
Julius-Maximilians-Universität Würzburg

Fakultät für Mathematik und Informatik

Institut für Mathematik

Simulating Water Waves in Networks
Using a High-Order Accurate Entropy

Stable Finite Volume Scheme

Masterthesis in Computational Mathematics
Veronika Mayerhofer

Supervisor:
Prof. Dr. Christian Klingenberg

Würzburg, Oktober 2023

Abstract

Mathematical modeling can be performed by solving a suitable system of partial differential

equations. Since there is often no analytical solution available, numerical methods can be used

to approximate the solution. This work focuses on modeling water waves in a network, i.e. a

collection of straight channels connected by junctions. To compute solutions in this setting, the

most straightforward treatment consists of employing a two-dimensional numerical solver. However,

since this is computationally very expensive, we focus on exploiting the specific structure of this

problem to ease the computation. The nature of this setting suggests to use a one-dimensional solver

in each channel and update the states across the junction accordingly. The underlying hyperbolic

system consists of the shallow water equations, a set of nonlinear conservation laws that can be

used to model certain types of water waves. We solve them using the finite volume method which

approximates the average value of the conserved quantities in each grid cell in the computational

domain.

To improve the quality of the numerical solution, we use the TeCNO scheme developed by Fjordholm

et al. [1] in the channels. It combines entropy conservative fluxes with diffusion operators using

ENO reconstructions to obtain a high-order accurate, entropy stable method. At the junctions, we

update the states by solving a nonlinear system of equations derived by Briani et al. [2]. Hence,

in summary, we use the one-dimensional TeCNO scheme in the channels and the junction solver

across the junction instead of applying a two-dimensional solver. Our numerical experiments verify

the effectiveness of this method.

In the last part of this thesis, we account for uncertainties in the initial data which commonly

appear in practical applications. We apply the stochastic collocation method to different problems

on intervals and networks with one- or two-dimensional random variables in order to assess the

impact of uncertain initial data on the solution.

i

Zusammenfassung

Mathematische Modellierung erfolgt häufig durch das Lösen partieller Differentialgleichungen. Da

in den meisten Fällen keine analytische Lösung exitiert, werden numerische Methoden verwendet

um die Lösung zu approximieren. Diese Arbeit beschäftigt sich mit der Modellierung von Wasser in

Netzwerken, d.h. gerader Kanäle die durch Kreuzungen miteinander verbunden sind. Hierbei ist die

naheliegendste Herangehensweise die Verwendung eines zweidimensionalen numerischen Lösers. Da

dies in der Praxis jedoch sehr rechenintensiv ist, nutzen wir in dieser Arbeit die spezielle Struktur

des Problems um die Berechnungen zu vereinfachen. Die zugrundeliegende Geometrie legt nahe,

in den Kanälen einen eindimensionalen Löser zu verwenden und die Zustände über die Kreuzung

hinweg zu aktualisieren. Das zugrundeliegende hyperbolische System sind die Flachwassergleichun-

gen, nichtlineare Erhaltungsgleichungen die zur Simulation bestimmter Arten von Wasserwellen

verwendet werden können. Diese werden mithilfe des Finite-Volumen-Verfahrens gelöst, welches

den Durchschnittswert der Erhaltungsgröße in jeder Zelle des Berechnungsgebiets approximiert.

Um die Qualität der numerischen Berechnungen zu verbessern, verwenden wir das von Fjordholm

et al. entwickelte TeCNO Verfahren [1] in den Kanälen. Es verknüpft entropie-erhaltende Flüsse

mit Diffusionsoperatoren, welche auf ENO Rekonstruktionsverfahren beruhen um entropie-stabile

Verfahren höherer Ordnung zu erhalten. An den Kreuzungen zwischen den Kanälen aktualisieren

wir die Zustände durch das Lösen eines nicht-linearen Systems basierend auf der Arbeit von Briani

et al. [2]. Die numerischen Experimente in dieser Arbeit belegen die Effektivität dieser Methode.

Im letzten Teil dieser Arbeit widmen wir uns Ungenauigkeiten in den Ausgangsdaten, wie sie in

praktischen Anwendungen häufig auftreten. Hierbei wenden wir die stochastische Kollokations-

methode auf verschiedene Probleme auf Intervalen und Netzwerken unter der Verwendung ein-oder

zweidimensionaler Zufallsvariablen an, um die Auswirkung ungenauer initialer Daten auf die Lösung

zu betrachten.

ii

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Christian Klingenberg for his support and

supervision during my writing process. I really enjoyed my time in his work group and I am grateful

for the work environment he provided for his students.

Secondly, I would like to thank Ulrik Fjordholm for his support and professional advice during my time

in Oslo and for giving me the opportunity to spend these incredible months abroad to work on my

thesis.

Finally, I would like to thank my family and friends for all their (moral and financial) support during

my studies.

iii

Contents

1 Introduction 1

2 Hyperbolic Conservation Laws 6

2.1 Derivation of Hyperbolic Conservation Laws . 6

2.2 Hyperbolicity . 8

2.3 Examples of Hyperbolic Conservation Laws . 8

2.4 Shallow Water Equations . 9

2.5 Weak Solutions and Entropy Conditions . 13

2.6 Existence and Uniqueness . 16

3 Exact Solutions to Riemann Problems for the Shallow Water Equations 17

3.1 Examples of Riemann Problems . 17

3.1.1 Dam-Break Riemann Problem . 18

3.1.2 Two-Shock Riemann Problem . 19

3.2 Determining Solutions to the Shallow Water Equations . 19

3.3 Shock Waves . 19

3.4 Rarefaction Waves . 22

3.5 Determining the Middle State . 25

4 Finite Volume Method 26

4.1 General Formulation . 26

4.2 Pseudocode . 28

5 First Order Entropy Conservative and Entropy Stable Methods 30

5.1 Conditions for Entropy Conservation and Stability . 30

5.2 Entropy Stable Methods for Scalar Equations . 34

5.3 Entropy Stable Methods for Systems . 35

6 Reconstruction 40

7 High-Order Entropy Stable Methods 42

7.1 High-Order Entropy Conservative Fluxes . 42

7.2 Scalar ELW Scheme . 43

7.3 Reconstruction Based Entropy Stable Schemes: Scalar Equations 44

7.4 Reconstruction Based Entropy Stable Schemes: Systems of Equations 45

7.5 Reconstruction Along Scaled Entropy Variables . 46

8 ENO Reconstruction 49

8.1 Stencil Selection . 50

8.2 ENO Sign Property . 51

9 TeCNO Scheme 52

9.1 TeCNO Scheme for Scalar Conservation Laws . 52

9.2 TeCNO Scheme for Systems of Equations . 52

9.3 Pseudocode . 53

iv

10 Numerical Examples – Interval 54

10.1 Experimental Order of Convergence . 55

10.2 Pseudocode . 56

10.3 Advection Equation . 56

10.4 Burger’s Equation . 58

10.5 Linear Wave Equation . 58

10.6 Shallow Water Equation . 59

11 Water Flow Through Networks 63

11.1 Definition of the Network . 63

11.2 Junction Solver . 64

11.3 Coupling of Junction Conditions and Finite Volume Scheme 70

11.4 Pseudocode . 70

11.5 Solutions to the Junction Solver . 72

11.6 Reference Solutions on Networks . 73

12 Numerical Results – Network 75

12.1 Dam-Break Riemann Problem . 75

12.2 Dam-Break Riemann Problem for Different Angles . 75

12.3 Smooth Initial Data . 75

12.4 Smooth Initial Problem for Different Angles . 77

13 Stochastic Collocation Method 79

13.1 Random Differential Equations . 79

13.2 Monte Carlo Method . 80

13.3 Stochastic Collocation Method . 81

13.3.1 Lagrange Interpolation . 81

13.3.2 Choices of Collocation Points . 82

13.4 Pseudocode . 84

13.5 Numerical Experiments . 85

13.5.1 One-Dimensional Random Space . 86

13.5.2 Multi-Dimensional Random Space . 87

14 Conclusion and Future Work 91

References 92

v

1 Introduction

Conservation laws play a crucial role when modeling natural phenomena mathematically. They can be

used in a variety of different situations to simulate the behavior of conserved quantities. For instance,

the shallow water equations can be used to model certain kinds of water waves where the wavelength is

of at least the same magnitude as the water depth with a relatively small wave height. Examples of such

waves are tsunamis or waves propagating in shallow water. The equations enable us to predict wave

heights as tsunamis approach the shore and can hence play an important role in hazard prevention and

constructing appropriate precautions in endangered areas [3, 4]. Another application of conservation

laws in real-world scenarios is modeling traffic flow, i.e. the interaction between travelers such as cars

or pedestrians and infrastructure which can be taken into consideration for city planing. There are dif-

ferent possibilities to choose the governing equations, depending on external circumstances such as the

density of cars [5]. However, even particular equations can be used in a variety of different applications

that do not seem to have much in common at first glance. The compressible Euler system is used to

model density, velocity and pressure of inviscid compressible fluids. For industrial purposes, they can be

applied to model fluid flow around turbines, vehicles or airplane wings. By adding a gravitational source

term, they can also be used in atmospheric physics and astrophysics to model stellar structures [6].

However, even though solutions to these equations can be used to model physical phenomena, in most

cases there is no analytical solution available. Hence, in order to use the theoretical findings, we require

numerical methods to approximate the exact solution to a certain degree of accuracy. Even though the

underlying partial differential equations may look very different and can be applied in diverse contexts,

they can be solved numerically in the same manner. Two popular methods divide the computational

domain into grid cells and try to approximate either the average value or the function value at a partic-

ular point in each cell which results in finite volume methods or finite difference methods, respectively.

Due to conservation, the quantities can neither be created nor destroyed in the process. Therefore,

the respective values only change due to fluxes through the boundaries of the cells in each time step.

When using finite volume or finite difference methods, it is crucial to correctly define the numerical flux

functions as they have a significant impact on the quality of the resulting solutions.

What makes the numerical computation even more complex is that some real-world applications cannot

be modeled by a one-dimensional problem setting. When we model water waves in a network, i.e. a

collection of straight channels separated by junctions, one usually needs a two-dimensional solver. How-

ever, this is computationally very expensive and difficult to implement. Hence, we exploit the specific

structure of this setting and consider the solution throughout channels and across the junction as two

distinct, but coupled problems. Since we fix the width for each channel, they can each be interpreted

as one-dimensional problems. The states across the junction are then updated by considering the solu-

tions to a nonlinear system in the numerical fluxes between the cells. This reduces the computational

complexity from a two-dimensional problem to a one-dimensional one coupled with a nonlinear system.

This problem setting can be applied in various scenarios when one seeks to model water in networks,

e.g. in the construction of harbours or sewers. We find, for instance, that the angle of the outgoing

channels has an impact on the water height as a wave passes through the junction which is important

to consider in real-world networks.

In addition to the general need for numerical methods to compute solutions to conservation laws due

to the lack of analytical solutions and the diverse complexity of the circumstances, there arises a third

problem in mathematical simulations. To model the evolution of a conserved quantity, we require an

1

initial state that is passed on to the numerical method. In real-world scenarios, however, the initial data

is generally affected by measurement errors, so we have to account for a certain level of inaccuracy. By

applying stochastic methods, we attempt to derive information regarding the influence of these errors on

the solution. The simplest method for treating stochastic equations is the Monte Carlo method which

computes realizations of the deterministic solver at random points in the random parameter space. Even

though the implementation is straightforward once the underlying deterministic solver is available, the

convergence rate is too slow to make the method applicable in practice. Hence, we decided to employ

stochastic collocation methods instead. Similar to the Monte Carlo method, it uses the fact that fixing

the random parameter leads to a deterministic problem that can be solved by a deterministic solver.

However, instead of using random points, it works with predetermined collocation points and interpo-

lates in the random variable space afterwards. The main difficulty is the choice of the collocation points

in multi-dimensional random spaces. We will show that tensor products of one-dimensional quadrature

points are not suitable, since these sets grow quickly with increasing dimensions. Instead, we derive a

sparse grid using the Smolyak algorithm.

In this thesis, we use finite volume methods to solve the partial differential equations numerically. We

equip them with the TeCNO scheme developed by Fjordholm et al. [1] to compute the numerical flux

functions between cells. We show that this method is high-order accurate and entropy stable. The first

seven chapters are dedicated to deriving the theoretical background necessary to define the scheme.

In the first chapter, we derive hyperbolic conservation laws and discuss some important examples that

will frequently reappear throughout this thesis. Since we mainly focus on the shallow water system, this

set of equations is considered in detail. Furthermore, we consider exact solutions to Riemann problems

for this system in Chapter 3. They play an important role in the numerical examples since they enable

us to compute an exact solution that serves as a reference solution. Furthermore, they are used in

the construction of the nonlinear junction solver. In Chapter 4, we formally introduce finite volume

methods. These first three introductory chapters are mainly based on [1, 5, 7–9].

Afterwards, we start investigating the construction of first-order entropy conservative and entropy stable

methods for scalar equations as well as systems based on [1,7]. The main idea to obtain entropy stable

fluxes is to combine an entropy conservative flux with a diffusion term depending on entropy variables.

However, since the TeCNO scheme is supposed to be high-order accurate, we need to extend them to

higher orders. For this purpose, we introduce general reconstruction procedures in Chapter 6 based

on [6]. In Chapter 7, we first construct high-order entropy conservative fluxes by using linear combina-

tions of second-order accurate ones. However, we will see that the quality of the numerical solution in

the vicinity of shocks is highly dependent on the diffusion term. We can smooth out spurious oscillations

by using specifically structured diffusion matrices combined with reconstructed entropy variables. The

reconstruction method needs to fulfill the sign property, i.e. the jump in the reconstructed values must

have the same sign as the jump in the original values. For this purpose, we use the ENO reconstruction

investigated in Chapter 8. Afterwards, we are finally able to formally introduce the TeCNO scheme

in Chapter 9. The last three chapters are all based on [1, 7]. In Chapter 10, we present numerical

examples verifying the formal rate of convergence and the non-oscillatory property of the method. Up

to this point, however, only considered the TeCNO scheme on intervals. Hence, the following chapters

are dedicated to modeling water waves in networks.

In Chapter 11, we formally define networks and introduce the required notation. Following the proce-

dure in [2], we compute solutions in the channels with a one-dimensional solver and handle the junction

separately. To this end, we derive a nonlinear system that has to be solved in order to update the cell

2

states across the junction in the finite volume method. In this system, three equations arise from Rie-

mann problems across the interfaces of the junction while three more follow from conservation of mass

and momentum in the “junction triangle”. However, since there are no general existence and uniqueness

results for nonlinear systems available, we can only guarantee a solution under specific circumstances.

In the numerical experiments in Chapter 12, we consider a variety of different channel angles and initial

data to investigate their influence on the solution throughout the network.

In the last part of this work, we account for certain inaccuracies in the initial data and discuss two

stochastic methods to solve stochastic partial differential equations. First, we introduce the Monte

Carlo method and discuss its advantages and drawbacks. Afterwards, we consider the stochastic col-

location method that applies the deterministic solver at predetermined, data-independent points and

uses Lagrange interpolation to derive a function that can be evaluated at all points in the random

parameter space. To reduce the number of collocation points, we use the Smolyak algorithm that re-

turns a sparse grid and therefore significantly lowers the computational complexity. This last part of

the thesis is based on [10, 11]. Finally, we demonstrate the stochastic collocation method for one- and

two-dimensional random variables and visualize the resulting sample mean and standard deviation.

3

Notation

In this section, we introduce the notation that is used throughout this thesis.

We denote the set of non-negative real numbers by R+ ∶= [0,∞). The canonical inner product on Rn is

x ⋅ y = xT y = ∑nk=1 xkyk with the associated norm ∣x∣ =
√
x ⋅ x.

The characteristic function of a set U is denoted by

1U(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ U
0 if x ∉ U

. (1.1)

We denote the set of k−times differentiable functions f ∶ Rm → Rn by Ck(Rm,Rn). Furthermore, the

space of smooth functions with compact support U ⊂ Rm is denoted by D(U) ∶= C∞c (U,R). Its dual

space D′(U) is the space of distributions on U .

Partial derivatives of a function are denoted by subscripts, i.e. fx = ∂f
∂x

and the Jacobian of a function

f ∈ C1(Rm,Rn) by f ′(x) ∈ Rn×m.

