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Zusammenfassung

In dieser Masterarbeit werden die isentropen kompressiblen Euler Gleichungen in
zwei Raumdimensionen studiert. Für spezielle Anfangsdaten, zu denen man eine
Lösung explizit angeben kann, wird untersucht, ob es auch noch weitere Lösungen
gibt. Dabei kommt die Methode der konvexen Integration zum Einsatz. Nach Klärung
der Grundbegriffe im ersten Abschnitt wird in Abschnitt 2 eine kurze Einführung in
die Methode der konvexen Integration gegeben. Der dritte Abschnitt ist der Stan-
dardlösung gewidmet, d.h. der einen Lösung, die explizit angegeben werden kann.
In Abschnitt 4 wird die Methode der konvexen Integration durchgeführt. Mit deren
Hilfe wird ein Kriterium für die Existenz von unendlich vielen Lösungen bewiesen.
Dieses Kriterium wird im fünften Abschnitt angewandt und schließlich in Abschnitt
6 ein Ausblick auf offene Probleme gegeben.

Abstract

In this master thesis we study the isentropic compressible Euler equations in two
space dimensions. For special initial data, for which one can explicitly tell a solution,
we investigate if there exist other solutions. In order to do this we use the convex
integration method. After an introduction to the basic notions in the first section
we present the main ideas of the convex integration method in section 2. The third
section deals with the standard solution, i.e. the solution which can be explicitly
named. In section 4 the convex integration is carried out. With the help of this
method we prove a criterion for the existence of infinitely many solutions. This
criterion is applied in the fifth section. Finally in section 6 we give an outlook on
open problems.



Notation

Basic sets

• N := {1, 2, . . .}, in particular 0 /∈ N

• N0 := N ∪ {0}

• R+ := (0,∞), in particular 0 /∈ R+

• R+
0 := R ∪ {0} = [0,∞)

• Let A be a set. We write B ⊂ A for a subset B, which can also be equal A.
For strict subsets C we write C ( A.

• Let X ⊂ Rd, d ∈ N. Then

– X◦ denotes the interior of X,

– X is the closure of X and

– Xco denotes the convex hull of X, i.e. the smallest convex set which
contains X.

• Let d ∈ N. If we don’t say anything different, we endow Rd with the 2-norm
and write | · | for it:

|v| =

√√√√ d∑
i=1

v2
i for all v ∈ Rd.

• For r > 0 and v ∈ Rd we write Bd
r (v) for the d-dimensional ball with radius r

and center v:
Bd
r (v) := {w ∈ Rd : |v − w| < r}.

If the dimension is clear, we will also omit it and write Br(v).

Matrices

• Mn×m := the set of all real n×m matrices

• Idn := the n× n identity matrix

• Id := Id2

• S2×2 := {A ∈M2×2|A symmetric}

• S2×2
0 := {A ∈M2×2|A symmetric and tr(A) = 0}

• For A,B ∈ S2×2 we define

– A < B :⇔ B − A positive definite,

– A ≤ B :⇔ B − A positive semi-definite.

• For A,B ∈Mn×n we write : for the Frobenius product: A : B =
n∑

i,j=1

Aij Bij.



Functions

• supp(f) := {x ∈ Rn|f(x) 6= 0}, the support of a function f : Rn → Rm

• C∞c (Rn,Rm) := {f ∈ C∞(Rn,Rm) | supp(f) is compact}, the set of the func-
tions with compact support

• Let X be a set and P ⊂ X. Then 1P : X → R denotes the indicator function
of P, i.e.:

x 7→ 1P (x) :=

{
0 if x /∈ P
1 if x ∈ P

Abbreviations

∂i := ∂xi := ∂
∂xi

Components

Let v ∈ R2 be a vector. Then we will denote its components as v = (v1, v2)T . If
the vector is called vi ∈ R2, where i ∈ {−,+} ∪ N, then we consequently name the
components vi = (vi 1, vi 2)T .

We treat matrices similar, e.g. u =

(
u11 u12

u21 u22

)
∈M2×2 or ui =

(
ui 11 ui 12

ui 21 ui 22

)
∈

M2×2.
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1. Introduction

Consider the 2-dimensional isentropic compressible Euler equations

∂tρ+ divx(ρ v) = 0,

∂t(ρ v) + divx(ρ v ⊗ v) +∇x [p(ρ)] = 0,
(1.1)

where the density ρ = ρ(t, x) ∈ R+ and the velocity v = v(t, x) ∈ R2 are functions
of the time t ∈ [0,∞) and the position x = (x1, x2) ∈ R2. We will use ∂i as a short
form for the partial derivative with respect to xi, i.e. ∂i := ∂xi .
In particular the first equation of (1.1) represents the conservation of mass and the
second the conservation of momentum. More precisely the momentum equation is
a system of two equations since the momentum ρ v is 2-dimensional. By ρ v ⊗ v we
mean the matrix with entries (ρ v ⊗ v)ij = ρ vi vj and the divergence of this matrix
is meant row-wise. So divx(ρ v ⊗ v) is a 2-dimensional vector with components(

divx(ρ v ⊗ v)
)
i

=
2∑
j=1

∂j(ρ vi vj).

Hence (1.1) is a system of 2 + 1 = 3 conservation laws. Furthermore the pressure
p = p(ρ) is a given function of the density ρ. It turns out, that the system (1.1)
is strictly hyperbolic if p′ > 0. We choose the polytropic pressure law p(ρ) = K ργ

with a constant K ∈ R+ and the adiabatic coefficient γ = 1 + 2
f
, where f is the

number of degrees of freedom. It is easy to check that in the case of polytropic
pressure law p′(ρ) > 0 for all ρ ∈ R+. In other words, the system (1.1) equipped
with the polytropic pressure law is strictly hyperbolic.
We are interested in solutions to the Cauchy problem consisting of the Euler system
(1.1) and the initial data

ρ(0, x) = ρ0(x),

v(0, x) = v0(x).
(1.2)

Hopefully the reader knows that the notion of a classical (i.e. differentiable) solution
is not satisfactory in the theory of conservation laws. Even if the initial data is
differentiable there might be no classical solution for all times. Thus one introduced
weak solutions:

Definition 1.1. (weak solution) A weak solution to the Cauchy problem (1.1), (1.2)
is a pair of functions (ρ, v) ∈ L∞([0,∞)×R2,R+×R2) such that for all test functions
(ψ, φ) ∈ C∞c ([0,∞)× R2,R× R2) the following identities hold:∫ ∞

0

∫
R2

(
ρ ∂tψ + ρ v · ∇xψ

)
dx dt+

∫
R2

ρ0(x)ψ(0, x) dx = 0, (1.3)∫ ∞
0

∫
R2

(
ρ v · ∂tφ+ ρ v ⊗ v : Dxφ+ p(ρ) divxφ

)
dx dt

+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx = 0. (1.4)

Here : denotes the Frobenius product, i.e.

ρ v ⊗ v : Dxφ =
2∑

i,j=1

ρ vi vj ∂jφi.
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We assume that the reader also knows that weak solutions might be non-unique.
Hence one introduced the so-called entropy admissibility criterion which states that
in addition an inequality, the entropy inequality, must hold:

Definition 1.2. (admissible weak solution) A weak solution is admissible if in ad-
dition for every non-negative test function ϕ ∈ C∞c ([0,∞) × R2,R+

0 ) the following
inequality is fulfilled:∫ ∞

0

∫
R2

((
ρ ε(ρ) + ρ

|v|2

2

)
∂tϕ+

(
ρ ε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v · ∇xϕ

)
dx dt

+

∫
R2

(
ρ0(x) ε(ρ0(x)) + ρ0(x)

|v0(x)|2

2

)
ϕ(0, x) dx ≥ 0,

(1.5)

where the internal energy ε = ε(ρ) is given by p(ρ) = ρ2 ε′(ρ). In the case of

polytropic pressure law one gets ε(ρ) = K ργ−1

γ−1
.

Remark. In this thesis we will always be interested in admissible weak solutions. For
convenience we will sometimes just use the word “solution” to denote an admissible
weak solution.

This admissibility criterion can be motivated in two ways. Firstly, it is just the
formulation for systems of the well-known entropy admissibility criterion for scalar
conservation laws. This criterion states that the entropy inequality has to hold for
all entropy-entropy flux-pairs. One can show that for our Cauchy problem (1.1),

(1.2) the only non trivial entropy is the total energy η = ρ ε(ρ) + ρ |v|
2

2
(see [CK14,

Section 1]) and the corresponding entropy flux is Ψ =
(
ρ ε(ρ) + ρ |v|

2

2
+ p(ρ)

)
v. This

is the reason why (1.5) is sometimes called energy inequality. For scalar conservation
laws Kružkov showed in [Kru70] that there is exactly one weak solution that fulfills
the entropy criterion. In other words this criterion yields a unique solution to scalar
conservation laws. The question is, if this is also true for systems. A second way to
motivate (1.5) is more physical. The inequality (1.5) is exactly the weak formulation
of the local energy criterion

∂t

(
ρ ε(ρ) + ρ

|v|2

2

)
+ divx

((
ρ ε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v

)
≤ 0.

If there was an equality sign in the above inequality, this would be conservation of
energy. The ≤ sign is motivated as we allow energy to dissipate.
The topic we deal with in this thesis is the uniqueness of admissible weak solution
to (1.1), (1.2). We will prove that for special initial data ρ0, v0 there are infinitely
many admissible weak solution.
In spite of this non-uniqueness result one expects the existence of a unique physically
relevant solution. We conjecture that there is another admissibility condition which
is able to single out this unique physically relevant solution. Unfortunately such a
condition has not been found so far.
The proof of non-uniqueness of admissible weak solution uses the so-called convex
integration method developed by C. De Lellis and L. Székelyhidi in [LS09] and
[LS10]. Weak solutions which are constructed with the convex integration method
are called wild solutions, since they have “wild” oscillations. The existence of such
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wild solutions depends on the initial data and we denote initial data which yield
wild solutions as wild initial data. We will present the basic ideas of the convex
integration method in section 2.
In this thesis we consider a special Riemann-like initial data as in [Chi12, Chapter
3], [CK14] and [CLK15], namely

ρ(0, x) = ρ0(x) :=

{
ρ− if x2 < 0
ρ+ if x2 > 0

,

v(0, x) = v0(x) :=

{
v− if x2 < 0
v+ if x2 > 0

,

(1.6)

where ρ± ∈ R+ and v± ∈ R2 are constants (see figure 1). We denote the compo-

(ρ-,v-)

(ρ+,v+)

x1

x2

Figure 1: The initial data considered in this thesis

nents of the velocities as v− = (v− 1, v− 2)T resp. v+ = (v+ 1, v+ 2)T . Furthermore we
suppose that v− 1 = v+ 1, which means that the component of the velocity which is
parallel to the discontinuity is equal on both sides of the discontinuity.
The reasons why we look at initial data of the form (1.6) are the following: Firstly,
we will see that even for this easy initial condition there might be infinitely many
admissible weak solutions. In other words there exist wild initial data of the form
(1.6). Hence wild initial data do not need to have “wild” oscillations itself. Fur-
thermore with help of the considered initial condition it is even possible to find wild
initial data which are Lipschitz (see [CLK15, Corollary 1.2]). The idea to prove this
is to find Lipschitz initial data which yield a unique continuous solution up to a
time T > 0 and at time t = T this continuous solution collapses to a weak solution
which has the form of our initial condition (1.6). Then for t > T the results on the
existence of wild solutions to the considered problem (1.1), (1.6) yield that there are
infinitely many admissible weak solutions for t > T .
In addition to that we have an example for an initial condition for which we can
explicitly find a solution (the standard solution, see section 3) and likewise we know
that there are infinitely many other admissible weak solutions. One could expect
that the standard solution is the physically relevant one but this is just a conjecture
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based on intuition. If one has an idea for an additional admissibility criterion that
could dismiss all the non physical solutions, one can check if this criterion singles
out the standard solution. For example in [CK14, Theorem 2] E. Chiodaroli and
O. Kreml showed, that there are initial data of the form (1.6) where the entropy
rate admissibility criterion does not favor the standard solution. The entropy rate
admissibility criterion states that the solution which dissipates the largest amount of
energy should be the physically relevant one, provided such a maximum exists. But
because of Chiodaroli’s and Kreml’s results the entropy rate admissibility criterion
also seems to be not the desired criterion.
Another reason why the consideration of problems with an initial data like (1.6) is
interesting is that there are cases, i.e. for special values of ρ±, v±, where there are
infinitely many solutions and other cases where the standard solution is unique. In
view of finding an admissibility condition, that yields a unique physically relevant
solution, it could be useful to study the differences of these cases.

2. Main ideas of the convex integration method

In this section we want to present the basic ideas of the convex integration method,
which we will use to prove non-uniqueness of admissible weak solutions to the system
(1.1), (1.6) for certain values ρ±, v±. The first non-uniqueness results for weak
solutions to the incompressible Euler equations

divxv = 0,

∂tv + divx(v ⊗ v) +∇xp = 0

go back to V. Scheffer in 1993, [Sch93]. Scheffer proved that there is a non-trivial
weak solution to the incompressible Euler equations which has a compact support
in space and time. So the Cauchy problem consisting of the incompressible Euler
equations and a zero initial condition has at least two weak solutions: the trivial
one, i.e. (v, p) ≡ 0, and another one which is constructed in [Sch93]. An easier
proof of the existence of such a non-trivial solution is given by A. Shnirelman in
[Shn97]. Later on C. De Lellis and L. Székelyhidi described in [LS09] and [LS10]
a new method to prove non-uniqueness, namely the so-called convex integration.
The solutions they produced, the wild solutions, are essentially bounded, whereas
Scheffer’s an Shnirelman’s solutions are unbounded and in L2. Another difference of
the Scheffer-Shnirelman-solutions and the wild solutions is, that the former obviously
violate energy criteria in the sense that the total energy increases over some time
interval. In [LS10] it is proved that there exist initial data for which there are
infinitely many solutions to the incompressible Euler equations which fulfill several
energy criteria, [LS10, Theorem 1].
The next step was to adapt the results described above to the compressible Euler
system. De Lellis and Székelyhidi showed in [LS10, Theorem 2] that there is an
initial density and velocity ρ0, v0, which leads to infinitely many admissible weak
solutions to the compressible system (1.1), (1.2). In other words they proved that
there is wild initial data for the compressible Euler system. This result was improved
by E. Chiodaroli, who proved that for all periodic initial densities ρ0 ∈ C1 there
is an initial velocity v0 ∈ L∞ such that the initial data ρ0, v0 is wild (see [Chi12,
Theorem 0.2.1]). The results on wild solutions to the system (1.1) equipped with the
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special initial condition (1.6) will be described later in this thesis. Now we’re going
to turn our attention to the convex integration method, which makes the above
results possible.
The basic idea of the convex integration consists of several steps (see also [Chi12,
Section 2.4]): We start with a system of non-linear partial differential equations
N (y) = 0, where N is a non-linear differential operator and y are the unknowns.

Example. Let y = v ∈ R2 be the unknown, which is a function of t ∈ R and x ∈ R2.
Consider the pressureless incompressible Euler equations

divxv = 0,

∂tv + divx(v ⊗ v) = 0,
(2.1)

which is a system of non-linear partial differential equations.

1. The first step is to rewrite the system N (y) = 0 as a linear system L(z) = 0
with a non-linear constraint z ∈ X by introducing new unknowns (z instead
of y).
Example. We introduce the new unknown u ∈ S2×2

0 such that z = (v, u), and
rewrite the above system (2.1) as a linear one

divxv = 0,

∂tv + divxu = 0,
(2.2)

with the non-linear constraint

z ∈ X :=
{

(v, u) : R× R2 → R2 × S2×2
0

∣∣ (v(t, x), u(t, x)
)
∈ K

for all1(t, x) ∈ R× R2
}
,

and

K :=

{
(v, u) ∈ R2 × S2×2

0

∣∣u = v ⊗ v − C

2
Id

}
,

where C > 0 is a fixed constant.
Then if z = (v, u) ∈ X is a solution to (2.2), y = v is a solution to (2.1), what
can be checked easily.
Remark. Another possibility in this step would be to introduce u ∈ S2×2 and
use u = v⊗v as the constraint. But it is easy to realize that a symmetric 2×2
matrix can be uniquely written as a sum of a symmetric tracefree 2×2 matrix
and a multiple of the identity matrix. One chose to use the latter formulation
with u ∈ S2×2

0 and a constant C ∈ R. Since C represents the trace of v ⊗ v,
which is simply |v|2, we can assume C > 0. However it is also possible to
consider C fixed and obtain solutions with |v|2 = C.

2. Relax the constraint: X 7→ X̂.
Weak solutions to the linearized system are called subsolutions if they fulfill
the relaxed constraint2, i.e. z0 is a subsolution provided L(z0) = 0 and z0 ∈ X̂.

1Since we are interested in weak solutions, it is enough to require “for almost all”.
2In some other areas of mathematics, e.g. with respect to elliptic partial differential equations,

one uses the term subsolution for a totally different object. More precisely, given a scalar
differential equation D(z) = 0, one denotes z0 as a subsolution if D(z0) ≤ 0. Notice that this
usage is totally different to ours.
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In the following sections of this thesis we will use a slightly different notion of
so-called fan subsolutions.

3. Find a subsolution z0.

4. The final step is to construct a sequence of subsolutions (zk)k∈N0 ⊂ X̂ starting
with the subsolution z0 from above step and approaching X. To get zk+1 we
add a solution of L(z) = 0 to zk in a way such that zk+1 ∈ X̂ and such that
(zk)k∈N converges to a z ∈ X. Since we deal with a linear system L(z) = 0,
the sum of two solutions to this system is again a solution, i.e. zk+1 solves
L(zk+1) = 0 and hence each zk fulfills L(zk) = 0.

Now the questions are how to relax the constraint and what kind of solutions to
the linearized system we should add in each step to achieve remaining in X̂ and
convergence of the arising sequence to an element of X. Of course these two ques-
tions are connected: We should relax the constraint in a way such that adding a
special type of a solution to the linear system automatically yield a solution which
still fulfills the relaxed constraint. Furthermore we should guarantee that the set of
functions fulfilling the relaxed constraint X̂ is sufficiently large, such that we have
much freedom to construct the sequence.

Example. However one chooses localized plane wave solutions of (2.2) to add them
in order to construct the desired sequence. Plane waves are solutions of (2.2) of the
form a h

(
(x, t) · η

)
where h ∈ C1

(
R, [−1, 1]

)
is a function, a ∈ R2 ×S2×2

0 a constant
and η ∈ R3 a direction in space-time. By · we mean the scalar product in R3, in
other words (x, t) · η = x1 η1 + x2 η2 + t η3. Then the plane wave a h

(
(x, t) · η

)
takes

values in the segment [−a, a] ⊂ R2 × S2×2
0 . We want to add localized versions of

plane waves. That means solutions which have compact support and take values in
a neighborhood of a segment. We will prove that such solutions exist. The question
is: How do we relax the constraint to achieve that adding a localized plane wave
yields an element, which also fulfills the relaxed constraint?
The answer is to change over to the interior of the convex hull (Kco)◦ of K and
define

X̂ :=
{

(v, u) : R× R2 → R2 × S2×2
0

∣∣ (v(t, x), u(t, x)
)
∈ (Kco)◦

for almost all (t, x) ∈ R× R2
}
.

If we let (v, u) ∈ X̂ and fix a point (t0, x0) ∈ R × R2 we will find an a such that(
v(t0, x0), u(t0, x0)

)
+ [−a, a] ⊂ (Kco)◦. Since we find a localized plane wave which

takes values near the segment [−a, a] and if we require (v, u) to be continuous we can
achieve that the sum of (v, u) and the localized plane wave takes values in (Kco)◦

and hence lies in X̂.

The reader might ask why we chose the pressureless incompressible Euler equations
as an example. This is because we won’t apply the convex integration method di-
rectly to the compressible Euler equations. We will do it essentially for the system
(2.1) and show that infinitely many solutions to this system may also lead to in-
finitely many solutions to the compressible Euler system (1.1).
So far we explained the basic ideas of the convex integration. The way how we really
prove non-uniqueness slightly differs from this ideas. More precisely we won’t con-
struct the mentioned sequence explicitly. Instead we will use some Baire arguments.
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3. The standard solution

Observe that the initial functions ρ0, v0 in (1.6) do not depend on x1. Additionally
v− 1 = v+ 1 and hence the initial condition is truly 1-dimensional. So a reasonable
approach is now to solve the 1-dimensional Riemann problem

∂tρ+ ∂2(ρ v2) = 0,

∂t(ρ v1) + ∂2(ρ v1 v2) = 0,

∂t(ρ v2) + ∂2

(
ρ v2

2 + p(ρ)
)

= 0,

(3.1)

ρ(0, x2) =

{
ρ− if x2 < 0
ρ+ if x2 > 0

,

v(0, x2) =

{
v− if x2 < 0
v+ if x2 > 0

,

(3.2)

where the unknowns ρ = ρ(t, x2) ∈ R+ and v = v(t, x2) ∈ R2 are now functions of
the time t ∈ [0,∞) and the position x2 ∈ R. We additionally demand the validity
of the entropy inequality

∂t

(
ρ ε(ρ) + ρ

|v|2

2

)
+ ∂2

((
ρ ε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v2

)
≤ 0. (3.3)

It is not difficult to prove that solutions to (3.1), (3.2), which fulfill (3.3), are also
x1-independent admissible solutions3 to (1.1), (1.6).
We denote m = ρ v, whereby (3.1), (3.2) and (3.3) turn into

∂tρ+ ∂2m2 = 0,

∂tm1 + ∂2

(
m1m2

ρ

)
= 0,

∂tm2 + ∂2

(
m2

2

ρ
+ p(ρ)

)
= 0,

(3.4)

ρ(0, x2) =

{
ρ− if x2 < 0
ρ+ if x2 > 0

,

m(0, x2) =

{
ρ− v− if x2 < 0
ρ+ v+ if x2 > 0

,

(3.5)

∂t

(
ρ ε(ρ) +

|m|2

2 ρ

)
+ ∂2

((
ε(ρ) +

|m|2

2 ρ2
+
p(ρ)

ρ

)
m2

)
≤ 0. (3.6)

We are going to solve the above 1-dimensional Riemann problem (3.4), (3.5) with
admissibility condition (3.6). It is well-known that the 1-dimensional Riemann prob-
lem has a self similar solution, which consists of shocks, contact discontinuities and
rarefactions. The strategy to find this self similar solution is also well-known and the
reader should have some basic knowledge about it. If not, we refer to textbooks like

3More precisely we are interested in weak solutions to (3.1), (3.2), but we leave a weak formulation
of (3.1), (3.2) and (3.3) up to the reader. We then get that weak solutions to (3.1), (3.2) and
(3.3) are x1-independent admissible weak solution to the 2-dimensional problem in the sense of
definitions 1.1 and 1.2.
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[Daf16, chapters 7-9] or [LeV04, chapters 13,14]. We will follow E. Chiodaroli and
O. Kreml [CK14, section 2], [Chi12, chapter 4], who computed the wanted solution,
too.
First of all set U := (ρ,m1,m2), which is called state vector. Via defining

F (U) :=

 m2
m1m2

ρ
m2

2

ρ
+ p(ρ)

 ,

we can write (3.4) as
∂tU + ∂2F (U) = 0.

It is easy to check that the Jacobian of F reads

DF (U) =

 0 0 1
−m1m2

ρ2
m2

ρ
m1

ρ

−m2
2

ρ2
+ p′(ρ) 0 2m2

ρ

 .

