutions.

I will also explain how the generalised jump relations for dispersive equations
can be used to explain, in particular, the Leidenfrost phenomenon (or the film boil-
ing phenomenon) which was the main reason for the nuclear accidents in Chernobyl
(1986) and in Fukushima (2011).

This is a joint work with H. Gouin (AMU, Marseille) and K. M. Shyue (NTU,
Taiwan) [1, 2, 3]

References

[1] S. Gavrilyuk and H. Gouin, Rankine–Hugoniot conditions for fluids whose energy depends
on space and time derivatives of density, Wave Motion, 98, 102620 (2020).

[2] S. Gavrilyuk and K-M. Shyue, Singular solutions of the BBM equation: analytical and
numerical study, Nonlinearity 35, 388–410 (2022).

[3] S.L. Gavrilyuk and H. Gouin, Theoretical model of Leidenfrost’s temperature
https://hal.archives-ouvertes.fr/hal-03617770 (2022)



44 Oberwolfach Report 19/2022

Thermodynamically compatible finite volume schemes for
continuum mechanics

Saray Busto

(joint work with Michael Dumbser, Ilya Peshkov, Evgeniy Romenski)

The Godunov-Peskov-Romenski (GPR) model is a first order symmetric hyperbolic
and thermodynamically compatible (SHTC) PDE system that is able to describe
continuum mechanics from nonlinear elastoplastic solids at large deformations to
viscous fluids. This is achieved at the aid of suitable relaxation source terms,
making it a powerful tool to model numerous physical phenomena. One of the
main challenges concerning the development of numerical methods for this kind of
systems consists in preserving the thermodynamic compatibility of the equations
also at the discrete level. To this end, we propose constructing a discrete frame-
work for the compressible Euler equations mimicking the continuous formalism
introduced by Godunov in 1961, see [1]. The remaining terms in the more general
GPR model, including non-conservative products, are then carefully discretized
to achieve discrete thermodynamic compatibility with the exact conservation of
total energy density as a direct consequence of all the other equations. Moreover,
the HTC scheme proposed is provably marginally stable in the energy norm and
satisfies a discrete entropy inequality by construction, see [2]. We stress that a key
feature of our new scheme is that it directly discretizes the entropy inequality and
obtains the energy conservation law as a consequence of the thermodynamically
compatible discretization of all the other equations.

1. Mathematical model

We consider the first order hyperbolic model of continuum mechanics, regularized
with vanishing viscosity terms which goes back to the work of Godunov, Peshkov
& Romenski [1, 3, 4, 5, 6, 7]:

∂ρ

∂t
+
∂(ρvk)

∂xk
− ∂

∂xm

(

ǫ
∂ρ

∂xm

)

= 0,

∂ρvi
∂t

+
∂ (ρvivk + p δik + σik + ωik)

∂xk
− ∂

∂xm

(

ǫ
∂ρvi
∂xm

)

= 0,

∂ρS

∂t
+
∂ (ρSvk + βk)

∂xk
− ∂

∂xm

(

ǫ
∂ρS

∂xm

)

= Π+
αikαik

θ1(τ1)T
+

βiβi
θ2(τ2)T

≥ 0,

∂Aik

∂t
+
∂(Aimvm)

∂xk
+ vm

(

∂Aik

∂xm
− ∂Aim

∂xk

)

− ∂

∂xm

(

ǫ
∂Aik

∂xm

)

= − αik

θ1(τ1)
,

∂Jk
∂t

+
∂ (Jmvm + T )

∂xk
+ vm

(

∂Jk
∂xm

− ∂Jm
∂xk

)

− ∂

∂xm

(

ǫ
∂Jk
∂xm

)

= − βk
θ2(τ2)

,

∂E
∂t

+
∂ (vk (E1+E2+E3 + E4) + vi (p δik+σik + ωik)+hk)

∂xk
− ∂

∂xm

(

ǫ
∂E
∂xm

)

= 0,
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where q = {qi} = (ρ, ρvi, ρS,Aik, Jk)
T denotes the state vector, E = ρE = E1 +

E2+ E3 + E4 is the total energy potential, Ei = ρEi, ǫ > 0 is a vanishing viscosity
and the nonnegative entropy production term due to the viscous terms is given by

Π =
ǫ

T
∂xm

qi ∂
2
qiqjE ∂xm

qj ≥ 0.