For piecewise constant functions on a grid with grid cells Ci, i.e. u(x) = ∑i∈Z ui1Ci(x), we denote the

jump and the average value across the interface at xi+1/2 by [[u]]i+1/2 ∶= ui+1 − ui and ui+1/2 ∶= ui+1+ui

2
,

respectively. Note that the identity

[[ab]]i+1/2 = ai+1/2[[b]]i+1/2 + [[a]]i+1/2bi+1/2 (1.2)

holds across all interfaces.

Furthermore, for a reconstruction method vi(x) = Ri({vj}j∈Z), we denote the jump at the interface at

xi+1/2 by ⟪v⟫i+1/2 ∶= v−i+1 − v+i = vi+1(xi+1/2) − vi(xi+1/2).
We call a function f ∈ C2(Rn,R) convex, if f ′′(x) ≥ 0, ∀x ∈ Rn and strictly convex if f ′′(x) > 0, ∀x ∈ Rn.
We denote the identity matrix in Rn×n by In.

For two symmetric matrices A,B ∈ Rn×n, we say A ≤ B if B −A is a positive semi-definite matrix and

A < B if B −A is a positive definite matrix. We call a matrix positive or non-negative, if 0 < A or 0 ≤ A,
respectively.

For two functions f, g ∶ R → R, we say f ∈ O(g) if there exists a constant c > 0 and x0 ∈ R such that

∣f(x)∣ ≤ cg(x) ∀x ≥ x0. (1.3)

We denote the dirac delta function by

δij =
⎧⎪⎪⎨⎪⎪⎩

1, i = j
0, else

. (1.4)

4

Code

This work is accompanied by Python code that can be used to reproduce the numerical examples in

Chapter 10, 12 and 13. This chapter gives a brief introduction to the structure of the code and how it

can be used.

The implementation itself is contained in the folder numerics. There, it is split into different sub-

folders. The folder basics contains all files that compute basic functions necessary for the remaining

implementations. For instance, it incorporates the code that computes the eigenvalues, eigenvectors

or flux functions of the conservation laws of interest. Furthermore, the file compute.py contains basic

computations such as cfl condition(), diffusion scalar() or diffusion system().

The folder solver contains different possibilities to determine a solution to a given conservation law. The

implementations of exact solutions for different equations can be found in exact solution.py. Further-

more, in the finite volume method implemented in finite volume method.py, one can choose between dif-

ferent numerical solvers such as the TeCNO scheme (tecno.py), Lax-Friedrichs scheme (lax friedrichs.py)

or Godunov’s scheme (godunov.py). The desired method can be set in the main.py file.

The folder reconstruction contains the implementations of the ENO reconstruction that is necessary for

the construction of high-order accurate, entropy stable methods and the minmod reconstruction used

for computing reference solutions with the Lax-Friedrichs method.

The folder stochastics incorporates the stochastic collocation method and the folder network the code

necessary for computing solutions on a network.

The implemented finite volume method and the numerical solver on networks can plot the current so-

lutions in the folder plots during the computation. The frequency in which they are plotted can be

adapted in the respective method.

The specific functions contained in the code are explained in the respective chapter the theoretical

background is discussed in.

5

2 Hyperbolic Conservation Laws

In the context of this thesis, we study numerical and exact solutions to conservation laws. They are

partial differential equations of the form

ut + f(u)x = 0, (x, t) ∈ R ×R+, (2.1)

u(⋅,0) = u0 (2.2)

where u ∶ R ×R+ → U is the vector of conserved variables that maps into a connected, non-empty set

U ⊂ Rm and f ∶ U → Rm is the flux function. We call (2.1) a scalar conservation law if m = 1, i.e. if it
consists of only one equation, and a system of conservation laws if m > 1.
These kinds of equations appear frequently in physical sciences. Some important examples are listed

below, but we are especially interested in the shallow water equations, a nonlinear system of partial

differential equations commonly used to model certain kinds of water waves and predict their behavior.

Not only can they be applied to shallow waves in lakes or rivers, but also to waves with long wavelengths

traversing oceans, such as tsunamis. However, we mainly focus on modeling water in a network of

channels, where the computation of solutions across junctions is of particular interest.

Note that even though we mostly consider the one-dimensional case, (2.1) can be extended to multiple

dimensions where we obtain

ut + div(f(u)) = 0, (x, t) ∈ Rd ×R (2.3)

u(⋅,0) = u0 (2.4)

with u ∶ Rd ×R+ →U, U ⊂ Rm, and f = (f1, . . . , fd) ∶U→ Rm×d.

A drawback of using conservation laws for mathematical modeling is that an analytical solution exists

only in very specific cases. Hence, in order to determine a solution, we have to employ numerical

methods that should approximate the exact solution. However, the quality of such solutions highly

depends on the underlying numerical scheme.

Nonetheless, before we investigate numerical methods in detail, we want to derive the integral and

differential form of conservation laws. Afterwards, we introduce the concept of hyperbolicity and discuss

examples of hyperbolic conservation laws, especially the shallow water system. Finally, we investigate

weak solutions, a specific kind of solution that satisfies the conservation in a “weak sense”. Since they

lead to multiple spurious solutions, we employ entropy conditions to determine the “physically correct”

one. In the last section, we discuss existence and uniqueness of entropy solutions. This chapter is mainly

based on [1, 5, 7, 8].

2.1 Derivation of Hyperbolic Conservation Laws

We consider fluid in a channel with unit width and a known velocity w(x, t) depending on x which

refers to the distance along the channel and t which denotes the time that has passed since the initial

time t0 that is usually set to zero. Furthermore, we denote the density of a chemical tracer in the fluid

by u(x, t) and assume that its concentration is too small to affect fluid dynamics. Later, the conserved

quantities will play the role of the chemical tracer.

6

The total mass of the tracer at a specific time t in the interval [x1, x2] along the channel is given by

∫
x2

x1

u(x, t)dx. (2.5)

Here, we dropped the dependence on the width of the channel since we assume it to be constant.

If we now assume that channel walls are impermeable and the tracer is neither created nor destroyed

within the process, the mass in one section of the tube changes only due to fluxes through the endpoints

x1 and x2 of the section. Note that this forms the basis for conservation, an underlying concept in this

work.

Let Fi(t) denote the rate of particle flow through the fixed point xi for i = 1,2. We assume that Fi(t)
refers to a flux from the left to the right side and −Fi(t) to a flux in the opposite direction. Therefore,

F1(t) and −F2(t) both represent fluxes into the channel section [x1, x2].
Hence, the mass of the chemical tracer in one section changes according to

d

dt
∫

x2

x1

u(x, t)dx = F1(t) − F2(t). (2.6)

This is called the integral form of conservation laws.

Since we want to obtain an equation solvable for u, we have to determine the relation between the flux

functions Fi(t) and u(x, t).
The velocity w(x, t) determines how fast particles move past a certain point, the density u how many

grams of the tracer one meter of fluid contains. Hence, the product of both refers to the rate of chemical

particles passing at point x and therefore to the flux at this point, i.e. the flux at the point (x, t) in
space-time is given by w(x, t)u(x, t). Since the velocity is a known function, we can rewrite the flux as

f(u,x, t) = w(x, t)u.
By assuming that w(x, t) = w is constant, we receive the autonomous system

f(u) = wu. (2.7)

That is, the value of the flux function at any point in space-time can be determined directly from the

value of the conserved quantity in this point and does not depend on the location of that point itself.

If we consider an autonomous equation, we can write (2.6) in the following way:

d

dt
∫

x2

x1

u(x, t)dx = f(u(x1, t)) − f(u(x2, t)) (2.8)

where f(u(x, t)) denotes the flux at position x at time t.

With

f(u(x1, t)) − f(u(x2, t)) = −f(u(x, t))∣
x2

x=x1

= −∫
x2

x1

∂

∂x
f(u(x, t))dx (2.9)

we can rewrite (2.8) by assuming that u and f are continuously differentiable and therefore using Leibniz

integral rule:
d

dt
∫

x2

x1

u(x, t)dx + ∫
x2

x1

∂

∂x
f(u(x, t))dx = 0

⇐⇒ ∫
x2

x1

∂

∂t
u(x, t)dx + ∫

x2

x1

∂

∂x
f(u(x, t))dx = 0

⇐⇒ ∫
x2

x1

[∂
∂t
u(x, t) + ∂

∂x
f(u(x, t))]dx = 0

(2.10)

7

Since (2.10) holds for every interval [x1, x2] along the channel, we get

u(x, t)t + f(u(x, t))x = 0. (2.11)

where the subscripts denote the partial derivatives with respect to t and x. We will refer to this equation

as the differential form of conservation laws or simply as conservation law.

2.2 Hyperbolicity

Hyperbolicity is a crucial property of the equations we want to study in this thesis. We start by rewriting

the problem (2.11) in quasilinear form

u(x, t)t + f ′(u(x, t))u(x, t)x = 0. (2.12)

In order for this problem to be hyperbolic, the m×m flux Jacobian matrix f ′(u) must have real eigenval-

ues at every point (x, t) in space-time and a corresponding set of m linearly independent eigenvectors.

Therefore, every vector in Rm can be uniquely decomposed into a linear combination of these eigenvec-

tors. This property is used later on to decompose the solution vector into distinct waves.

Note, that the hyperbolicity of (2.12) is equivalent to f ′(u(x, t)) being diagonalizable with real eigen-

values.

We call the system (2.12) strictly hyperbolic if f ′(u(x, t)) has m distinct real eigenvalues λ1 < λ2 < ... <
λm.

2.3 Examples of Hyperbolic Conservation Laws

In this section, we give a few examples of hyperbolic conservation laws in ascending order of complexity.

We start by introducing two scalar conservation laws before we continue to systems. In this thesis, we

mainly focus on the shallow water equations, a nonlinear system of equations that is considered in detail

in Section 2.4.

Example 2.1 (Linear Advection Equation). A basic example of a hyperbolic conservation law is the

advection equation, a linear, scalar equation. It describes a substance being carried along by the motion

of the fluid. The density u = u(x, t) of the substance is described by

ut + aux = 0. (2.13)

The initial wave form u(x,0) = u0(x) simply propagates with unchanged shape at advection speed a ∈ R,

i.e. the solution is given by

u(x, t) = u(x − at). (2.14)

Example 2.2 (Burger’s Equation). In the next step, we still consider a scalar equation, but omit

the linearity, which makes the construction of solutions slightly more complicated. An example of a

nonlinear, scalar conservation law is Burger’s equation

ut + (
1

2
u2)

x
= 0. (2.15)

8

This problem has been used for developing new theory and numerical methods for hyperbolic equations [5].

So far, we only considered scalar equations. However, most physically relevant hyperbolic conservation

laws are systems of equations such as the shallow water or the Euler equations.

Example 2.3 (Linear Wave Equation). The simplest system of equations is an extension of the linear

advection equation. The linear wave equation is given by

⎛
⎝
u1

u2

⎞
⎠
t

+
⎛
⎝
au2

au1

⎞
⎠
= 0 (2.16)

where again a ∈ R. The system can be rewritten in the form

ut +Aux = 0 (2.17)

where A ∈ R is a diagonalizable matrix, i.e. A = RΛR−1 for a diagonal matrix Λ. Multiplying (2.17) by

R−1 and defining û = R−1u, the system can be rewritten as

ût +Λûx = 0. (2.18)

Since Λ is a diagonal matrix, each equation in this system is a linear advection equation (ui)t+λi(ui)x = 0
and has therefore a unique solution. Hence, the system itself has a unique solution that can be computed

using the insights we gained for the advection equation in Example 2.1.

Example 2.4 (Euler Equations). An important, physically relevant example are the Euler equations

that are commonly used to model gas dynamics. They result from conservation of mass, momentum and

energy and yield the system

⎛
⎜⎜⎜
⎝

ρ

ρw

E

⎞
⎟⎟⎟
⎠
+
⎛
⎜⎜⎜
⎝

ρw

ρw2 + p
w(E + p)

⎞
⎟⎟⎟
⎠

(2.19)

where ρ denotes the density, w the velocity, p the pressure and E the energy. This is an example of

three equations that form a coupled system.

2.4 Shallow Water Equations

The equations we mainly consider in the context of this thesis are the shallow water equations. As

mentioned earlier, they can be used to model water waves where the horizontal length scale is much

greater than the vertical length scale, e.g. tsunamis or waves in shallow water. The fluid flow is governed

by conservation of mass and momentum.

To begin with, we consider fluid in a channel with unit width and assume the vertical velocity of the

fluid is negligible and the horizontal velocity w(x, t) is constant through any vertical cross-section. This

holds for small amplitude waves in a fluid that is shallow relative to the wavelength. Furthermore, we

assume that the fluid is incompressible, i.e. the density ρ does not depend on pressure and is therefore

constant.

Denote the water height at time t and point x along the channel by h = h(x, t). The total mass in an

9

interval [x1, x2] at time t is given by

∫
x2

x1

ρh(x, t)dx. (2.20)

The density of momentum at a certain point x and at time t is given by ρw(x, t). Integrating this

vertically yields

∫
h(x,t)

0
ρw(x, t)dy = ρw(x, t)y∣

h(x,t)

y=0
= ρh(x, t)w(x, t). (2.21)

This is called the mass flux and denotes the mass of fluid passing through the cross-section at point x

at time t.

Due to conservation of mass, the total mass in [x1, x2] can only change due to fluxes through the

endpoints of the interval. Hence, we can insert the mass (2.20) and the mass flux (2.21) in the differential

form of conservation laws (2.11) to obtain the equation

ht + (hw)x = 0 (2.22)

resulting from conservation of mass.

The second equation in the shallow water system is derived from conservation of momentum. The total

momentum in [x1, x2] is given by

∫
x2

x1

ρh(x, t)w(x, t)dx. (2.23)

Analogously to our considerations above, the momentum in an interval only changes due to fluxes

through the boundaries.

However, we still need to derive the momentum flux to apply (2.11). It is composed of two parts, the

first one refers to the change of momentum caused by the movement of the fluid. For every quantity

function ρ advected with the flow, the contribution to the flux for ρ will be of the form ρw. Since we

consider the case ρ = ρw, we get a flux of the form ρw2. Integrating this vertically leads to ρhw2.

However, the momentum is not only affected by advection but also by other forces that cause acceleration

due to Newton’s law. Since we assume there are no outside forces, the only force occurs in the fluid

itself and is proportional to the pressure gradient which is simply px in one dimension. If we combine

this with the advective flux and insert this and the total momentum in (2.11), we receive

(ρhw)t + (ρhw2 + p)x = 0. (2.24)

We now wish to determine the pressure p to receive an equation that depends only on the unknown

functions h(x, t) and w(x, t). We exploit the hydrostatic law stating that the pressure at depth y is

determined by ρgy and integrate this vertically to obtain the total pressure at (x, t)

∫
h(x,t)

0
ρgy dy = 1

2
ρgy2∣

h(x,t)

y=0
= 1

2
ρgh2(x, t) (2.25)

where g denotes the gravitational constant. Using this in (2.24) and dividing by ρ yields the second

shallow water equation

(hw)t + (hw2 + 1

2
gh2)x = 0. (2.26)

10

Combining the equations (2.22) and (2.26) results in the one-dimensional system of shallow water

equations

ut + f(u)x = 0 (2.27a)

where

u(x, t) =
⎡⎢⎢⎢⎢⎣

h

hw

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

u1

u2

⎤⎥⎥⎥⎥⎦
, f(u) =

⎡⎢⎢⎢⎢⎣

hw

hw2 + 1
2
gh2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

u2

(u2)2/u1 + 1
2
g(u1)2

⎤⎥⎥⎥⎥⎦
. (2.27b)

Sometimes, we denote the discharge by q ∶= hw.
By adding a source term on the right-hand side, we can account for the change in the bathymetry. This

results in the shallow water system with bathymetry

⎡⎢⎢⎢⎢⎣

h

hu

⎤⎥⎥⎥⎥⎦t
+
⎡⎢⎢⎢⎢⎣

hu

hu2 + 1
2
gh2

⎤⎥⎥⎥⎥⎦x
=
⎡⎢⎢⎢⎢⎣

0

−ghbx

⎤⎥⎥⎥⎥⎦
. (2.28)

However, since we consider artificially built channels in this work, we assume that the bathymetry is

constant and, therefore, we do not require a source term.