In the case p′(ρ) > 0, which is true for our choice of pressure law p(ρ) = K ργ

(K > 0, γ > 1, see above) and ρ > 0, the eigenvalues of DF (U) are

λ1 =
m2

ρ
−
√
p′(ρ), λ2 =

m2

ρ
, λ3 =

m2

ρ
+
√
p′(ρ),

and the corresponding eigenvectors

R1 =

 1
m1

ρ
m2

ρ
−
√
p′(ρ)

 , R2 =

 0
1
0

 , R3 =

 1
m1

ρ
m2

ρ
+
√
p′(ρ)

 .

Since p′(ρ) > 0, there are three real and pairwise different eigenvalues and the
corresponding eigenvectors are linearly independent, what means that the system
(3.4) is strictly hyperbolic.
Furthermore it is not difficult to verify that the functions

ω1 =
m2

ρ
−
∫ ρ

0

√
p′(r)

r
dr, ω2 =

m1

ρ
, ω3 =

m2

ρ
+

∫ ρ

0

√
p′(r)

r
dr

are 2- and 3-, 1- and 3-, 1- and 2-Riemann invariants of the system (3.4).
Next we check if the i-th characteristic families are genuinely non-linear or linearly
degenerate (i ∈ {1, 2, 3}). With the easy computation

ρ p′′(ρ) + 2 p′(ρ) = ρ K γ (γ − 1) ργ−2 + 2 K γ ργ−1 = K γ (γ + 1) ργ−1 > 0

we obtain

Dλ1 ·R1 = − 1

2 ρ
√
p′(ρ)

(
ρ p′′(ρ) + 2 p′(ρ)

)
< 0,

Dλ2 ·R2 = 0,

Dλ3 ·R3 =
1

2 ρ
√
p′(ρ)

(
ρ p′′(ρ) + 2 p′(ρ)

)
> 0.

Hence the 1st and the 3rd characteristic families are genuinely non-linear while the
2nd characteristic family is linearly degenerate. The former implies that the 1- and
3-wave is either a shock or a rarefaction and the latter means that the 2-wave is a
contact discontinuity.
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3.1. 2-Contact discontinuity

At the 2-contact discontinuity the corresponding eigenvalue λ2 = m2

ρ
does not jump.

The Rankine Hugoniot conditions at the contact discontinuity which connects a left
state UL = (ρL,mL 1,mL 2) to a right state UR = (ρR,mR 1,mR 2) read

λ2 (ρL − ρR) = mL 2 −mR 2, (3.7)

λ2 (mL 1 −mR 1) =
mL 1mL 2

ρL
− mR 1mR 2

ρR
, (3.8)

λ2 (mL 2 −mR 2) =
m2
L 2

ρL
− m2

R 2

ρR
+ p(ρL)− p(ρR). (3.9)

The second condition (3.8) is fulfilled since λ2 = m2

ρ
= mL 2

ρL
= mR 2

ρR
. The third

(3.9) yields p(ρL) = p(ρR) and because p is strictly monotone (p′ > 0) and hence
injective, this implies ρL = ρR. Then by (3.7) we obtain mL 2 = mR 2. The contact
discontinuity is admissible in the sense of (3.6) because

λ2

(
ρL ε(ρL) +

|mL|2

2 ρL
− ρR ε(ρR)− |mR|2

2 ρR

)
=

(
ε(ρL) +

|mL|2

2 ρ2
L

+
p(ρL)

ρL

)
mL 2 −

(
ε(ρR) +

|mR|2

2 ρ2
R

+
p(ρR)

ρR

)
mR 2

holds, what is easy to check. To summarize, at the 2-contact discontinuity, which is
admissible, ρ and m2 are continuous whereas m1 may have a jump. These results
can also be achieved by looking at the 2-Riemann invariants ω1 and ω3.

3.2. Admissible Shocks

Let us now investigate the 1- and 3-wave. First we suppose that the 1- or 3-wave is
a shock. The Rankine Hugoniot conditions which belong to a shock that connects
a left state UL = (ρL,mL 1,mL 2) to a right state UR = (ρR,mR 1,mR 2) are

σ (ρL − ρR) = mL 2 −mR 2, (3.10)

σ (mL 1 −mR 1) =
mL 1mL 2

ρL
− mR 1mR 2

ρR
, (3.11)

σ (mL 2 −mR 2) =
m2
L 2

ρL
− m2

R 2

ρR
+ p(ρL)− p(ρR), (3.12)

where σ is the corresponding shock speed. A shock is admissible in the sense of
(3.6) if

σ

(
ρL ε(ρL) +

|mL|2

2 ρL
− ρR ε(ρR)− |mR|2

2 ρR

)
≤
(
ε(ρL) +

|mL|2

2 ρ2
L

+
p(ρL)

ρL

)
mL 2 −

(
ε(ρR) +

|mR|2

2 ρ2
R

+
p(ρR)

ρR

)
mR 2.

(3.13)

From (3.11) we get

mL 1

ρL

(
mL 2 − σ ρL

)
=
mR 1

ρR

(
mR 2 − σ ρR

)
,
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and from (3.10)
mL 2 − σ ρL = mR 2 − σ ρR.

This yields4

mL 1

ρL
=
mR 1

ρR
. (3.14)

Multiplying (3.12) with (ρL − ρR) and substituting (3.10) we obtain(
mL 2 −mR 2

)2
=
(
ρL − ρR

)(m2
L 2

ρL
− m2

R 2

ρR
+ p(ρL)− p(ρR)

)
,

which is equivalent to

ρL ρR

(
mL 2

ρL
− mR 2

ρR

)2

=
(
ρL − ρR

) (
p(ρL)− p(ρR)

)
. (3.15)

Now we discuss if a shock is admissible. To do this we first use (3.10) to replace σ
in (3.13)5 to obtain

mL 2 −mR 2

ρL − ρR

(
ρL ε(ρL) +

|mL|2

2 ρL
− ρR ε(ρR)− |mR|2

2 ρR

)
≤
(
ε(ρL) +

|mL|2

2 ρ2
L

+
p(ρL)

ρL

)
mL 2 −

(
ε(ρR) +

|mR|2

2 ρ2
R

+
p(ρR)

ρR

)
mR 2.

This is equivalent to

ρL ρR
ρL − ρR

(
mL 2

ρL
− mR 2

ρR

)(
|mL|2

2 ρ2
L

− |mR|2

2 ρ2
R

)
≤ p(ρL)

mL 2

ρL
− p(ρR)

mR 2

ρR
+

ρL ρR
ρL − ρR

(
mL 2

ρL
− mR 2

ρR

)(
ε(ρL)− ε(ρR)

)
. (3.16)

Let’s use (3.14) and (3.15) to simplify the left-hand side further:

ρL ρR
ρL − ρR

(
mL 2

ρL
− mR 2

ρR

)(
|mL|2

2 ρ2
L

− |mR|2

2 ρ2
R

)
=

ρL ρR
ρL − ρR

(
mL 2

ρL
− mR 2

ρR

)(
m2
L 1

2 ρ2
L

+
m2
L 2

2 ρ2
L

− m2
R 1

2 ρ2
R

− m2
R 2

2 ρ2
R

)
=

ρL ρR
2 (ρL − ρR)

(
mL 2

ρL
− mR 2

ρR

)2(
mL 2

ρL
+
mR 2

ρR

)
=

1

2

(
p(ρL)− p(ρR)

)(mL 2

ρL
+
mR 2

ρR

)
. (3.17)

Combining (3.16) and (3.17) we get(
mR 2

ρR
− mL 2

ρL

)(
p(ρL) + p(ρR)− 2 ρL ρR

ε(ρL)− ε(ρR)

ρL − ρR

)
≤ 0. (3.18)

4Note that mL 2 − σ ρL = mR 2 − σ ρR 6= 0. If not, we had σ = mL 2

ρL
= mR 2

ρR
. With λ2 = m2

ρ
in mind this would imply that the shock coincides with the 2-contact discontinuity, which is a
contradiction.

5We can assume that ρL 6= ρR. If not, (3.10) would yield that mL 2 = mR 2. Then using (3.11) we
observe that σ (mL 1−mR 1) = mL 2

ρL
(mL 1−mR 1), which means that mL 1 = mR 1 or σ = mL 2

ρL
.

The former implies that UL = UR, i.e. there is no jump and therefore no shock, and the latter
that the shock coincides with the 2-contact discontinuity, what is a contradiction.
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We’re going to show now, that

p(ρL) + p(ρR)− 2 ρL ρR
ε(ρL)− ε(ρR)

ρL − ρR
> 0

for all ρL, ρR ∈ R+ with ρL 6= ρR. Without loss of generality we can assume that
ρL < ρR. For the adiabatic pressure law the above equation is equivalent to

K

(
ργL + ργR − 2 ρL ρR

ργ−1
L − ργ−1

R

(γ − 1) (ρL − ρR)

)
> 0.

Multiply by (γ − 1) (note that γ > 1) and (ρL − ρR), divide by ργ+1
L and K (note

that K > 0), and denote z = ρR
ρL

to obtain

(γ − 1)
(
zγ+1 − 1

)
− (γ + 1)

(
zγ − z

)
> 0,

since ρL − ρR < 0 by assumption. Introduce the function f : R→ R,

f(z) := (γ − 1)
(
zγ+1 − 1

)
− (γ + 1)

(
zγ − z

)
.

It remains to show that f(z) > 0 for z > 1. We get

f ′(z) = (γ − 1) (γ + 1) zγ − (γ + 1) (γ zγ−1 − 1),

f ′′(z) = (γ − 1) (γ + 1) γ zγ−2 (z − 1),

and therefore f ′′(z) > 0 for z > 1. Using f(1) = f ′(1) = 0 the recently shown
convexity of f on z > 1 implies that f is increasing on z > 1 and hence f(z) > 0
for z > 1.
Finally (3.18) implies with the just proved estimate that a shock, which connects
UL and UR, is admissible if

mL 2

ρL
≥ mR 2

ρR
. (3.19)

Let us summarize this subsection.

Lemma 3.1. • The 1-wave is an admissible shock, which connects the state
UM = (ρM ,mM 1,mM 2) on the right to the state U− = (ρ−,m− 1,m− 2) on the
left if

ρM > ρ−,
mM 1

ρM
=
m− 1

ρ−
,

mM 2

ρM
=
m− 2

ρ−
−

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

.

• The 3-wave is an admissible shock, which connects the state UM =
(ρM ,mM 1,mM 2) on the left to the state U+ = (ρ+,m+ 1,m+ 2) on the right
if

ρM > ρ+,
mM 1

ρM
=
m+ 1

ρ+

,

mM 2

ρM
=
m+ 2

ρ+

+

√(
ρM − ρ+

) (
p(ρM)− p(ρ+)

)
ρM ρ+

.

17



Proof. The claims are simple consequences of (3.14), (3.15) and (3.19). We’re going
to find out the proper sign when solving (3.15) for mM 2

ρM
.

We start with a 1-shock. The equation (3.15) leads to6

mM 2

ρM
=
m− 2

ρ−
±

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

. (3.20)

One possibility to find the proper sign is the following (see [LeV04, Chapter 13.7]).
For small shocks, i.e. if ρM ≈ ρ− and mM 2 ≈ m− 2, we expect the linearized theory
to be true. That means that the Hugoniot locus in U− should be parallel to the
eigenvector R1. Hence for ρM = ρ− + α with α ≈ 0 we expect

mM 2 ≈ m− 2 + α

(
m− 2

ρ−
−
√
p′(ρ−)

)
. (3.21)

Let us now compute mM 2 for small α using (3.20) and compare the result to (3.21).

mM 2 = ρM
m− 2

ρ−
± ρM

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

= (ρ− + α)
m− 2

ρ−
± (ρ− + α)

√
α
(
p(ρ− + α)− p(ρ−)

)
(ρ− + α) ρ−

= m− 2 + α
m− 2

ρ−
± |α|

√
ρ− + α

ρ−

√
p(ρ− + α)− p(ρ−)

α

≈ m− 2 + α

(
m− 2

ρ−
± sign(α)

√
p′(ρ−)

)
.

In view of (3.21) the proper sign is “−” if α > 0, which means that ρM > ρ− and
“+” if α < 0, which means that ρM < ρ−.
On the other hand the admissibility condition (3.19) determines the sign to be “−”.
Therefore we conclude that the 1-shock is admissible if ρM > ρ− and the proper
sign is a “−”.
Analogously one proves that for admissible 3-shocks it holds that

mM 2

ρM
=
m+ 2

ρ+

+

√(
ρM − ρ+

) (
p(ρM)− p(ρ+)

)
ρM ρ+

and ρM > ρ+.

3.3. Rarefactions

We now turn our attention to rarefactions. Suppose that the 1-wave is a rare-
faction that connects the state U− = (ρ−,m− 1,m− 2) on the left to the state UM =
(ρM ,mM 1,mM 2) on the right. Then the fact that ω2 and ω3 from above are 1-
Riemann invariants implies that

m− 1

ρ−
=
mM 1

ρM
(3.22)

6Note that p is increasing since p′ > 0. Hence p(ρM ) − p(ρ−) and ρM − ρ− have the same sign,
which means that the radicand is positive and the root is well-defined.
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and
m− 2

ρ−
+

∫ ρ−

0

√
p′(r)

r
dr =

mM 2

ρM
+

∫ ρM

0

√
p′(r)

r
dr. (3.23)

Similarly, if there is a 3-rarefaction connecting the state UM = (ρM ,mM 1,mM 2) on
the left to the state U+ = (ρ+,m+ 1,m+ 2) on the right then the 3-Riemann invariants
ω1 and ω2 yield

m+ 1

ρ+

=
mM 1

ρM
(3.24)

and
m+ 2

ρ+

−
∫ ρ+

0

√
p′(r)

r
dr =

mM 2

ρM
−
∫ ρM

0

√
p′(r)

r
dr. (3.25)

Lemma 3.2. • The 1-wave is a rarefaction, which connects the state UM =
(ρM ,mM 1,mM 2) on the right to the state U− = (ρ−,m− 1,m− 2) on the left if

ρM < ρ−,
mM 1

ρM
=
m− 1

ρ−
,

mM 2

ρM
=
m− 2

ρ−
+

∫ ρ−

ρM

√
p′(r)

r
dr.

• The 3-wave is a rarefaction, which connects the state UM = (ρM ,mM 1,mM 2)
on the left to the state U+ = (ρ+,m+ 1,m+ 2) on the right if

ρM < ρ+,
mM 1

ρM
=
m+ 1

ρ+

,

mM 2

ρM
=
m+ 2

ρ+

−
∫ ρ+

ρM

√
p′(r)

r
dr.

Proof. The above claims are simple consequences of (3.22) - (3.25). What remains
to show are the conditions ρM < ρ− respectively ρM < ρ+. Rarefaction waves
are always admissible but they are only well-defined if the speeds are ordered pro-
perly. For the 1-rarefaction this means that λ1(U−) < λ1(UM). Using (3.23) this is
equivalent to √

p′(ρM)−
√
p′(ρ−) <

∫ ρ−

ρM

√
p′(r)

r
dr.

We compute the right-hand side further to∫ ρ−

ρM

√
p′(r)

r
dr =

∫ ρ−

ρM

√
K γ rγ−1

r
dr =

√
K γ

∫ ρ−

ρM

r
γ−1
2
−1dr

=
2

γ − 1

(√
p′(ρ−)−

√
p′(ρM)

)
. (3.26)

This yields √
p′(ρM)−

√
p′(ρ−) < − 2

γ − 1

(√
p′(ρM)−

√
p′(ρ−)

)
.
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Since 1 > − 2
γ−1

, this is equivalent to
√
p′(ρM) <

√
p′(ρ−). Because the functions

x 7→
√
x and x 7→ x2 are strictly monotone for x > 0, we get p′(ρM) < p′(ρ−).

Again ρ 7→ p′(ρ) is strictly monotone since γ > 1 and p′′(ρ) = K γ (γ − 1) ργ−2 > 0.
Therefore the inverse p′−1 is monotone, too, and we obtain that a 1-rarefaction
makes sense if and only if ρM < ρ−.
The condition ρM < ρ+ for the 3-rarefaction wave can be shown analogously.

3.4. Conclusion

Now we are ready to put all the things together and state the standard solution.

Proposition 3.3. (see [CK14, Lemma 2.4]) Let ρ± ∈ R+ and v± ∈ R2 given con-
stants, where v− 1 = v+ 1.

1. If ∣∣∣∣∣
∫ ρ+

ρ−

√
p′(r)

r
dr

∣∣∣∣∣ < v+ 2 − v− 2 <

∫ ρ−

0

√
p′(r)

r
dr +

∫ ρ+

0

√
p′(r)

r
dr, (3.27)

then there is a unique self similar solution to the 1-dimensional Riemann prob-
lem (3.1), (3.2), which is admissible in the sense of (3.3) and consists of a
1-rarefaction and a 3-rarefaction. The intermediate state (ρM , vM 1, vM 2) is
given by

ρM < min{ρ−, ρ+},

v+ 2 − v− 2 =

∫ ρ−

ρM

√
p′(r)

r
dr +

∫ ρ+

ρM

√
p′(r)

r
dr,

vM 1 = v− 1 = v+ 1,

vM 2 = v− 2 +

∫ ρ−

ρM

√
p′(r)

r
dr.

2. If ρ− > ρ+ and

−

√(
ρ− − ρ+

) (
p(ρ−)− p(ρ+)

)
ρ− ρ+

< v+ 2 − v− 2 <

∫ ρ−

ρ+

√
p′(r)

r
dr,

then there is a unique self similar solution to the 1-dimensional Riemann prob-
lem (3.1), (3.2), which is admissible in the sense of (3.3) and consists of a
1-rarefaction and a 3-shock. The intermediate state (ρM , vM 1, vM 2) is given
by

ρ+ < ρM < ρ−,

v+ 2 − v− 2 =

∫ ρ−

ρM

√
p′(r)

r
dr −

√(
ρM − ρ+

) (
p(ρM)− p(ρ+)

)
ρM ρ+

,

vM 1 = v− 1 = v+ 1,

vM 2 = v− 2 +

∫ ρ−

ρM

√
p′(r)

r
dr.
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3. If ρ− < ρ+ and

−

√(
ρ− − ρ+

) (
p(ρ−)− p(ρ+)

)
ρ− ρ+

< v+ 2 − v− 2 <

∫ ρ+

ρ−

√
p′(r)

r
dr,

then there is a unique self similar solution to the 1-dimensional Riemann prob-
lem (3.1), (3.2), which is admissible in the sense of (3.3) and consists of a
1-shock and a 3-rarefaction. The intermediate state (ρM , vM 1, vM 2) is given
by

ρ− < ρM < ρ+,

v+ 2 − v− 2 =

∫ ρ+

ρM

√
p′(r)

r
dr −

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

,

vM 1 = v− 1 = v+ 1,

vM 2 = v− 2 −

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

.

4. If

v+ 2 − v− 2 < −

√(
ρ− − ρ+

) (
p(ρ−)− p(ρ+)

)
ρ− ρ+

,

then there is a unique self similar solution to the 1-dimensional Riemann prob-
lem (3.1), (3.2), which is admissible in the sense of (3.3) and consists of a
1-shock and a 3-shock. The intermediate state (ρM , vM 1, vM 2) is given by

ρM > max{ρ−, ρ+},

v+ 2 − v− 2 = −

√(
ρM − ρ+

) (
p(ρM)− p(ρ+)

)
ρM ρ+

−

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

,

vM 1 = v− 1 = v+ 1,

vM 2 = v− 2 −

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

.

In each case the unique solution is an admissible weak solution to the 2-dimensional
problem (1.1), (1.6), too, and is called standard solution.

Remark. Note that not every case is covered by the above proposition. For com-
pleteness we want to mention the remaining cases. First of all if

v+ 2 − v− 2 ≥
∫ ρ−

0

√
p′(r)

r
dr +

∫ ρ+

0

√
p′(r)

r
dr,

then there is a unique admissible solution to the 1-dimensional Riemann problem
(3.4), (3.5), which consists of a 1-rarefaction and a 3-rarefaction. Here the interme-
diate state is vacuum, i.e. ρM = 0 (see [CK14, Lemma 2.4, Case 1]). Since in this
thesis we consider ρ > 0, we’re going to omit this case.
If

v+ 2 − v− 2 =

∣∣∣∣∣
∫ ρ+

ρ−

√
p′(r)

r
dr

∣∣∣∣∣,
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there is a unique self similar solution, which consists of just one rarefaction.
If

v+ 2 − v− 2 = −

√(
ρ− − ρ+

) (
p(ρ−)− p(ρ+)

)
ρ− ρ+

,

there is a unique self similar solution, which consists of just one admissible shock.
In this thesis we will only consider the cases covered by proposition 3.3.

Proof. We start with the first component of the velocity. Since this component
remains constant at the 1- and 3-wave (see lemma 3.1 and 3.2) it can only jump
at the 2-contact discontinuity. But with our assumption that v− 1 = v+ 1 there
actually is no change of v1 at all. Since ρ and v2 are continuous at the 2-contact
discontinuity, too, nothing happens there. In other words the contact discontinuity
is not apparent. So we have that vM 1 = v− 1 = v+ 1.
Next we try to find out the values of ρ and the second component of the velocity v2

of the intermediate state between the 1- and the 3-wave. Using lemmas 3.1 and 3.2
we conclude that these values are given by the point of intersection of the curves

v2(ρ) =

 v− 2 −
√

(ρ−ρ−) (p(ρ)−p(ρ−))
ρ ρ−

if ρ > ρ−

v− 2 +
∫ ρ−
ρ

√
p′(r)

r
dr if ρ < ρ−

(3.28)

and

v2(ρ) =

 v+ 2 +
√

(ρ−ρ+) (p(ρ)−p(ρ+))
ρ ρ+

if ρ > ρ+

v+ 2 −
∫ ρ+
ρ

√
p′(r)

r
dr if ρ < ρ+.

(3.29)

The question, on which part of the curves the point of intersection lies, gives also
an answer to the question if the 1-, resp. 3-wave is a shock or a rarefaction.

(ρ-,v-2)

(ρM,vM2)

(ρ+,v+2)

1 2 3 4 5
ρ

-4

-2

2

4

v2

Figure 2: The curves given in (3.28) and (3.29) through the initial values (ρ−, v− 2) =
(1, 0) and (ρ+, v+ 2) = (4, 4) and for p(ρ) = ρ2. The rarefaction parts are
red, resp. green, whereas the shock parts are blue, resp. orange. The
point of intersection lies on the rarefaction parts of the two curves, which
means that the 1- and 3-wave both are rarefactions. The intermediate
state is given by the point of intersection.
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Assume that the initial values ρ± and v± 2 are such that (3.27) is true. Then one
can check that there is a ρM < min{ρ−, ρ+} such that the curves (3.28) and (3.29)
intersect at (ρM , vM 2) where ρM fulfills

v+ 2 − v− 2 =

∫ ρ−

ρM

√
p′(r)

r
dr +

∫ ρ+

ρM

√
p′(r)

r
dr

and vM 2 can be computed by

vM 2 = v− 2 +

∫ ρ−

ρM

√
p′(r)

r
dr.

Hence in this case the 1- and 3-wave both are rarefactions. An example is given in
figure 2. The other cases can be treated analogously.
For the uniqueness of self similar solutions to the 1-dimensional Riemann problem
we refer to textbooks or [CLK15, Proposition 8.1].

4. A sufficient condition for non-uniqueness

In this section we want to show that there are infinitely many admissible weak
solutions to the Cauchy problem (1.1), (1.6) if a so-called admissible fan subsolution
exists. First of all we have to define what such an admissible fan subsolution is.

4.1. Definitions

Definition 4.1. (fan partition, see [CLK15, Definition 3.3]) Let N ∈ N and
ν0 < ν1 < . . . < νN real numbers. A fan partition of (0,∞)×R2 is a set of open sets
P−, P1, . . . , PN , P+ of the form

P− = {(t, x) : t > 0 and x2 < ν0 t},
Pi = {(t, x) : t > 0 and νi−1 t < x2 < νi t},
P+ = {(t, x) : t > 0 and x2 > νN t},

see figure 3.