In the above model the four contributions to the total energy density are

E1 =
ργ

γ − 1
eS/cv , E2 =

1

2
ρvivi, E3 =

1

4
ρc2sG̊ijG̊ij , E4 =

1

2
c2hρJiJi,

with G = AjiAjk the metric tensor and G̊ its trace-free part. The vector of

thermodynamic dual variables reads p = ∂qE = {pi} = (r, vi, T, αik, βk)
T
with

r = ∂ρE , vi = ∂ρviE , T = ∂ρSE , αik = ∂Aik
E , βk = ∂Jk

E .

The pressure is defined as p = ρ ∂ρE + ρvi ∂ρviE + ρS ∂ρSE −E = ρ2∂ρE, the stress
tensors due to shear stress and thermal stress are, respectively, σik = Ajiαjk,
ωik = Jiβk, while the heat flux vector is given by hk = Tβk. Furthermore,
θ1(τ1) > 0 and θ2(τ2) > 0 are two algebraic functions of the state vector q and
the positive relaxation times τ1 > 0 and τ2 > 0:

θ1 =
1

3
ρz1τ1 c

2
s |A|− 5

3 , θ2 = ρz2τ2 c
2
h, z1 =

ρ0
ρ
, z2 =

ρ0T0
ρ T

with ρ0 and T0 being some reference density and temperature.
In [7] a formal asymptotic analysis of the model (1)-(1) was carried out, revealing

that in the stiff limit the stress tensor σik and the heat flux hk tend to

σik = −1

6
ρ0c

2
sτ1

(

∂kvi + ∂ivk − 2

3
(∂mvm) δik

)

, hk = −ρ0T0c2hτ2∂kT,

i.e. when the relaxation times τ1, τ2 → 0, the Navier-Stokes-Fourier equations
are retrieved with effective shear viscosity µ = 1

6ρ0c
2
sτ1 and heat conductivity

κ = ρ0T0c
2
hτ2.

Computing the dot product of the thermodynamic dual variables with the sys-
tem of equations but the energy, we obtain the energy equation as a direct conse-
quence. Therefore, our objective is to develop a numerical scheme able to preserve
this property also at the discrete level.
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2. Thermodynamically compatible semi-discrete FV scheme in 2D

We propose the following semi-discrete finite volume scheme:

∂ρℓ

∂t
= − 1

|Ωℓ|
∑

r∈Nℓ

∣

∣∂Ωℓr
∣

∣Dℓr,−
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∣
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∣
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ℓ
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ℓ
i
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∂Jℓ
k

∂t
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∣∂Ωℓr
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Dℓr,−
q

=
(

f ℓr
q, k − f ℓ

q, k

)

nk,

gℓr
q,n = ǫℓr

qr − qℓ

δℓr
= ǫℓr

∆qℓr

δℓr
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∥

∥xr − xℓ
∥
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jk = σℓr

jk − σℓ
jk, σℓr
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1

2
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ij

(

αℓ
ik + αr
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jk = ωℓr
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jk = Jℓr
j

1

2

(
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k + βr

k
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=
1

2
ǫℓr
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· ∂2
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Jℓr
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1

2

(

Jℓ
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(
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1
2

(
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k
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This scheme admits a semi-discrete energy conservation law of the form

∂Eℓ

∂t
= − 1

|Ωℓ|
∑

r∈Nℓ

∣

∣∂Ωℓr
∣

∣Dℓr,−
E +

1

|Ωℓ|
∑

r∈Nℓ

∣

∣∂Ωℓr
∣

∣ gℓrE,n

with Dℓr,−
E +Dℓr,+

E = Dℓr,−
E +Drℓ,−

E = F r − F ℓ.

Assuming that the jumps on the boundary vanish, the scheme is nonlinearly
marginally stable in the energy norm, i.e. the scheme satisfies the identity

∫

Ω

∂Eℓ

∂t
dV =

∑

ℓ

|Ωℓ|∂E
ℓ

∂t
= 0.