Now, assume that h and u are smooth and h > 0. Using differentiation rules and (2.22), we can simplify

(2.26):

(hw)t + (hw2 + 1

2
gh2)x

=htw + hwt + hxw2 + 2hwwx + ghhx
= − (hw)xw + hwt + hxw2 + 2hwwx + ghhx
= − hxw2 − hwwx + hwt + hxw2 + 2hwwx + ghhx
=hwt + hwwx + ghhx

(2.29)

After dividing by h, we can write the conservation of momentum equation in the form

wt + (
1

2
w2 + gh)x = 0. (2.30)

If we now define φ = gh, we obtain the shallow water system for smooth solutions:

⎡⎢⎢⎢⎢⎣

φ

w

⎤⎥⎥⎥⎥⎦t
+
⎡⎢⎢⎢⎢⎣

φw

w2/2 + φ

⎤⎥⎥⎥⎥⎦x
= 0⇐⇒ ut + f ′(u)ux = 0 (2.31)

Here, the Jacobian matrix f ′(u) is of the form

f ′(u) =
⎡⎢⎢⎢⎢⎣

0 1

−(u2/u1)2 + gu1 2u2/u1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0 1

−w2 + gh 2w

⎤⎥⎥⎥⎥⎦
(2.32)

and has the eigenvalues

λ1 = w −
√
gh, λ2 = w +

√
gh (2.33)

11

with corresponding eigenvectors

r1 =
⎡⎢⎢⎢⎢⎣

1

w −
√
gh

⎤⎥⎥⎥⎥⎦
, r2 =

⎡⎢⎢⎢⎢⎣

1

w +
√
gh

⎤⎥⎥⎥⎥⎦
. (2.34)

We refer to the pair {λj , rj} as the j-th eigenpair. Note that the velocities of the waves in the solution

are given by the eigenvalues, i.e. they move at the characteristic velocities λ1 = w −
√
gh, λ2 = w +

√
gh.

Since w refers to the fluid velocity, the velocity of the waves relative to the fluid is given by c = ±
√
gh.

To compute the gradient of the eigenvalues, we first rewrite the eigenvalues in terms of u1, u2:

λ1 =
u2
u1
−√gu1, λ2 =

u2
u1
+√gu1 (2.35)

Then, this yields

∇λj(u) =
⎡⎢⎢⎢⎢⎣

− u2

(u1)2
∓ 1

2

√
g/u1

1
u1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

−w
h
∓ 1

2

√
g/h

1
h

⎤⎥⎥⎥⎥⎦
. (2.36)

In general, if

∇λj(u) ⋅ rj(u) ≠ 0, ∀u, (2.37)

we call the wave corresponding to the j-th eigenpair genuinely nonlinear. On the other hand, if

∇λj(u) ⋅ rj(u) ≡ 0, ∀u, (2.38)

we call it linearly degenerate. In both cases, the associated waves are discontinuities between the states

u∗ and u satisfying the Rankine-Hugoniot jump conditions

s(u∗ − u) = f(u∗) − f(u) (2.39)

where s denotes the shock speed. In contrast, smooth differentiable transitions arising in the solution

are called rarefaction waves.

For the shallow water equations, we obtain

∇λj(u) ⋅ rj(u) = ∓
3

2

√
g/h ≠ 0, ∀u (2.40)

and hence both resulting waves are genuinely nonlinear. This property will be important if we investigate

solutions to Riemann problems for the shallow water system in Chapter 3.

Note that so far, we only considered the one-dimensional shallow water equations. However, they can

easily be extended to more dimensions. It then takes the form

ut + f(u)x + g(u)y = 0 (2.41a)

with

u(x, y, t) =

⎡⎢⎢⎢⎢⎢⎢⎣

h

hwx

hwy

⎤⎥⎥⎥⎥⎥⎥⎦

, f(u) =

⎡⎢⎢⎢⎢⎢⎢⎣

hwx

hw2
x + 1

2
gh2

hwxwy

⎤⎥⎥⎥⎥⎥⎥⎦

, g(u) =

⎡⎢⎢⎢⎢⎢⎢⎣

hwy

hwxwy

hw2
y + 1

2
gh2

⎤⎥⎥⎥⎥⎥⎥⎦

(2.41b)

12

Figure 2.1: Two-dimensional Shallow Water System

Here, h(x, y, t) denotes the two-dimensional water height and wx(x, y, t), wy(x, y, t) the fluid velocities in the
x- and y-direction, respectively.

where h = h(x, y, t) denotes the two-dimensional water height, g the gravitational constant and wx =
wx(x, y, t), wy = wy(x, y, t) the horizontal velocities in the x− and y−direction, respectively.

2.5 Weak Solutions and Entropy Conditions

First, recall that Equation (2.11) is only valid for smooth solutions. However, the integral form (2.6)

still holds for non-smooth solutions. Hence, we introduce weak solutions to account for discontinuities

in the solution.

Integrating (2.10) along [t1, t2] yields

∫
t2

t1
∫

x2

x1

[ut + f(u)x]dxdt = 0. (2.42)

Now, instead of particular limits t1, t2, x1, x2 we consider

∫
∞

0
∫
∞

−∞
[ut + f(u)x]ϕ(x, t)dxdt = 0 (2.43)

where ϕ(x, t) is taken from a set of certain functions we will specify later. Note that the particular

choice

ϕ(x, t) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ [x1, x2], t ∈ [t1, t2]
0, else

(2.44)

leads to (2.42).

If we now assume ϕ ∈ C1
c , that is, ϕ is continuously differentiable and has compact support, we can

integrate (2.43) by parts:

∫
∞

0
∫
∞

−∞
[∇ ⋅ (u, f(u))]ϕ(x, t)dxdt

=∫
Γ
[(u, f(u))ϕ(x, t)] ⋅ n̂ dx − ∫

∞

0
∫
∞

−∞
[uϕt + f(u)ϕx]dxdt = 0

⇐⇒ − ∫
∞

−∞
u(x,0)ϕ(x,0)dx + lim

t→∞
∫
∞

−∞
u(x, t)ϕ(x, t)dx

− lim
x→−∞

∫
∞

0
f(u(x, t)ϕ(x, t)dt + lim

x→∞
∫
∞

0
f(u(x, t)ϕ(x, t)dt

− ∫
∞

0
∫
∞

−∞
[uϕt + f(u)ϕx]dxdt = 0

(2.45)

13

where n̂ is the outward-pointing unit normal vector and Γ is the boundary of our domain.

Note that the boundary terms at x, t = ±∞ vanish, since ϕ is compactly supported and is therefore

identically zero outside of a bounded region in the x − t plane. Hence, we finally obtain

∫
∞

0
∫
∞

−∞
[uϕt + f(u)ϕx]dxdt = −∫

∞

−∞
u(x,0)ϕ(x,0)dx. (2.46)

Now, we can refer to a function u(x, t) as weak solution of the conservation law (2.11) if (2.46) holds

for all functions ϕ ∈ C1
c with given initial data u(x,0).

Since we only compute derivatives of ϕ in (2.46), this equation also holds for a discontinuous function

u.

In conclusion, we are now able to consider solutions to the conservation law that might contain dis-

continuities. However, this generalization leads to multiple numerical solutions. We employ entropy

conditions to characterize the “physically correct” one.

First, we introduce entropy pairs.

Definition 2.1. A pair of functions (η, q) with η ∈ C2(Rm,R) and q = (q1, . . . , qd) ∈ C2(Rm,Rd) is
called an entropy pair for the conservation law (2.3) if

q′(u)T = η′(u) ⋅ f ′(u) ∀u ∈U,

i.e.

(qk)′(u)T = η′(u) ⋅ (fk)′(u) for k = 1, . . . , d. (2.47)

An entropy pair is called convex if η is convex. Furthermore, we define the entropy variable

v(u) ∶= η′(u) (2.48)

and the entropy potential

ψ(v) ∶= v ⋅ f(u(v)) − q(u(v)). (2.49)

They will both play an important role when we introduce entropy stable and entropy conservative

methods.

Note that u↦ v(u) is invertible if η is strongly convex, i.e. η′′ > 0, and we denote the inverse by u(v).
Then,

du

dv
= (η′′(u(v)))−1 (2.50)

is a symmetric positive definite matrix and

d

dv
f(u(v)) (2.51)

is symmetric.

Now, by taking the inner product of η′(u) with (2.3), we see that smooth solutions u satisfy the

14

additional conservation law

0 = η′(u) ⋅ (ut + div(f(u)) = η(u)t + div(q(u)). (2.52)

This can easily be verified for the one-dimensional, scalar case. There, we first apply the chain rule for

η′(u) ⋅ ut = η(u)t. Then, we derive

η′(u) ⋅ f(u)x = v ⋅ f(u)x
= (v ⋅ f(u))x − vx ⋅ f(u)

= (v ⋅ f(u) − ψ(v))x − vx ⋅ f(u) + vx ⋅ ψ′(v)

= q(u)x.

(2.53)

Note that we used the product rule and the definitions of the entropy variable η′(u) = v(u) and the

entropy potential ψ(v) = v ⋅ f(u(v)) − q(u(v)).
Equation (2.52) is called the entropy equality. From now on, we impose the stability criterion that

entropy never decreases. That enables us to identify the unique physically correct solution.

Definition 2.2. Let (η, q) be a convex entropy pair. Then, we call a function u ∈ L∞(Rd × R+,Rm)
admissible with respect to (η, q) if

η(u)t + div(q(u)) ≤ 0 (2.54)

in D′(Rd ×R+,R), i.e. if

∫
Rd×R+

η(u)ϕt + q(u)div(ϕ)dxdt + ∫
Rd
η(u0(x))ϕ(x,0)dx ≥ 0 (2.55)

for all 0 ≤ ϕ ∈ D(Rd ×R+,R). Furthermore, we define entropy solutions as weak solutions of (2.3) that

are admissible with respect to all convex entropy pairs.

Integrating (2.54) in space and time and assuming ∣q(u)∣→ 0 as ∣x∣→∞ yields

∫
Rd
η(u(x, t))dx ≤ ∫

Rd
η(u0(x))dx, (2.56)

i.e. the total amount of entropy of an entropy solution decreases over time.

Let us consider some examples of entropy pairs for different hyperbolic equations. For a scalar conser-

vation law, all convex functions η give rise to an entropy pair (η, q) by defining

q(u) = ∫
u

0
η′(s)f ′(s)ds. (2.57)

For simplicity, one often chooses the square entropy η(u) = u2

2
. In this case the entropy variable is given

by v(u) = η′(u) = u.
This even transfers to some linear systems. For the linear wave equation, (2.16) we can, for instance,

use η(u) = 1
2
((u1)2 + (u2)2) with the corresponding entropy flux q(u) = 1

2
uTAu = au1u2.

Even though there is a variety of available entropy pairs for scalar conservation laws, the choices for

general nonlinear systems are much more limited. For the shallow water system, the entropy we use in

15

the following is given by the total energy of the solution:

η(u) = 1

2
(hw2 + gh2) , q(u) = 1

2
hw3 + gwh2 (2.58)

Using this, we can define the corresponding entropy variable v = η′(u) and the entropy potential ψ(v) =
v ⋅ f(u(v)) − q(u(v)) by

v =
⎛
⎝
gh − w2

2

w

⎞
⎠
, ψ(v) = 1

2
gwh2. (2.59)

In the following section, we discuss existence and uniqueness of entropy solutions.

2.6 Existence and Uniqueness

In 1970, it was shown by Kruzkow [12] that there exists a unique entropy solution in the class of functions

of bounded variation for scalar conservation laws.

Theorem 2.1. Let u0 ∈ L∞(Rd) be the initial function in (2.3). Then, there exists a unique entropy

solution u for (2.3). It satisfies

∣∣u(⋅, t)∣∣L∞(Rd) ≤ ∣∣u0∣∣L∞(Rd) ∀t > 0. (2.60)

Unfortunately, for general systems of hyperbolic conservation laws, there is no similar global well-

posedness result available, there are only partial results. The existence and uniqueness of the entropy

solution to one-dimensional Riemann problems where the two constant initial states are sufficiently

close has been shown by Lax in [13]. Furthermore, Glimm proved the existence of a weak solution to

the Cauchy problem (2.3) for all u0 ∈ D, where D is the L1-closure of the set of all piecewise constant

functions with sufficiently small total variation [14]. This was done by showing that the random choice

method is stable with respect to the Glimm functional. Lastly, Bressan et al. proved that the front

tracking method is stable with respect to the Glimm functional and that it converges to the unique

entropy solution for all u0 ∈D [15, 16].

In summary, we obtain the following theorem.

Theorem 2.2. Consider the one-dimensional case, i.e. d = 1. Furthermore, assume that the conserva-

tion law (2.1) is strictly hyperbolic and all the wave families are either genuinely nonlinear or linearly

degenerate. Then, for all initial functions u0 ∈ L1 with sufficiently small total variation, there exists a

unique entropy solution to (2.1).

16

3 Exact Solutions to Riemann Problems for the Shallow Water

Equations

In this chapter, we analyse exact solutions to Riemann problems for the shallow water system. Whenever

we evaluate a numerical scheme, we need a solution to compare the numerical results to, a so-called

reference solution. This can either be a numerical solution computed with a different and already

generally approved scheme on a very fine grid or an exact solution. However, for general conservation

laws with arbitrary initial data, we are not able to derive an analytical solution. Hence, we can only

use exact solutions in very specific cases, e.g. for obtaining solutions to the advection equation (2.13)

where the solution is given by (2.14). While the linear advection equation can be solved regardless of

the initial data, the choices for the shallow water equations are drastically limited. In this work, we

consider initial Riemann problems and we analyse in this chapter how they can be solved.

Later, we also compare the solution of a Riemann problem on a network as described in Section 11.6

to the numerical solution obtained by the TeCNO scheme on a network. The results of this comparison

can be found in Chapter 12.

This chapter is based on Chapter 5 in [9] and Chapter 13 in [5].

Consider the Riemann problem

ut + f(u)x = 0 (3.1a)

where the initial data is piecewise constant, i.e.

u(x,0) =
⎧⎪⎪⎨⎪⎪⎩

ul, x < 0
ur, x > 0

. (3.1b)

We consider the shallow water equations as the underlying hyperbolic conservation law, i.e. u, f(u)
are given in (2.27b). For simplicity, we assume g = 1. The solution to this problem consists of two

waves which we refer to as 1-wave and 2-wave. Furthermore, if we already know that the j-th wave is

a rarefaction or a shock wave, we call them a j-rarefaction or j-shock, respectively.

In the following, we first consider two examples of standard Riemann problems for the shallow water

system. Afterwards, we derive specific formulas in order to compute exact solutions to these kinds of

problems.

3.1 Examples of Riemann Problems

Since the shallow water system (2.27) consists of two equations, the solution to the corresponding

Riemann problem contains two waves. These waves are separated by an intermediate state um that has

to be determined for each problem individually. Furthermore, both characteristic fields are genuinely

nonlinear and therefore each wave family is either a shock or a rarefaction wave. However, the specific

combination depends on the given initial data and hence we have to determine the kind of wave before

computing the appropriate solution.

To emphasize the importance of determining the correct composition of shock and rarefaction waves,

we give two examples of different Riemann problems in the following.

17

Figure 3.1: Solution to Dam Break Riemann Problem

The initial data is given by hl = 2, hr = 1.5. The left column shows the water height h at time steps 0, 0.5 and
1 whereas the right column shows the momentum hu at the same time.

3.1.1 Dam-Break Riemann Problem

The first example is the dam-break Riemann problem. It plays an important role in Chapter 12 when

we analyse numerical results obtained by the TeCNO scheme on a network.

Consider (2.27) with initial data

h(x,0) =
⎧⎪⎪⎨⎪⎪⎩

hl x < 0
hr x > 0

, w(x,0) = 0 (3.2)

where hl, hr > 0, hl ≠ hr i.e. our initial water wave is piecewise constant with a jump at x = 0. Note that

the problem models the situation of a dam separating two water levels that breaks at t = 0. Without

loss of generality, assume hl > hr. At the initial time, the water on both sides is at rest, i.e. wl = wr = 0.
However, at time t > 0, water flows from the higher left water level to the right into shallower water. It

is led by a shock wave moving at speed wm separating the lower water height hr from an intermediate

water height hm. Furthermore, on the left of the intermediate state, a rarefaction develops when the

water on the higher level hl is accelerated to the right.

The simulation in Figure 3.1 shows the exact solution in this situation and one can clearly recognize

the different kinds of waves.

In fact, the solution to the dam break problem always consists of one rarefaction and one shock wave.

However, their shape and direction is mirrored when we consider hl < hr.