P1

P2

P-

PN

PN-1

P+

x2

t
=ν0

x2

t
=ν1

x2

t
=ν2

x2

t
=νN

x2

t
=νN-1

x2

t
=νN-2

x2

t

Figure 3: fan partition
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Definition 4.2. (admissible fan subsolution) A fan subsolution to the Euler system
(1.1) with initial condition (1.6) is a triple (ρ, v, u) : (0,∞)×R2 → (R+×R2×S2×2

0 )
of piecewise constant functions, which satisfies the following properties:

1. There is a fan partition P−, P1, . . . , PN , P+ of (0,∞)× R2 such that

(ρ, v, u) = (ρ−, v−, u−) 1P− +
N∑
i=1

(ρi, vi, ui) 1Pi + (ρ+, v+, u+) 1P+ ,

where ρi ∈ R+, vi ∈ R2, ui ∈ S2×2
0 are constants, u± := v± ⊗ v± − 1

2
|v±|2 Id

and 1A denotes the indicator function on the set A.

2. There exist disjoint sets I=, IC ⊂ {1, . . . , N} with IC 6= ∅, I= ∩ IC = ∅ and
I= ∪ IC = {1, . . . , N}, such that

a) for every i ∈ I= it holds that

vi ⊗ vi − ui =
1

2
|vi|2 Id, (4.1)

b) for every i ∈ IC there is a constant Ci ∈ R+ such that7

vi ⊗ vi − ui <
1

2
Ci Id. (4.2)

3. For all test functions (ψ, φ) ∈ C∞c ([0,∞)×R2,R×R2) the following identities
hold: ∫ ∞

0

∫
R2

(
ρ ∂tψ + ρ v · ∇xψ

)
dx dt+

∫
R2

ρ0(x)ψ(0, x) dx = 0, (4.3)∫ ∞
0

∫
R2

[
ρ v · ∂tφ+ ρ u : Dxφ+

(
p(ρ) +

1

2
ρ

(
|v−|2 1P−

+
∑
i∈I=

|vi|2 1Pi +
∑
i∈IC

Ci 1Pi + |v+|2 1P+

))
divxφ

]
dx dt

+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx = 0, (4.4)

where again : is the Frobenius product

ρ u : Dxφ =
2∑

i,j=1

ρ uij ∂jφi.

A fan subsolution is admissible if in addition for every non-negative test function

7Here we have an inequality of matrices, which is meant in the sense of definiteness. That means,
that A < B for A,B ∈ S2×2, if B −A is positive definite.
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ϕ ∈ C∞c ([0,∞)× R2,R+
0 ) the inequality∫ ∞

0

∫
R2

[(
ρ ε(ρ) +

1

2
ρ

(
|v−|2 1P− +

∑
i∈I=

|vi|2 1Pi +
∑
i∈IC

Ci 1Pi + |v+|2 1P+

))
∂tϕ

+

(
ρ ε(ρ) + p(ρ) +

1

2
ρ

(
|v−|2 1P− +

∑
i∈I=

|vi|2 1Pi +
∑
i∈IC

Ci 1Pi + |v+|2 1P+

))

v · ∇xϕ

]
dx dt+

∫
R2

ρ0(x)

(
ε(ρ0(x)) +

|v0(x)|2

2

)
ϕ(0, x) dx ≥ 0 (4.5)

is fulfilled.

Remark. We chose to present a definition of an admissible fan subsolution which is
as general as possible and it is therefore slightly different from [CK14, Definitions 5,
6] and [CLK15, Definitions 3.4, 3.5]. The latter definitions are special cases of our
definition. Later in section 5, where we discuss existence of admissible fan subsolu-
tions, we will be only interested in simple fan subsolutions. More precisely we will
look for admissible fan subsolution where the corresponding fan partition consists
of just three parts P−, P1, P+ (i.e. N = 1, IC = {1} and I= = ∅).
Furthermore the notion of a fan subsolution slightly differs from the notion of a sub-
solution in the actual sense described in section 2. More precisely a fan subsolution
is a subsolution in the actual sense in all wedges Pi with i ∈ IC and a weak solution
in the wedges Pi with i ∈ {−,+} ∪ I=.

4.2. The condition

Now we are ready to claim the condition for the existence of infinitely many admis-
sible weak solutions.

Theorem 4.3. ([CLK15, Proposition 3.6] and [CK14, Proposition 3.1]) Let (ρ±, v±)
be such that there exists an admissible fan subsolution (ρ, v, u) to the Cauchy problem
(1.1), (1.6). Then there are infinitely many admissible weak solutions (ρ, v) to (1.1),
(1.6) with ρ = ρ.

So in order to prove that a solution is non-unique we will try to show existence of
an admissible fan subsolution. In this case theorem 4.3 will yield infinitely many
admissible weak solutions.

4.3. Proof of the condition

The proof of theorem 4.3 is organized as follows. First we prove the actual theorem
using another proposition, namely the convex integration proposition 4.4, which
deals with the existence of infinitely many weak solutions to the pressureless in-
compressible Euler system. This proposition is proved by the convex integration
method. The heart of the convex integration method, the perturbation property, is
summarized in lemma 4.5. Hence we prove proposition 4.4 with help of lemma 4.5
and finally show that this lemma is true.
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4.3.1. Proof of the condition (Theorem 4.3)

To prove theorem 4.3 we will use the convex integration method for the pressureless
incompressible Euler equations developed by C. De Lellis and L. Székelyhidi and in-
troduced in section 2. This method - worked out in proposition 4.4 - yields infinitely
many weak solutions to the pressureless incompressible Euler equations on the sets
Pi where i ∈ IC which we will add to the subsolution.

Proposition 4.4. (convex integration proposition, [CLK15, Lemma 3.7] and [CK14,
Lemma 3.2]) Let (ṽ, ũ) ∈ R2 × S2×2

0 and C > 0 such that ṽ ⊗ ṽ − ũ < C
2

Id.
Furthermore let Ω ⊂ R × R2 open. Then there exist infinitely many maps (v, u) ∈
L∞(R× R2,R2 × S2×2

0 ) with the following properties.

1. v and u vanish outside Ω.

2. For all test functions (ψ, φ) ∈ C∞c (Ω,R× R2) it holds that∫∫
Ω

v · ∇xψ dx dt = 0,∫∫
Ω

(v · ∂tφ+ u : Dxφ) dx dt = 0.

3. (ṽ + v)⊗ (ṽ + v)− (ũ+ u) = C
2

Id is fulfilled almost everywhere on Ω.

Let us now prove theorem 4.3.

Proof. (see [CLK15, Proof of proposition 3.6])
Let (ρ, v, u) be an admissible fan subsolution to the initial value problem (1.1),
(1.6), which exists by assumption. For every i ∈ IC we apply proposition 4.4 to
(ṽ, ũ) = (vi, ui), C = Ci and Ω = Pi to obtain infinitely many maps (vi, ui) ∈
L∞([0,∞)×R2,R2×S2×2

0 ) that fulfill the three properties given in proposition 4.4.
Now we define

ρ = ρ and v = v +
∑
i∈IC

vi

to obtain infinitely many maps (ρ, v) since for all i ∈ IC there are infinitely many
vi. We will show that the pairs (ρ, v) defined as above are in fact admissible weak
solutions to (1.1), (1.6). Note that the ρi, vi, ui are constants, whereas vi, ui are
functions of t and x.
We have to show, that the equations (1.3), (1.4) and the inequality (1.5) hold for all
test functions (ψ, φ, ϕ) ∈ C∞c ([0,∞) × R2,R × R2 × R+

0 ), so let them be arbitrary.
Let us start with (1.3):∫ ∞

0

∫
R2

(
ρ ∂tψ + ρ v · ∇xψ

)
dx dt+

∫
R2

ρ0(x)ψ(0, x) dx

=

∫ ∞
0

∫
R2

[
ρ ∂tψ + ρ

(
v +

∑
i∈IC

vi

)
· ∇xψ

]
dx dt+

∫
R2

ρ0(x)ψ(0, x) dx

=

∫ ∞
0

∫
R2

(
ρ ∂tψ + ρ v · ∇xψ

)
dx dt+

∫
R2

ρ0(x)ψ(0, x) dx︸ ︷︷ ︸
=0, because (ρ,v,u) is a fan subsolution

+
∑
i∈IC

∫∫
Pi

ρ vi · ∇xψ dx dt

=
∑
i∈IC

ρi

∫∫
Pi

vi · ∇xψ dx dt︸ ︷︷ ︸
=0, because of proposition 4.4

= 0.
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Hence (1.3) holds. Now we check (1.4):∫ ∞
0

∫
R2

(
ρ v · ∂tφ+ ρ v ⊗ v : Dxφ+ p(ρ) divxφ

)
dx dt+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx

=

∫ ∞
0

∫
R2

[
ρ

(
v +

∑
i∈IC

vi

)
· ∂tφ

+ ρ

( ∑
i∈I=∪{−,+}

vi ⊗ vi 1Pi +
∑
i∈IC

(vi + vi)⊗ (vi + vi) 1Pi

)
: Dxφ

+ p(ρ) divxφ

]
dx dt+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx.

From (4.1) and the 3rd property in proposition 4.4 we have that vi⊗vi = ui+
|vi|2

2
Id

for all i ∈ I= ∪ {−,+} and (vi + vi) ⊗ (vi + vi) = ui + ui + Ci
2

Id for all i ∈ IC and
almost every (t, x) ∈ Pi. Therefore, using that Id : Dxφ = divxφ, we obtain∫ ∞

0

∫
R2

(
ρ v · ∂tφ+ ρ v ⊗ v : Dxφ+ p(ρ) divxφ

)
dx dt+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx

=

∫ ∞
0

∫
R2

[
ρ

(
v +

∑
i∈IC

vi

)
· ∂tφ

+ ρ

(
u+

∑
i∈I=∪{−,+}

|vi|2

2
Id 1Pi +

∑
i∈IC

(
ui +

Ci
2

Id

)
1Pi

)
: Dxφ

+ p(ρ) divxφ

]
dx dt+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx

=

∫ ∞
0

∫
R2

[
ρ v · ∂tφ+ ρ u : Dxφ+

(
p(ρ) + ρ

∑
i∈I=∪{−,+}

|vi|2

2
1Pi

+ ρ
∑
i∈IC

Ci
2

1Pi

)
divxφ

]
dx dt+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx

+
∑
i∈IC

∫∫
Pi

(
ρ vi · ∂tφ+ ρ ui : Dxφ

)
dx dt︸ ︷︷ ︸

=ρi
∫∫
Pi

(vi·∂tφ+ui:Dxφ) dx dt=0

= 0.

Here we again used that (ρ, v, u) is a fan subsolution and proposition 4.4.
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What remains is showing that (1.5) holds:∫ ∞
0

∫
Rd

[(
ρ ε(ρ) + ρ

|v|2

2

)
∂tϕ+

(
ρ ε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v · ∇xϕ

]
dx dt

+

∫
Rd

(
ρ0(x) ε(ρ0(x)) + ρ0(x)

|v0(x)|2

2

)
ϕ(0, x) dx

=

∫ ∞
0

∫
Rd

[(
ρ ε(ρ) +

∑
i∈I=∪{−,+}

ρ
|vi|2

2
1Pi +

∑
i∈IC

ρ
|vi + vi|2

2
1Pi

)
∂tϕ

+

(
ρ ε(ρ) +

∑
i∈I=∪{−,+}

ρ
|vi|2

2
1Pi +

∑
i∈IC

ρ
|vi + vi|2

2
1Pi + p(ρ)

)

·
(
v +

∑
i∈IC

vi

)
· ∇xϕ

]
dx dt

+

∫
Rd

(
ρ0(x) ε(ρ0(x)) + ρ0(x)

|v0(x)|2

2

)
ϕ(0, x) dx.

Again the 3rd property in proposition 4.4 yields for all i ∈ IC that

|vi + vi|2 = tr
(
(vi + vi)⊗ (vi + vi)

)
= tr

(
ui + ui +

Ci
2

Id
)

= Ci,

because tr(ui) = tr(ui) = 0. Using this we get∫ ∞
0

∫
Rd

[(
ρ ε(ρ) + ρ

|v|2

2

)
∂tϕ+

(
ρ ε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v · ∇xϕ

]
dx dt

+

∫
Rd

(
ρ0(x) ε(ρ0(x)) + ρ0(x)

|v0(x)|2

2

)
ϕ(0, x) dx

=

∫ ∞
0

∫
Rd

[(
ρ ε(ρ) +

∑
i∈I=∪{−,+}

ρ
|vi|2

2
1Pi +

∑
i∈IC

ρ
Ci
2

1Pi

)
∂tϕ

+

(
ρ ε(ρ) +

∑
i∈I=∪{−,+}

ρ
|vi|2

2
1Pi +

∑
i∈IC

ρ
Ci
2

1Pi + p(ρ)

)

·
(
v +

∑
i∈IC

vi

)
· ∇xϕ

]
dx dt

+

∫
Rd

(
ρ0(x) ε(ρ0(x)) + ρ0(x)

|v0(x)|2

2

)
ϕ(0, x) dx

≥
∑
i∈IC

∫∫
Pi

(
ρ ε(ρ) +

∑
i∈I=∪{−,+}

ρ
|vi|2

2
1Pi +

∑
i∈IC

ρ
Ci
2

1Pi + p(ρ)

)
vi · ∇xϕ dx dt

=
∑
i∈IC

∫∫
Pi

(
ρi ε(ρi) + ρi

Ci
2

+ p(ρi)

)
vi · ∇xϕ dx dt

=
∑
i∈IC

(
ρi ε(ρi) + ρi

Ci
2

+ p(ρi)

) ∫∫
Pi

vi · ∇xϕ dx dt = 0,
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where we again applied that the fan subsolution (ρ, v, u) is admissible and proposi-
tion 4.4.
Hence (ρ, v) is an admissible weak solution of (1.1), (1.6), i.e. we proved theorem
4.3 with help of proposition 4.4.

4.3.2. Proof of the convex integration proposition (Proposition 4.4)

In this section we’re going to prove proposition 4.4 using the convex integration
method introduced in section 2. In this proof we will also make use of some Baire
arguments. The results of Baire’s theory we need are presented in appendix B.
Apart from that one needs some knowledge about the weak* topology on L∞, what
we exhibit in appendix A.

Proof. (see [CLK15, Proof of lemma 3.7])
We start with the set

X0 :=

{
(v, u) ∈ C∞c (Ω,R2 × S2×2

0 )
∣∣

divx v = 0, ∂t v + divx u = 0 and (ṽ + v)⊗ (ṽ + v)− (ũ+ u) <
C

2
Id

}
.

First of all we’re going to show that this set is bounded in L∞(Ω,R2 × S2×2
0 ), what

results from the inequality

(ṽ + v)⊗ (ṽ + v)− (ũ+ u) <
C

2
Id.

This inequality means, that the symmetric 2× 2 matrix

C

2
Id− (ṽ + v)⊗ (ṽ + v) + (ũ+ u)

is positive definite. Hence for all (x, y)T ∈ R2 r {0} the following holds:

0 < (x, y) ·
(
C

2
Id− (ṽ + v)⊗ (ṽ + v) + (ũ+ u)

)
·
(
x

y

)
=
C

2
(x2 + y2)−

(
(ṽ1 + v1)x+ (ṽ2 + v2) y

)2

+ (ũ11 + u11) (x2 − y2) + 2 (ũ12 + u12)x y.

Here we used, that ũ+ u has the form

ũ+ u =

(
ũ11 + u11 ũ12 + u12

ũ12 + u12 −ũ11 − u11

)
for ũ, u ∈ S2×2

0 . By choosing (x, y)T equal (1, 0)T , (0, 1)T ,
(

1√
2
, 1√

2

)T
and

(
1√
2
,− 1√

2

)T
,

we get

0 <
C

2
− (ṽ1 + v1)2 + (ũ11 + u11),

0 <
C

2
− (ṽ2 + v2)2 − (ũ11 + u11),

0 <
C

2
− 1

2

(
(ṽ1 + v1) + (ṽ2 + v2)

)2
+ (ũ12 + u12),

0 <
C

2
− 1

2

(
(ṽ1 + v1)− (ṽ2 + v2)

)2 − (ũ12 + u12).
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These inequalities imply

C > (ṽ1 + v1)2 + (ṽ2 + v2)2 = |ṽ + v|2,
|ũ11 + u11| < C,

|ũ12 + u12| < C.

Let now (v, u) ∈ X0. With the above computations we have8

||(v, u)||L∞ = ess sup
(t,x)∈Ω

||(v(t, x), u(t, x))||R2×S2×2
0

= ess sup
(t,x)∈Ω

(
|v(t, x)|+ |u11(t, x)|+ |u12(t, x)|

)
= ess sup

(t,x)∈Ω

(
|v(t, x) + ṽ − ṽ|+ |u11(t, x) + ũ11 − ũ11|+ |u12(t, x) + ũ12 − ũ12|

)
≤ ess sup

(t,x)∈Ω

(
|v(t, x) + ṽ|+ |ṽ|+ |u11(t, x) + ũ11|+ |ũ11|+ |u12(t, x) + ũ12|+ |ũ12|

)
<
√
C + |ṽ|+ C + |ũ11|+ C + |ũ12|,

which shows that X0 is bounded in L∞.
Now we define X to be the closure of X0 in the L∞ weak* topology. Because X0 is
bounded, proposition A.3 yields that X is bounded, too. Therefore by proposition
A.4 the weak* topology on X is metrizable and X is weak* compact. We will denote
the metric, which induces the weak* topology on X, as d. So (X, d) is a complete
metric space because of the compactness of X.
Note that X ⊂ L∞(Ω,R2×S2×2

0 ), i.e. the 1st property of proposition 4.4 is fulfilled9

on X. It is not difficult to show that the 2nd property is true on X, too:
Let (v, u) ∈ X. Then there exists a sequence10 (vn, un)n∈N ⊂ X0 that converges to
(v, u) in the L∞ weak* topology, i.e. in the metric d. Let now (ψ, φ) ∈ C∞c (Ω,R×R2)
test functions. Since the derivatives of the test functions are L1 functions and
(vn, un) ∈ X0 for all n ∈ N (i.e. divx v = 0, ∂t v + divx u = 0), we get∫∫

Ω

v · ∇xψ dx dt = lim
n→∞

∫∫
Ω

vn · ∇xψ dx dt = 0,∫∫
Ω

(
v · ∂tφ+ u : Dxφ

)
dx dt = lim

n→∞

∫∫
Ω

vn · ∂tφ dx dt

+ lim
n→∞

∫∫
Ω

un : Dxφ dx dt = 0,

which proves that the 2nd property of proposition 4.4 holds on X.
To complete the proof of proposition 4.4 we want to show that the subset

Y :=
{

(v, u) ∈ X
∣∣ the 3rd condition of proposition 4.4 holds

}
⊂ X

8Note that the space R2 × S2×20 has dimension 4 because the dimension of R2 is 2 and the
dimension of S2×20 is also 2. Since all norms on finite dimensional vector spaces are equivalent,
we can use any norm. For simplicity we choose here:

||(v, u)|| := |v|+ |u11|+ |u22| =
√
v21 + v22 + |u11|+ |u22|.

9To be precise, we identify each f ∈ L∞(Ω) as f ∈ L∞(R× R2) via setting f ≡ 0 outside Ω.
10In general the weak* closedness of X guarantees the existence of a net that converges to (v, u) in

the L∞ weak* topology. This net does not need to be a sequence. But in this case the weak*
topology is metrizable, so X is closed with respect to the metric d. Therefore there is even a
sequence converging to (v, u).
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is infinite. To do so we will show that this set Y is residual11. According to the
Baire category theorem (theorem B.4) and since (X, d) is a complete metric space,
this residual set Y is dense in X. We will then show that this implies that Y is
infinite.
Now define ΓN := Ω∩

(
(−N,N)×BN(0)

)
⊂ R×R2 for all N ∈ N and consider the

maps12 IN : (X, d) →
(
L∞(ΓN ,R2 × S2×2

0 ), || · ||L2

)
, defined by (v, u) 7→ (v, u)

∣∣
ΓN

.
The next step is to show that IN is a Baire-1-function for all N ∈ N, what can be
done similar to [LS09, Proof of lemma 4.5]. Let Φ ∈ C∞c

(
(−1, 1)× B1(0),R+

0

)
be a

function with ∫ 1

−1

∫
B1(0)

Φ(t, x) dx dt = 1

and define Φr(t, x) := 1
r3

Φ
(
t
r
, x
r

)
, for r > 0.

Let IN r : (X, d)→
(
L∞(ΓN ,R2×S2×2

0 ), ||·||L2

)
defined by (v, u) 7→ (Φr∗v,Φr∗u)

∣∣
ΓN

.
The convolution here is meant component-wise. First we’re going to show that IN r

is continuous for all N ∈ N and r > 0. Let (v, u) ∈ X and (vk, uk)k∈N ⊂ X be a

sequence which converges in the weak* topology, i.e. (vk, uk)
∗
⇀(v, u). We have to

show that
(Φr ∗ vk,Φr ∗ uk)

∣∣
ΓN

k→∞−→(Φr ∗ v,Φr ∗ u)
∣∣
ΓN
,

strongly in L2(ΓN), which is equivalent to∣∣∣∣(Φr ∗ (vk − v),Φr ∗ (uk − u)
)∣∣

ΓN

∣∣∣∣
L2

k→∞−→ 0. (4.6)

It holds that(
Φr ∗ (vk − v),Φr ∗ (uk − u)

)
(t, x)

=

∫
R

∫
R2

Φr(t− t̃, x− x̃)
(
vk(t̃, x̃)− v(t̃, x̃), uk(t̃, x̃)− u(t̃, x̃)

)
dx̃ dt̃

k→∞−→ 0,

because (t̃, x̃) 7→ Φr(t− t̃, x− x̃) is an L1 function and (vk, uk)
∗
⇀(v, u). This implies

(4.6) and hence the IN r are continuous.
In addition for fixed (v, u) ∈ X we get that

(Φr ∗ v,Φr ∗ u)
∣∣
ΓN

r→0−→(v, u)
∣∣
ΓN

strongly in L2(ΓN) (see e.g. [Lan93, Chapter VIII, Corollary 3.4]), what shows the

convergence IN r(v, u)
r→0−→ IN(v, u) for all (v, u) ∈ X. Hence for all N ∈ N, IN is

the pointwise limit of a sequence of continuous functions, in other words a Baire-1-
function.
Now by proposition B.6 it follows that the sets

CN :=
{

(v, u) ∈ X
∣∣ IN is continuous in (v, u)

}
⊂ X

11For the notions of Baire’s theory we refer to appendix B.
12The original idea by C. De Lellis and L. Székelyhidi in [LS09, Lemma 4.5] is to consider the

identity I : (X, d) → (L∞(Ω), || · ||L2). But this works only for bounded sets Ω. The problem
is that we cannot endow L∞(Ω) with the strong L2-topology if Ω is unbounded. So we have to
change over to the restriction to the sets ΓN (see also [CK14, Proof of lemma 3.2] or [CLK15,
Proof of lemma 3.7]).
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are residual in X.
Next we are going to show that on CN the 3rd property of proposition 4.4 is ful-
filled almost everywhere on ΓN . Let (v, u) ∈ CN be arbitrary. We first prove
that (ṽ + v)⊗ (ṽ + v)− (ũ+ u) ≤ C

2
Id a.e. on ΓN . Since X is the closure of

X0 in the L∞ weak* topology, there is a sequence (vk, uk)k∈N ⊂ X0 converg-
ing to (v, u) in the L∞ weak* topology. Because IN is continuous in (v, u), the
sequence

(
(vk, uk)

∣∣
ΓN

)
k∈N converges to (v, u)

∣∣
ΓN

even strongly in the L2 norm.
Hence there exists a subsequence which converges almost everywhere on ΓN point-
wise to (v, u), what is showed in [Lan93, Chapter VII, Theorem 1.4]. Since the
function which maps a pair (v, u) ∈ R2 × S2×2

0 to the eigenvalues of the matrix
C
2

Id − (ṽ + v) ⊗ (ṽ + v) + (ũ + u) is continuous, and because the eigenvalues of
C
2

Id− (ṽ + vk)⊗ (ṽ + vk) + (ũ+ uk) are positive (since (vk, uk) ∈ X0), we conclude
that the eigenvalues of C

2
Id − (ṽ + v) ⊗ (ṽ + v) + (ũ + u) are non-negative almost

everywhere on ΓN . This means that (ṽ + v)⊗ (ṽ + v)− (ũ+ u) ≤ C
2

Id a.e. on ΓN .
Assume by contradiction that the 3rd property of proposition 4.4 is not true al-
most everywhere on ΓN . That means that there is a subset Γ̃ ⊂ ΓN of non-zero
measure such that the matrix C

2
Id −

(
ṽ + v(t, x)

)
⊗
(
ṽ + v(t, x)

)
+
(
ũ + u(t, x)

)
is

non-zero, and, if we remember what we showed recently, positive semi-definite for
all (t, x) ∈ Γ̃. In other words both eigenvalues are not negative and at least one is
positive. Therefore the trace of the above matrix, which is equal to the sum of the
eigenvalues, is positive for all (t, x) ∈ Γ̃:

tr

(
C

2
Id−

(
ṽ + v(t, x)

)
⊗
(
ṽ + v(t, x)

)
+
(
ũ+ u(t, x)

))
= C −

∣∣ṽ + v(t, x)
∣∣2 > 0.