Moreover, assuming T ℓ > 0 and H
ℓr = ∂2

qq
Eℓr ≥ 0 the semi-discrete finite volume

scheme satisfies the semi-discrete cell entropy inequality

∂ρSℓ

∂t
+

∑

r∈Nℓ

∣

∣∂Ωℓr
∣

∣

|Ωℓ| Dℓr,−
ρS +

∑

r∈Nℓ

∣

∣∂Ωℓr
∣

∣

|Ωℓ|
(

βℓr
k − βℓ

k

)

nk−
∑

r∈Nℓ

∣

∣∂Ωℓr
∣

∣

|Ωℓ| gℓrρS,n ≥ 0.

For further details on the derivation of the scheme and the proofs of the former
results, see [2].

3. Numerical results

To analyse the behaviour of the proposed scheme in both the solid and fluid limits
we employ classical benchmarks from solid mechanics and fluid dynamics, such as
a solid rotor problem, a Riemann problem in a solid medium, the double shear
layer and the lid driven cavity problem in a fluid, see Figure 1. In [2] detailed
comparisons with available exact and numerical reference solutions have been car-
ried out, showing the accuracy and performance of the new thermodynamically
compatible finite volume scheme.
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Figure 1. Top left: x-velocity of the solid rotor benchmark at
t = 0.3, [8]. Top right: Riemann problem (ρL = 1, ρR = 0.5,
uL = uR = 0, vL = −vR = −0.2, pL = 1, pR = 0.5) obtained
inside a solid at t = 0.2 with the HTC scheme (red solid line),
an ADER-DG4 scheme applied to the vanishing viscosity limit
of the viscous equations, ǫ = 2 · 10−5, (dashed blue line) and a
MUSCL-Hancock scheme applied to the model with the energy
conservation law (black solid line). Bottom left: Contour plot of
A12 for the double shear layer problem, t = 1.8, µ = 2 · 10−3,
[9]. Bottom right: u velocity contours for the lid driven cavity
problem at time t = 10. All results were obtained with the new
HTC scheme applied to the full GPR model.
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Modern numerical methods for high-speed, compressible,
multi-physics, multi-material flows

Mikhail Shashkov

Computational experiment is among the most significant developments in the prac-
tice of the scientific inquiry in the 21th century. Within last four decades, compu-
tational experiment has become an important contributor to all scientific research
programs. It is particular important for the solution of the research problems
that are insoluble by traditional theoretical and experimental approaches, haz-
ardous to study in the laboratory, or time consuming or expensive to solve by
traditional means. Computational experiment includes several important ingre-
dients: creating mathematical model, discretization, solvers, coding, verification
and validation, visualization, analysis of the results, etc. In this talk we will de-
scribe some aspects of the modern numerical methods for high-speed, compressible,
multi-physics, multi-material flows. We will address meshing issues, mimetic dis-
cretizations of equations of the Lagrangian gas dynamics and diffusion equation on
general polygonal meshes, mesh adaptation strategies, methods for dealing with
shocks, interface reconstruction needed for multi-material flows, closure models for
multi-material cells, time discretizations, etc.

This review is based on following papers: paper [1] describes all main stages
of arbitrary-Lagrangian-Eulerian methods for multi-material flows, and paper [2]
describes mimetic finite difference method, which is used for most of the discretiza-
tions.
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Hyperbolic thermodynamically compatible model for wave processes
in a deformed porous medium saturated with multiphase mixture

Evgeniy Romenski

(joint work with Galina Reshetova, Ilya Peshkov, Michael Dumbser)

A new approach, presented in [1]-[5], is discussed, which is based on the theory
of Symmetric Hyperbolic Thermodynamically Compatible (SHTC) systems, for
modeling a saturated deformable porous medium considered as a multiphase mix-
ture. Many well-known equations of continuum mechanics are included in the
class of SHTC systems. Moreover, the SHTC theory can be used as a tool for de-
veloping new correct mathematical models of complex media. A description and
applications of this theory can be found in [6] and references therein.