18

3.1.2 Two-Shock Riemann Problem

Now, we consider initial data of the type

h(x,0) = h0, w(x,0) =
⎧⎪⎪⎨⎪⎪⎩

wl, x < 0
−wl, x > 0

. (3.3)

If wl > 0, the problem models the situation of two streams of water coming from opposite directions at

the same speed colliding at the initial time t = 0. On both sides of the collision, shock waves form and

move sideways, bringing the fluid to rest.

The solution is symmetric in x at all times in the way that h(−x, t) = h(x, t) and w(−x, t) = −w(x, t).
From the latter equation, we can derive wm = 0 for the intermediate state.

Therefore, the two shock waves move apart at the same speed in a mirrored shape.

3.2 Determining Solutions to the Shallow Water Equations

As the two examples above illustrate, the combination of shock and rarefaction waves arising in the

solution to the Riemann problem depends on the specific initial data and therefore has to be determined

individually for each problem. To derive a universal approach for solving the Riemann problem exactly,

we have to be able to solve it for every pair of states ul, ur.

Hence, the following steps have to be executed:

1. Determine the intermediate state um.

2. Determine for each of the two arising waves, whether they are a shock or a rarefaction wave.

3. Determine the structure of the solution through each rarefaction wave.

We address each of these steps in the subsequent sections in order to derive a procedure to compute the

exact solution. To begin with, we want to identify all states that can be correctly connected to a given

state, i.e. ul or ur.

3.3 Shock Waves

As we have seen in both examples above, the solution to certain Riemann problems can consist of

discontinuous solutions, i.e. shock waves. However, note that not all arbitrary combinations of states

lead to valid shock waves but only those satisfying the Rankine-Hugoniot jump conditions (2.39). For

the shallow water equations, we obtain the system

s(h∗ − h) = h∗w∗ − hw (3.4a)

s(h∗w∗ − hw) = h∗w2
∗ − hw2 + 1

2
(h2∗ − h2). (3.4b)

Note that u∗ denotes the fixed state, i.e. u∗ = ul or u∗ = ur and hence h∗ and w∗ are given and we want

to determine all possible values for s, h and w such that (3.4) is fulfilled. Therefore, we have a system

of two equations with three unknowns and expect to find a family of solutions with one remaining

parameter.

We leave h as the parameter and compute w and s for each value of h. If we depict this in the h − hw
plane, we receive a curve called the Hugoniot-locus. In fact, we will obtain two different families of

19

one-parameter solutions, each of which refers to one wave. Since the intermediate state between two

shocks must fulfill the Rankine-Hugoniot condition for ul as well as ur, um is given by the intersection

of both corresponding Hugoniot-loci.

However, we still do not know how to compute w and s. First, we use (3.4a) to obtain

s = h∗w∗ − hw
h∗ − h

. (3.5)

Inserting this in (3.4b), multiplying with (h∗ −h) and dividing by h∗h yields a formula for w depending

on h:

(h∗w∗ − hw)2

h∗ − h
= h∗w2

∗ − hw2 + 1

2
(h2∗ − h2)

⇐⇒ h2∗w
2
∗ − 2h∗w∗hw + h2w2 − h2∗w2

∗ + h∗hw2
∗ + hh∗w2 − h2w2 − 1

2
(h3∗ − h2∗h − h∗h2 + h3) = 0

⇐⇒ w2 − 2w∗w + [w2
∗ −

1

2
(h∗
h
− h

h∗
) (h∗ − h)] = 0

(3.6)

This equation must now be solved for w given in terms of h. Hence, the equation holds for

w(h) = w∗ ±
1

2

√
4w2
∗ − 4 [w2

∗ −
1

2
(h∗
h
− h

h∗
) (h∗ − h)]

= w∗ ±
√

1

2
(h∗
h
− h

h∗
) (h∗ − h).

(3.7)

As expected, for h ≠ h∗ we obtain two different values for w corresponding to the two shock waves.

For h∗ = h, we obtain w∗ = w which is expected due to the fact that the curve has to pass through

(h∗,w∗) according to the Rankine-Hugoniot conditions.

To continue, we first introduce a linearized model for the shallow water equations. We assume the water

has an approximately constant depth h0 > 0 and is moving at a constant velocity u0 ≥ 0. Let u denote

the perturbations from this constant state:

u =
⎡⎢⎢⎢⎢⎣

h − h0
hu − h0w0

⎤⎥⎥⎥⎥⎦
, u0 =

⎡⎢⎢⎢⎢⎣

h0

h0w0

⎤⎥⎥⎥⎥⎦
. (3.8)

In the nonlinear model, the velocity of the wave increases proportionally to the water depth (see Section

2.4). If we consider small amplitude waves and therefore only small perturbations to the constant state

h0, we can ignore the slight variations in speed and obtain a linear system.

Expanding the flux function and dropping terms of order O(∥u∥2) yields the linear system

ut +Aux = 0 (3.9)

where A = f ′(u0). If u ≈ u∗, that is, we have a weak shock, we expect the linearized model to provide

good results. Hence, we show now that each curve has to be tangent to one eigenvector rp(u∗) for

p = 1,2. We use this fact to determine which curve corresponds to which shock.

20

If we multiply (3.7) by h and define α as the difference of h and h∗, i.e. h = h∗ + α, we obtain

hw = h∗w∗ + α
⎡⎢⎢⎢⎣
w∗ ±

√
h∗ (1 +

α

h∗
)(1 + α

2h∗
)
⎤⎥⎥⎥⎦
. (3.10)

Therefore, u is given by

u = u∗ + α
⎡⎢⎢⎢⎢⎣

1

w∗ ±
√
h∗ ±O(α)

⎤⎥⎥⎥⎥⎦
. (3.11)

As α → 0, u approaches u∗, since h ≈ h∗ and hw ≈ h∗w∗. In this case, we can neglect the O(α) term
and we find that these curves approach the point u∗ tangent to the vectors

⎡⎢⎢⎢⎢⎣

1

w∗ ±
√
h∗

⎤⎥⎥⎥⎥⎦
. (3.12)

Recall that these are the eigenvectors of the Jacobian matrix (2.32) for the shallow water system eval-

uated at u∗. Therefore, the curves are tangent to the eigenvectors rp(u∗) as we expected. Recall that

the vector with the “−” sign gives the first eigenvector r1(u∗) and the one with the “+” sign the second

one r2(u∗).
Hence, we can determine which equation in (3.11) refers to which shock. The one with the “−” sign

gives the Hugoniot locus of the 1-shock and the one with the “+” sign the locus of the 2-shock.

All-Shock Riemann Solution With the considerations above, we can determine the middle state um

between constant states ur and ul when the interfaces are shocks. Note that um has to be connected to

ul by a 1-shock and to ur by a 2-shock. Therefore, um must satisfy (3.10) with a “−” sign and u∗ = ul,
which is

hmwm = hlwl + α
⎡⎢⎢⎢⎣
wl −

√
hl (1 +

α

hl
)(1 + α

2hl
)
⎤⎥⎥⎥⎦
. (3.13)

Dividing this by hm and using α = hm − hl leads to

wm =
hl
hm

wl +
hm − hl
hm

⎡⎢⎢⎢⎢⎣
wl −

¿
ÁÁÀhl (1 +

α

2hl
+ α
hl
+ α2

2h2l
)
⎤⎥⎥⎥⎥⎦

= wl − (hm − hl)

¿
ÁÁÀ1

2

hl
h2m
(h

2
m + hlhm
h2l

)

= wl − (hm − hl)
√

1

2
(1

hm
+ 1

hl
).

(3.14)

Analogously, wm must satisfy (3.10) with a “+” sign and w∗ = wr which yields

wm = wr + (hm − hr)
√

1

2
(1

hm
+ 1

hr
). (3.15)

Note that both equations must be fulfilled in order for wm to be a valid middle state between shocks.

Therefore, we obtain a system of two equations with two unknowns hm and wm that needs to be solved.

21

Equating (3.14) and (3.15) yields

wl − (hm − hl)
√

1

2
(1

hm
+ 1

hl
) = wr + (hm − hr)

√
1

2
(1

hm
+ 1

hr
). (3.16)

This must be solved for the only remaining variable hm which can be done by using an iterative method

for nonlinear equations, e.g. Newton’s method.

3.4 Rarefaction Waves

As we have seen in the dam-break example (3.2), the solution can also contain smooth waves, so-

called rarefaction waves. Considering (3.1), it can easily be seen that the equation and the initial data

are scale-invariant, i.e. they are invariant under the map (x, t) → (kx, kt). Hence, we are looking for

scale-invariant solutions, i.e. solutions of the form

u(x, t) = û(x/t) = û(ξ) (3.17)

where ξ = x/t.
Inserting this in the original equation yields

ût + f(û)x = 0 ⇐⇒ − x
t2
û′ + 1

t
f ′(û)û′ = 0 ⇐⇒ f ′(û)û′ = x

t
û′. (3.18)

Therefore, û′ is an eigenvector of the Jacobian f ′(û) with eigenvalue x/t = ξ. Recall from Section 2.2

that f ′(û) has m eigenvectors r1, . . . , rm with corresponding eigenvalues λ1, . . . , λm and consequently

there exists a j ∈ {1, . . . ,m} such that (possibly after appropriate scaling)

û′(ξ) = rj(û(ξ)), λj(û(ξ)) = ξ. (3.19)

Hence, equation (3.18) becomes

f ′(û)û′ = λj(û)û′. (3.20)

We call a function û satisfying (3.20) an integral curve of the vector field rj .

From the second equation in (3.19), we see that if û(ξl) = ul and û(ξr) = ur for ξl, ξr ∈ R, then ξl = λj(ul)
and ξr = λj(ur). Hence, if we assume

û(λj(ul)) = ul, û(λj(ur)) = ur (3.21)

the function û(x/t) continuously connects the given state ul to ur for a fixed time t. Hence, ξ =
λj(û(x/t)) must increase which yields λj(ul) < λj(ur).
In summary, we obtain a rarefaction wave, i.e. a solution of the form

u(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ul, x ≤ tλj(ul)
û(x/t), tλj(ul) ≤ x ≤ tλj(ur)
ur, x ≥ tλj(ur)

(3.22)

22

where û is required to fulfill (3.19) and (3.21).

Note that (3.19) fixes the normalization of the eigenvector rj(u) to

∇λj(u) ⋅ rj(u) = 1. (3.23)

Hence, the wave family must be genuinely nonlinear in order for this normalization to be possible.

This leads to the following theorem from [9].

Theorem 3.1 (Genuinely Nonlinear Waves). Let D be a domain in Rn. Assume the equation (3.1a) is

strictly hyperbolic and the j-th wave family is genuinely nonlinear. Hence, we can find a scaling of the

j-th eigenvector rj of the Jacobian f ′(u) with corresponding eigenvector λj(u) such that

∇λj(u) ⋅ rj(u) = 1 (3.24)

for u ∈D.

Now, let ul ∈D. Then, there exists a curve Rj(ul) emanating from ul such that for each ur ∈ Rj(ul) the
rarefaction wave (3.22) is a solution for the Riemann problem (3.1) where û satisfies (3.19) and (3.21).

In the following, we derive the explicit formula for computing rarefaction waves for the shallow water

system.

Recall from Section 2.4 that

∇λj(u) ⋅ rj(u) = ∓
3

2

√
1/h ≠ 0, ∀u (3.25)

and hence both wave families are genuinely nonlinear. Therefore, we can normalize the eigenvectors in

order to satisfy (3.24) and we redefine r1, r2 in the following by

r1 = −
2

3

√
h
⎛
⎝

1

w −
√
h

⎞
⎠

(3.26a)

r2 =
2

3

√
h
⎛
⎝

1

w +
√
h

⎞
⎠
. (3.26b)

Since û′(ξ) = rj(û(ξ)), for r1 we obtain the two ordinary differential equations

h′(ξ) = −2
3

√
h(ξ) (3.27)

q′(ξ) = −2
3

√
h(ξ) (q(ξ)

h(ξ)
−
√
h(ξ)) . (3.28)

Recall that q = wh. Using the chain rule, we see that this implies

dq

dh
= dq
dξ

dξ

dh
= q
h
−
√
h = λ1. (3.29)

Integrating this yields

q = q(h) = ql
h

hl
− 2h(

√
h −
√
hl) (3.30)

for a given state ul = (hl, ql). If we insert this formulation for q in λ1, we can derive that h < hl is
necessary in order for λ1(u) to increase.

23

We proceed similarly for the second wave family to derive h > hr in this case.

For r2, we obtain

q = q(h) = qr
h

hr
+ 2h(

√
h −
√
hr) (3.31)

for a given state ur = (hr, qr).
In summary, we obtain the following formulas for computing rarefaction waves in terms of h in the first

and second wave family for the shallow water system:

1-wave: q = R1(h;ul) = ql
h

hl
− 2h(

√
h −
√
hl) for h ∈ (0, hl] (3.32a)

2-wave: q = R2(h;ul) = ql
h

hl
+ 2h(

√
h −
√
hl) for h ∈ (hl,∞) (3.32b)

While the expressions above follow for any normalization of the eigenvectors, we have to use (3.26a)

when we want to compute the rarefaction waves in terms of ξ. With similar transformations as above,

we obtain

û1(ξ) = R1(ξ, ul) =
⎛
⎝

1
9
(wl + 2

√
hl − ξ)2

1
27
(wl + 2

√
hl + 2ξ)(wl + 2

√
hl − ξ)2

⎞
⎠

(3.33a)

for a 1-rarefaction with ξ ∈ [wl −
√
hl,wl + 2

√
hl) and

û2(ξ) = R2(ξ, ul) =
⎛
⎝

1
9
(−wl + 2

√
hl + ξ)2

1
27
(wl − 2

√
hl + 2ξ)(−wl + 2

√
hl + ξ)2

⎞
⎠

(3.33b)

for a 2-rarefaction with ξ ∈ [λ2(ul),∞).
In conclusion, we can compute the exact solution to the Riemann problem (3.1) in the case of rarefactions

by using the formula

u(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ul for x ≤ λj(ul)t
Rj(ξ;ul) for λj(ul)t ≤ x ≤ λj(ur)t
ur for x ≥ λj(ur)t

. (3.34)

Middle States between Rarefactions Now, we derive the formulas to determine the middle state um

explicitly. Later, we use them in combination with the ones for shocks to determine the correct middle

state despite the combination of waves.

Recall that we can determine the middle state between two shocks by computing the intersection of

the Hugoniot-loci. The procedure of computing the middle state is similar for rarefactions. Note that

dividing (3.32a) by h implies that wm must satisfy

wm = wl − 2(
√
hm −

√
hl) (3.35a)

wm = wr + 2(
√
hm −

√
hr) (3.35b)

if we assume to have two rarefactions. Hence, we obtain two curves, one referring to all states that can

be connected to ul through a 1-rarefaction and analogously one that can be connected to ur through a

2-rarefaction. Therefore, we can determine the middle state wm as the intersection of both curves.

24

Note that we have two equations and two unknowns, wm and hm. Equating the right-hand sides and

solving for hm yields

hm =
1

16
[wl −wr + 2(

√
hl +
√
hr)]2. (3.36)

Then, we can compute wm by using either the first or the second equation in (3.35).

In conclusion, we can determine

um =
⎡⎢⎢⎢⎢⎣

hm

hmwm

⎤⎥⎥⎥⎥⎦
(3.37)

using (3.36) in (3.35).

3.5 Determining the Middle State

We already examined how the middle state can be determined provided the 1-wave and the 2-wave are

of the same kind. Now, we also need to include the case that the 1-wave is a rarefaction and the 2-wave

a shock. Note that in this situation, the middle state must lie on the integral curve for r1 through ul

as well as on the Hugoniot-locus for ur. Again, we can determine um as the intersection of both curves.

This works analogously when the two waves change type.

Recall that in general, we do not know which combination of rarefactions and shock waves appears for

given initial data.

Therefore, define the two functions

ϕl(h) =
⎧⎪⎪⎨⎪⎪⎩

wl + 2(
√
hl −
√
h) if h ≤ hl,

wl − (h − hl)
√

1
2
(1
h
+ 1
hl
) if h > hl

(3.38a)

and

ϕr(h) =
⎧⎪⎪⎨⎪⎪⎩

wr − 2(
√
hr −

√
h) if h ≤ hr,

wr + (h − hr)
√

1
2
(1
h
+ 1
hr
) if h > hr

. (3.38b)

The first case in each function returns the value for w such that (h,hw) can be connected to the

respective given data ur or ul by a physically correct rarefaction wave while the second case returns

the value for w through a shock wave. Therefore, for a given state h the first function ϕl(h) returns
the value of w such that (h,hw) can be connected to (hl, hlwl) by a physically correct 1-wave and the

second ϕr(h) the one that can be connected to (hr, hrwr) by a correct 2-wave.