Hence we conclude that

||ṽ + v||2L2(ΓN ) =

∫
ΓN

|ṽ + v|2 dx dt

=

∫
Γ̃

|ṽ + v|2 dx dt︸ ︷︷ ︸
<C |Γ̃|

+

∫
ΓNrΓ̃

|ṽ + v|2 dx dt︸ ︷︷ ︸
≤C |ΓNrΓ̃|

< C |ΓN |, (4.7)

what we will need later.
Now we state an important lemma which is known as perturbation property or os-
cillatory lemma. This lemma is the heart of the convex integration method. We
postpone its proof.

Lemma 4.5. (perturbation property, see [CLK15, Section 4.1]) Let Γ ⊂ Ω open and
bounded, and (v, u) ∈ X0. Then there exists a sequence (vk, uk)k∈N ⊂ X0 with the
following properties:

• (vk, uk)
∗
⇀(v, u).

• There exists a constant β > 0 such that

lim inf
k→∞

||ṽ + vk||2L2(Γ) ≥ ||ṽ + v||2L2(Γ) + β
(
C |Γ| − ||ṽ + v||2L2(Γ)

)2

.
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Since (v, u) ∈ X, there is a sequence (vk, uk)k∈N ⊂ X0 converging L∞ weakly* to
(v, u). We set now Γ = ΓN and apply the perturbation property (Lemma 4.5) to
each (vk, uk) ∈ X0 and find for every k ∈ N sequences (vk,j, uk,j)j∈N ⊂ X0 such that

lim inf
j→∞

||ṽ + vk,j||2L2(ΓN ) ≥ ||ṽ + vk||2L2(ΓN ) + β
(
C |ΓN | − ||ṽ + vk||2L2(ΓN )

)2

(4.8)

and (vk,j, uk,j)
∗
⇀
j→∞

(vk, uk). With a standard diagonal argument we get a sequence

(vk,j(k), uk,j(k))k∈N ⊂ X0 with (vk,j(k), uk,j(k))
∗
⇀
k→∞

(v, u). Since (v, u) ∈ CN , we have

that (vk, uk)
∣∣
ΓN
→ (v, u)

∣∣
ΓN

and (vk,j(k), uk,j(k))
∣∣
ΓN
→ (v, u)

∣∣
ΓN

strongly in L2(ΓN)

as k →∞. Therefore we can pass to the limit in (4.8) to obtain

||ṽ + v||2L2(ΓN ) ≥ ||ṽ + v||2L2(ΓN ) + β
(
C |ΓN | − ||ṽ + v||2L2(ΓN )

)2

> ||ṽ + v||2L2(ΓN ),

where the last inequality comes from (4.7). This is a contradiction, i.e. the assump-
tion that the 3rd property of proposition 4.4 does not hold almost everywhere on
ΓN is not true.
Hence we proved that on CN the 3rd property of proposition 4.4 is fulfilled a.e.
on ΓN . Therefore Y ⊃

⋂
N∈N

CN and lemma B.2 yields that Y contains a residual

set since all the sets CN are residual, what we showed above. Now because (X, d)
is a complete metric space, the Baire category theorem (Theorem B.4) yields that
Y is dense. To conclude we will prove that this implies that Y is infinite. Since
0 = (0, 0) ∈ X0, X0 6= ∅. From the perturbation property (Lemma 4.5) it follows
that |X0| =∞ what is explained in what follows. Because 0 ∈ X0 we can apply the
perturbation property to find a sequence (vk, uk)k∈N ⊂ X0 with

lim inf
k→∞

||ṽ + vk||2L2(ΓN ) ≥ |ΓN | |ṽ|2 + β |ΓN |2
(
C − |ṽ|2

)2

> |ΓN | |ṽ|2

since |ṽ|2 < C. So there is a K ∈ N such that ||ṽ+vK ||2L2(ΓN ) > |ΓN | |ṽ|2, and we set

(v̂1, û1) := (vK , uK). Now applying the perturbation property to (v̂1, û1) we obtain
a sequence (vk, uk)k∈N ⊂ X0 with

lim inf
k→∞

||ṽ+vk||2L2(ΓN ) ≥ ||ṽ+v̂1||2L2(ΓN )+β
(
C |ΓN |−||ṽ+v̂1||2L2(ΓN )

)2

> ||ṽ+v̂1||2L2(ΓN )

because (v̂1, û1) ∈ X0 and therefore ||ṽ + v̂1||2L2(ΓN ) < C |ΓN |. This again yields a

K ∈ N such that ||ṽ + vK ||2L2(ΓN ) > ||ṽ + v̂1||2L2(ΓN ), and we set (v̂2, û2) := (vK , uK).

Repeating this successively we get a sequence (v̂k, ûk)k∈N ⊂ X0 where
||ṽ + v̂k||2L2(ΓN ) < ||ṽ + v̂k+1||2L2(ΓN ) for all k ∈ N. This implies that |X0| = ∞
and hence also |X| = ∞. Assume Y is finite. Then Y is closed, since finite sub-
sets of metric spaces are closed. But this contradicts the denseness of Y in X, i.e.
|Y | =∞, what finishes the proof.
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4.3.3. Proof of the perturbation property (Lemma 4.5)

Let us prove the perturbation property, lemma 4.5.

Proof. Let Γ ⊂ Ω open and bounded, and (v, u) ∈ X0. The proof consists of three
steps, where the actual claim of lemma 4.5 is proved in step 3 and the first two steps
deal with auxiliary statements.

Step 1 (see also [LS10, Lemma 3])
Define

U :=

{
(v, u) ∈ R2 × S2×2

0

∣∣∣ v ⊗ v − u < C

2
Id

}
and

K :=

{
(v, u) ∈ R2 × S2×2

0

∣∣∣ v ⊗ v − u =
C

2
Id

}
.

The first step is to show that U = (Kco)◦ where Kco denotes the convex hull of K.
We define the function e : R2 × S2×2

0 → R through

e(v, u) := λmax

(
v ⊗ v − u

)
,

where λmax : S2×2 → R maps to the largest eigenvalue of a symmetric matrix.
Next we want to show that e is a convex function. It is not difficult to understand
that

e(v, u) = max
y∈R2,||y||=1

〈 y | (v ⊗ v − u) y 〉. (4.9)

To prove this, let ymin, ymax ∈ R2 be the two normed eigenvectors of v ⊗ v − u
and λmin, λmax ∈ R the corresponding eigenvalues13 where λmin ≤ λmax. Note that
v ⊗ v − u ∈ S2×2 and hence it is diagonalizable with orthogonal eigenvectors, i.e.
〈 ymax | ymin 〉 = 0. Then

e(v, u) = λmax = λmax 〈 ymax | ymax 〉 = 〈 ymax |λmax ymax 〉
= 〈 ymax | (v ⊗ v − u) ymax 〉 ≤ max

y∈R2,||y||=1
〈 y | (v ⊗ v − u) y 〉.

Let y ∈ R2 such that max
y∈R2,||y||=1

〈 y | (v ⊗ v − u) y 〉 = 〈 y | (v ⊗ v − u) y 〉. Then there

are coefficients α, β ∈ R such that y = α ymax + β ymin, and α2 + β2 = 1 because
||y|| = ||ymax|| = ||ymin|| = 1. So we obtain

max
y∈R2,||y||=1

〈 y | (v ⊗ v − u) y 〉 = 〈 y | (v ⊗ v − u) y 〉

= α2 〈 ymax | (v ⊗ v − u) ymax 〉+ αβ 〈 ymax | (v ⊗ v − u) ymin 〉
+ αβ 〈 ymin | (v ⊗ v − u) ymax 〉+ β2 〈 ymin | (v ⊗ v − u) ymin 〉

= α2 λmax〈 ymax | ymax 〉+ αβ λmin 〈 ymax | ymin 〉
+ αβ λmax 〈 ymin | ymax 〉+ β2 λmin 〈 ymin | ymin 〉

= α2 λmax + β2 λmin ≤ λmax = e(v, u),

13Here we abused the notation a bit. Recently we wrote λmax for the function that maps a
symmetric matrix to its largest eigenvalue and here we use it for this function’s value at v⊗v−u.
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which finishes the proof of (4.9). An easy calculation yields

e(v, u) = max
y∈R2,||y||=1

〈 y | (v ⊗ v − u) y 〉 = max
y∈R2,||y||=1

(
〈 y | v vT y 〉 − 〈 y |u y 〉

)
= max

y∈R2,||y||=1

(
〈 y | v 〉2 − 〈 y |u y 〉

)
.

We are ready to show now the convexity of e. Let (v1, u1), (v2, u2) ∈ R2 × S2×2
0 and

t ∈ [0, 1]. Furthermore, let y ∈ R2 with ||y|| = 1 be such that

max
y∈R2,||y||=1

(
〈 y | (t v1 + (1− t) v2) 〉2 − 〈 y | (t u1 + (1− t)u2) y 〉

)
= 〈 y | (t v1 + (1− t) v2) 〉2 − 〈 y | (t u1 + (1− t)u2) y 〉.

Then

e
(
(t v1 + (1− t) v2), (t u1 + (1− t)u2)

)
= 〈 y | (t v1 + (1− t) v2) 〉2 − 〈 y | (t u1 + (1− t)u2) y 〉

=
(
t 〈 y | v1 〉+ (1− t) 〈 y | v2 〉

)2

− t 〈 y |u1 y 〉 − (1− t) 〈 y |u2 y 〉

≤ t 〈 y | v1 〉2 + (1− t) 〈 y | v2 〉2 − t 〈 y |u1 y 〉 − (1− t) 〈 y |u2 y 〉

= t
(
〈 y | v1 〉2 − 〈 y |u1 y 〉

)
+ (1− t)

(
〈 y | v2 〉2 − 〈 y |u2 y 〉

)
≤ t max

y∈R2,||y||=1

(
〈 y | v1 〉2 − 〈 y |u1 y 〉

)
+ (1− t) max

y∈R2,||y||=1

(
〈 y | v2 〉2 − 〈 y |u2 y 〉

)
= t e(v1, u1) + (1− t) e(v2, u2).

We used hereby the inequality
(
t a+ (1− t) b

)2 ≤ t a2 + (1− t) b2, which is true for
all a, b ∈ R, t ∈ [0, 1] and easy to recalculate.
Now we want to show that

v ⊗ v − u < C

2
Id ⇔ e(v, u) <

C

2
and

v ⊗ v − u ≤ C

2
Id ⇔ e(v, u) ≤ C

2

for all (v, u) ∈ R2 × S2×2
0 . With this we can characterize the elements of U better.

Using easy linear algebra, one can show that λ is an eigenvalue of v ⊗ v − u if and
only if C

2
− λ is an eigenvalue of C

2
Id− v⊗ v+ u. Let first v⊗ v− u < C

2
Id. So the

matrix C
2

Id − v ⊗ v + u is positive definite, which means that both eigenvalues of
this matrix are positive. Especially λmin(C

2
Id− v ⊗ v + u) > 0. So we get that

e(v, u) = λmax(v ⊗ v − u) =
C

2
− λmin

(C
2

Id− v ⊗ v + u
)
<
C

2
.

Conversely let e(v, u) = λmax(v⊗v−u) < C
2

. With the above claim on the eigenvalues
of v ⊗ v − u and C

2
Id− v ⊗ v + u, this yields that

λmin

(C
2

Id− v ⊗ v + u
)

=
C

2
− λmax(v ⊗ v − u) > 0.

Therefore C
2

Id− v ⊗ v + u is positive definite, which shows that v ⊗ v − u < C
2

Id.
The claim for semi-definiteness and e(v, u) ≤ C

2
can be showed analogously.
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Remark. Note that

v ⊗ v − u =
C

2
Id

⇒
6⇐ e(v, u) =

C

2
.

In particular there are (v, u) ∈ R2×S2×2
0 with e(v, u) = C

2
and v⊗ v−u ≤ C

2
Id but

v ⊗ v − u 6= C
2

Id.

We’re going to show that U is open. It is not difficult to understand that e is a
continuous function. Easily one can check that (v, u) 7→ v ⊗ v − u is continuous.
The map M 7→ λmax(M) is also continuous14 for M ∈ S2×2 and therefore e is
continuous. Since U is the pre-image of the open set

(
−∞, C

2

)
under e, the set U

is open.
Now we consider the closure of U . We get

U =

{
(v, u) ∈ R2 × S2×2

0

∣∣ v ⊗ v − u ≤ C

2
Id

}
=: S,

what is shown in the sequel. Because S is the pre-image of the closed set
(
−∞, C

2

]
under e, it is closed. The fact that U ⊂ S is clear. Therefore we have U ⊂ S. To
show that S ⊂ U we let (v, u) ∈ S be arbitrary and prove that there is a sequence
(vk, uk)k∈N ⊂ U which converges to (v, u). If (v, u) ∈ U this is obvious. So assume
(v, u) /∈ U , i.e. e(v, u) = C

2
. Then define (vk, uk) :=

(
(1− 1

k
) v, (1− 1

k
)2 u
)
. Obviously

(vk, uk)
k→∞−→(v, u) and

e(vk, uk) = λmax

[(
1− 1

k

)2

v ⊗ v −
(

1− 1

k

)2

u

]
=

(
1− 1

k

)2

λmax(v ⊗ v − u) =

(
1− 1

k

)2
C

2
<

C

2
,

because (1− 1
k
)2 < 1 for all k ∈ N. So we have (vk, uk) ∈ U for all k ∈ N. Hence we

proved that U = S.
Now we are ready to prove that U = Kco. To do so, we use Minkowski’s theorem
C.1. Analogously to the proof that X0 is bounded in the proof of proposition 4.4, it
can be shown that U is bounded. Since U is closed and a subset of R2×S2×2

0 , which
has dimension 4 and is in particular finite dimensional, U is compact by Heine-Borel.
Additionally U is a convex set which can be easily checked using the convexity of e:
Let (v1, u1), (v2, u2) ∈ U and t ∈ [0, 1]. Then

e
(
t (v1, u1) + (1− t) (v2, u2)

)
≤ t e(v1, u1) + (1− t) e(v2, u2) ≤ t

C

2
+ (1− t) C

2
=
C

2
,

which shows that t (v1, u1) + (1− t) (v2, u2) ∈ U . So the assumptions of theorem C.1
are fulfilled and hence it suffices to show that the extreme points of U are contained
in K. Let (v, u) ∈ U r K. We want to prove that (v, u) is not an extreme point

14This can be understood as follows: Let M ∈ S2×2. Then the characteristic polynomial reads
λ2 − tr(M)λ + det(M), whose largest zero is λmax = 1

2

(
tr(M) +

√
(tr(M))2 − 4 det(M)

)
.

Since M 7→ tr(M) and M 7→ det(M) are continuous, we conclude that M 7→ λmax(M) is also
continuous.
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of U . Since v ⊗ v − u ∈ S2×2, it is diagonalizable with orthogonal eigenvalues, i.e.
there exists an orthogonal matrix T such that

v ⊗ v − u = T

(
λmax 0

0 λmin

)
T−1.

Because (v, u) ∈ U , we have that λmin ≤ λmax ≤ C
2

. Additionally it holds that
λmin <

C
2

, since otherwise we had λmin = λmax = C
2

and therefore

v ⊗ v − u = T
C

2
IdT−1 =

C

2
Id,

which contradicts (v, u) /∈ K. Let ymax, ymin be the normed eigenvectors which
correspond to the eigenvalues λmax, λmin. Then there are unique coefficients α, β ∈ R
such that v = α ymax + β ymin. Let now (v̂, û) ∈ R2 × S2×2

0 defined by v̂ = ymin and
û = α (ymax ⊗ ymin + ymin ⊗ ymax). Then for t ∈ R one has

T−1
[
(v + t v̂)⊗ (v + t v̂)− (u+ t û)

]
T =

= T−1
[
v ⊗ v + t (v̂ ⊗ v + v ⊗ v̂) + t2 v̂ ⊗ v̂ − u− t û

]
T

= T−1
[
v ⊗ v − u

]
T + t T−1

[
ymin ⊗ v + v ⊗ ymin − û

]
T + t2 T−1

[
ymin ⊗ ymin

]
T

= T−1
[
v ⊗ v − u

]
T + t T−1

[
α ymin ⊗ ymax + β ymin ⊗ ymin + α ymax ⊗ ymin

+ β ymin ⊗ ymin − α ymax ⊗ ymin − α ymin ⊗ ymax

]
T + t2 T−1

[
ymin ⊗ ymin

]
T

= T−1
[
v ⊗ v − u

]
T + (2 β t+ t2)T−1

[
ymin ⊗ ymin

]
T. (4.10)

Remember that the columns of the matrix T are exactly the eigenvectors ymax, ymin.
Then we have that

T−1
[
ymin ⊗ ymin

]
T = T T ymin y

T
min T = (yTmin T )T (yTmin T )

= (0, 1)T (0, 1) =

(
0 0
0 1

)
,

because

yTmin T =
(
yTmin ymax, y

T
min ymin

)
=
(
〈ymin|ymax〉, 〈ymin|ymin〉

)
= (0, 1).

If we plug this in (4.10), we obtain

T−1
[
(v + t v̂)⊗ (v + t v̂)− (u+ t û)

]
T

=

(
λmax 0

0 λmin

)
+ (2 β t+ t2)

(
0 0
0 1

)
.

Since λmax ≤ C
2

and λmin <
C
2

, we conclude that for small |t| we have that

e
(
v + t v̂, u+ t û

)
≤ C

2
,

and hence using U = S we find
(
v+t v̂, u+t û

)
∈ U for |t| small enough. This proves

that (v, u) can not be an extreme point because (v, u) can be expressed as a convex
combination of

(
v + t v̂, u+ t û

)
and

(
v − t v̂, u− t û

)
. This shows that the extreme

points of U are contained in K. By Minkowski’s theorem C.1 we get U = Kco,
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which implies that U◦ = (Kco)◦. As explained above U is open and analogously to
the proof of convexity of U one can show that U is convex, too. Then proposition
C.2 yields that U = U◦ and therefore U = (Kco)◦.

Step 2 (see also [CLK15, Proposition 4.1 and Lemma 4.3], [LS10, Lemma 4 and 6])
Fix an arbitrary point (t0, x0) ∈ Γ. For convenience we define

(v?, u?) :=
(
ṽ + v(t0, x0), ũ+ u(t0, x0)

)
.

By assumption it holds that

v? ⊗ v? − u? =
(
ṽ + v(t0, x0)

)
⊗
(
ṽ + v(t0, x0)

)
−
(
ũ+ u(t0, x0)

)
<
C

2
Id. (4.11)

The next step is to show that there exists a segment σ = [−p, p] ∈ R2 × S2×2
0 with

the following properties:

1. There exist a, b ∈ R2 with |a| = |b| =
√
C and a 6= ±b, and λ > 0 such that

p = λ [(a, a⊗ a)− (b, b⊗ b)].

2. For all (v, u) ∈ σ it holds that(
ṽ + v(t0, x0) + v

)
⊗
(
ṽ + v(t0, x0) + v

)
−
(
ũ+ u(t0, x0) + u

)
<
C

2
Id.

3. For all ε > 0 there exists a pair (v, u) ∈ C∞c
(
(−1, 1)×B1(0)

)
which solves

divx v = 0,

∂t v + divx u = 0,

and such that

a) for all (t, x) ∈ (−1, 1)×B1(0) it holds that dist
(
(v(t, x), u(t, x)), σ

)
< ε,

b) there exists a constant c1 > 0 such that∫
R

∫
R2

∣∣v(t, x)
∣∣ dx dt ≥ c1

(
C −

∣∣ṽ + v(t0, x0)
∣∣2)

and

c) ∫
R

∫
R2

(
v(t, x), u(t, x)

)
dx dt = 0,

which is meant component-wise.

Remark. Note that (4.11) is equivalent to (v?, u?) ∈ U , and the second claim is
equivalent to (v?, u?) + σ ⊂ U .

Using the result of step 1 we have that (v?, u?) ∈ U = (Kco)◦, i.e. there are finitely
many (vi, ui) ∈ K such that (v?, u?) lies in the interior of the convex polytope
spanned by the (vi, ui). Note that if (v, u) ∈ K and r > 0 are arbitrary, then there
exists another (v̂, û) ∈ K with ||(v̂, û) − (v, u)|| < r, where || · || can be any norm
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on R2 × S2×2
0 (since on finite dimensional spaces, every two norms are equivalent).

This can be understood by looking for instance at

û11 := u11 + δ,

v̂1 := sign(v1)
√
v2

1 + δ,

v̂2 := sign(v2)
√
v2

2 − δ,

û12 := v̂1 v̂2.

It is easy to check that (v̂, û) ∈ K and one has ||(v̂, û) − (v, u)|| < r if |δ| is small
enough.
Since (v?, u?) lies in the interior, it is possible to slightly change the (vi, ui) as above
to obtain vi 6= ±vj for all i 6= j. Now by Caratheodory’s theorem C.4 and because
dim(R2 × S2×2

0 ) = 4, there are at most 5 points among the (vi, ui) and αi ≥ 0 such
that

(v?, u?) =
5∑
i=1

αi (vi, ui),

and
5∑
i=1

αi = 1. Since (v?, u?) /∈ K, there are at least two indices i with αi > 0.