We present a model that takes into account finite deformations of a porous
medium saturated with a mixture of compressible liquids and gases. In general
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the formulated SHTC model makes it possible to take into account the viscosity of
saturating liquids and inelastic deformations of a porous skeleton. The governing
PDEs satisfy the laws of nonequilibrium thermodynamics and form a symmetric
hyperbolic system with curl involutions. Dissipative processes, such as equalization
of phase pressures and interfacial friction, are taken into account by stiff algebraic
source terms.

The structure of the governing PDEs, which include equations for the phase
volume fractions, makes it possible to apply the diffuse interface method to sim-
ulate processes in a region with inclusions of pure elastic medium or pure fluid.
In this case, the interphase boundary is modeled by a jump in volume fraction.
Linearized equations of the model are formulated for simulation the propagation
of small amplitude waves in a saturated porous medium. A number of numerical
simulations are presented to demonstrate the capabilities of the model.

Simplification of the model for an elastic porous medium saturated with a sin-
gle compressible fluid gives physically correct results close to those obtained using
Biot’s model generally accepted in geophysics. It should be noted that the Biot
model is essentially linear, and we do not know its generalization to the case of fi-
nite deformations. The presented SHTC model, in our opinion, can serve as a basis
for the development of new approaches to the study of nonlinear processes when
considering finite deformations of saturated porous media of complex rheology.
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A result of convergence for a one-dimensional two-velocities lattice
Boltzmann scheme

François Dubois

(joint work with Filipa Caetano and Benjamin Graille)

We have presented an introduction of lattice Boltzmann schemes, with the first
ideas of cellular automata on a square lattice [1], their extension to triangular
lattices [2] and a spectacular numerical result proposed in [3]. The major charac-
teristic of these discrete flows is the presence of Monte-Carlo noise. Then cellular
automata have been replaced by various approximations of Boltzmann equation
with discrete velocities. The simplest example [4] contains only two velocities.

The one-dimensional model with two velocities [5] is denoted by D1Q2 in the
terminology of lattice Boltzmann schemes. It introduces a given velocity a, an
equilibrium function R ∋ u 7−→ Φ(u) ∈ R and a small positive parameter ε:

(1) ∂tu+ ∂xv = 0 , ∂tv + a2 ∂xu =
1

ε

(

Φ(u)− v
)

.

A formal Chapman-Enskog expansion at first order relative to ε conducts to a
second order equivalent partial differential equation:

(2) ∂tu+ ∂xΦ(u)− ε ∂x
(

(a2 − Φ′(u)2) ∂xu
)

= O(ε2) .

A rigorous proof of convergence is established in [6]. The discretisation with finite
volume schemes leads to a convergent approach and this has been established
in [7, 8].

For the system (1), the lattice Boltzmann scheme first consider the ordinary
differential equation ∂tv = 1

ε

(

Φ(u) − v
)

and implement an explicit first order
scheme during this collision step:

(3) v∗j = vnj +
∆t

ε

(

Φ(unj )− vnj
)

.

The parameter s ≡ ∆t
ε is directly introduced as a given number in the numerical

simulation. After this collision step, the density of particles f∗
± are naturally

associated to a diagonalized form of the system (1) and we have
(

f∗
+

)

j
= 1

2

(

u + v∗

a

)

j
,
(

f∗
−

)

j
= 1

2

(

u − v∗

a

)

j
. Then the propagation of the

particles during one time step is written with an upwind scheme associated to a
Courant number always identical to 1:

(4)
(
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)n+1

j
=

(

f∗
+

)

j−1
,
(

f−
)n+1

j
=

(

f∗
−

)

j+1
.

Finally the moments u and v at the new time step follow the simple relations

un+1
j =

(

f+
)n+1

j
+

(

f−
)n+1

j
and vn+1

j = a
[(

f+
)n+1

j
−

(

f−
)n+1

j

]

. Consistency of

the numerical scheme (3)(4) with the system (1) is satisfied when a = ∆x
∆t .