We have to find the suitable state um such that it can be connected to ur as well as to ul in a physically

correct manner. Therefore, we have to solve ϕl(hm) = ϕr(hm). Note that this is a nonlinear equation.

It can be solved by applying a nonlinear root-finder to the function ϕ(h) = ϕl(h) − ϕr(h).

25

4 Finite Volume Method

The finite volume method is a numerical method for solving hyperbolic conservation laws. It relies on

the integral form of the conservation law and is therefore particularly suited for handling instabilities in

the solution. The method is based on the idea of dividing the computational domain into grid cells. In

each of these cells, the average value of the conserved variable u should be approximated. Since these

values only change due to fluxes through the interfaces of the cells, a numerical flux function is applied

to approximate them accurately.

For simplicity, we will only discuss the finite volume method in the case of one space dimension with a

uniform grid where the grid cells are intervals of length ∆x. For now, we also assume to have a fixed

time step ∆t. This approach can easily be extended to a multi-dimensional scenario or to the case of a

nonuniform grid.

4.1 General Formulation

The formulation of finite volume methods for conservation laws is based on Chapter 4.1 in [5] and the

preface of Chapter 10 in [8].

The general idea is based on dividing the spatial domain into grid cells which refer to intervals in the

one-dimensional case. We define the points (xj , tn) by

xj = j ⋅∆x, j = . . . , −1, 0, 1, 2, . . . (4.1)

tn = n ⋅∆t, n = 0, 1, 2, . . . (4.2)

Thus, we derive the grid points

xj+1/2 = xj +
∆x

2
= (j + 1

2
)∆x. (4.3)

The j-th grid cell is now defined by Cj = [xj−1/2, xj+1/2) where the Cj ’s form a partition on the com-

putational domain. Furthermore, let unj = u(xj , tn) denote the pointwise value of the actual solution.

Then, the average value in every cell Cj at time tn denoted by ūnj is given by

ūnj =
1

∆x
∫

xj+1/2

xj−1/2
u(x, tn)dx. (4.4)

Note that we cannot evaluate the interval exactly since the solution u is unknown. With the finite

volume method we want to develop approximations Unj ∈ Rm to the average cell value (4.4).

Since the conservation law holds in every interval, the conserved variable u(x, t) changes only due to

fluxes at the boundaries of the respective cell. Therefore, we can describe the change of u by

d

dt
∫

xj+1/2

xj−1/2
u(x, t)dx = f(u(xj−1/2, t)) − f((xj+1/2, t)). (4.5)

We can use this expression to develop an explicit time-marching algorithm. That is, the approximation

Un+1j depends only on the approximation of the cell average in the previous time step Unj . By integrating

26

tn

tn+1

xj−1/2 xj+1/2
Unj−1 Unj Unj+1

Un+1j

Fnj−1/2 Fnj+1/2

Cj

Figure 4.1: Scheme for updating the cell average Unj using the fluxes from adjacent cells.

over the interval [tn, tn+1], we obtain

∫
xj+1/2

xj−1/2
u(x, tn+1)dx − ∫

xj+1/2

xj−1/2
u(x, tn)dx = ∫

tn+1

tn
f(u(xj−1/2, t))dt − ∫

tn+1

tn
f(u(xj+1/2, t))dt. (4.6)

Dividing by ∆x and using definition (4.4) yields the formula

ūn+1j = ūnj −
1

∆x
[∫

tn+1

tn
f(u(xj+1/2, t))dt − ∫

tn+1

tn
f(u(xj−1/2, t))dt]. (4.7)

This describes how the solution for time step tn can be evolved to tn+1. However, in general, we cannot

compute the right-hand side of this equation, since the required value of the true solution is unknown.

Nevertheless, it suggests studying numerical methods of the form

un+1j = unj −
∆t

∆x
[Fnj+1/2 − F

n
j−1/2] (4.8)

where Fnj±1/2 denotes the approximation to the average flux along xj±1/2 as illustrated in Figure 4.1, i.e.

Fnj±1/2 ≈
1

∆t
∫

tn+1

tn
f(u(xj±1/2, t))dt. (4.9)

Note that we used the integral form of conservation laws to derive the update formula (4.8), which is

the necessary form for modeling discontinuous solutions.

We can now assume that Fnj−1/2 depends only on the average cell values Unj−1 and Unj on each side of the

interface since information propagates with finite speed of the eigenvalues in hyperbolic systems and we

can choose the time step accordingly. In particular, we choose the time step such that it satisfies the

Courant–Friedrichs–Lewy condition (CFL condition)

∆t

∆x
max
i∈Z
∣f ′(ui)∣ = c (4.10)

where the CFL number c must fulfill c < 1.
We obtain

Fnj−1/2 = F(U
n
j−1, U

n
j) (4.11)

27

where F is a numerical flux function. Using this in (4.8) leads to the formula

un+1j = unj −
∆t

∆x
[F(Unj , Unj+1) −F(Unj−1, Unj)]. (4.12)

Even though the specific method depends on the choice of F , in general, we receive a three-point stencil,

that is, Un+1j is based only on the average values of the neighboring cells Unj−1, U
n
j and Unj+1 at the

previous time step.

Note that in semi-discrete form, we can consider finite volume methods as follows

d

dt
ui +

Fi+1/2 − Fi−1/2
∆x

= 0. (4.13)

The choice of the numerical flux function crucially influences the quality of the resulting solution. In

the numerical examples in Chapter 10, we compare a solution to the ELW scheme to the one obtained

by the TeCNO scheme. We will see that there are visible improvements for the TeCNO scheme, it

reduces spurious oscillations in the vicinity of shocks, even though both schemes are entropy stable and

high-order accurate.

Remark that in order to achieve a higher order of accuracy in the numerical method (4.13), we also

need a suitable method to integrate in time. For this purpose, we use Runge-Kutta and strong stability

preserving Runge-Kutta methods. We explain them in detail in Chapter 10.

4.2 Pseudocode

This section describes our implementation of the finite volume method that can be found in the code

accompanying this thesis.

Each run of the finite volume method requires a Grid that is initialized at the beginning of each run

using the file grid.py. It fixes the following parameters:

• the order that is used in the specific run

• start, end of the computational domain including ghost cells on either side

• ∆x for uniform grids

• list of grid points xi−1/2, i.e. the respective points in the computational domain

• number of grid points and grid cells, with and without ghost cells

Since updating the cells at the right and left side of the computational domain requires adjacent cell

states that can exceed the grid, we need to introduce p ghost cells on either side for a fixed order p.

They are not updated by the finite volume method but by applying an appropriate boundary condition.

For instance, if they are updated using periodic boundary conditions, the p ghost cells on the left side

copy the values of the p rightmost cells (excluding the ghost cells on the right side) and vice versa.

Furthermore, note that some of the functions necessary in the finite volume method depend on the

specific underlying conservation law, e.g. the computation of eigenvalues. The respective methods are

defined in the function initialize fvm(). The correct equation is fixed in main.py and chosen from the

enumeration EquationKind given in basics.equation kind.py that contains all implemented conservation

laws, i.e. the linear advection equation (2.13), Burger’s equation (2.15), the linear wave equation (2.16)

28

and the shallow water system (2.27).

The finite volume method is implemented in solver.finite volume method.py and works as follows:

Algorithm 1 finite volume method()

Performs one run of the finite volume method on intervals for order order and nr gridcells grid cells up

to time end time. The initial function is given by initial function and the kind of conservation law is

determined by the enumeration EquationKind.

1: initialize fvm() ▷ initializes e.g. the grid, cell averages and fluxes

2: t = start time

3: while t < end time do

4: ∆t = compute.cfl condition()

5: cell averages = fvm timestep() ▷ update cell averages with respect to the required order

6: t = t +∆t
7: optional: plot current solution in folder plots

8: end while

9: cut off ghost cells

10: return cell averages

At the beginning of a finite volume run, some parameters are initialized by the function initialize fvm()

in basics.initialize.py.

Algorithm 2 initialize fvm()

Initializes the finite volume method run.

1: define numerical flux function ▷ e.g. TeCNO, Lax-Friedrichs or Godunov flux

2: initialize uniform grid

3: compute initial cell averages depending on the initial function

4: pre-allocate memory for the fluxes

5: delete all current files in folder plots

6: plot initial cell averages in plots

7: if necessary: define k and αk in (7.2) ▷ e.g. for TeCNO or ELW scheme

29

5 First Order Entropy Conservative and Entropy Stable Methods

In this section, we consider a specific type of finite volume method satisfying a discrete version of the

entropy admissibility criterion (2.54) for convex entropy pairs (η, q), so-called entropy stable methods.

In 1971, Lax proved that the Lax-Friedrichs method is entropy stable and that if the method converges

pointwise, the limit is the unique entropy solution [17]. In 1976, Harten et al. showed that in fact, all

monotone schemes for scalar conservation laws are entropy stable [18]. Later, Osher et al. developed

E-schemes which are designed such that they are entropy stable with respect to all convex entropy

pairs [19]. However, these schemes are at most first-order accurate. In order to develop higher-order

accurate entropy stable methods, Tadmor found a relation that guarantees that a method is entropy

conservative, i.e. it satisfies a discrete version of the entropy equality (2.52) [20,21]. They are automat-

ically second-order accurate and can even be extended to higher accuracy as shown by LeFloch et al.

in [22].

However, one issue that arises in entropy conservative methods is the lack of diffusion that causes oscil-

lations close to discontinuities. Even though adding numerical diffusion can prevent these oscillations, it

usually reduces the accuracy. We investigate this further in Chapter 7, but for now focus on first-order

accurate schemes. Additionally, we assume d = 1, i.e. the conservation law is one-dimensional. However,

the considerations can be generalized to more dimensions. This chapter is based on [7].

5.1 Conditions for Entropy Conservation and Stability

Definition 5.1. Let (η, q) be a convex entropy pair. We call the finite volume method (4.8) entropy

conservative if computed solutions satisfy the discrete entropy equality, a discrete version of the entropy

equality (2.52),

d

dt
η(ui) +

Qi+1/2 −Qi−1/2
∆x

= 0 (5.1)

where Qi+1/2 = Q(ui−n+1, . . . , ui+n) is a consistent 2n-point numerical flux function, i.e. Q(u, . . . , u) =
q(u). Furthermore, we call the finite volume method entropy stable if the solutions satisfy the discrete

entropy inequality, a discrete version of the entropy admissibility criterion (2.54),

d

dt
η(ui) +

Qi+1/2 −Qi−1/2
∆x

≤ 0. (5.2)

To obtain a discrete version of (2.56), sum (5.2) over i ∈ Z and integrate over t ∈ [0, T]. This yields

∑
i

η(ui(T))∆x ≤∑
i

η(ui(0))∆x. (5.3)

Thus, analogous to the continuous version, the total amount of entropy of an entropy stable scheme

decreases over time.

In the following, we discuss sufficient conditions for entropy conservation and stability. They play an

important role when we finally construct entropy stable and entropy conservative schemes.

First, we derive a representation of entropy conservative fluxes that can then be extended to an entropy

stable one. Afterwards, we investigate specific examples for scalar equations as well as for systems.

Define vi ∶= v(ui) and ψi ∶= ψ(vi). Similar to the computations (2.53) we performed to derive the

30

entropy equality (2.52), we multiply the second summand in (4.13) by vi:

vi ⋅
Fi+1/2 − Fi−1/2

∆x
=
(vi+1 + vi) ⋅ Fi+1/2 − (vi + vi−1) ⋅ Fi−1/2 − (vi+1 − vi) ⋅ Fi+1/2 − (vi − vi−1) ⋅ Fi−1/2

2∆x

=
vi+1/2 ⋅ Fi+1/2 − vi−1/2 ⋅ Fi−1/2

∆x
−
[[v]]i+1/2 ⋅ Fi+1/2 + [[v]]i−1/2 ⋅ Fi−1/2

2∆x

=
(vi+1/2 ⋅ Fi+1/2 − ψi+1/2) − (vi−1/2 ⋅ Fi−1/2 − ψi−1/2)

∆x

−
([[v]]i+1/2 ⋅ Fi+1/2 − [[ψ]]i+1/2) + ([[v]]i−1/2 ⋅ Fi−1/2 − [[ψ]]i−1/2)

2∆x

=
Qi+1/2 −Qi−1/2

∆x
−
ri+1/2 − ri−1/2

2∆x

(5.4)

where

Qi+1/2 = Q(ui+1, ui) ∶= vi+1/2 ⋅ Fi+1/2 − ψi+1/2 (5.5)

is the numerical entropy flux and

ri+1/2 ∶= [[v]]i+1/2 ⋅ Fi+1/2 − [[ψ]]i+1/2 (5.6)

is the local entropy production.

Hence, multiplying (4.13) by vi yields

d

dt
η(ui) +

Qi+1/2 −Qi−1/2
∆x

=
ri+1/2 + ri−1/2

2∆x
. (5.7)

If we now denote v(s) ∶= vi + s[[v]]i+1/2, we obtain

∫
1

0
[[v]]i+1/2 ⋅ ψ′(v(s))ds = ∫

1

0

d

ds
ψ(v(s))ds

= ψ(v(1)) − ψ(v(0))

= ψ(vi + (vi+1 − vi)) − ψ(vi)

= [[ψ]]i+1/2.

(5.8)

Furthermore, we have

ψ′(v) = f(u(v)) + v ⋅ f ′(u(v)) ⋅ u′(v) − q′(u(v)) ⋅ u′(v)

= f(u(v)) + v ⋅ f ′(u(v)) ⋅ u′(v) − η′(u(v)) ⋅ f ′(u) ⋅ u′(v)

= f(u(v))

(5.9)

where we first used the product and chain rule and then the definition of q′(u(v)) in (2.1).

Hence, we can write

ri+1/2 = [[v]]i+1/2 ⋅ Fi+1/2 − ∫
1

0
[[v]]i+1/2 ⋅ ψ′(v(s))ds

= ∫
1

0
[[v]]i+1/2 ⋅ Fi+1/2 − [[v]]i+1/2 ⋅ ψ′(v(s))ds

= ∫
1

0
[[v]]i+1/2 ⋅ (Fi+1/2 − f(u(v(s))))ds.

(5.10)

31

Using this in (5.7), we can deduce that the scheme is entropy stable according to Definition (5.1) if the

integrand is non-positive everywhere.

Definition 5.2. Define v(s) ∶= vi + s[[v]]i+1/2 for all vi+1, vi and all convex entropy pairs (η, q). If the

numerical flux F in (4.13) satisfies

[[v]]i+1/2 ⋅ (Fi+1/2 − f(u(v(s)))) ≤ 0, ∀ s ∈ [0,1], (5.11)

we call the scheme (4.13) an E-scheme.

For scalar conservation laws, this can be written as

sgn(ui+1 − ui)(Fi+1/2 − f(u)) ≤ 0, ∀ u ∈ [ui, ui+1] (5.12)

since

[[v]]i+1/2 = η′′(ξi+1/2)[[u]]i+1/2 for some ξi+1/2 ∈ [ui, ui+1] (5.13)

which follows from the mean value theorem

η′′(ξi+1/2) = v′(ξi+1/2) =
v(ui+1) − v(ui)

ui+1 − ui
. (5.14)

It has been shown by Osher in [19] that E-schemes for scalar conservation laws converge strongly to

the unique entropy solution. However, since it has also been shown that they are at most first-order

accurate, we cannot demand entropy stability with respect to all convex entropy pairs if we want the

scheme to be entropy stable and high-order accurate.

Hence, Tadmor focused on entropy conservation and proved the following theorem in 1987 [21].

Theorem 5.1. Consider (5.7) with ri+1/2 given as in (5.6). Hence, if F satisfies

[[v]]i+1/2 ⋅ Fi+1/2 = [[ψ]]i+1/2, ∀ i ∈ Z, (5.15)

the scheme (4.13) is entropy conservative with numerical entropy flux Q given by (5.5).

Furthermore, for scalar conservation laws, i.e. m = 1, the scheme is second-order accurate in smooth

regions of u.

Proof. The assumption above directly implies ri+1/2 = 0 and therefore the right-hand side in (5.7) is zero

and the scheme is entropy conservative according to Definition 5.1.