Without loss of generality we can assume that the coefficients are ordered such that
α1 = max

i
αi. Let j be such that αj |vj − v1| = max

i
αi |vi − v1| and set a = vj,

b = v1. Note that j 6= 1 and hence a 6= ±b. We also obtain that |a| = |b| =
√
C

because (vi, ui) ∈ K and therefore |vi|2 = tr(vi ⊗ vi) = tr(C
2

Id + ui) = C (for all
i ∈ {1, . . . , 5}). Further we set λ = 1

2
αj and p = λ [(a, a ⊗ a) − (b, b ⊗ b)]. Then

p ∈ R2 ×S2×2
0 since tr

(
λ(a⊗ a− b⊗ b)

)
= λ (|a|2 − |b|2) = 0 and λ(a⊗ a− b⊗ b) is

obviously symmetric. Hence we showed the first claim.
Next we’re going to prove that

(v?, u?) + σ ⊂ U ,

which is, as already remarked, equivalent to the second claim. To show this, we first
prove that (v?, u?)± 2 p ∈ Kco. Note that we can write p as follows:

p = λ [(a, a⊗ a)− (b, b⊗ b)]

=
1

2
αj [(vj, vj ⊗ vj)− (v1, v1 ⊗ v1)]

=
1

2
αj (vj − v1, vj ⊗ vj − v1 ⊗ v1)

=
1

2
αj

(
vj − v1, vj ⊗ vj −

C

2
Id− v1 ⊗ v1 +

C

2
Id

)
=

1

2
αj (vj − v1, uj − u1)

=
1

2
αj
(
(vj, uj)− (v1, u1)

)
,

because (v1, u1), (vj, uj) ∈ K. Let us now compute (v?, u?) + 2 p using the above
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identity for p:

(v?, u?) + 2 p =
5∑
i=1

αi (vi, ui) + αj
(
(vj, uj)− (v1, u1)

)
= (α1 − αj) (v1, u1) + 2αj (vj, uj) +

∑
i∈{2,...,5}r{j}

αi (vi, ui).

Note that the coefficients are all non-negative, since α1 = max
i
αi and therefore

α1 ≥ αj, and the sum of all coefficients is 1:

α1 − αj + 2αj +
∑

i∈{2,...,5}r{j}

αi =
5∑
i=1

αi = 1.

That means that (v?, u?) + 2 p is a convex combination of elements of K, in other
words (v?, u?) + 2 p ∈ Kco. Analogously we compute (v?, u?)− 2 p:

(v?, u?)− 2 p =
5∑
i=1

αi (vi, ui)− αj
(
(vj, uj)− (v1, u1)

)
= (α1 + αj) (v1, u1) +

∑
i∈{2,...,5}r{j}

αi (vi, ui).

All the coefficients are non-negative and the sum of the coefficients is 1:

α1 + αj +
∑

i∈{2,...,5}r{j}

αi =
5∑
i=1

αi = 1.

That means that (v?, u?)− 2 p is a convex combination of elements of K and hence
(v?, u?)− 2 p ∈ Kco.
Since (v?, u?) ∈ U = (Kco)◦, there exists a positive radius r > 0 such that the
whole ball Br(v

?, u?) ⊂ Kco. Because Kco is convex, the convex hull of the set
Br(v

?, u?)∪{(v?, u?)±2 p} is contained in Kco. So we have (v?, u?)+σ ⊂ (Kco)◦ = U
since σ lies obviously in the interior of the convex hull of Br(v

?, u?)∪{(v?, u?)±2 p},
see figure 4.
Additionally the following estimates hold: Since αj |vj − v1| = max

i
αi |vi − v1|, we

get that

|v? − v1| =
∣∣∣∣ 5∑
i=1

αi vi −
5∑
i=1

αi v1

∣∣∣∣
=

∣∣∣∣ 5∑
i=1

αi (vi − v1)

∣∣∣∣
≤

5∑
i=1

αi |vi − v1|

≤ 5αj |vj − v1|.
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(v*,u*)

(v*,u*)+2p

(v*,u*)-2p

σ

Figure 4: (v?, u?) + σ is contained in the convex hull of Br(v
?, u?)∪ {(v?, u?)± 2 p}.

With this estimate we get an inequality for the velocity part of p:

1

2
αj |vj − v1| ≥

1

2

1

5
|v? − v1|

≥ 1

10

(
|v1| − |v?|

)
>

1

10

(√
C − |v?|

) √C + |v?|
2
√
C

=
1

20
√
C

(
C − |v?|2

)
. (4.12)

Here we used the reverse triangular inequality and
√
C+|v?|
2
√
C

< 1, which can be proved

as follows: We have (v?, u?) ∈ U and hence v? ⊗ v? − u? < C
2

Id. In other words
C
2

Id− v? ⊗ v? + u? is positive definite, what implies that

C − |v?|2 = tr
(C

2
Id− v? ⊗ v? + u?

)
> 0.

Hence we obtain |v?| <
√
C and therefore

√
C+|v?|
2
√
C

< 1.
To finish step 2 of the proof it remains to show that the third claim is true. Let
Φ ∈ C∞(R × R2,R) be a real-valued function, which we will specify later. Define
(u, v) ∈ C∞(R× R2,R2 × S2×2

0 ) by

vi(t, x) :=
1

2

( 2∑
k=1

(ak bi − ai bk) ∂k (∂2
1 + ∂2

2)

)
Φ(t, x)

uij(t, x) :=
1

2

( 2∑
k=1

(ai bk − ak bi) ∂k ∂j ∂t +
2∑

k=1

(aj bk − ak bj) ∂k ∂i ∂t
)

Φ(t, x)

(4.13)

for i, j ∈ {1, 2}. Here a, b are defined as above. It is obvious that u is symmetric
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and an easy computation shows that

tr
(
u(t, x)

)
= u11(t, x) + u22(t, x)

=

( 2∑
k=1

(a1 bk − ak b1) ∂k ∂1 ∂t +
2∑

k=1

(a2 bk − ak b2) ∂k ∂2 ∂t

)
Φ(t, x)

=
(

(a1 b2 − a2 b1) ∂2 ∂1 ∂t + (a2 b1 − a1 b2) ∂1 ∂2 ∂t

)
Φ(t, x) = 0.

Another computation yields that divxv = 0 and ∂tv + divxu = 0:

divx v(t, x) =
2∑
i=1

∂i vi(t, x)

=
1

2

( 2∑
i,k=1

(ak bi − ai bk) ∂i ∂k
)

(∂2
1 + ∂2

2) Φ(t, x) = 0,

(
∂t v(t, x) + divx u(t, x)

)
i

= ∂t vi(t, x) +
2∑
j=1

∂j uij(t, x)

=
1

2

( 2∑
k=1

(ak bi − ai bk) ∂k (∂2
1 + ∂2

2) +
2∑

j,k=1

(ai bk − ak bi) ∂k ∂2
j

+
2∑

j,k=1

(aj bk − ak bj) ∂k ∂i ∂j
)
∂t Φ(t, x) = 0.

Concerning the function Φ, we are interested in two different choices. We define

η :=
−1(

|a| |b|+ a · b
)2/3

(
a+ b− (|a| |b|+ a · b) e3

)
∈ R3,

where we consider the 2-dimensional vectors a, b ∈ R2 as 3-dimensional by setting the
third component 0, i.e. if in the prequel a = (a1, a2)T we mean here a = (a1, a2, 0)T ,
and e3 = (0, 0, 1)T . Note that the denominator above is non-zero because a 6= −b,
and hence η is well-defined.
Let Ψ ∈ C∞(R,R) be a function, which we will define precisely later. The first
interesting choice for Φ will be Φ(t, x) := Ψ

(
(x, t) · η

)
, where here · denotes the

scalar product in R3. More precisely by (x, t) · η for a vector η ∈ R3 we mean
(x, t) · η = x1 η1 + x2 η2 + t η3 ∈ R. We define (v̂, û) as in (4.13) with the choice
Φ(t, x) := Ψ

(
(x, t) · η

)
. Simple but long calculations show, that

v̂ = (a− b) Ψ′′′
(
(x, t) · η

)
,

û = (a⊗ a− b⊗ b) Ψ′′′
(
(x, t) · η

)
are true. Since we want (v, u) to be compactly supported, our second and final
choice of Φ will be slightly different. Let ϕ ∈ C∞c

(
(−1, 1) × B1(0), [−1, 1]

)
be a

cutoff function which is identically 1 inside (−1
2
, 1

2
)×B1/2(0). Define Φ as Φ(t, x) :=

ϕ(t, x) Ψ
(
(x, t) · η

)
and (v, u) as in (4.13) with this choice of Φ.

Let us fix Ψ by Ψ(y) := −λN−3 sin(N y) where λ was defined above and N > 0 is
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a large number, which will be specified later.
Obviously (v, u) ∈ C∞c

(
(−1, 1)×B1(0)

)
. Next we want to show that

dist
(
(v(t, x), u(t, x)), σ

)
< ε

for all (t, x) ∈ (−1, 1)×B1(0). It is not difficult to check that

||(v, u)− ϕ · (v̂, û)||∞ ≤ c
1

N
,

where || · ||∞ denotes the maximum norm on C∞c
(
(−1, 1) × B1(0)

)
and c > 0 is a

suitable constant. We can choose N large such that c 1
N
< ε. On the other hand we

know that

(v̂, û) =
(
(a− b), (a⊗ a− b⊗ b)

)
Ψ′′′
(
(x, t) · η

)
=
(
(a− b), (a⊗ a− b⊗ b)

)
λ cos

(
N (x, t) · η

)
= p cos

(
N (x, t) · η

)
∈ σ,

and therefore also ϕ · (v̂, û) ∈ σ, because ϕ takes values in [−1, 1]. So for all
(t, x) ∈ (−1, 1)×B1(0) we obtain

dist
(
(v(t, x), u(t, x)), σ

)
≤ dist

(
(v(t, x), u(t, x)), ϕ(t, x) · (v̂(t, x), û(t, x))

)
≤ ||(v, u)− ϕ · (v̂, û)||∞ < ε.

It remains to show some estimates. We denote the ball with radius 1
2

and center 0 in
the 3-dimensional space-time R×R2 as B3

1/2(0). Because B3
1/2(0) ⊂ (−1

2
, 1

2
)×B1/2(0),

we have that ϕ(t, x) = 1 for (t, x) ∈ B3
1/2(0). Hence for (t, x) ∈ B3

1/2(0) it holds that

v(t, x) = v̂(t, x) = (a− b) Ψ′′′
(
(x, t) · η

)
and therefore∫

R

∫
R2

∣∣v(t, x)
∣∣ dx dt ≥ ∫∫

B3
1/2

(0)

∣∣v(t, x)
∣∣ dx dt

=

∫∫
B3

1/2
(0)

λ |a− b|
∣∣ cos

(
N (x, t) · η

)∣∣ dx dt
= λ |a− b|

∫∫
B3

1/2
(0)

∣∣ cos
(
N t |η|

)∣∣ dx dt, (4.14)

where we turned the coordinate system in the last step. In order to estimate the
integral in (4.14) further, we consider the cube [−1/4, 1/4]3 ⊂ B3

1/2(0) and obtain∫∫
B3

1/2
(0)

∣∣ cos
(
N t |η|

)∣∣ dx dt ≥ ∫ 1/4

−1/4

∫ 1/4

−1/4

∫ 1/4

−1/4

∣∣ cos
(
N t |η|

)∣∣ dx1 dx2 dt

=
1

4

∫ 1/4

−1/4

∣∣ cos
(
N t |η|

)∣∣ dt
=

1

4N |η|

∫ 1/4N |η|

−1/4N |η|

∣∣ cos(t)
∣∣ dt

≥ 1

4N |η|

∫ 1/4N |η|

−1/4N |η|
cos2(t) dt

=
1

16
+

1

8N |η|
sin
(1

2
N |η|

)
≥ 1

16
− 1

8N |η|
.
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For large N , say N ≥ 10
|η| , and using (4.12) and (4.14) we get with the definition

c1 = 1
400
√
C

:∫
R

∫
R2

∣∣v(t, x)
∣∣ dx dt ≥ λ

20
|a− b| ≥ 1

400
√
C

(
C − |v?|2

)
= c1

(
C −

∣∣ṽ + v(t0, x0)
∣∣2).

Now it remains to show that
∫
R

∫
R2(v, u) dx dt = 0. This can be seen quite easily

keeping in mind the definition (4.13) of (v, u). Since (v, u) ∈ C∞c
(
(−1, 1) × B1(0)

)
we have ∫

R

∫
R2

(v, u) dx dt =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(v, u) dx1 dx2 dt.

Applying Fubini’s theorem we have to solve integrals like∫ 1

−1

∂yΦ(t, x) dy,

where y ∈ {x1, x2, t}. Because of the compact support of Φ we get the claimed
statement.

Step 3 (see also [CLK15, Section 4.1])
Now we are ready to prove the actual claim of the perturbation property. Let again
(t0, x0) ∈ Γ be any point. Step 2 yields a segment σ such that

(ṽ, ũ) +
(
v(t0, x0), u(t0, x0)

)
+ σ ⊂ U .

Since (v, u) is continuous and U is open, we find a radius r > 0 such that

(ṽ, ũ) +
(
v(t, x), u(t, x)

)
+ σ ⊂ U

for all (t, x) ∈ (t0 − r, t0 + r) × Br(x0) and such that (t0 − r, t0 + r) × Br(x0) ⊂ Γ.
For all ε > 0 step 2 yields a pair (v, u) ∈ C∞c

(
(−1, 1)×B1(0)

)
that fulfills

dist
(
(v(t, x), u(t, x)), σ

)
< ε

for all (t, x) ∈ (−1, 1)×B1(0). Define(
vt0,x0,r, ut0,x0,r

)
(t, x) := (v, u)

(
t− t0
r

,
x− x0

r

)
,

then supp
(
vt0,x0,r, ut0,x0,r

)
⊂ (t0− r, t0 + r)×Br(x0). In addition to that we get that

dist
(
(vt0,x0,r(t, x), ut0,x0,r(t, x)), σ

)
< ε

for all (t, x) ∈ (t0− r, t0 + r)×Br(x0). Because U is open, we can choose ε so small
that

(ṽ, ũ) +
(
v(t, x), u(t, x)

)
+
(
vt0,x0,r(t, x), ut0,x0,r(t, x)

)
∈ U

for all (t, x) ∈ (t0 − r, t0 + r) × Br(x0). From step 2 we also obtain the following
estimate: ∫∫

Γ

∣∣vt0,x0,r(t, x)
∣∣ dx dt = r3

∫ 1

−1

∫
B1(0)

∣∣v(t, x)
∣∣ dx dt

≥ r3 c1

(
C −

∣∣ṽ + v(t0, x0)
∣∣2). (4.15)
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Because of the uniform continuity of (v, u) there is a radius r1 > 0 such that
the above construction works for all radii 0 < r < r1 and all (t0, x0) ∈ Γ with
(t0 − r, t0 + r)×Br(x0) ⊂ Γ.
There exists a radius r2 > 0 and a constant c2 > 0 such that for all 0 < r < r2 there
are finitely many points (tj, xj) ∈ Γ with the following properties:

• The sets (tj − r, tj + r)×Br(xj) are contained in Γ and pairwise disjoint.

• The inequality

r3
∑
j

(
C −

∣∣ṽ + v(tj, xj)
∣∣2) ≥ c2

∫∫
Γ

(
C −

∣∣ṽ + v(t, x)
∣∣2) dx dt

= c2

(
C |Γ| −

∫∫
Γ

∣∣ṽ + v(t, x)
∣∣2 dx dt) (4.16)

holds.

Let now r = 1
k

for k ∈ N such that 1
k
< min{r1, r2} and do the above constructions

for this radius. Define (vk, uk) = (v, u)+
∑
j

(vtj ,xj ,r, utj ,xj ,r). It is not difficult to check

that (vk, uk) ∈ X0: Obviously (vk, uk) ∈ C∞c (Ω,R2 × S2×2
0 ) and with the 3rd claim

in step 2 we have divx vk = 0 and ∂t vk + divx uk = 0. Furthermore, since the sets
(tj−r, tj+r)×Br(xj) are pairwise disjoint, we obtain (ṽ, ũ)+

(
vk(t, x), uk(t, x)

)
∈ U

for all (t, x) ∈ Ω and hence (ṽ + vk)⊗ (ṽ + vk)− (ũ+ uk) <
C
2

Id. So (vk, uk) ∈ X0.

Moreover we get (vk, uk)
∗
⇀(v, u). This can be proved using proposition A.2. First

note that ||(vk, uk)||L∞ is bounded because (vk, uk) ∈ X0 and X0 is bounded in L∞

as already shown. Let g ∈ C∞c (Ω). Then we get∫∫
Ω

(
(vk, uk)− (v, u)

)
g dx dt =

∫∫
Ω

∑
j

(vtj ,xj ,r, utj ,xj ,r) g dx dt

=
∑
j

∫ tj+r

tj−r

∫
Br(xj)

(vtj ,xj ,r, utj ,xj ,r) g dx dt. (4.17)

Let us use Taylor’s expansion for g to obtain∫ tj+r

tj−r

∫
Br(xj)

(vtj ,xj ,r, utj ,xj ,r) g dx dt

=

∫ tj+r

tj−r

∫
Br(xj)

(
v
(t− tj

r
,
x− xj
r

)
, u
(t− tj

r
,
x− xj
r

))
g(t, x) dx dt

=

∫ 1

−1

∫
B1(0)

(
v(t, x), u(t, x)

)
g(r t+ tj, r x+ xj) r

3 dx dt

=

∫ 1

−1

∫
B1(0)

(
v(t, x), u(t, x)

) [
g(tj, xj)

+ r t ∂tg(tj, xj) + r x1 ∂1g(tj, xj) + r x2 ∂2g(tj, xj) +O(r2)
]
r3 dx dt

≤ g(tj, xj) r
3

∫ 1

−1

∫
B1(0)

(
v(t, x), u(t, x)

)
dx dt︸ ︷︷ ︸

=0

+ M r4

= M r4 = M
1

k4
, (4.18)
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with a suitable constant M and r sufficiently small. In particular M does not depend
on j: First of all the derivatives of g are bounded since g ∈ C∞c (Ω). Hence we can
estimate ∂yg(tj, xj) for y ∈ {t, x1, x2} by a constant which doesn’t depend on (tj, xj).
The bigger problem are the functions (v, u) which depend on (tj, xj) according to
the construction above. So the bound of (v, u) may depend on j. However we can
find a bound which does not depend on j:

||(v, u)||∞ = max
(t,x)∈(−1,1)×B1(0)

||
(
v(t, x), u(t, x)

)
||R2×S2×2

0

≤ max
(t,x)∈(−1,1)×B1(0)

dist
(
(v(t, x), u(t, x)), σ

)
+ ||p||R2×S2×2

0

< ε+ |λ| ||(a− b, a⊗ a− b⊗ b)||R2×S2×2
0
.

Again note that ε, λ, a and b depend on (tj, xj). But we can choose ε < 1 and it is
easy to check that |λ| is bounded by 1 and ||(a− b, a⊗a− b⊗ b)||R2×S2×2

0
is bounded

by a constant which depends only on C since |a| = |b| =
√
C. Hence M does not

depend on j.
Because the number of points (tj, xj) grows with k3, we get from (4.17) and (4.18):∫∫

Ω

(
(vk, uk)− (v, u)

)
g dx dt =

∑
j

∫ tj+r

tj−r

∫
Br(xj)

(vtj ,xj ,r, utj ,xj ,r) g dx dt

≤
∑
j

M
1

k4

≤ k3 M̃
1

k4

k→∞−→ 0,

which proves with proposition A.2 that (vk, uk)
∗
⇀(v, u).

Additionally we have the following estimate

||vk − v||L1(Γ) =

∫∫
Γ

∣∣vk(t, x)− v(t, x)
∣∣ dx dt

=

∫∫
Γ

∣∣∣∑
j

vtj ,xj ,r(t, x)
∣∣∣ dx dt

=
∑
j

∫∫
Γ

∣∣vtj ,xj ,r(t, x)
∣∣ dx dt,

because the supports of the functions vtj ,xj ,r are disjoint. Using (4.15) and (4.16)
we arrive at

||vk − v||L1(Γ) =
∑
j

∫∫
Γ

∣∣vtj ,xj ,r(t, x)
∣∣ dx dt

≥
∑
j

r3 c1

(
C −

∣∣ṽ + v(tj, xj)
∣∣2)

≥ c1 c2

(
C |Γ| −

∫∫
Γ

∣∣ṽ + v(t, x)
∣∣2 dx dt)

= c1 c2

(
C |Γ| − ||ṽ + v||2L2(Γ)

)
.
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Hölder’s inequality yields

||vk − v||L1(Γ) ≤ ||vk − v||L2(Γ) ||1||L2(Γ) = ||vk − v||L2(Γ)

√
|Γ|,

and therefore
1

|Γ|
||vk − v||2L1(Γ) ≤ ||vk − v||2L2(Γ).

Putting the previous inequalities together we obtain

||vk − v||2L2(Γ) ≥
c2

1 c
2
2

|Γ|

(
C |Γ| − ||ṽ + v||2L2(Γ)

)2

.

Hence

||ṽ + vk||2L2(Γ) = ||ṽ + v + vk − v||2L2(Γ)

= ||ṽ + v||2L2(Γ) + ||vk − v||2L2(Γ)

+ 2

∫∫
Γ

(
ṽ + v(t, x)

) (
vk(t, x)− v(t, x)

)
dx dt

≥ ||ṽ + v||2L2(Γ) +
c2

1 c
2
2

|Γ|

(
C |Γ| − ||ṽ + v||2L2(Γ)

)2

+ 2

∫∫
Γ

(
ṽ + v(t, x)

) (
vk(t, x)− v(t, x)

)
dx dt.

Since vk
∗
⇀v and ṽ + v ∈ L1(Γ), the integral tends to 0 as k → ∞. Therefore we

obtain

lim inf
k→∞

||ṽ + vk||2L2(Γ) ≥ ||ṽ + v||2L2(Γ) +
c2

1 c
2
2

|Γ|

(
C |Γ| − ||ṽ + v||2L2(Γ)

)2

,

what finishes the proof of the perturbation property, lemma 4.5.

5. Existence of a subsolution

In this section we want to construct admissible fan subsolutions to the compressible
Euler equations (1.1) with initial data (1.6). If we could find such a fan subsolution,
theorem 4.3 claims non-uniqueness of admissible weak solutions to the system (1.1),
(1.6).
We try to find easy admissible fan subsolutions in the following sense.

Definition 5.1. (simple fan subsolution) An admissible fan subsolution (ρ, v, u)
where the corresponding fan partition consists of three open sets P−, P1, P+, i.e.
N = 1, IC = {1} and I= = ∅, is denoted as a simple fan subsolution.