The previous D1Q2 scheme is generalized to a large number of DdQq stencils
for d space dimensions and q discrete velocities. The principle is always to treat
the collision with an explicit time scheme and the discrete advection with the exact
scheme for a Courant number equal to unity. We refer to [9, 10, 11, 12, 13, 14] for
major developments of lattice Boltzmann schemes.
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The asymptotic analysis supposes typically that the ratio λ ≡ ∆x
∆t is fixed and

that the relation parameter s ≡ ∆t
ε is also fixed. When the space and time steps

tend to zero, the lattice Boltzmann scheme (3)(4) can be formally expanded and
an equivalent partial differential equation is emerging. For the previous scheme,
we obtain

(5) ∂tu+ ∂xΦ(u)−∆t
(1

s
− 1

2

)

∂x
(

(a− Φ′(u)2) ∂xu
)

= O(∆t2) .

This result was first obtained in [15] for cellular automata. It has been extended
with the Taylor expansion method [16, 17, 18] to general nonlinear lattice Boltz-
mann schemes up to fourth order accuracy [19]. Observe in the relation (5) that
for s ≃ 2, the asymptotic viscosity is drastically reduced in comparison with the
expansion (2). In consequence, industrial applications at high Reynolds number
are used in automotive industry [20] since 20 years and are in development for
transonic aerodynamics [21].

Nevertheless, we have reported in [22, 23] an unexpected convergence previously
observed in [17] for the heat equation when the time and space steps tend to zero
with a fixed ratio λ ≡ ∆x

∆t . The thermal diffusion coefficient evaluated with the

Taylor expansion method µ ≃
(

1
s − 1

2

)

λ∆x remains constant and ∆x tends
to zero. Therefore, the parameter s tends also to zero and is no more fixed as
supposed in the asymptotic expansion. The lattice Boltzmann equation remains
stable, even if it is an explicit scheme with a ratio ∆t

∆x2 larger than 1. But it is
no more consistent with the heat equation, and converges to a system of damped
acoustics!

Finally, considering again the lattice Boltzmann scheme (3)(4), we can write it
as a finite difference scheme:

(6)
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)

= 0 .

In [24], we have proven the following convergence theorem. When λ ≡ ∆x
∆t is fixed

and if the parameter 0 < s ≤ 1 is also fixed, the D1Q2 lattice Boltzmann scheme
(3)(4) or (6) converges to the unique entropy solution of the scalar conservation
law ∂tu + ∂xΦ(u) = 0. The proof uses classical mathematical methods [7, 8] for
establishing the convergence: L∞ stability, total variation estimates, and discrete
entropy inequalities.

The lattice Boltzmann schemes have proven their efficiency for a wide number of
applications like isothermal flows, compressible flows with heat transfer, non-ideal
fluids, multiphase and multi-component flows, microscale gas flows, soft-matter
flows, etc. Last but not least, stability is one of the main remaining open questions.
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[15] M. Hénon, Viscosity of a lattice gas, Complex Systems, 1 (1987), 763–789.
[16] F. Dubois, Equivalent partial differential equations of a lattice Boltzmann scheme, Com-

puters and mathematics with applications, 55 (2008) 1441–1449.
[17] S. Dellacherie, Construction and analysis of lattice Boltzmann methods applied to a 1D

convection-diffusion equation, Acta Applicandae Mathematicae, 131 (2014) 69–140.
[18] B. Graille, Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann

scheme as a relaxation method, Journal of Computational Physics, 266 (2014) 74–88.
[19] F. Dubois, Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes, Asymp-

totic Analysis, 127 (2022) 297–337.
[20] ProLB: high-fidelity lattice Boltzmann computational fluid dynamics simulations,

www.prolb-cfd.com.
[21] PowerFlow: computational fluid dynamics simulation software improving product design

and development, www.3ds.com.
[22] B. Boghosian, F. Dubois, B. Graille, P. Lallemand, M. Tekitek, Curious convergence prop-

erties of lattice Boltzmann schemes for diffusion with acoustic scaling, Communications in
Computational Physics, 23 (2018) 1263–1278.

[23] B. Boghosian, F. Dubois, B. Graille, P. Lallemand, M. Tekitek, Unexpected convergence of
lattice Boltzmann schemes, Computers & Fluids, 172 (2018) 301–311.

[24] F. Caetano, F. Dubois, B. Graille, A result of convergence for a mono-dimensional two-
velocities lattice Boltzmann scheme, hal-02135600v1, arxiv 1905.12393 (2021).