To prove the accuracy requirement, we need to show that

Fi+1/2 − Fi−1/2
∆x

= f(u(x))x∣x=xi
+O(∆x2). (5.16)

32

Assume m = 1. We can rewrite

Fi+1/2 =
Fi+1/2[[v]]i+1/2
[[v]]i+1/2

=
[[ψ]]i+1/2
[[v]]i+1/2

= 1

[[v]]i+1/2
∫

vi+1

vi
ψ′(v)dv

= 1

[[v]]i+1/2
∫

vi+1

vi
f(u(v))dv

(∗)= f(ui+1) + f(ui)
2

−
[[v]]2i+1/2

12
f ′′(ξi+1/2)

= f(ui+1) + f(ui)
2

−O(∣[[v]]i+1/2∣2)

(5.17)

with ξi+1/2 ∈ [vi, vi+1] where we used the trapezoidal rule to approximate the integral in (∗):

∫
b

a
g(x)dx = (b − a)g(a) + g(b)

2
− (b − a)

3

12
g′′(ξ) with some ξ ∈ [a, b]. (5.18)

Thus, we obtain

Fi+1/2 − Fi−1/2
∆x

= f(ui+1) − f(ui−1)
2∆x

+O(∆x2) = f(u(x))x∣x=xi
+O(∆x2). (5.19)

Similarly, the scheme is entropy stable if ri+1/2 ≤ 0 for all i ∈ Z, compare (5.7). We use this fact to

derive a certain form of fluxes that leads to entropy stable methods. Let Fi+1/2 be any numerical flux

and F̃i+1/2 a flux satisfying (5.15). Then, considering Fi+1/2 − F̃i+1/2, we see that there exists a matrix

Di+1/2 such that

Fi+1/2 = F̃i+1/2 −Di+1/2[[v]]i+1/2 (5.20)

since

Fi+1/2 − F̃i+1/2 = di+1/2 = d̃i+1/2[[ψ]]i+1/2 = d̃i+1/2F̃Ti+1/2[[v]]i+1/2 =∶ −Di+1/2[[v]]i+1/2 (5.21)

where d̃i+1/2 = 1
[[ψ]]i+1/2

di+1/2 and Di+1/2 = −d̃i+1/2F̃Ti+1/2.
Hence, this results in the following theorem from [21].

Theorem 5.2. Let Di+1/2 ≥ 0. The, the scheme with flux (5.20) is entropy stable with numerical entropy

flux

Qi+1/2 = vi+1/2 ⋅ F̃i+1/2 − ψi+1/2 − vi+1/2 ⋅Di+1/2[[v]]i+1/2. (5.22)

Proof. Since F̃i+1/2 satisfies (5.15), we have

ri+1/2 = [[v]]i+1/2 ⋅ (F̃i+1/2 −Di+1/2[[v]]i+1/2) − [[ψ]]i+1/2
= −[[v]]i+1/2 ⋅Di+1/2[[v]]i+1/2 ≤ 0.

(5.23)

33

Hence, the scheme is entropy stable according to (5.7).

The theorem above showed that finite volume schemes with numerical fluxes of the form (5.20) where

Di+1/2 is a nonnegative matrix are always entropy stable. This suggests constructing entropy stable

schemes by finding an entropy conservative flux F̃ fulfilling (5.15) and adding numerical diffusion. In

the following sections, we first consider scalar conservation laws where the construction is simple. In

the case of systems, however, this becomes more complicated.

5.2 Entropy Stable Methods for Scalar Equations

First, we consider scalar, one-dimensional conservation laws, i.e. m = 1 = d. Using condition (5.15),

define the entropy conservative flux as

F̃i+1/2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[[ψ]]i+1/2
[[v]]i+1/2

if ui ≠ ui+1
f(ui) if ui = ui+1

(5.24)

for a given convex entropy pair (η, q). Hence, each pair gives rise to a unique three-point entropy

conservative scheme.

Let’s consider specific examples in the following. As explained in Section 2.5, it is reasonable to use the

square entropy η(u) = u2

2
since all convex functions give rise to an entropy pair in the scalar case and

the square entropy reduces the resulting entropy variable to v(u) = u.

Linear Advection Consider the linear advection equation (2.13). Using the square entropy leads to

q(u) = ∫
u

0
η′(s)f ′(s) ds = ∫

u

0
as ds = au

2

2
(5.25)

and hence

ψ(u) = v ⋅ f(u) − q(u) = au2 − au
2

2
= au

2

2
. (5.26)

Thus, the entropy conservative flux takes the form

F̃i+1/2 =
a

2

[[u2]]i+1/2
[[u]]i+1/2

= a
2

(ui+1 − ui)(ui+1 + ui)
ui+1 − ui

= aui+1/2 (5.27)

Burger’s Equation Now, consider Burger’s equation (2.15). Again, we use the square entropy which

yields

q(u) = ∫
u

0
η′(s)f ′(s) ds = ∫

u

0
s2 ds = u

3

3
(5.28)

and hence

ψ(u) = v ⋅ f(u) − q(u) = u
3

2
− u

3

3
= u

3

6
. (5.29)

34

Thus, the corresponding entropy conservative flux is given by

F̃i+1/2 =
u2i+1 + ui+1ui + u2i

6
(5.30)

To construct entropy stable methods, we will now use (5.20). Depending on the underlying conservation

law, we can use either (5.27) or (5.30) as entropy conservative flux F̃i+1/2. Recall from (5.13) that there

exists a ξi+1/2 such that

η′′(ξi+1/2)[[u]]i+1/2 = [[v]]i+1/2. (5.31)

Hence, for all Di+1/2 ≥ 0, we have Pi+1/2 ∶= η′′(ξi+1/2)Di+1/2 ≥ 0 since η is convex. Therefore, we can rewrite

(5.20) as

Fi+1/2 = F̃i+1/2 − Pi+1/2[[u]]i+1/2. (5.32)

Now, we may choose Pi+1/2 to be any nonnegative number. Two examples of different choices are the

Lax-Friedrichs diffusion

Pi+1/2 ∶=
1

2
max
j∈Z
(∣f ′(uj)∣) (5.33)

and the local Lax-Friedrichs diffusion

Pi+1/2 ∶=
1

2
max(∣f ′(ui)∣, ∣f ′(ui+1∣). (5.34)

In summary, we can now construct entropy stable methods for scalar conservation laws. Equation (5.15)

provides us with an easy opportunity to compute entropy conservative fluxes and we gave two exemplary

formulas, for the linear advection and Burger’s equation. In the second half of this section, we discussed

the diffusion term for scalar equations and presented two specific diffusion matrices (5.33) and (5.34)

that can be used in the construction of entropy stable schemes.

5.3 Entropy Stable Methods for Systems

While the construction of entropy stable fluxes for scalar conservation laws was quite straightforward,

it is more complicated for systems of equations. We start by investigating entropy conservative fluxes

and constructing them for two different application areas. Then, we discuss how they can be extended

to entropy stable schemes.

For m = 1, condition (5.15) could easily be solved for F̃i+1/2. However, for m > 1, (5.15) is a scalar

equation with m unknowns F̃ 1
i+1/2, . . . , F̃

m
i+1/2 and can therefore in general not be uniquely solved.

Tadmor showed in [21] that a general solution F̃i+1/2 is given as follows

F̃i+1/2 ∶= ∫
1

0
f(u(v(s))) ds (5.35)

35

where again v(s) ∶= vi + s[[v]]i+1/2 for given ui+1, ui. This can be motivated by noting

[[ψ]]i+1/2 = ∫
1

0

d

ds
ψ(v(s)) ds

= (v(1) − v(0)) ⋅ ∫
1

0
ψ′(v(s)) ds

= [[v]]i+1/2 ⋅ ∫
1

0
f(u(v(s))) ds

(5.36)

and comparing this to (5.15).

Even though we now have a formula for explicitly calculating an entropy stable flux function, in practice

the integral is difficult to evaluate even for simple problems.

Linear Wave Equation First, consider the linear wave equation (2.16). As mentioned in Section 2.5,

η(u) = 1

2
((u1)2 + (u2)2) , q(u) = au1u2 (5.37)

is a corresponding convex entropy pair. Hence, the entropy variable is given by v(u) = u and (5.35)

leads to the entropy conservative flux

F̃i+1/2 = ∫
1

0
A(ui + s[[u]]i+1/2) ds =

1

2
(Aui+1 +Aui) (5.38)

Shallow Water Equation Consider the shallow water system (2.27) and the entropy pair given in

(2.58). Then, the entropy variable and the entropy potential are given in (2.59). Hence, (5.15) with

F̃i+1/2 = (F̃ 1
i+1/2, F̃

2
i+1/2) becomes

F̃ 1g[[h]] − 1

2
F̃ 1[[w2]] + F̃ 2[[w]] = 1

2
g[[h2w]]. (5.39)

For simplicity, we omit the lower indices here. Using (1.2) yields

F̃ 1g[[h]] − 1

2
F̃ 1 (2[[w]]w) + F̃ 2[[w]] − 1

2
g (2[[h]]hw + [[w]]h2) = 0

⇐⇒ g[[h]] (F̃ 1 − hw) + [[w]] (−F̃ 1w + F̃ 2 − 1

2
gh2) = 0.

(5.40)

Then, the flux

F̃i+1/2 =
⎛
⎝
F̃ 1
i+1/2

F̃ 2
i+1/2

⎞
⎠
=
⎛
⎝

hi+1/2wi+1/2

hi+1/2w
2
i+1/2 +

1
2
gh2i+1/2

⎞
⎠

(5.41)

satisfies (5.15) and hence, the corresponding finite volume scheme is entropy conservative.

However, choosing F 1
i+1/2 differently results in another entropy conservative flux, e.g.

F̃i+1/2 =
⎛
⎝
F̃ 1
i+1/2

F̃ 2
i+1/2

⎞
⎠
=
⎛
⎝

hwi+1/2

hwi+1/2wi+1/2 + 1
2
g(hi+1hi)

⎞
⎠
. (5.42)

Finally, we obtain the following lemma from [23,24].

Lemma 5.1. Consider the shallow water equations with corresponding entropy pair (2.58). Then, the

36

finite volume scheme (4.13) with the numerical flux function (5.41) or (5.42) is second-order accurate

and entropy conservative.

Since we are now capable of constructing entropy conservative fluxes for systems, we can use (5.20)

and add numerical diffusion to obtain entropy stable methods.

However, we still do not know how exactly we need to choose the matrix Di+1/2. Based on existing finite

volume methods, we present two different possibilities for diffusion terms. However, in general, every

positive matrix works.

If we extend (5.33) to systems, we obtain the Lax-Friedrichs flux

Fi+1/2 ∶=
f(ui+1) + f(ui)

2
−
ci+1/2

2
[[u]]i+1/2 (5.43)

where ci+1/2 =maxk=1,...,m(∣λk(ui+1)∣, ∣λk(ui)∣) is the maximum of the absolute values of the eigenvalues

of f ′(u) evaluated at u = ui+1 and u = ui.
Similarly, an extension of (5.34) is given by the local Lax-Friedrichs flux

Fi+1/2 ∶=
f(ui+1) + f(ui)

2
− 1

2
Ri+1/2∣Λi+1/2∣R−1i+1/2[[u]]i+1/2 (5.44)

where Ri+1/2 ∶= (r1(ui+1/2), . . . , rm(ui+1/2)) is the matrix of eigenvectors and

∣Λi+1/2∣ ∶= diag(∣λ1(ui+1/2)∣, . . . , ∣λm(ui+1/2)∣) (5.45)

is the absolute value of the eigenvalue matrix of f ′(ui+1/2).
Both presented diffusion terms have the generic form

Ri+1/2Ai+1/2R
−1
i+1/2[[u]]i+1/2 (5.46)

where Ai+1/2 is a nonnegative matrix. However, we want to adapt this expression such that we obtain a

diffusion term of the form (5.20).

We start by noting that heuristically, we can write

[[u]]i+1/2 ≈
du

dv
(vi+1/2)[[v]]i+1/2 (5.47)

for some vi+1/2. This is a heuristic generalization of the mean value theorem. Even though that usually

does not hold for vector-valued functions, in many cases one can find an intermediate value fulfilling

(5.47) with equality. In the other cases, we ignore the error of O(∣[[v]]∣).
To construct the diffusion coefficient in (5.20), we use the following lemma from [25].

Lemma 5.2. Let B = RAR−1 be a diagonalizable matrix and let S ∈ Rm×m be a symmetric positive

definite matrix such that BS is symmetric. Then, the columns of R can be scaled such that S = RRT .
In particular, it follows that BS = RART .

As mentioned in Section 2.5, du
dv

is a symmetric positive definite matrix and it right-symmetrizes

f ′(u(v)) = R(u(v))Λ(u(v))R(u(v))−1. Hence, the columns of the eigenvector matrix R(u(v)) can be

scaled such that du
dv
= R(u)R(u)T for all u = u(v). If we define Ri+1/2 ∶= R(u(vi+1/2)), we can rewrite

37

(5.46) as

Ri+1/2Ai+1/2R
−1
i+1/2[[u]]i+1/2 ≈ Ri+1/2Ai+1/2R

−1
i+1/2

du

dv
(vi+1/2)[[v]]i+1/2

= Ri+1/2Ai+1/2R−1i+1/2Ri+1/2R
T
i+1/2[[v]]i+1/2

= Ri+1/2Ai+1/2RTi+1/2[[v]]i+1/2.

(5.48)

Hence, defining the diffusion matrix in (5.20) by

Di+1/2 ∶= Ri+1/2Ai+1/2RTi+1/2 (5.49)

leads to an entropy stable method according to Theorem 5.2 since Ai+1/2 was assumed to be nonneg-

ative. In the following, we present three different particular choices of this matrix inspired by the

Lax-Friedrichs, the local Lax-Friedrichs and the Roe scheme. We denote the k-th eigenvalue of f ′(u)
by λk(u).

ELF: Define Ai+1/2 ∶= 1
2
c Im where c ∶= maxj∈Z(∣λ1(uj)∣, . . . , ∣λm(uj)∣). Thus, the diffusion matrix is

given by

Di+1/2 =
1

2
cRi+1/2R

T
i+1/2. (5.50)

ELLF: Now, define Ai+1/2 ∶= 1
2
ci+1/2 Im where ci+1/2 ∶= maxk=1,...,m(∣λk(uj+1)∣, ∣λk(uj)∣) now depends

only on the adjacent cell averages. This yields the diffusion matrix

Di+1/2 =
1

2
ci+1/2Ri+1/2R

T
i+1/2. (5.51)

ERoe: Define Ai+1/2 ∶= 1
2
∣Λi+1/2∣ with ∣Λi+1/2∣ as in (5.45). Hence, the diffusion matrix has the following

form:

Di+1/2 =
1

2
Ri+1/2∣Λi+1/2∣RTi+1/2 (5.52)

Since the shallow water equations are the conservation law we mainly focus on in this thesis, we compute

the explicit form of the scaled eigenvector matrix in this case. Recall that for this set of equations, the

vector of conserved variables is given by

u =
⎡⎢⎢⎢⎢⎣

h

hw

⎤⎥⎥⎥⎥⎦
(5.53)

and that u(v) denotes the inverse of v(u), i.e. u(v(u)) = u. Since v is given by (2.59), this yields

u(v) = u ((v1, v2)) =
1

g

⎡⎢⎢⎢⎢⎣

v1 + v22
2

(v1 + v22
2
) v2

⎤⎥⎥⎥⎥⎦
. (5.54)

Therefore, we obtain

du

dv
= 1

g

⎡⎢⎢⎢⎢⎣

1 v2

v2 (v1 + v22
2
) + v22

⎤⎥⎥⎥⎥⎦
= 1

g

⎡⎢⎢⎢⎢⎣

1 w

w w2 + gh

⎤⎥⎥⎥⎥⎦
. (5.55)

38

Using these considerations results in the following lemma [23].

Lemma 5.3. Consider the shallow water equation with corresponding entropy pair (2.58). Define

uv ∶=
du

dv
= 1

g

⎡⎢⎢⎢⎢⎣

1 w

w w2 + gh

⎤⎥⎥⎥⎥⎦
. (5.56)

If we define the scaled version of the eigenvector matrix of f ′(u) by

R = 1√
2g

⎡⎢⎢⎢⎢⎣

1 1

w −
√
gh w +

√
gh

⎤⎥⎥⎥⎥⎦
, (5.57)

we have RRT = uv.
For ui, ui+1 ∈ R+ ×R, we have

[[u]]i+1/2 = (uv)i+1/2[[v]]i+1/2 (5.58)

where

(uv)i+1/2 ∶=
du

dv
(v(ui+1/2)) =

1

g

⎡⎢⎢⎢⎢⎣

1 wi+1/2

wi+1/2 w2
i+1/2 + ghi+1/2

⎤⎥⎥⎥⎥⎦
(5.59)

with ui+1/2 = (hi+1/2, hi+1/2wi+1/2).