In the case of such a simple fan subsolution we can simplify the properties given in
definition 4.2 to the following system of algebraic equations and inequalities:

Proposition 5.2. (see [CLK15, Proposition 5.1] or [CK14, Proposition 4.1]) Let
ρ−, ρ+ ∈ R+, v−, v+ ∈ R2 with v− 1 = v+ 1 be given (see initial condition (1.6)). The
constants ν0, ν1 ∈ R (with ν0 < ν1), ρ1 ∈ R+ , v1 ∈ R2, u1 ∈ S2×2

0 and C1 ∈ R+

define a simple fan subsolution to the Cauchy problem (1.1), (1.6) if and only if they
fulfill the following algebraic equations and inequalities:
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• Rankine Hugoniot conditions on the left interface:

ν0 (ρ− − ρ1) = ρ− v− 2 − ρ1 v1 2 (5.1)

ν0 (ρ− v− 1 − ρ1 v1 1) = ρ− v− 1 v− 2 − ρ1 u1 12 (5.2)

ν0 (ρ− v− 2 − ρ1 v1 2) = ρ− v
2
− 2 + ρ1 u1 11 + p(ρ−)− p(ρ1)− ρ1

C1

2
(5.3)

• Rankine Hugoniot conditions on the right interface:

ν1 (ρ1 − ρ+) = ρ1 v1 2 − ρ+ v+ 2 (5.4)

ν1 (ρ1 v1 1 − ρ+ v+ 1) = ρ1 u1 12 − ρ+ v+ 1 v+ 2 (5.5)

ν1 (ρ1 v1 2 − ρ+ v+ 2) = −ρ1 u1 11 − ρ+ v
2
+ 2 + p(ρ1)− p(ρ+) + ρ1

C1

2
(5.6)

• Subsolution condition:

v2
1 1 + v2

1 2 < C1 (5.7)(
C1

2
− v2

1 1 + u1 11

)(
C1

2
− v2

1 2 − u1 11

)
− (u1 12 − v1 1 v1 2)2 > 0 (5.8)

• Admissibility condition on the left interface:

ν0

(
ρ− ε(ρ−) + ρ−

|v−|2

2
− ρ1 ε(ρ1)− ρ1

C1

2

)
≤
(
ρ− ε(ρ−) + p(ρ−)

)
v− 2 −

(
ρ1 ε(ρ1) + p(ρ1)

)
v1 2 + ρ− v− 2

|v−|2

2
− ρ1 v1 2

C1

2
(5.9)

• Admissibility condition on the right interface:

ν1

(
ρ1 ε(ρ1) + ρ1

C1

2
− ρ+ ε(ρ+)− ρ+

|v+|2

2

)
≤
(
ρ1 ε(ρ1) + p(ρ1)

)
v1 2 −

(
ρ+ ε(ρ+) + p(ρ+)

)
v+ 2 + ρ1 v1 2

C1

2
− ρ+ v+ 2

|v+|2

2
(5.10)

Proof. For simple fan subsolutions the left-hand sides of the equations (4.3), (4.4)
and of the inequality (4.5) can be simplified as follows. We get∫ ∞

0

∫
R2

(
ρ ∂tψ + ρ v · ∇xψ

)
dx dt+

∫
R2

ρ0(x)ψ(0, x) dx

=

∫∫
P−

(
ρ− ∂tψ + ρ− v− · ∇xψ

)
dx dt︸ ︷︷ ︸

=:J−

+

∫∫
P1

(
ρ1 ∂tψ + ρ1 v1 · ∇xψ

)
dx dt︸ ︷︷ ︸

=:J1

+

∫∫
P+

(
ρ+ ∂tψ + ρ+ v+ · ∇xψ

)
dx dt︸ ︷︷ ︸

=:J+

+

∫
R2

ρ0(x)ψ(0, x) dx (5.11)
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and∫ ∞
0

∫
R2

[
ρ v · ∂tφ+ ρ u : Dxφ+

(
p(ρ) +

1

2
ρ

(
|v−|2 1P− + C1 1P1

+ |v+|2 1P+

))
divxφ

]
dx dt+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx

=

∫∫
P−

[
ρ− v− · ∂tφ+ ρ− u− : Dxφ+

(
p(ρ−) +

1

2
ρ− |v−|2

)
divxφ

]
dx dt︸ ︷︷ ︸

=:K−

+

∫∫
P1

[
ρ1 v1 · ∂tφ+ ρ1 u1 : Dxφ+

(
p(ρ1) +

1

2
ρ1C1

)
divxφ

]
dx dt︸ ︷︷ ︸

=:K1

+

∫∫
P+

[
ρ+ v+ · ∂tφ+ ρ+ u+ : Dxφ+

(
p(ρ+) +

1

2
ρ+ |v+|2

)
divxφ

]
dx dt︸ ︷︷ ︸

=:K+

+

∫
R2

ρ0(x) v0(x) · φ(0, x) dx. (5.12)

In the same way we obtain∫ ∞
0

∫
R2

[(
ρ ε(ρ) +

1

2
ρ

(
|v−|2 1P− + C1 1P1 + |v+|2 1P+

))
∂tϕ

+

(
ρ ε(ρ) + p(ρ) +

1

2
ρ

(
|v−|2 1P− + C1 1P1 + |v+|2 1P+

))
v · ∇xϕ

]
dx dt

+

∫
R2

ρ0(x)

(
ε(ρ0(x)) +

|v0(x)|2

2

)
ϕ(0, x) dx

=

∫∫
P−

[(
ρ− ε(ρ−) + ρ−

|v−|2

2

)
∂tϕ+

(
ρ− ε(ρ−) + p(ρ−) + ρ−

|v−|2

2

)
v− · ∇xϕ

]
dx dt︸ ︷︷ ︸

=:L−

+

∫∫
P1

[(
ρ1 ε(ρ1) + ρ1

C1

2

)
∂tϕ+

(
ρ1 ε(ρ1) + p(ρ1) + ρ1

C1

2

)
v1 · ∇xϕ

]
dx dt︸ ︷︷ ︸

=:L1

+

∫∫
P+

[(
ρ+ ε(ρ+) + ρ+

|v+|2

2

)
∂tϕ+

(
ρ+ ε(ρ+) + p(ρ+) + ρ+

|v+|2

2

)
v+ · ∇xϕ

]
dx dt︸ ︷︷ ︸

=:L+

+

∫
R2

ρ0(x)

(
ε(ρ0(x)) +

|v0(x)|2

2

)
ϕ(0, x) dx. (5.13)

The next goal is to compute the integrals Ji, Ki and Li for i ∈ {−, 1,+} using
integration by parts.
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P1

P-

P+

Γ0

Γ1

(-ν0,0,1)
T

(ν1,0,-1)
T

(0,0,-1)T
x2

t

Figure 5: The normal vectors on the boundary surfaces Γ0 and Γ1.

Let Γ0, Γ1 be the two boundary surfaces in space-time between P− and P1, resp.
between P1 and P+, see figure 5. More precisely

Γ0 =
{

(t, x1, x2) ∈ [0,∞)× R2
∣∣x2 = ν0 t

}
,

Γ1 =
{

(t, x1, x2) ∈ [0,∞)× R2
∣∣x2 = ν1 t

}
.

Then the unit normal vectors on Γ0, Γ1 which point into P1 are

n0 =
1√
ν2

0 + 1
(−ν0, 0, 1)T , n1 =

1√
ν2

1 + 1
(ν1, 0,−1)T ,

see also figure 5.
Additionally we define the half planes in R2 as H− :=

{
(x1, x2) ∈ R2

∣∣x2 < 0
}

and
H+ :=

{
(x1, x2) ∈ R2

∣∣x2 > 0
}

. Integration by parts yields:

J− =

∫
Γ0

(
ρ− ψ

−ν0√
ν2

0 + 1
+ ρ− v− 2 ψ

1√
ν2

0 + 1

)
dS +

∫
H−

ρ− ψ(0, x) (−1) dx,

J1 =

∫
Γ0

(
ρ1 ψ

ν0√
ν2

0 + 1
+ ρ1 v1 2 ψ

−1√
ν2

0 + 1

)
dS

+

∫
Γ1

(
ρ1 ψ

−ν1√
ν2

1 + 1
+ ρ1 v1 2 ψ

1√
ν2

1 + 1

)
dS,

J+ =

∫
Γ1

(
ρ+ ψ

ν1√
ν2

1 + 1
+ ρ+ v+ 2 ψ

−1√
ν2

1 + 1

)
dS +

∫
H+

ρ+ ψ(0, x) (−1) dx.

In the sequel we denote the components of the test function φ as φ1, φ2 what leads
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to:

K− =

∫
Γ0

[
ρ−
(
v− 1 φ1 + v− 2 φ2

) −ν0√
ν2

0 + 1
+ ρ−

(
u− 12 φ1 + u− 22 φ2

) 1√
ν2

0 + 1

+

(
p(ρ−) + ρ−

|v−|2

2

)
φ2

1√
ν2

0 + 1

]
dS

+

∫
H−

ρ−
(
v− 1 φ1(0, x) + v− 2 φ2(0, x)

)
(−1) dx,

K1 =

∫
Γ0

[
ρ1

(
v1 1 φ1 + v1 2 φ2

) ν0√
ν2

0 + 1
+ ρ1

(
u1 12 φ1 + u1 22 φ2

) −1√
ν2

0 + 1

+

(
p(ρ1) + ρ1

C1

2

)
φ2

−1√
ν2

0 + 1

]
dS

+

∫
Γ1

[
ρ1

(
v1 1 φ1 + v1 2 φ2

) −ν1√
ν2

1 + 1
+ ρ1

(
u1 12 φ1 + u1 22 φ2

) 1√
ν2

1 + 1

+

(
p(ρ1) + ρ1

C1

2

)
φ2

1√
ν2

1 + 1

]
dS,

K+ =

∫
Γ1

[
ρ+

(
v+ 1 φ1 + v+ 2 φ2

) ν1√
ν2

1 + 1
+ ρ+

(
u+ 12 φ1 + u+ 22 φ2

) −1√
ν2

1 + 1

+

(
p(ρ+) + ρ+

|v+|2

2

)
φ2

−1√
ν2

1 + 1

]
dS

+

∫
H+

ρ+

(
v+ 1 φ1(0, x) + v+ 2 φ2(0, x)

)
(−1) dx,

and

L− =

∫
Γ0

[(
ρ− ε(ρ−) + ρ−

|v−|2

2

)
ϕ
−ν0√
ν2

0 + 1

+

(
ρ− ε(ρ−) + p(ρ−) + ρ−

|v−|2

2

)
v− 2 ϕ

1√
ν2

0 + 1

]
dS

+

∫
H−

(
ρ− ε(ρ−) + ρ−

|v−|2

2

)
ϕ(0, x) (−1) dx,

L1 =

∫
Γ0

[(
ρ1 ε(ρ1) + ρ1

C1

2

)
ϕ

ν0√
ν2

0 + 1

+

(
ρ1 ε(ρ1) + p(ρ1) + ρ1

C1

2

)
v1 2 ϕ

−1√
ν2

0 + 1

]
dS

+

∫
Γ1

[(
ρ1 ε(ρ1) + ρ1

C1

2

)
ϕ
−ν1√
ν2

1 + 1

+

(
ρ1 ε(ρ1) + p(ρ1) + ρ1

C1

2

)
v1 2 ϕ

1√
ν2

1 + 1

]
dS,
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L+ =

∫
Γ1

[(
ρ+ ε(ρ+) + ρ+

|v+|2

2

)
ϕ

ν1√
ν2

1 + 1

+

(
ρ+ ε(ρ+) + p(ρ+) + ρ+

|v+|2

2

)
v+ 2 ϕ

−1√
ν2

1 + 1

]
dS

+

∫
H+

(
ρ+ ε(ρ+) + ρ+

|v+|2

2

)
ϕ(0, x) (−1) dx.

Therefore we obtain

J− + J1 + J+ +

∫
R2

ρ0(x)ψ(0, x) dx

=
1√
ν2

0 + 1

(
ν0 (ρ1 − ρ−)− (ρ1 v1 2 − ρ− v− 2)

) ∫
Γ0

ψ dS

+
1√
ν2

1 + 1

(
ν1 (ρ+ − ρ1)− (ρ+ v+ 2 − ρ1 v1 2)

) ∫
Γ1

ψ dS. (5.14)

Likewise we have

K− +K1 +K+ +

∫
R2

ρ0(x) v0(x) · φ(0, x) dx

=
1√
ν2

0 + 1

[(
ν0 (ρ1 v1 1 − ρ− v− 1)− (ρ1 u1 12 − ρ− u− 12)

) ∫
Γ0

φ1 dS

+

(
ν0 (ρ1 v1 2 − ρ− v− 2)− ρ1 u1 22 − p(ρ1)

− ρ1
C1

2
+ ρ− u− 22 + p(ρ−) + ρ−

|v−|2

2

) ∫
Γ0

φ2 dS

]

+
1√
ν2

1 + 1

[(
ν1 (ρ+ v+ 1 − ρ1 v1 1)− (ρ+ u+ 12 − ρ1 u1 12)

) ∫
Γ1

φ1 dS

+

(
ν1 (ρ+ v+ 2 − ρ1 v1 2)− ρ+ u+ 22 − p(ρ+)

− ρ+
|v+|2

2
+ ρ1 u1 22 + p(ρ1) + ρ1

C1

2

) ∫
Γ1

φ2 dS

]
, (5.15)
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and

L− + L1 + L+ +

∫
R2

ρ0(x)

(
ε(ρ0(x)) +

|v0(x)|2

2

)
ϕ(0, x) dx

=
1√
ν2

0 + 1

[
ν0

(
ρ1 ε(ρ1) + ρ1

C1

2
− ρ− ε(ρ−) + ρ−

|v−|2

2

)
−
(
ρ1 ε(ρ1) + p(ρ1) + ρ1

C1

2

)
v1 2

+

(
ρ− ε(ρ−) + p(ρ−) + ρ−

|v−|2

2

)
v− 2

] ∫
Γ0

ϕdS

+
1√
ν2

1 + 1

[
ν1

(
ρ+ ε(ρ+) + ρ+

|v+|2

2
− ρ1 ε(ρ1) + ρ1

C1

2

)
−
(
ρ+ ε(ρ+) + p(ρ+) + ρ+

|v+|2

2

)
v+ 2

+

(
ρ1 ε(ρ1) + p(ρ1) + ρ1

C1

2

)
v1 2

] ∫
Γ1

ϕdS. (5.16)

Putting (5.11) and (5.14) together we obtain that, if we deal with simple fan sub-
solutions, the equation (4.3) holds if and only if

0 =
1√
ν2

0 + 1

(
ν0 (ρ1 − ρ−)− (ρ1 v1 2 − ρ− v− 2)

) ∫
Γ0

ψ dS

+
1√
ν2

1 + 1

(
ν1 (ρ+ − ρ1)− (ρ+ v+ 2 − ρ1 v1 2)

) ∫
Γ1

ψ dS, (5.17)

Similarly we get from (5.12) and (5.15) that (4.4) is equivalent to

0 =
1√
ν2

0 + 1

[(
ν0 (ρ1 v1 1 − ρ− v− 1)− (ρ1 u1 12 − ρ− u− 12)

) ∫
Γ0

φ1 dS

+

(
ν0 (ρ1 v1 2 − ρ− v− 2)− ρ1 u1 22 − p(ρ1)

− ρ1
C1

2
+ ρ− u− 22 + p(ρ−) + ρ−

|v−|2

2

) ∫
Γ0

φ2 dS

]

+
1√
ν2

1 + 1

[(
ν1 (ρ+ v+ 1 − ρ1 v1 1)− (ρ+ u+ 12 − ρ1 u1 12)

) ∫
Γ1

φ1 dS

+

(
ν1 (ρ+ v+ 2 − ρ1 v1 2)− ρ+ u+ 22 − p(ρ+)

− ρ+
|v+|2

2
+ ρ1 u1 22 + p(ρ1) + ρ1

C1

2

) ∫
Γ1

φ2 dS

]
(5.18)
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and with (5.13) and (5.16) we have that (4.5) is true if and only if

0 ≤ 1√
ν2

0 + 1

[
ν0

(
ρ1 ε(ρ1) + ρ1

C1

2
− ρ− ε(ρ−) + ρ−

|v−|2

2

)
−
(
ρ1 ε(ρ1) + p(ρ1) + ρ1

C1

2

)
v1 2

+

(
ρ− ε(ρ−) + p(ρ−) + ρ−

|v−|2

2

)
v− 2

] ∫
Γ0

ϕdS

+
1√
ν2

1 + 1

[
ν1

(
ρ+ ε(ρ+) + ρ+

|v+|2

2
− ρ1 ε(ρ1) + ρ1

C1

2

)
−
(
ρ+ ε(ρ+) + p(ρ+) + ρ+

|v+|2

2

)
v+ 2

+

(
ρ1 ε(ρ1) + p(ρ1) + ρ1

C1

2

)
v1 2

] ∫
Γ1

ϕdS. (5.19)

Now we start with the actual proof of proposition 5.2.
Suppose there exists a simple subsolution to (1.1), (1.6). Hence, with the above
consideration, the equations (5.17), (5.18) and the inequality (5.19) are true for all
test functions (ψ, φ, ϕ) ∈ C∞c ([0,∞)×R2,R×R2×R+

0 ). We first look at (5.17) and
choose a test function ψ such that supp(ψ) ∩ Γ0 6= ∅ and supp(ψ) ∩ Γ1 = ∅. Then
we obtain

ν0 (ρ1 − ρ−)− (ρ1 v1 2 − ρ− v− 2) = 0,

which is equivalent to (5.1). Equation (5.4) is achieved by choosing ψ such that
supp(ψ)∩Γ0 = ∅ and supp(ψ)∩Γ1 6= ∅. Similarly in (5.18) we set the test function
φ successively in a way such that

• φ2 ≡ 0, supp(φ1) ∩ Γ0 6= ∅ and supp(φ1) ∩ Γ1 = ∅,

• φ2 ≡ 0, supp(φ1) ∩ Γ0 = ∅ and supp(φ1) ∩ Γ1 6= ∅,

• φ1 ≡ 0, supp(φ2) ∩ Γ0 6= ∅ and supp(φ2) ∩ Γ1 = ∅,

• φ1 ≡ 0, supp(φ2) ∩ Γ0 = ∅ and supp(φ2) ∩ Γ1 6= ∅,

to obtain respectively (5.2), (5.5), (5.3) and (5.6), where we have to remember that

u1 22 = −u1 11, since tr(u) = 0, and u± 12 = v± 1 · v± 2, u± 22 = v2
± 2 −

|v±|2
2

(see
definition 4.2).
In the same way we get (5.9) and (5.10) from (5.19) setting the test function ϕ such
that supp(ϕ) ∩ Γ0 6= ∅ and supp(ϕ) ∩ Γ1 = ∅, respectively supp(ϕ) ∩ Γ0 = ∅ and
supp(ϕ) ∩ Γ1 6= ∅.
It remains to show the subsolution conditions (5.7) and (5.8). From (4.2) we obtain
that the symmetric matrix C1

2
Id − v1 ⊗ v1 + u1 is positive definite. Since positive

definiteness of a symmetric 2×2 matrix S is equivalent to det(S) > 0 and tr(S) > 015,

15Proof: It is easy to check that two real numbers are positive if and only if their sum and product
is positive. Since a matrix is positive definite if and only if the two eigenvalues are positive we
have that positive definiteness is equivalent to sum and product of the eigenvalues is positive.
Because S is symmetric, it is diagonalizable. Then the trace of S is equal to the sum and the
determinant is equal to the product of the eigenvalues what finishes the proof of the claim.
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we get

0 < tr

(
C1

2
Id− v1 ⊗ v1 + u1

)
= C1 − |v1|2,

0 < det

(
C1

2
Id− v1 ⊗ v1 + u1

)
=

(
C1

2
− v2

1 1 + u1 11

)(
C1

2
− v2

1 2 − u1 11

)
− (u1 12 − v1 1 v1 2)2,

which are exactly (5.7), respectively (5.8). Here we used, that u1 ∈ S2×2
0 has the

form

u1 =

(
u1 11 u1 12

u1 12 −u1 11

)
.

To prove the converse direction suppose that the constants ν0, ν1 ∈ R, ρ1 ∈ R+,
v1 ∈ R2, u1 ∈ S2×2

0 and C1 ∈ R+ fulfill (5.1) - (5.10). Then (5.17), (5.18) and (5.19)
hold for all test functions (ψ, φ, ϕ) ∈ C∞c ([0,∞) × R2,R × R2 × R+

0 ). Hence (4.3),
(4.4) and (4.5) are fulfilled. Furthermore (5.7) and (5.8) and above computations
lead to

tr

(
C1

2
Id− v1 ⊗ v1 + u1

)
> 0,

det

(
C1

2
Id− v1 ⊗ v1 + u1

)
> 0,

which yields that C1

2
Id−v1⊗v1 +u1 is positive definite. So (4.2) holds, what finishes

the proof.

The equations and inequalities in proposition 5.2 can be simplified further, what is
the content of the following proposition.

Proposition 5.3. (see [CK14, Lemma 4.4]) Let ρ−, ρ+ ∈ R+, v−, v+ ∈ R2 with
v− 1 = v+ 1 be given (see initial condition (1.6)). There exists a simple fan subsolution
to the Cauchy problem (1.1), (1.6) if and only if there exist constants ν0, ν1 ∈ R (with
ν0 < ν1), ρ1 ∈ R+, v1 2 ∈ R and δ1, δ2 ∈ R such that the following algebraic equations
and inequalities hold:

• Rankine Hugoniot conditions on the left interface

ν0 (ρ− − ρ1) = ρ− v− 2 − ρ1 v1 2 (5.20)

ν0 (ρ− v− 2 − ρ1 v1 2) = ρ− v
2
− 2 − ρ1 (v2

1 2 + δ1) + p(ρ−)− p(ρ1) (5.21)

• Rankine Hugoniot conditions on the right interface

ν1 (ρ1 − ρ+) = ρ1 v1 2 − ρ+ v+ 2 (5.22)

ν1 (ρ1 v1 2 − ρ+ v+ 2) = ρ1 (v2
1 2 + δ1)− ρ+ v

2
+ 2 + p(ρ1)− p(ρ+) (5.23)

• Subsolution condition

δ1 > 0 (5.24)

δ2 > 0 (5.25)
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• Admissibility condition on the left interface

(v1 2 − v− 2)

(
p(ρ−) + p(ρ1)− 2 ρ− ρ1

ε(ρ−)− ε(ρ1)

ρ− − ρ1

)
≤ δ1 ρ1 (v1 2 + v− 2)− (δ1 + δ2)

ρ− ρ1 (v1 2 − v− 2)

ρ− − ρ1

(5.26)

• Admissibility condition on the right interface

(v+ 2 − v1 2)

(
p(ρ1) + p(ρ+)− 2 ρ1 ρ+

ε(ρ1)− ε(ρ+)

ρ1 − ρ+

)
≤ −δ1 ρ1 (v+ 2 + v1 2) + (δ1 + δ2)

ρ1 ρ+ (v+ 2 − v1 2)

ρ1 − ρ+

(5.27)

Proof. Suppose there is a simple fan subsolution to the Cauchy problem (1.1), (1.6),
i.e. by proposition 5.2 there exist constants ν0, ν1 ∈ R, ρ1 ∈ R+ , v1 ∈ R2, u1 ∈ S2×2

0

and C1 ∈ R+ such that (5.1) - (5.10) hold. Then obviously (5.20) and (5.22) are
fulfilled.
Let us add (5.2) and (5.5) to obtain

ν0 (ρ− v− 1 − ρ1 v1 1) + ν1 (ρ1 v1 1 − ρ+ v+ 1) = ρ− v− 1 v− 2 − ρ+ v+ 1 v+ 2.

Using the fact that v− 1 = v+ 1, we get

v1 1 ρ1 (ν1 − ν0) = v− 1 (ρ− v− 2 − ρ+ v+ 2) + v− 1 (ν1 ρ+ − ν0 ρ−). (5.28)

Adding (5.1) and (5.4) yields

ν0 (ρ− − ρ1) + ν1 (ρ1 − ρ+) = ρ− v− 2 − ρ+ v+ 2.

We put this into (5.28):

v1 1 ρ1 (ν1 − ν0) = v− 1

(
ν0 (ρ− − ρ1) + ν1 (ρ1 − ρ+) + ν1 ρ+ − ν0 ρ−

)
= v− 1 ρ1 (ν1 − ν0),

which leads to
v1 1 = v− 1 = v+ 2, (5.29)

since ρ1 > 0 and ν0 < ν1. Starting with (5.5) and using (5.29) and (5.4), we figure
out that

ρ1 u1 12 = ν1 (ρ1 − ρ+) v1 1 + ρ+ v+ 2 v1 1

= v1 1 (ρ1 v1 2 − ρ+ v+ 2) + ρ+ v+ 2 v1 1

= ρ1 v1 1 v1 2

holds, which yields
u1 12 = v1 1 v1 2, (5.30)

because ρ1 > 0.
Define

δ1 =
C1

2
− v2

1 2 − u1 11,

δ2 =
C1

2
− v2

1 1 + u1 11.
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It is easy to see, that with this definition (5.3) implies (5.21) and (5.6) implies (5.23).
Using the subsolution conditions (5.7) and (5.8) we obtain

δ1 + δ2 > 0,

δ1 · δ2 > 0,

where we also used (5.30). These are equivalent to δ1, δ2 > 0, i.e. (5.24), (5.25) are
proven.
Before we prove the admissibility conditions (5.26) and (5.27) we show that ρ1 6= ρ−
and ρ1 6= ρ+ such that the expressions in (5.26) and (5.27) are well-defined. Assume
ρ1 = ρ− then (5.1) yields v1 2 = v− 2 and therefore from (5.3) we get

0 = ρ1

(
v2

1 2 + u1 11 −
C1

2

)
.