54 Oberwolfach Report 19/2022

Hamiltonian mechanics leads to hyperbolic partial
differential equations

Michal Pavelka

(joint work with M. Grmela, V. Klika, I. Peshkov, E. Romenskii, O. Kincl,
O. Esen, D. Jou, M. La Mantia, P. Minakowski, and M. Sýkora)

We studied relations between Hamiltonian mechanics and hyperbolic quasilinear
first-order partial differential equations. First, we recalled Hamiltonian contin-
uum mechanics with dissipation, in the context of the General Equation for Non-
Equilibrium Reversible-Irreversible Coupling (GENERIC) [5, 8, 7, 9]. Then, we
showed that the framework of Symmetric Hyperbolic Thermodynamically Com-
patible equations (SHTC) [4, 12, 2, 11] is contained within GENERIC and that
Hamiltonian mechanics can be used to generalize SHTC (in mixtures or superflu-
ids [13]). In particular, the Hamiltonian structure of the equations can be used
for proving their hyperbolicity. Finally, we have shown preliminary results on
symplectic solvers for fluid mechanics and SHTC equations, using a variant of
smoothed particle hydrodynamics (SPH) [6].

Within the GENERIC framework, evolution equations of any state variables
q are composed of two parts, a reversible Hamiltonian part (mechanics) and an
irreversible gradient part (thermodynamics),

(1) ∂tq
i = {qi, E}+ ∂Ξ

∂q∗i

∣

∣

∣

q∗= ∂S
∂q

.

The reversible part is generated by a Poisson bracket {•, •} and energy E(q) while
the irreversible by a dissipation potential Ξ(q,q∗) and entropy S(q). This frame-
work contains many physical models like mechanics with friction, fluid mechanics,
complex fluids, visco-elasto-plasticity, chemical kinetics, kinetic theory, or electro-
dynamics [9].

Let us now discuss in more detail the Riemannian and hyperbolic character of
some Hamiltonian systems. When the Poisson bivector, Li(r),j(r′) = {qi(r), qj(r′)},
depends only on Dirac δ(r) and its first derivatives, is in all the above mentioned
applications of GENERIC, and when the energy is ultralocal, E =

∫

e(q)dr, then
the resulting evolution equations represent a system of quasilinear partial differ-
ential equations,

(2) ∂tq
i = f i

k∂xq
k, where f i

k = gij(q)
∂2e

∂qj∂qk
+ bijk

∂e

∂qj
.

Here, gij is a symmetric tensor field that represents an inverse metric, for instance

gij =

(

0 −ρ
−ρ −2m

)

in the case of one-dimensional hydrodynamics with state

variables q = (ρ,m) (density and momentum density). Dubrovin and Novikov
showed [1], moreover, that if the metric is non-denenerate, det gij 6= 0, then:

(i) bijk = −gisΓj
sk, which gives a Levi-civita connection ∇ with Christoffel symbols
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Γj
sk, (ii) g

ij and ∇ are compatible, (iii) ∇ is curvature-free and torsion-free, (iv)
and thus f i

k = gij∇j∇ke. The system of equation (2) then becomes

(3) ∂tq
i = gis∇s∇ke∂xq

k.

Similarly as in the Godunov’s theorem [3], we now go to the Legendre transform,
pi =

∂e
∂qi , L = −e+ qipi, and q

i = ∂L
∂pi

. The Hamiltonian system of hydrodynamic

type (3) then gains the symmetric hyperbolic form,

(4) HL∂tp− g∂xp = 0,

where Hessian HL is symmetric positive definite for convex energies e.
Unlike the Godunov theorem, this approach can prove symmetric hyperbolicity

also when the equations are not conservation laws. On the other hand, the non-
degeneracy of the metric is a rather restrictive property of the system. This ap-
proach towards symmetric hyperbolicity of the equations works for instance in the
case of one-dimensional binary mixtures with state variables q = (ρ1,m1, ρ2,m2),

which are not in the conservative form if ∂2e
∂ρ1∂ρ2

6= 0 [10], and thus it provides an

alternative to Godunov’s theorem.1
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José Gutierrez Abascal, 2
28006 Madrid
SPAIN

Dr. Manuel J. Castro Diaz

Departmento de Análisis Matemático,
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