Thus, the entropy stable scheme for the shallow water system is the finite volume method (4.13) where

we use an entropy stable flux of the form (5.20) with an entropy conservative flux given by (5.41) or

(5.42), the diffusion matrix Di+1/2 defined by (5.50), (5.51) or (5.52) and the eigenvector matrix Ri+1/2

is given by (5.57) evaluated at h = hi+1/2 and w = wi+1/2.

In summary, in this chapter, we investigated all components that are necessary for constructing

entropy stable fluxes of the form (5.20). The entropy conservative flux can be computed by evaluating

the integral (5.35). Furthermore, we presented explicit solutions for the linear wave and the shallow

water equations. Afterwards, we introduced three different choices of diffusion matrices (5.50), (5.51)

and (5.52) that can be used in the diffusion term. Finally, we are now able to apply (5.20) to obtain

entropy stable fluxes for systems of equations.

39

6 Reconstruction

In this work, we want to derive high-order accurate, non-oscillatory and entropy stable methods. In

order to achieve this, we employ reconstruction methods. In general, reconstructions are used to find

piecewise approximations to a smooth function u from the given cell averages ûi of this function in every

grid cell i.

In finite volume methods, they are often applied to the cell averages computed in every time step of the

finite volume method to obtain well-balanced methods, i.e. methods that maintain a hydrostatic state

over a long period of time, or a higher order of accuracy [6]. In this thesis, however, we use them in the

derivation of the diffusion coefficient that smoothes the solution in the vicinity of shocks and therefore

allows us to construct a non-oscillatory method. This chapter is based on [6].

Definition 6.1. Let i ∈ I be a grid index, uj the cell-averaged states, µ ∈ N odd and x ∈ Ci.
A function

Ri ∈ C(Ci × (Rn)µ,Rn),

(x,ui−µ−1
2
, . . . , ui+µ−1

2
)↦ ureci (x) =Ri (x,ui−µ−1

2
, . . . , ui+µ−1

2
) (6.1)

satisfying

Ri(x,u, . . . , u) = u (6.2)

is called consistent reconstruction. If Ri additionally satisfies

1

∆xi
∫
Ci

Ri (x,ui−µ−1
2
, . . . , ui+µ−1

2
)dx = ui, (6.3)

i.e. the reconstruction Ri maintains the average cell value in the respective cell, it is called a conservative

consistent reconstruction.

As mentioned above, reconstructions are a common approach to obtaining methods of higher order

or well-balanced methods. In this case, they are applied in the process of updating the cell averages

across time steps in the finite volume method. Recall, that usually the update scheme is given by (4.12)

where the numerical flux function depends on the neighboring cell averages. However, when we work

with reconstructions they take the form

un+1j = unj −
∆t

∆x
[F(ũ−i+1, ũ+i) −F(ũ−i , ũ+i−1)] (6.4)

where

ũ+i ∶= ureci (xi+ 1
2
), ũ−i+1 ∶= ureci+1(xi+ 1

2
),

ũ+i−1 ∶= ureci−1(xi− 1
2
), ũ−i ∶= ureci (xi− 1

2
)

(6.5)

with urecj defined as in (6.1). Hence, the numerical flux function is now evaluated at the interface values

of the reconstruction instead of the adjacent cell averages.

However, note that in this work, the reconstructions are used in the construction of high-order entropy

stable methods as an extension to the jumps in the entropy variables evaluated at cell averages [[v]]i+1/2 =
vi+1 − vi (see Equation (5.20)). Hence, we are only interested in the jump of the reconstructed values

40

across the interfaces. In the following, the jump across xi+1/2 is denoted by

⟪v⟫i+1/2 ∶= v−i+1 − v+i = vi+1(xi+1/2) − vi(xi+1/2) (6.6)

where vi(⋅) denotes the reconstruction in cell Ci based on the surrounding entropy values {vj}j∈Z.

Definition 6.2. We call a conservative consistent reconstruction m-th order accurate if

u(x) −Ri (x,ui−µ−1
2
, . . . , ui+µ−1

2
) = O(hm) for x ∈ Ci, (6.7)

where uj denotes the cell average of any function u ∈ Cm(Rn) in the i-th cell with h >∆xi.

41

7 High-Order Entropy Stable Methods

In Chapter 5, we discussed the construction of first-order entropy stable methods. In this chapter

however, we adapt them to obtain higher-order methods as required in the TeCNO scheme based on [7].

As before, we interpret an entropy stable flux as a composition of an entropy conservative flux and a

diffusion term that depends on the entropy variables. Hence, we first investigate high-order entropy

conservative fluxes. While their construction is simple, the adaption of the diffusion term is more

involved. As in Chapter 5, we use different techniques for scalar conservation laws and systems.

7.1 High-Order Entropy Conservative Fluxes

The TeCNO scheme makes use of high-order entropy conservative fluxes. We have seen in Theorem 5.2

that F is an entropy stable numerical fluxes if it can be written in the form

Fi+1/2 = F̃i+1/2 −Di+1/2[[v]]i+1/2 (7.1)

where F̃ is an entropy conservative flux, Di+1/2 any positive matrix and v the entropy variable.

The entropy conservative fluxes we considered earlier are only second-order accurate. However, we can

follow the procedure developed by LeFloch, Mercier and Rohde in [22] and use linear combinations of

these fluxes as building blocks to construct high-order schemes. They derived the following theorem:

Theorem 7.1. For k ∈ N define the flux F̃ 2k by

F̃ 2k
i+1/2 =

k

∑
r=1

αkr

r−1

∑
s=0

F̃ (ui−s, ui−s+r) (7.2)

where F̃ (ui, uj) is a second-order accurate, entropy conservative flux and αk1 , . . . , α
k
r solve the k linear

equations

k

∑
r=1

rαkr = 1,
k

∑
r=1

r2s−1αkr = 0 for s = 2, . . . , k. (7.3)

Then, the finite volume scheme using this flux is 2k-th order accurate, i.e. for sufficiently smooth solu-

tions u we have

F̃ 2k(ui−k+1, . . . , ui+k) − F̃ 2k(ui−k, . . . , ui+k−1)
∆x

= f(u)x∣u=ui
+O(∆x2k). (7.4)

Furthermore, it is entropy conservative, i.e. it satisfies the discrete entropy identity

d

dt
η(ui(t)) +

Q̃2k
i+1/2 − Q̃

2k
i−1/2

∆x
= 0 (7.5)

with

Q̃2k
i+1/2 =

k

∑
r=1

αkr

r−1

∑
s=0

Q̃(ui−s, ui−s+r). (7.6)

Using this theorem, we employ the flux F̃ 2k as defined in (7.2) as the entropy conservative flux in the

42

construction of the entropy stable flux (5.20):

Fi+1/2 = F̃ 2k
i+1/2 −Di+1/2[[v]]i+1/2. (7.7)

In the following, we investigate the diffusion term Di+1/2[[v]]i+1/2. Recall that for Di+1/2 ≥ 0 the scheme

(5.20) is entropy stable according to Theorem 5.2. For D ≡ 0, we obtain a scheme with accuracy 2k, but

no numerical diffusion, hence the computed solution will exhibit oscillations around shocks. Even though

this would require no additional computational effort, it is not suitable for practical implementations.

Hence, we require a diffusion matrix Di+1/2 > 0. In the following, we first consider the ELW scheme

which makes use of a particular choice of diffusion for scalar equations. Since this scheme however still

produces spurious oscillations, we introduce reconstruction-based terms for scalar equations in Section

7.3 and for systems in Section 7.4.

7.2 Scalar ELW Scheme

If we choose

Di+1/2 = O([[v]]p−1i+1/2
) (7.8)

and 2k ≥ p, this results in a scheme with truncation error

O(∆x2k + ∣[[v]]∣p) = O(∆xp). (7.9)

Hence, it is p-th order accurate but still has at least some numerical diffusion. One example of such a

method is the ELWp (Entropy stable Lax-Wendroff) scheme. Here, the diffusion matrix is given by

Di+1/2 = ci+1/2∣[[v]]∣p−1 (7.10)

where

ci+1/2 =
1

2
max(∣f ′(ui)∣, ∣f ′(ui+1)∣) (7.11)

is determined by the local wave speeds. Hence, the ELWp scheme is p-th order accurate and entropy

stable according to Theorem 5.2. However, we now consider an example that points out the main

drawback of using this scheme.

Example: Burger’s Equation We consider Burger’s equation (2.15) on the computational domain

[−1,1] with periodic boundary conditions, a CFL number of 0.2 and initial data of the form

u(x,0) = − sin(πx). (7.12)

The solution presented in Figure 7.1 results from numerically solving the equation with the ELW3

scheme. We compare it to the exact solution obtained by applying the method of characteristics.

Clearly, the ELW3 solutions have large oscillations around the shock, which motivates the derivation

and usage of high-order non-oscillatory reconstruction methods to prevent this phenomenon and obtain

a smoother solution around discontinuities.

43

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ELW3 (Solution at t=1)
#grid cells

64
Exact

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ELW3 (Solution at t=1)
#grid cells

128
Exact

Figure 7.1: The exact and the ELW3 solution to Burger’s equation on 64 and 128 grid cells at t = 1.

7.3 Reconstruction Based Entropy Stable Schemes: Scalar Equations

In the following, we derive necessary conditions for the reconstruction to obtain an entropy stable

scheme. First, we consider scalar equations and generalize this method to systems of equations in the

next section.

As introduced in Chapter 6, reconstruction procedures are used to reconstruct a function from its given

cell averages. We define a p-th order reconstruction as a map Ri ∶ {vj}j∈Z → vi(x) that produces a

polynomial of degree p − 1 and approximates the original function to order O(∆xp). Furthermore, we

require the map to be conservative as defined in (6.3).

In the following, instead of considering the jump in the average values [[v]]i+1/2 ∶= vi+1 − vi, we use

the jump in the reconstructed values denoted by ⟪v⟫i+1/2 = v−i+1 − v+i = vi+1(xi+1/2) − vi(xi+1/2) where
vk(x) = Rk({vj}j∈Z). Hence, when applying the reconstruction procedure, we are mainly interested in

the values at the cell interfaces.

Therefore, we now consider fluxes of the form

F p
i+1/2
= F̃ 2k

i+1/2 −Di+1/2⟪v⟫i+1/2. (7.13)

If Di+1/2 is continuous with respect to the cell averages the truncation error is given by O(∆x2k +∆xp).
Hence, for 2k ≥ p, the scheme is formally p-th order accurate.

To see that the scheme is entropy stable, we use Lemma 5.2. First, we rewrite

Di+1/2⟪v⟫i+1/2 =Di+1/2

⟪v⟫i+1/2
[[v]]i+1/2

[[v]]i+1/2 =∶ D̃[[v]]i+1/2. (7.14)

Hence, if

⟪v⟫i+1/2
[[v]]i+1/2

≥ 0 (7.15)

and therefore Di+1/2
⟪v⟫i+1/2
[[v]]i+1/2

≥ 0, we can apply Lemma 5.2 to prove that the system is entropy stable.

Note that (7.15) can be written in the form

⟪v⟫i+1/2 = Bi+1/2[[v]]i+1/2 (7.16)

44

for a Bi+1/2 ≥ 0. Hence, the jump in the reconstructed values v+i , v
−
i+1 must have the same sign as the

jump in the original values vi, vi+1. We say that a reconstruction method satisfies the sign property if

the reconstructed cell interface values satisfy (7.16). Later, we investigate the ENO reconstruction, a

reconstruction procedure that fulfills the sign property and is, therefore, a suitable choice. However,

note that the reconstruction procedure is only used in the diffusion term, not for reconstructing the cell

averages in the entropy conservative flux F̃ 2k.

7.4 Reconstruction Based Entropy Stable Schemes: Systems of Equations

Now, we want to generalize the construction of entropy stable schemes to systems of equations.

The higher-order entropy conservative flux (7.2) can easily be extended to multiple equations by consid-

ering a vector-valued function. Hence, in the following, we focus on the generalization of the diffusion

term Di+1/2⟪v⟫i+1/2 since this construction is less trivial.

The first part of the diffusion term Di+1/2 is no longer a scalar but a non-negative matrix. As in Section

5.3, we consider matrices of the form

Di+1/2 = Ri+1/2Ai+1/2RTi+1/2 (7.17)

where Ri+1/2 is an invertible and Ai+1/2 ≥ 0 a diagonal matrix.

For systems of equations, we obtain the following generalization of the sign property (7.16) [7]:

Lemma 7.1. Let Di+1/2 be given by

Di+1/2 = Ri+1/2Ai+1/2RTi+1/2 (7.18)

with Ri+1/2 invertible, Ai+1/2 ≥ 0 diagonal. Furthermore, let vi(x) be a polynomial reconstruction of the

entropy variables in the cell Ci such that there exists a diagonal matrix Bi+1/2 ≥ 0 with

⟪v⟫i+1/2 = (RTi+1/2)
−1Bi+1/2R

T
i+1/2[[v]]i+1/2. (7.19)

Then the scheme with numerical flux (7.13) is entropy stable with numerical entropy flux

Qp
i+1/2
= Q̃2k

i+1/2 −
1

2
vi+1/2 ⋅Di+1/2⟪v⟫i+1/2 (7.20)

with Q̃2k defined as in (7.6).

Proof. Multiplying the finite volume scheme (4.13) by vTi yields

d

dt
η(ui) = −

Q̃2k
i+1/2 − Q̃

2k
i−1/2

∆x
+
vTi Di+1/2⟪v⟫i+1/2 − vTi Di−1/2⟪v⟫i−1/2

∆x

= −
Qp
i+1/2
−Qp

i−1/2

∆x
−
[[v]]Ti+1/2Di+1/2⟪v⟫i+1/2 + [[v]]Ti−1/2Di−1/2⟪v⟫i−1/2

2∆x
.

(7.21)

Using (7.18), (7.19) and omitting indices for clarity, we obtain

[[v]]TD⟪v⟫ = [[v]]TRARTR−TBRT [[v]] = [[v]]TRABRT [[v]] = (RT [[v]])TAB(RT [[v]]) ≥ 0 (7.22)

since A,B ≥ 0. Hence, the scheme is entropy stable.

45

7.5 Reconstruction Along Scaled Entropy Variables

Using Lemma 7.1, we now want to construct a high-order accurate, entropy stable scheme for systems

of equations.

In this work, we use the ENO reconstruction explained in Chapter 8 as the reconstruction procedure

fulfilling the sign property necessary to construct high-order accurate entropy conservative fluxes. How-

ever, the application of the reconstruction is not trivial and therefore investigated in detail in this

section.

First, assume the entropy values vi, vi+1 and their reconstructed interface values v+i , v
−
i+1 are given.

Then, define the scaled entropy variables

w±i ∶= RTi±1/2vi, w̃±i ∶= RTi±1/2v
±
i . (7.23)

With ⟪w̃⟫i+1/2 = w̃−i+1 − w̃+i+1/2 = R
T
i+1/2⟪v⟫i+1/2 and ⟪w⟫i+1/2 = w−i+1 −w+i = RTi+1/2[[v]]i+1/2, the sign equation

for systems of equations (7.19) now takes the form

⟪w̃⟫i+1/2 = Bi+1/2⟪w⟫i+1/2, Bi+1/2 ≥ 0 diagonal. (7.24)

Hence, each component of w̃i satisfies the scalar sign property (7.16).

Note that the scaled entropy variables are centered at cell interfaces. Hence, to apply the ENO re-

construction (or any other reconstruction method R satisfying the sign property), we need to adapt

the procedure accordingly. Fix l ∈ {1, . . . ,m} and denote the l-th component of w and w̃ by z and z̃,

respectively. Thus, we have ⟪z⟫j+1/2 = z−j+1 − z+j . For each cell index i define αii = z−i and inductively

αij+1 = αij + ⟪z⟫j+1/2, for j = i, i + 1, . . . , (7.25a)

αij−1 = αij − ⟪z⟫j−1/2, for j = i, i − 1, (7.25b)

Analogously, define βii = z+i and inductively

βij+1 = βij + ⟪z⟫j+1/2, for j = i, i + 1, . . . , (7.26a)

βij−1 = βij − ⟪z⟫j−1/2, for j = i, i − 1, (7.26b)

However, the computation of the α′s can be simplified since

[[αi]]j+1/2 = αij+1 − αij = αij + ⟪z⟫j+1/2 − αij = ⟪z⟫j+1/2 (7.27)

and

[[βi]]j+1/2 = βij+1 − βij = βij + ⟪z⟫j+1/2 − βij = ⟪z⟫j+1/2, (7.28)

i.e. α and β retain the cell interface jumps of z.