Using this and (5.30) we find out that (5.8) is not true, which is a contradiction.
Analogously one can prove that ρ1 6= ρ+.
Let’s turn our attention to the admissibility conditions. We start with (5.9) and
subtract on both sides v1 1

2
times equation (5.20) to obtain

ν0

(
ρ− ε(ρ−)− ρ1 ε(ρ1) + ρ−

v2
− 2

2
− ρ1

C1 − v2
− 1

2

)
≤
(
ρ− ε(ρ−) + p(ρ−)

)
v− 2 −

(
ρ1 ε(ρ1) + p(ρ1)

)
v1 2 + ρ− v− 2

v2
− 2

2
− ρ1 v1 2

C1 − v2
− 1

2
.

Using ν0 = ρ− v− 2−ρ1 v1 2

ρ−−ρ1 and C1 − v2
− 1 = δ1 + δ2 + v2

1 2, and multiplying by 2 we get
after some computations

(v1 2 − v− 2)

(
p(ρ−) + p(ρ1)− 2 ρ− ρ1

ε(ρ−)− ε(ρ1)

ρ− − ρ1

)
≤ (v1 2 + v− 2)

(
p(ρ−)− p(ρ1)

)
+ (v1 2 + v− 2)

ρ− ρ1

ρ− − ρ1

(
v2
− 2 − (δ1 + δ2 + v2

1 2)
)
.

To eliminate p(ρ−)− p(ρ1) we use (5.21). Thereafter we again use ν0 = ρ− v− 2−ρ1 v1 2

ρ−−ρ1
and finally arrive at (5.26). Analogously one proves (5.27).
Up to now we proved one direction. For the converse suppose there are constants
ν0, ν1 ∈ R, ρ1 ∈ R+, v1 2 ∈ R and δ1, δ2 ∈ R which fulfill (5.20) - (5.27). Define

v1 1 = v− 1,

u1 12 = v1 1 v1 2,

C1 = δ1 + δ2 + v2
1 1 + v2

1 2,

u1 11 =
δ2 − δ1 + v2

1 1 − v2
1 2

2
.

Just by computation one can show that then (5.1) - (5.10) are fulfilled, what finishes
the proof.
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In order to show existence of an admissible fan subsolution we will apply proposition
5.3. To do this we have to find six real numbers that fulfill a set of four equations
and some inequalities. As in [CK14] the idea is now to choose two parameters and
try to express the other four values as functions of these parameters, since there are
four equations available. Because δ2 doesn’t appear in the equations (5.20) - (5.23),
it is a good choice to take δ2 as one parameter. We determine ρ1 to be the other
parameter. Hence we will be able to express ν0, ν1, v1 2 and δ1 as functions of ρ1.
To do the mentioned transformations we discuss three different cases, depending on
the standard solution covered in section 3.
First we consider initial data such that the corresponding standard solution consists
of two shocks. In this case E. Chiodaroli and O. Kreml proved in [CK14] that
there always exist constants ν0, ν1 ∈ R, ρ1 ∈ R+, v1 2 ∈ R and δ1, δ2 ∈ R such
that the equations and inequalities of proposition 5.3 hold. That means that in
this case there exists always a subsolution and therefore by theorem 4.3 infinitely
many admissible weak solutions. In other words initial data, which are such that
the corresponding standard solution consists of two shocks, are wild. We will briefly
repeat their results.
In the case where the standard solution consists of two rarefactions, E. Feireisl and
O. Kreml showed in [FK15] that the standard solution is unique, i.e. in this case
there are no wild solutions. So initial data, which is such that the corresponding
standard solution consists of two rarefactions, is not wild. To prove this uniqueness
they used the relative entropy inequality.
The most interesting case is last one. Here the initial data is such that the standard
solution consists of a 1-shock and a 3-rarefaction. Note that the case where we
have a 1-rarefaction and a 3-shock does not need to be considered as another case.
Because of the rotational invariance of the Euler equations we can easily rotate the
initial data by 180 degrees and get a standard solution consisting of a 1-shock and
a 3-rarefaction.
The reason why this case is the most interesting one, is the fact that a general
statement on the existence of wild solutions is not yet known. In [CLK15] an example
of a wild initial condition which belongs to this case is given by E. Chiodaroli, C.
De Lellis and O. Kreml. We will show that there are also initial data, where there is
no simple fan subsolution. Note that this does not prove that the solution is unique
in this case. We will also give a criterion which allows us, given initial values such
that the corresponding standard solution consists of a 1-shock and a 3-rarefaction,
to check if there exists a simple fan subsolution or not.

5.1. The standard solution consists of a 1-shock and a 3-shock

Let the initial values ρ± ∈ R+ and v± ∈ R2 be such that the standard solution
consists of two shocks. Proposition 3.3 states that this means that

v+ 2 − v− 2 < −

√
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
ρ− ρ+

. (5.31)
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Theorem 5.4. Let first ρ− = ρ+. There exists a simple fan subsolution to the
Cauchy problem (1.1), (1.6) if there exist constants ρ1, δ2 ∈ R+ that fulfill

ρ1 > ρ−, (5.32)

δ1 > 0, (5.33)

and the admissibility conditions (5.26), (5.27), where we define

v1 2 =
v− 2 + v+ 2

2
, (5.34)

δ1 =
ρ− (v− 2 − v+ 2)2

4 (ρ1 − ρ−)
− p(ρ1)− p(ρ−)

ρ1

. (5.35)

Let now ρ− 6= ρ+. There exists a simple fan subsolution to the Cauchy problem
(1.1), (1.6) if there exist constants ρ1, δ2 ∈ R+ that fulfill

ρ1 > max{ρ−, ρ+}, (5.36)

δ1 > 0, (5.37)

and the admissibility conditions (5.26), (5.27), where we define16

v1 2 =
1

ρ1 (ρ− − ρ+)

(
ρ− v− 2 (ρ1 − ρ+)− ρ+ v+ 2 (ρ1 − ρ−)

−
√[

ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)
(
p(ρ−)− p(ρ+)

)]
(ρ1 − ρ−) (ρ1 − ρ+)

)
,

(5.38)

δ1 = −p(ρ1)− p(ρ−)

ρ1

+
ρ− (ρ1 − ρ−)

ρ2
1 (ρ− − ρ+)2

(
ρ+ (v+ 2 − v− 2)

+

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρ1 − ρ+

ρ1 − ρ−

)2

. (5.39)

Proof. (see also [CK14, Section 4])
We start with the case that ρ− = ρ+ and assume there exist constants ρ1, δ2 ∈ R+

such that (5.32), (5.33) and (5.26), (5.27) hold. We then define in addition to (5.34)
and (5.35)

ν0 =
v− 2 + v+ 2

2
− ρ−

2 (ρ1 − ρ−)
(v− 2 − v+ 2), (5.40)

ν1 =
v− 2 + v+ 2

2
+

ρ−
2 (ρ1 − ρ−)

(v− 2 − v+ 2). (5.41)

Now one can apply proposition 5.3 to show that this definition yields a simple fan
subsolution: First of all the condition ν0 < ν1 holds because v− 2−v+ 2 > 0, which is
a consequence of (5.31), and ρ1 > ρ− according to (5.32). It is easy to check that the

16In the proof we will also show that everything is well-defined, in other words that the occurring
radicands are not negative.
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Rankine Hugoniot conditions (5.20) - (5.23) in proposition 5.3 hold. Furthermore
(5.24) and (5.25) are true, because of (5.33), resp. δ2 ∈ R+. Hence the given values
ρ1, δ2 together with v1 2, δ1, ν0, ν1 from (5.34), (5.35), (5.40) and (5.41) define a simple
fan subsolution according to proposition 5.3.
Let now ρ− 6= ρ+ and suppose there are constants ρ1, δ2 such that (5.36), (5.37) and
(5.26), (5.27) are true. In addition to (5.38) and (5.39) define

ν0 =
ρ− v− 2 − ρ+ v+ 2

ρ− − ρ+

− 1

ρ− − ρ+

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρ1 − ρ+

ρ1 − ρ−
,

(5.42)

ν1 =
ρ− v− 2 − ρ+ v+ 2

ρ− − ρ+

− 1

ρ− − ρ+

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρ1 − ρ−
ρ1 − ρ+

.

(5.43)

Again with proposition 5.3 we prove that ρ1, δ2, which are given by assumption,
together with v1 2, δ1, ν0, ν1 from (5.38), (5.39), (5.42) and (5.43) define a simple fan
subsolution. Let us first check if the above definitions are well-defined, i.e. if the
occurring radicands are non-negative: We get from (5.31)

(ρ− − ρ+)
(
p(ρ−)− p(ρ+)

)
ρ− ρ+

< (v− 2 − v+ 2)2,

which is equivalent to

ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)
(
p(ρ−)− p(ρ+)

)
> 0.

Because of this and (5.36) all the radicands in the definitions above are positive,
hence everything is well-defined.
Next we check if ν0 < ν1: We first assume that ρ− > ρ+ and obtain√

ρ1 − ρ−
ρ1 − ρ+

< 1 <

√
ρ1 − ρ+

ρ1 − ρ−
.

Since in the equations for ν0 and ν1, i.e. in (5.42) and (5.43), there is a − 1
ρ−−ρ+ in

front of the square root and ρ− − ρ+ > 0 by assumption, we conclude that ν0 < ν1.
Let now ρ− < ρ+. Then √

ρ1 − ρ+

ρ1 − ρ−
< 1 <

√
ρ1 − ρ−
ρ1 − ρ+

.

Because now we have ρ− − ρ+ < 0, we also get ν0 < ν1.
The next step is to check if the Rankine Hugoniot conditions (5.20) - (5.23) are
fulfilled, what is not difficult to verify and hence omitted here. In order to check
these conditions, it can be useful to realize that there is another expression for δ1,
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namely

δ1 = −p(ρ1)− p(ρ+)

ρ1

+
ρ+ (ρ1 − ρ+)

ρ2
1 (ρ− − ρ+)2

(
ρ− (v+ 2 − v− 2)

+

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρ1 − ρ−
ρ1 − ρ+

)2

. (5.44)

We leave the computation of this second expression to the reader, too.
Moreover the conditions (5.24) and (5.25) are true because of (5.37) and δ2 > 0 by
assumption.

The next result is proven by E. Chiodaroli and O. Kreml in [CK14].

Theorem 5.5. There exists a simple fan subsolution and therefore infinitely many
admissible weak solutions to the Cauchy problem (1.1), (1.6).

Proof. We want to give a rough sketch of the proof by E. Chiodaroli and O. Kreml
[CK14, Section 4]. The idea is to show that there always exists a pair of constants
ρ1, δ2 ∈ R+ as in theorem 5.4. Then this theorem states that there exists a simple fan
subsolution and by theorem 4.3 there are infinitely many admissible weak solutions.
To prove existence of such two constants ρ1, δ2 one first can check that the condition
(5.37), resp. (5.33) is true if for all max{ρ±} < ρ1 < ρM and false for all ρ1 ≥ ρM ,
where ρM is the density of the intermediate state of the standard solution and given
in proposition 3.3. With some continuity arguments one can show that there are
positive constants c1, c2 > 0 such that the admissibility conditions (5.26) and (5.27)
are fulfilled for all (ρ1, δ2) ∈ (ρM−c1, ρM)×(0, c2). Hence if we choose c1 small enough
we have that the conditions (5.36), (5.37), resp. (5.32), (5.33) in theorem 5.4 and the
admissibility conditions (5.26) and (5.27) hold for all (ρ1, δ2) ∈ (ρM−c1, ρM)×(0, c2).
This finishes the proof.

Remark. In [CK14] the pressure is given by p(ρ) = ργ with γ ≥ 1. Note that this
is a small difference to our pressure law which is given by p(ρ) = K ργ with K > 0
and γ > 1. However the proofs in [CK14] are still true for our pressure law.

Next we’re going to investigate some properties of the wild solutions produced by
a simple fan subsolution like in the above theorems. More precisely we want to
compare the wild solutions to the standard solution presented in proposition 3.3. An
obvious accordance is that both consist of three parts. While the standard solution
is piecewise constant with the constant states (ρ−, v−), (ρM , vM) and (ρ+, v+), a wild
solution is constant in open sets P−, P+ ⊂ [0,∞)×R2 with constant states (ρ−, v−)
and (ρ+, v+) and not constant on a set P1. More precisely on the set P1 the density
ρ ≡ ρ1 is constant, where ρ1 is slightly smaller than ρM , and the velocity is not
constant. We want to compare the numbers ν0 and ν1 to the shock speeds of the
standard solution σ0 and σ1. As mentioned in the proof of theorem 5.5 the value δ1

defined in the proof of theorem 5.4 is positive for ρ1 < ρM and negative for ρ1 > ρM .
Hence by continuity it is zero for ρ1 = ρM . Let us use this fact to compute ν0 and
ν1 for ρ1 = ρM : Let first ρ− = ρ+. From δ1 = 0 we get

v− 2 − v+ 2 = ± 2

√(
p(ρM)− p(ρ−)

)
(ρM − ρ−)

ρ− ρM
,
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and because of (5.31) the proper sign is here is “+”. Using this we obtain

ν0 =
v− 2 + v+ 2

2
− ρ−

2 (ρM − ρ−)
(v− 2 − v+ 2)

= v− 2 −
v− 2 − v+ 2

2
− ρ−

2 (ρM − ρ−)
(v− 2 − v+ 2)

= v− 2 −
ρM

ρM − ρ−

√(
p(ρM)− p(ρ−)

)
(ρM − ρ−)

ρ− ρM

= v− 2 −

√
p(ρM)− p(ρ−)

ρM − ρ−
ρM
ρ−

,

and similarly

ν1 = v+ 2 +

√
p(ρM)− p(ρ+)

ρM − ρ+

ρM
ρ+

.

Now assume ρ− < ρ+. Since δ1 = 0 we get from (5.39)

ρ+ (v+ 2 − v− 2) +

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρM − ρ+

ρM − ρ−

= ±

√(
p(ρM)− p(ρ−)

)
ρM (ρ− − ρ+)2

ρ− (ρM − ρ−)
.

The right sign in the equation above is “−” because the left-hand side is negative,
what can be proved as follows. Since v+ 2 − v− 2 < 0 (because of (5.31)), we have
that v+ 2 − v− 2 = −

√
(v+ 2 − v− 2)2 and hence

ρ+ (v+ 2 − v− 2) +

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρM − ρ+

ρM − ρ−

≤ −
√
ρ2

+ (v+ 2 − v− 2)2 +

√
ρ+ ρ− (v− 2 − v+ 2)2

ρM − ρ+

ρM − ρ−

=

√
ρ+ (v+ 2 − v− 2)2

ρM − ρ−

(√
ρ− (ρM − ρ+)−

√
ρ+ (ρM − ρ−)

)
< 0.

In the last step we used that ρ− < ρ+. Since
√

(ρ− − ρ+)2 = −(ρ−− ρ+), we obtain

ρ+ (v+ 2 − v− 2) +

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρM − ρ+

ρM − ρ−

= (ρ− − ρ+)

√(
p(ρM)− p(ρ−)

)
(ρM − ρ−)

ρM
ρ−

. (5.45)

With (5.45) it is easy to check that

ν0 = v− 2 −

√
p(ρM)− p(ρ−)

ρM − ρ−
ρM
ρ−

.
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Because ρM is the density of the intermediate state of the standard solution, we get
from proposition 3.3 that

v+ 2 − v− 2 = −

√(
ρM − ρ+

) (
p(ρM)− p(ρ+)

)
ρM ρ+

−

√(
ρM − ρ−

) (
p(ρM)− p(ρ−)

)
ρM ρ−

.

This together with (5.45) yields

ν1 = v+ 2 +

√
p(ρM)− p(ρ+)

ρM − ρ+

ρM
ρ+

.

In the case ρ− > ρ+ we get the same results if we use the expression (5.44) for δ1.
On the other hand using proposition 3.3 it is easy to compute the shock speeds
σ0, σ1:

σ0 = v− 2 −

√
p(ρM)− p(ρ−)

ρM − ρ−
ρM
ρ−

,

σ1 = v+ 2 +

√
p(ρM)− p(ρ+)

ρM − ρ+

ρM
ρ+

.

In other words we have that ν0 = σ0 and ν1 = σ1 for ρ1 = ρM .
Next we want to investigate what happens if we consider ρ1 to be a bit smaller
than ρM . To do this we differentiate (5.40) and (5.41), resp. (5.42) and (5.43) with
respect to ρ1 to obtain in the case ρ− = ρ+

∂

∂ρ1

ν0 =
ρ−

2 (ρ1 − ρ−)2
(v− 2 − v+ 2),

∂

∂ρ1

ν1 = − ρ−
2 (ρ1 − ρ−)2

(v− 2 − v+ 2),

and for ρ− 6= ρ+

∂

∂ρ1

ν0 =
1

2 (ρ1 − ρ−)2

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρ1 − ρ−
ρ1 − ρ+

,

∂

∂ρ1

ν1 =
−1

2 (ρ1 − ρ+)2

√[
ρ+ ρ− (v− 2 − v+ 2)2 − (ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)] ρ1 − ρ+

ρ1 − ρ−
.

Hence if we remember (5.31), in both cases we have ∂
∂ρ1
ν0 > 0 and ∂

∂ρ1
ν1 < 0.

Therefore we can conclude that for ρ1 < ρM we obtain ν0 < σ0 and ν1 > σ1.
Finally we are going to illustrate the results of this subsection by presenting an
example.

Example 5.6. Let K = 1 and γ = 2 such that the pressure law turns into p(ρ) = ρ2.
We consider the initial data

ρ− = 1, ρ+ = 4,

v− =

(
0

8
3

√
10

)
, v+ =

(
0

−5
6

√
13

)
.
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It is easy to check that (5.31) holds, i.e. the standard solution consists of two shocks.
With proposition 3.3 one can compute the intermediate state:

ρM = 9, vM =

(
0
0

)
.

The Rankine Hugoniot condition (3.10) yields the shock speeds:

σ0 = −1

3

√
10 ≈ −1.05, σ1 =

2

3

√
13 ≈ 2.40.

Next we want to investigate if there exist constants ρ1, δ2 ∈ R+ as in theorem 5.4,
which should be the case because of theorem 5.5. To do this we plot the regions
in the (ρ1, δ2)-plane where the conditions (5.36), (5.37), (5.26) and (5.27) hold, see
figure 6. The condition (5.36) simply means that ρ1 > 4, so we don’t need to plot it if
we plot the other conditions only for ρ1 > 4. In accordance with theorem 5.5 there
are constants c1, c2 > 0 such that the conditions (5.36), (5.37), (5.26) and (5.27)
hold for all (ρ1, δ2) ∈ (ρM − c1, ρM) × (0, c2). We can also observe that condition
(5.37) holds for all ρ1 < 9 = ρM , what is predicted in the proof of theorem 5.5. Now
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Figure 6: Example 5.6: The region in the ρ1, δ2-plane where the conditions of theo-
rem 5.4 hold.
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we’re going to consider one particular simple fan subsolution namely the one which
belongs to (ρ1, δ2) = (8, 1). These values for ρ1 and δ2 really fulfill the conditions
(5.36), (5.37), (5.26) and (5.27), what can be easily checked by looking at figure 6.
Then one can compute

ν0 ≈ −1.31, ν1 ≈ 2.83,

by (5.42) and (5.43), what verifies the above proved fact ν0 < σ0, resp. ν1 > σ1.
A comparison of the structure of the standard solution to the structure of a wild
solution can be found in figure 7.
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t
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t
=ν0

x2

t
=ν1

1.0-1.0
x2

1.0

t

Figure 7: Example 5.6: The standard solution, which consists of two shocks (top)
and a wild solution (bottom).

5.2. The standard solution consists of a 1-rarefaction and a
3-rarefaction

Let the initial values ρ± ∈ R+ and v± ∈ R2 be such that the standard solution
consists of two rarefactions, i.e. by proposition 3.3∣∣∣∣∣

∫ ρ+

ρ−

√
p′(r)

r
dr

∣∣∣∣∣ < v+ 2 − v− 2 <

∫ ρ−

0

√
p′(r)

r
dr +

∫ ρ+

0

√
p′(r)

r
dr.

As already mentioned E. Feireisl and O. Kreml proved that in this case the standard
solution is the unique solution to the problem (1.1), (1.6), see [FK15]. To prove this
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they used the relative entropy inequality, which is also used to show the well-known
weak-strong uniqueness property. Here we don’t want to redo their prove.

5.3. The standard solution consists of a 1-shock and a
3-rarefaction

Let now the initial values ρ± ∈ R+ and v± ∈ R2 be such that the standard solu-
tion consists of a 1-shock and a 3-rarefaction. By proposition 3.3 this means, that
ρ− < ρ+ and

−

√
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
ρ− ρ+

< v+ 2 − v− 2 <

∫ ρ+

ρ−

√
p′(r)

r
dr. (5.46)

In [CLK15] E. Chiodaroli, C. De Lellis and O. Kreml essentially consider the follow-
ing example: ρ− = 1, ρ+ = 4, v− = (−1/4, 2

√
2)T and v+ = (−1/4, 0)T . Addition-

ally they suppose the pressure law to be p(ρ) = ρ2. It is easy to check that these
values in fact fulfill (5.46). Furthermore in [CLK15] it is proven that there exists a
simple fan subsolution. We will later on repeat this result.
Analoguosly to theorem 5.4 we want to find a general condition, which allows to
check easily if there is a simple fan subsolution to given initial values or not.

Theorem 5.7. There exists a simple fan subsolution to the Cauchy problem (1.1),
(1.6) if and only if there exist constants ρ1, δ2 ∈ R+ that fulfill

ρ− < ρ1 < ρ+, (5.47)

δ?1 > 0, (5.48)

(v?1 2 − v− 2)

(
p(ρ−) + p(ρ1)− 2 ρ− ρ1

ε(ρ−)− ε(ρ1)

ρ− − ρ1

)
≤ δ?1 ρ1 (v?1 2 + v− 2)− (δ?1 + δ2)

ρ− ρ1 (v?1 2 − v− 2)

ρ− − ρ1

,

(5.49)

(v+ 2 − v?1 2)

(
p(ρ1) + p(ρ+)− 2 ρ1 ρ+

ε(ρ1)− ε(ρ+)

ρ1 − ρ+

)
≤ −δ?1 ρ1 (v+ 2 + v?1 2) + (δ?1 + δ2)

ρ1 ρ+ (v+ 2 − v?1 2)

ρ1 − ρ+

,

(5.50)

where we define

v?1 2 =
1

ρ1 (ρ− − ρ+)

(
− ρ− v− 2 (ρ+ − ρ1)− ρ+ v+ 2 (ρ1 − ρ−)

+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

]
(ρ1 − ρ−) (ρ+ − ρ1)

)
,

(5.51)

δ?1 = −p(ρ1)− p(ρ−)

ρ1

+
ρ− (ρ1 − ρ−)

ρ2
1 (ρ− − ρ+)2

(
ρ+ (v− 2 − v+ 2)

+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

] ρ+ − ρ1

ρ1 − ρ−

)2

. (5.52)
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Remark. Theorems 5.4 and 5.7 are slightly different. In theorem 5.7 we state an
equivalence to the existence of a simple fan subsolution, i.e. an “if and only if”,
whereas in theorem 5.4 we only proved a sufficient criterion for the existence of a
simple fan subsolution (“if”). The converse in theorem 5.4 is also true. To prove
the converse one has to assume that there is a simple fan subsolution and then
show that the conditions (5.36), (5.37), resp. (5.32), (5.33) together with the ad-
missibility conditions (5.26), (5.27) hold. The crucial point is to exclude the case
ρ1 < min{ρ−, ρ+}, which can be done by showing that this causes a contradiction.
However we don’t need a converse statement in theorem 5.4 because we already
showed that in the two shock case there always exist ρ1, δ2 ∈ R+ that fulfill all the
conditions of theorem 5.4. In the current case, i.e. the standard solution consists
of a shock and a rarefaction, we want to show that there may be no simple fan
subsolution. To prove this fact we will need a converse statement.
This “if and only if” is also the reason why we denote the variables defined in (5.51)
and (5.52) as v?1 2, δ

?
1 and not simply v1 2, δ1. In what we called above converse state-

ment, we have a simple fan subsolution and want the conditions (5.47) - (5.50) to
be true. A priori it is not clear that the v1 2, δ1 which are given by the simple fan
subsolution are equal to the v?1 2, δ

?
1 defined in (5.51) and (5.52).

Proof. Suppose there is a simple fan subsolution. By proposition 5.3 there exist
constants ν0, ν1 ∈ R (with ν0 < ν1), ρ1 ∈ R+, v1 2 ∈ R and δ1, δ2 ∈ R such that
(5.20)-(5.27) hold. Adding (5.20) and (5.22) and solving the result for ν1 leads to

ν1 =
ρ− v− 2 − ρ+ v+ 2 − ν0 (ρ− − ρ1)

ρ1 − ρ+

. (5.53)

Next we add (5.21) and (5.23) and use (5.20) and (5.22) to obtain

ν2
0 (ρ− − ρ1) + ν2

1 (ρ1 − ρ+) = ρ− v
2
− 2 − ρ+ v

2
+ 2 + p(ρ−)− p(ρ+).

If we use (5.53) to eliminate ν1 and solve for ν0 we get

ν0 =
ρ− v− 2 − ρ+ v+ 2

ρ− − ρ+

± 1

ρ− − ρ+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

] ρ+ − ρ1

ρ1 − ρ−
.

(5.54)

Using this result and (5.53) one has

ν1 =
ρ− v− 2 − ρ+ v+ 2

ρ− − ρ+

∓ 1

ρ− − ρ+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

] ρ1 − ρ−
ρ+ − ρ1

,

(5.55)

where the signs in the last two equations have to be different.
In the case of a 1-shock and a 3-rarefaction it holds that

(ρ− − ρ+)
(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2 > 0, (5.56)
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what can be proved as follows.
We first show that for all ρ− < ρ+ the inequality∫ ρ+

ρ−

√
p′(r)

r
dr <

√
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
ρ− ρ+

(5.57)

is fulfilled. Using (3.26) this turns into

2

γ − 1

(√
p′(ρ+)−

√
p′(ρ−)

)
<

√
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
ρ− ρ+

.

Because p′′(ρ) > 0 for all ρ > 0 and γ > 1, both sides of the above inequality are
positive and hence it is equivalent to

4

(γ − 1)2

(√
p′(ρ+)−

√
p′(ρ−)

)2

<
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
ρ− ρ+

.

Remember that p(ρ) = K ργ and p′(ρ) = K γ ργ−1. Divide the inequality above by
K and ργ−1

− , and define z := ρ+
ρ−

:

4 γ

(γ − 1)2

(
zγ−1 − 2 z

γ−1
2 + 1

)
<

1

z
(z − 1) (zγ − 1).

Let

f(z) = (z − 1) (zγ − 1)− 4 γ

(γ − 1)2

(
zγ − 2 z

γ+1
2 + z

)
,

then it is sufficient to prove that f(z) > 0 for all z > 1. It is easy to recalculate that

f ′(z) = (zγ − 1) + (z − 1) γ zγ−1 − 4 γ

(γ − 1)2

(
γ zγ−1 − (γ + 1) z

γ−1
2 + 1

)
f ′′(z) = γ zγ−1 + (z − 1) γ (γ − 1) zγ−2 + γ zγ−1

− 4 γ

(γ − 1)2

(
γ (γ − 1) zγ−2 − (γ + 1)

γ − 1

2
z
γ−3
2

)
= γ (γ + 1) z

γ−3
2︸ ︷︷ ︸

>0

[
z
γ−1
2

(
z − γ + 1

γ − 1

)
+

2

γ − 1

]
︸ ︷︷ ︸

=:g(z)

Finally

g′(z) =
γ − 1

2
z
γ−3
2

(
z − γ + 1

γ − 1

)
+ z

γ−1
2

=
γ + 1

2
z
γ−3
2

(
z − 1

)
> 0,

what implies with g(1) = 0 that g(z) > 0 for z > 1. Hence f ′′(z) > 0 and with
f ′(1) = f(1) = 0 we obtain the wanted property f(z) > 0 for all z > 1. Now from
(5.57) and (5.46) we get

(ρ− − ρ+)
(
p(ρ−)− p(ρ+)

)
ρ− ρ+

> (v− 2 − v+ 2)2,
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what is equivalent to (5.56).
Hence (5.54) and (5.55) yield that ρ+− ρ1 and ρ1− ρ− have the same sign. Because
ρ− < ρ+, we have ρ− < ρ1 < ρ+, i.e. (5.47). Now we want to choose the correct
signs in the equations for ν0 and ν1, i.e. in (5.54) and (5.55). Assume we had a “−”
in (5.54) and therefore a “+” in (5.55). Then

ν0 >
ρ− v− 2 − ρ+ v+ 2

ρ− − ρ+

> ν1,

since ρ− − ρ+ < 0. This is a contradiction. Hence the proper sign in (5.54) is “+”
and in (5.55) it is “−”, i.e.

ν0 =
ρ− v− 2 − ρ+ v+ 2

ρ− − ρ+

+
1

ρ− − ρ+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

] ρ+ − ρ1

ρ1 − ρ−
,

(5.58)

ν1 =
ρ− v− 2 − ρ+ v+ 2

ρ− − ρ+

− 1

ρ− − ρ+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

] ρ1 − ρ−
ρ+ − ρ1

.

(5.59)

Next we compute v1 2 using our result for ν0 and (5.20) and get

v1 2 =
1

ρ1 (ρ− − ρ+)

(
− ρ− v− 2 (ρ+ − ρ1)− ρ+ v+ 2 (ρ1 − ρ−)

+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

]
(ρ1 − ρ−) (ρ+ − ρ1)

)
.

With (5.21) we finally find

δ1 = −p(ρ1)− p(ρ−)

ρ1

+
ρ− (ρ1 − ρ−)

ρ2
1 (ρ− − ρ+)2

(
ρ+ (v− 2 − v+ 2)

+

√[
(ρ− − ρ+)

(
p(ρ−)− p(ρ+)

)
− ρ+ ρ− (v− 2 − v+ 2)2

] ρ+ − ρ1

ρ1 − ρ−

)2

.

Hence we have δ1 = δ?1 and v1 2 = v?1 2. From (5.24) we obtain (5.48) and admissibi-
lity conditions (5.26) and (5.27) yield (5.49) and (5.50).
It remains to prove the converse. Let ρ1, δ2 ∈ R+ such that (5.47) - (5.50) hold.
Define v1 2 = v?1 2, δ1 = δ?1 and ν0, ν1 through (5.58), resp. (5.59). Again by easy
computations one can check that ρ1, δ2 together with ν0, ν1, v1 2, δ1 fulfill the con-
ditions (5.20) - (5.27) and therefore define a simple fan subsolution by proposition
5.3.

A result which is analogous to theorem 5.5 does not exist in the case of a 1-shock
and a 3-rarefaction. We will show this by exposing examples. First of all we start
with the above mentioned example in [CLK15].
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Example 5.8. Let K = 1 and γ = 2 such that the pressure law turns into p(ρ) = ρ2.
We consider the initial data

ρ− = 1, ρ+ = 4,

v− =

(
−1

4

2
√

2

)
, v+ =

(
−1

4

0

)
.

Since ρ− < ρ+ and (5.46) holds (what is easy to check), the standard solution
consists of a 1-shock and a 3-rarefaction. With proposition 3.3 one can compute the
intermediate state:

ρM ≈ 3.70, vM ≈
(
−1

4

−0.22

)
.

With the Rankine Hugoniot condition (3.10) we can compute the shock speed

σ0 ≈ −1.34,

and in addition to that we calculate the values

λ3

(
ρM , vM

)
≈ 2.51, λ3

(
ρ+, v+

)
= 2
√

2 ≈ 2.83,
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Figure 8: Example 5.8: The region in the ρ1, δ2-plane where the conditions of theo-
rem 5.7 hold.
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which yield the edges of the rarefaction17, see also figure 9.
Next we want to investigate if there exist constants ρ1, δ2 ∈ R+ as in theorem 5.7. In
order to do this, we plot the regions in the (ρ1, δ2)-plane where the conditions (5.47)
- (5.50) are true, see figure 8. The condition (5.47) simply means that 1 < ρ1 < 4, so
we don’t need to plot it if we plot the other conditions only for ρ1 ∈ (1, 4). Obviously
the intersection of the regions is non-empty, which means that there are constants
ρ1, δ2 ∈ R+ that fulfill all the conditions of theorem 5.7. Hence there are infinitely
many admissible weak solutions.
Now we consider one particular simple fan subsolution. As in [CLK15] we choose
ρ1 = 15

7
≈ 2.14 and δ2 small enough, say δ2 = 1. It is not easy to realize by looking

at figure 8 that for this choice the conditions (5.47) - (5.50) hold. Anyway they can
be easily checked by plugging in all the values. Additionally one can compute

ν0 ≈ −2.47, ν1 = 0,

by (5.58) and (5.59). A comparison of the structure of the standard solution to the
structure of a wild solution can be found in figure 9.
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Figure 9: Example 5.8: The standard solution, which consists of a 1-shock and a
3-rarefaction (top) and a wild solution (bottom).

So far we have seen an example for initial values ρ±, v± for which the standard
solution consists of a 1-shock and a 3-rarefaction and there exists a simple fan
subsolution. Next we will see an example where there is no simple fan subsolution.

17according to [LeV04, Section 13.8.5]
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Example 5.9. Let again K = 1 and γ = 2 such that the pressure law turns into
p(ρ) = ρ2. We consider the initial data

ρ− = 1, ρ+ = 4,

v− =

(
0
1

)
, v+ =

(
0
−1

2

)
.

Again it is easy to check that the standard solution consists of a 1-shock and a
3-rarefaction. Now we are not interested in the standard solution and try to find
constants ρ1, δ2 as in theorem 5.7 immediately. As in the example above we plot the
regions where the conditions (5.48) - (5.50) hold, see figure 10. It can be observed
that there are no constants ρ1, δ2 that fulfill the conditions (5.47) - (5.50).
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Figure 10: Example 5.9: The region in the ρ1, δ2-plane where the conditions of theo-
rem 5.7 hold.

One can also prove this fact using basic skills in calculus. For instance one shows
what figure 10 suggest, namely

• for 3 ≤ ρ1 < 4 the condition (5.48) is violated,

• inequality (5.49) is not true for 1 < ρ1 ≤ 2 and finally
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• condition (5.50) does not hold for 2 < ρ1 ≤ 3.

This together with theorem 5.7 proves that there is no simple fan subsolution to
(1.1), (1.6) with initial values ρ±, v± as above.

6. Outlook and open problems

In this thesis we showed that the initial value problem (1.1), (1.6) may have infinitely
many admissible weak solutions, what depends on the initial values ρ±, v±. To prove
non-uniqueness we used the convex integration method applied to the pressureless
incompressible Euler equations. Of course the most interesting open problem is to
find out if these wild solutions are physically relevant, resp. if there is a suitable
criterion which singles out the unique physically relevant solution. As shown by E.
Chiodaroli and O. Kreml there are values for ρ±, v± and for the adiabatic coefficient
γ such that the standard solution consists of two shocks and such that there exist
wild solutions which dissipate more energy than the standard solution, see [CK14].
Hence the entropy rate admissibility criterion does not favor the standard solution.
Hopefully there is another criterion which is physically reasonable and leads to a
unique solution.
Apart from this very important open problem there are others. We showed that
among initial data which lead to a standard solution consisting of a shock and a
rarefaction, there are some to which there exist simple fan subsolutions (hence these
initial data are wild) and some others to which there is no simple fan subsolution.
The question is if these initial data are wild, too, or not. We conjecture that they
are but there is no proof yet. To show this it could be useful to do the convex
integration directly to the compressible Euler system instead of using the results for
the pressureless incompressible Euler equations.
Another problem one could work on, is to apply the convex integration method to
other partial differential equations, e.g. to the full Euler system including a balance
law for the total energy, or the equations of magnetohydrodynamics.
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A. On weak and weak* topologies

What is presented in this section can be found in textbooks on topology or functional
analysis, e.g. the the book by J. B. Conway, [Con85]. The difference of what is shown
here and [Con85] is that we adapted Conway’s general results to our subject.
Let (V, || · ||) be a real normed vector space and denote its topological dual as V ′.
We write 〈·, ·〉 for the dual pairing. One can define a weak topology on V and a
weak* topology on the dual V ′. We don’t want to define these topologies properly
(see [Con85, Chapter V, Definition 1.1] for an exact definition), but we state the
convergence in these topologies.

Proposition A.1. Let I be an index set.

• A net (xi)i∈I in V converges to x ∈ V with respect to the weak topology if and
only if 〈xi, y〉 → 〈x, y〉 for all y ∈ V ′. One writes xi ⇀ x.

• A net (yi)i∈I in V ′ converges to y ∈ V ′ with respect to the weak* topology if

and only if 〈x, yi〉 → 〈x, y〉 for all x ∈ V . One writes yi
∗
⇀y

Above proposition’s claim is well known. For the proof we refer to the literature.

What we need is the weak* topology on L∞(Ω), where Ω ⊂ R × R2. So for us
V ′ = L∞(Ω) and, since18 (L1)′ = L∞, V = L1(Ω). With the above proposition we
get that a sequence (fn)n∈N in L∞(Ω) converges to f ∈ L∞(Ω) in the weak* topology
if and only if it holds that

lim
n→∞

∫∫
Ω

fn(t, x) g(t, x) dx dt =

∫∫
Ω

f(t, x) g(t, x) dx dt (A.1)

for all g ∈ L1(Ω). We can replace L1(Ω) by C∞c (Ω), what is the content of the
following proposition.

Proposition A.2. A sequence (fn)n∈N in L∞(Ω) converges to f ∈ L∞(Ω) in the
weak* topology if ||fn||L∞ is bounded and (A.1) holds for all g ∈ C∞c (Ω).

Proof. We want to show that (A.1) holds for a given g ∈ L1(Ω). Since ||fn||L∞ is
bounded, we find a constant M > 0 such that ||fn − f ||L∞ < M for all n ∈ N.
Let ε > 0 given. Because C∞c (Ω) is dense in L1(Ω) (see e.g. [Lan93, Chapter VI,
Theorem 9.6]), we find h ∈ C∞c (Ω) with ||g − h||L1 < ε

2M
. As (A.1) holds for this

h ∈ C∞c (Ω), we obtain∣∣∣∣ ∫∫
Ω

(
fn(t, x)− f(t, x)

)
h(t, x) dx dt

∣∣∣∣ < ε

2

18Here we abused the meaning of “=” a little bit. To be more precise by “=” we mean here that
there is an isometric isomorphism between (L1)′ and L∞.
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for all n ∈ N sufficiently large. Applying Hölder’s inequality we get∣∣∣∣ ∫∫
Ω

(
fn(t, x)− f(t, x)

)
g(t, x) dx dt

∣∣∣∣
=

∣∣∣∣ ∫∫
Ω

(
fn(t, x)− f(t, x)

) (
g(t, x)− h(t, x) + h(t, x)

)
dx dt

∣∣∣∣
≤
∫∫

Ω

∣∣fn(t, x)− f(t, x)
∣∣ ∣∣g(t, x)− h(t, x)

∣∣ dx dt
+

∣∣∣∣ ∫∫
Ω

(
fn(t, x)− f(t, x)

)
h(t, x) dx dt

∣∣∣∣
< ||fn − f ||L∞ ||g − h||L1 +

ε

2

≤M
ε

2M
+
ε

2
= ε,

for all n ∈ N large enough. This is equivalent to (A.1).

Proposition A.3. Let X0 ⊂ L∞(Ω) be bounded and X be the closure of X0 in the
L∞ weak* topology. Then X is bounded, too.

Proof. Let f ∈ X. Since X is the weak* closure of X0, there is a net (fi)i∈I in X0

(I is an index set), which converges to f with respect to the weak* topology. So we
get for all g ∈ L1(Ω)∣∣∣∣ ∫∫

Ω

f(t, x) g(t, x) dx dt

∣∣∣∣ = lim
i∈I

∣∣∣∣ ∫∫
Ω

fi(t, x) g(t, x) dx dt

∣∣∣∣
≤ lim

i∈I
||fi||L∞(Ω) ||g||L1(Ω) ≤ M ||g||L1(Ω),

with a constant M > 0. Here we used that X0 is bounded and Hölder’s inequality.
This shows that f , more precisely the operator 〈·, f〉 is bounded in (L1)′. Since
there is an isometric isomorphism between (L1)′ and L∞, f is bounded in L∞(Ω),
too.

Proposition A.4. Let X ⊂ L∞(Ω) be bounded and weak* closed. Then the weak*
topology of L∞ is metrizable on X. Furthermore X is compact in the weak* topology.

The proof is a variant of two proofs that can be found in [Con85].

Proof. We start with the compactness claim. Anaoglu’s theorem (see [Con85, Chap-
ter V, Theorem 3.1]) states, that if V is normed space, the closed unit ball of V ′ is
compact with respect to the weak* topology. With a small adaption in the proof the
claim holds for closed balls with arbitrary radius, too. Since X is bounded, there is
a Radius r > 0 such that X ⊂ Br(0). Setting V = L1(Ω) Anaoglu’s theorem proves
that the closed ball Br(0) of V ′ = L∞(Ω) is compact in the weak* topology. Since
X is a weak* closed subset of Br(0), X is weak* compact, too.
Let’s turn our attention to the metrizability. J. B. Conway proved that if V is a
separable Banach space, then the weak* topology of V ′ is metrizable on the closed
unit of the dual V ′ (see [Con85, Chapter V, Theorem 5.1]). Since V = L1(Ω) is a
separable Banach space, this theorem can by directly applied to the closed unit ball
B1(0) of V ′ = L∞(Ω). With a simple modification in the proof the claim is also true
on closed balls Br(0) with arbitrary radius r > 0. So we can set the radius to be
as above, i.e. such that X ⊂ Br(0). Since the L∞ weak* topology is metrizable on
Br(0), it is metrizable on X, too.
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B. Results of Baire’s theory used in this thesis

The content of this section can be found in textbooks on topology, e.g. the one by
S. Waldmann [Wal14].

Definition B.1. (basic notions) Let (M, T ) be a topological space. A subset A ⊂M
is called

• nowhere dense if the interior of the closure of A is empty:

(A)◦ = ∅,

• meager (or of first category) if A is the countable union of nowhere dense sets,

• residual if the complement of A is meager.

Lemma B.2. Let (An)n∈N be a set of countably many residual subsets of a topological
space (M, T ). Then the intersection A =

⋂
n∈N

An is residual, too.

Proof. Let A be the above intersection. We have to show that the complement of A
is meager. We know that the complements of all An are meager, i.e. for each n ∈ N
there are countably many nowhere dense sets (Bn,j)j∈N with X r An =

⋃
j∈N

Bn,j. It

follows that
X r A = X r

⋂
n∈N

An =
⋃
n∈N

X r An =
⋃
n∈N

⋃
j∈N

Bn,j,

which finishes the proof since N2 is countable.

Definition B.3. (Baire space) A topological space (M, T ) is denoted as a Baire
space if every residual subset of M is dense.

Theorem B.4. (Baire category theorem, e.g. see [Wal14, Theorem 7.2.1]) Every
complete metric space (M,d) is a Baire space.

For the proof of the Baire category theorem we refer to the literature, e.g. [Wal14].

Remark. There are several versions of the Baire category theorem and also several
equivalent definitions of a Baire space (see [Wal14, Definition 7.1.6]). Here we chose
the one which is most useful for our matter.

Definition B.5. (Baire-1-function) Let (M1, T ) be a topological and (M2, d) a
metric space. We call a function f : M1 →M2 Baire-1-function if it is the pointwise
limit of a sequence of continuous functions. In other words f is a Baire-1-function,
if there is a sequence (fn)n∈N with the properties that fn : (M1, T ) → (M2, d) is
continuous for all n ∈ N and lim

n→∞
fn(m) = f(m), for all m ∈M1.

Proposition B.6. Let (M1, T ) be a topological and (M2, || · ||) a normed space and
consider a Baire-1-function f : (M1, T )→ (M2, || · ||). Then the set C ⊂ M1 of the
points in which f is continuous is residual in M1.

This proposition is essentially [Wal14, Proposition 7.3.2]. The difference is that S.
Waldmann states and proves the claim only for (M2, || · ||) = (R, | · |). However the
proof can be easily adapted to general normed spaces just by replacing the occurring
absolute values | · | by the norm || · ||.
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C. Convex Geometry

We need the following theorems about convex sets.

Theorem C.1. (Minkowski’s theorem, see [Brø83, Theorem 5.10]) Let C ⊂ Rd be
a compact convex set and let M ⊂ C. Then

C = M co ⇔ ext(C) ⊂M,

where ext(C) denotes the set of extreme points of C.

Proof. For the proof we refer to textbooks on convex geometry, e.g. the book by A.
Brøndsted, [Brø83].

Proposition C.2. Let C ⊂ Rd be an open and convex set. Then C = C
◦
.

Proof. We first show C ⊂ C
◦
. Let x ∈ C. Since C open, there is a radius r > 0

such that Br(x) ⊂ C. Because C ⊂ C, we know that Br(x) ⊂ C. This proves that
x is an inner point of C, i.e. x ∈ C◦.
Now we’re going to prove C ⊃ C

◦
. Let x ∈ C

◦
. In other words x is an inner

point of C and hence there is a radius r > 0 such that Br(x) ⊂ C. Assume
that x /∈ C. It follows that x lies on the boundary of C. So there is a point
y ∈ C ∩ Br(x). Now consider the point 2x − y. We know that |x − y| < r and
thus |(2x − y) − x| = |x − y| < r, i.e. 2x − y ∈ Br(x) ⊂ C. If 2 x − y ∈ C, the
convexity of C leads to 1

2
(2x − y) + 1

2
y = x ∈ C which is a contradiction. So we

can assume that 2x− y ∈ C r C. Since C ∩ Br(x) is open, there is another radius
r̂ > 0 such that Br̂(y) ⊂ C ∩ Br(x). Because 2x − y lies on the boundary of C,
there exists a z ∈ C ∩Br̂(2x− y). For the point 2 x− z we obtain |(2x− z)− y| =
|(2x − y) − z| < r̂. Hence 2x − z ∈ Br̂(y) ⊂ C and then using the convexity of C
we get 1

2
(2x− z) + 1

2
z = x ∈ C which is a contradiction.

Theorem C.3. (Caratheodory’s theorem, see [Brø83, Corollary 2.4]) For any subset
M ⊂ Rd with dim(aff M) = n the convex hull M co is the set of all convex combina-
tions of at most n+ 1 points of M . Here aff M denotes the smallest affine subspace
of Rd which contains M .

Proof. For the proof we refer to textbooks on convex geometry, e.g. the book by A.
Brøndsted, [Brø83].

We will need another version of Caratheodory’s theorem, which is just a simple
corollary of the version stated above.

Corollary C.4. (Version of Caratheodory’s theorem) For any subset M ⊂ Rd the
convex hull M co is the set of all convex combinations of at most d+ 1 points of M .

Proof. The fact that n := dim(aff M) ≤ d and theorem C.3 show, that M co is the
set of all convex combinations of at most d+ 1 points of M .
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