Thus, it follows that

αi+1j = βij (7.29)

46

since
αi+1j − βij = αi+1j−1 − ⟪z⟫j−1/2 − βij−1 + ⟪z⟫j−1/2

= αi+1j−1 − βij−1 = ⋅ ⋅ ⋅ = αi+1i+1 − βii+1
= z−i+1 − βii − ⟪z⟫i+1/2
= z−i+1 − z+i − z−i+1 + z+i = 0

(7.30)

where we first recursively applied the inductive definition of α and β and canceled out the cell interface

jumps and then used the initial definitions αi+1i+1 = z−i+1 and βii = z+i .
Finally, we apply the reconstruction procedure R:
Define the reconstructions of αi and βi in the cell Cj as

Φij(x) ∶=Rj({αik}k∈Z) and Ψij(x) ∶=Rj({βik}k∈Z) (7.31)

respectively. Hence, the reconstructed values at the cell interfaces are given by

z̃−i ∶= Φii(xi−1/2) and z̃+i ∶= Ψii(xi+1/2). (7.32)

We repeat this procedure for each component l ∈ {1, . . . ,m} of wi±. Using the definitions of the scaled

entropy variables (7.23) yields the reconstructed values

v±i ∶= (RTi±1/2)
−1w̃±i . (7.33)

Lemma 7.2. Let the reconstruction procedure R satisfy the sign property (7.16). Then, the reconstructed

values (7.33) satisfy (7.19).

Proof. Using the definitions of the scaled entropy variables (7.23) yields

⟪v⟫i+1/2 = (RTi+1/2)
−1Bi+1/2R

T
i+1/2[[v]]i+1/2

⇐⇒ (RTi+1/2)
−1(w̃−i+1 − w̃+i) = (RTi+1/2)

−1Bi+1/2R
T
i+1/2(vi+1 − vi)

⇐⇒ ⟪w̃⟫i+1/2 = Bi+1/2⟪w⟫i+1/2.

(7.34)

From (7.29), we can deduce that the resulting functions of the reconstruction Φi+1 is equal to Ψi. As

above, we denote the l-th component of wi and w̃i by zi and z̃i, respectively. We obtain

⟪z̃⟫i+1/2 = z̃−i+1 − z̃+i = Φi+1i+1(xi+1/2) −Ψii(xi + 1/2) = Ψii+1(xi+1/2) −Ψii(xi+1/2)

=Ri+1({βik}k∈Z) −Ri({βik}k∈Z).
(7.35)

According to the sign property, this jump has the same sign as βii+1 − βii = ⟪z⟫i+1/2, i.e. there exists a

bi+1/2 ≥ 0 such that

⟪z̃⟫i+1/2 = bi+1/2⟪z⟫i+1/2 (7.36)

and hence (7.34) holds.

The procedure above can be performed to obtain the reconstructed values that are necessary for the

computation of the diffusion coefficient in (7.13). In total, we obtain

Di+1/2⟪v⟫i+1/2 = Ri+1/2Ai+1/2RTi+1/2(R
T
i+1/2)

−1⟪w̃⟫i+1/2 = Ri+1/2Ai+1/2⟪w̃⟫i+1/2. (7.37)

47

Hence, even though the construction of the reconstructed values (7.33) suggests it, it is not necessary

to compute the inverse of the matrix RTi+1/2. This is particularly useful since the computation of inverse

matrices is computationally expensive.

However, we can simplify the computation even further by noting that the ENO reconstruction is linear

with respect to constants, i.e.

Ri({c + vj}j∈Z) = c +Ri({vj}j∈Z for all c ∈ R. (7.38)

Fix k ∈ Z. Since

βii − βki = βii−1 + ⟪z⟫i−1/2 − βki−1 − ⟪z⟫i−1/2 = βii−1 − βki−1 = ⋅ ⋅ ⋅ = βij − βkj (7.39)

and therefore

βij = βkj + (βii − βki) for all j ∈ Z (7.40)

we obtain with the linearity property (7.38)

Ψij(x) = Ψkj (x) + (βii − βki) for all j ∈ Z, x ∈ Cj . (7.41)

Now, the jump in the reconstructed variables can be written as

z̃−i+1 − z̃+i = Φi+1i+1(xi+1/2) −Ψii(xi+1/2) = Ψii+1(xi+1/2) −Ψii(xi+1/2) = Ψki+1(xi+1/2) −Ψki (xi+1/2) (7.42)

Hence, instead of recomputing the {βij}’s for each grid cell i ∈ Z, it suffices to compute the reconstructed

values on only one fixed mesh {βkj }j∈Z.
In summary, we are now able to compute entropy stable fluxes of the form (5.20) for scalar equations

as well as for systems provided we have a reconstruction procedure satisfying the sign property (7.16).

In this work, we employ the ENO reconstruction procedure investigated in the following chapter.

48

8 ENO Reconstruction

The particular reconstruction method used in the TeCNO scheme is the Essentially Non-Oscillatory

(ENO) reconstruction procedure introduced in 1987 by Harten et al. [26]. Given the cell averages,

the ENO reconstruction produces a piecewise polynomial approximation to the original function. In

contrast to other reconstruction methods, it avoids Gibbs phenomenon, i.e. it does not produce spurious

oscillations near discontinuities.

Since the usual average operator

u↦ u =∑
i

ui1Ci (8.1)

with ui denoting the average value of u in each interval Ci = [xi−1/2, xi+1/2)

ui =
1

∣Ci∣ ∫Ci
u(x) dx (8.2)

is only first-order accurate, we use the ENO reconstruction to achieve a higher order of accuracy. This

is achieved by generating a piecewise (p − 1)-th order polynomial approximation ũ of a function from

its cell averages leading to a p-th order approximation.

Note that the ENO reconstruction fulfills the sign property, that is, the jump ũ−i+1−ũ+i of the reconstructed
values at the interface xi+1/2 has the same sign as the jump ui+1 − ui in the underlying constant states.

This is important since we want to apply this reconstruction technique later in the TeCNO scheme in

the construction of entropy stable fluxes (see Chapter 7).

First, we impose the following requirements that should be fulfilled by the reconstruction:

1. It approximates u up to order p, i.e.

u(x) = ũ(x) +O(hp) (8.3)

where h = max
i
∣Ci∣ = ∆x, since we only consider uniform grids. This requirement can be met by

using standard polynomial interpolation. If the original function is p times continuously differen-

tiable, the error in a polynomial is given by

u(x) − ũ(x) = u
(p)(ξ)
(n + 1)!

p−1

∏
i=0

(x − xi) = O(hp) (8.4)

where the xi’s are the middle points of the cells Ci.

2. It conserves the underlying cell averages, i.e.

ui =
1

∣Ci∣ ∫Ci
ũi(x) dx. (8.5)

We show that this can be done by performing the interpolation on the primitive U(x) = ∫
x
−∞

u(x) dx
of u.

3. Lastly, it should avoid Gibbs Phenomena, i.e. is non-oscillatory around discontinuities. This cri-

terion is met by interpolating over a variable stencil we investigate in detail in the following that

depends on the current data.

Let U(x) = ∫
x
−∞

u(s) ds denote the primitive of u. Even though the underlying function u might be

49

unknown, we can evaluate U at the cell interfaces:

Ui+1/2 = U(xi+1/2) = ∫
xi+1/2

−∞
u(s) ds =

i

∑
k=−∞

∫
x
k+ 1

2

x
k− 1

2

u(s) ds =
i

∑
k=−∞

∣Ck ∣ uk (8.6)

Furthermore, let Ũ be a function interpolating {Ui+1/2}i∈Z, i.e. Ũ(xi+1/2) = Ui+1/2, ∀j ∈ Z. Then, the

derivative ũ(x) ∶= Ũ ′(x) fulfills the conservation requirement (8.5):

1

∣Ci∣ ∫Ci
ũ(x) dx = 1

∣Ci∣ ∫Ci
Ũ ′(x) dx

= 1

∣Ci∣
[Ũ(xi+1/2) − Ũ(xi−1/2)]

= 1

∣Ci∣
[U(xi+1/2) −U(xi−1/2)]

= 1

∣Ci∣
[

i

∑
k=−∞

∣Ck ∣ uk −
i−1

∑
k=−∞

∣Ck ∣ uk]

= 1

∣Ci∣
[∣Ci∣ ui]

= ui

(8.7)

Hence, we define Ũi(x) as the p-th order polynomial interpolating the p + 1 point values Ur, . . . , Ur+p.

Note that the index r depends on the given data. The selection ensures the non-oscillatory behavior we

required earlier.

When the underlying data is sufficiently smooth, the primitive U can be interpolated on any set of

values {Ur, . . . , Ui−1/2, Ui+1/2, . . . Ur+p} and still fulfill the accuracy requirement. Note that the set must

contain the values Ui−1/2, Ui+1/2 in order to satisfy the conservation requirement.

However, note that we are interested in approximating piecewise smooth functions. To avoid spurious

oscillations, the respective stencil must be chosen with particular caution. Therefore, we use a data-

dependent index r = ri that depends on the smoothness of the underlying data.

8.1 Stencil Selection

Assume the 2p primitive values Ui−p+1/2, . . . , Ui+p−1/2 are given. Then, we can compute the left stencil

indices with the following algorithm:

Algorithm 3 Stencil selection

r0i = i − 1
2

for k = 0→ p − 2 do

if ∣U[xrki −1, . . . , xrki +k+1]∣ < ∣U[xrki , . . . , xrki +k+2]∣ then
rk+1i = rki − 1

else

rk+1i = rki
end if

end for

This is implemented in stencil selection() in recontruction.eno reconstruction.py.

50

Definition 8.1. First, compute the left stencil index rpi in each cell Ci according to Algorithm 3. Let

Ũi(x) be given by the Newton representation of the p-th degree interpolant

Ũi(x) =
p−1

∑
k=−1

U[xrki , . . . , xrki +k+1]
k

∏
m=0

(x − xrk−1i +m) (8.8)

where we set r−2i = r−1i = r0i = i − 1/2 Then, we define the p-th order ENO reconstruction ũ(x) ∶=
∑i ũi(x)1Ci(x) by

ũi(x) ∶= Ũ ′i(x) =
p−1

∑
k=0

U[xrki , . . . , xrki +k+1]
k

∑
l=0

k

∏
m=0
m≠l

(x − xrk−1i +m). (8.9)

8.2 ENO Sign Property

Theorem 8.1. Let p > 1 be a fixed integer and ũ(x) = ∑i ũi(x)1Ci(x) the p-th order ENO reconstruc-

tion with ũi defined as in (8.9). Furthermore, define by ũ+i ∶= ũi(xi+1/2) and ũ−i+1 ∶= ũi+1(xi+1/2) the

interface values of the reconstruction procedure at xi+1/2. Then, the following sign property holds across

all interfaces:

if ui+1 − ui > 0, then ũ−i+1 − ũ+i ≥ 0,
if ui+1 − ui < 0, then ũ−i+1 − ũ+i ≤ 0,
if ui+1 − ui = 0, then ũ−i+1 − ũ+i = 0.

(8.10)

Therefore, the jump in the reconstructed interface values has the same sign as the jump in the original

cell averages.

Furthermore, there is a constant c depending only on p and the mesh-ratio of adjacent grid cells

max∣j−i∣≤p (
∣Cj+1∣
∣Cj ∣
) such that

0 ≤ ũ
−
i+1 − ũ+i
ui+1 − ui

≤ c. (8.11)

For a proof of this theorem, see Section 5.2 in [7].

51

9 TeCNO Scheme

In this chapter, we introduce the TeCNO scheme, a high-order accurate, entropy stable finite volume

scheme. It was proposed by Fjordholm et al. in [1].

The TeCNO scheme is based on two essential components we investigated in detail in the previous

chapters. First, we constructed high-order accurate, entropy conservative fluxes using linear combina-

tions of second-order entropy conservative fluxes. Combining them with a diffusion matrix coupled with

an interface jump of reconstructed entropy variables yields an entropy stable numerical flux function.

Furthermore, we introduced the ENO reconstruction – a reconstruction procedure fulfilling the sign

property necessary in the diffusion term. Now, we combine all these components to obtain an entropy

stable method of arbitrary high order. In the next chapter, we verify the convergence rate numerically

and also display the non-oscillatory property of the method.

9.1 TeCNO Scheme for Scalar Conservation Laws

Definition 9.1. For p ∈ N, let k ∈ N be such that 2k ≥ p. Let F̃ be a two-point entropy conservative

flux and define F̃ 2k by

F̃ 2k
i+1/2 =

k

∑
r=1

αkr

r−1

∑
s=0

F̃ (ui−s, ui−s+r). (9.1)

Let Di+1/2 ≥ 0 and v±i ∶= vi(xi±1/2) be the cell interface values of the p-th order ENO reconstruction vi(x)
of the point values {vj}j∈Z where vi = v(ui) = η′(ui) denotes the entropy variable. Then, the TeCNOp

scheme is the finite difference scheme

d

dt
ui +

F p
i+1/2
− F p

i−1/2

∆x
= 0 (9.2)

with flux

F p
i+1/2
= F̃ 2k

i+1/2 −Di+1/2⟪v⟫i+1/2. (9.3)

Theorem 9.1. The TeCNOp scheme for scalar conservation laws is (formally) p-th order accurate and

entropy stable, with the numerical entropy flux

Qp
i+1/2
= Q̃2k

i+1/2 − vi+1/2Di+1/2⟪v⟫i+1/2 (9.4)

Proof. First, note that in smooth regions, we have ⟪v⟫i+1/2 = O(∆xp). Hence, the TeCNOp scheme is

p-th order accurate since F̃ 2k
i+1/2 is accurate to order 2k ≥ p. Furthermore, Theorem 5.2 shows the entropy

stability of the scheme. Note that this requires the sign property of the ENO reconstruction since it

ensures
⟪v⟫i+1/2
[[v]]i+1/2

≥ 0 (see (7.14)).

9.2 TeCNO Scheme for Systems of Equations

Definition 9.2. For p ∈ N, let k ∈ N be such that 2k ≥ p. Let F̃ be a two-point entropy conservative

flux and

Di+1/2 = Ri+1/2Ai+1/2RTi+1/2 (9.5)

with Ri+1/2 invertible and Ai+1/2 ≥ 0 a diagonal matrix. Furthermore, the values v±i refer to the recon-

structed entropy variables defined in (7.33) obtained by using the ENO reconstruction.

52

Then, the TeCNOp scheme is the finite volume scheme

d

dt
ui +

F p
i+1/2
− F p

i−1/2

∆x
= 0 (9.6)

with flux

F p
i+1/2
= F̃ 2k

i+1/2 −Di+1/2⟪v⟫i+1/2 (9.7)

where Di+1/2 is a nonnegative matrix and ⟪v⟫i+1/2 = v−i+1 − v+i .

Theorem 9.2. The TeCNOp scheme for systems of conservation laws is (formally) p-th order accurate

and entropy stable with numerical entropy flux

Qp
i+1/2
= Q̃2k

i+1/2 − vi+1/2 ⋅Di+1/2⟪v⟫i+1/2. (9.8)

Proof. The accuracy can be shown analogously to the scalar case. Furthermore, according to Theorem

7.1, the method is also entropy stable.

9.3 Pseudocode

The following section contains pseudocode for computing the numerical fluxes with the TeCNO scheme.

Algorithm 4 tecno flux()

Computes the numerical fluxes used in the update of the cell averages with the TeCNO scheme.

1: diffusion: computes the diffusion term using compute.diffusion scalar or compute.diffusion system

2: fluxes = higher order entropy conservative flux - diffusion

Note that the diffusion term in the case of scalar equations and systems uses the ELF-type diffusion

matrix per default. This can be changed by using either the ELLF() or the ERoe() function from

basics.compute.py. Furthermore, the diffusion type in compute.diffusion scalar can be changed such

that it uses the diffusion matrix for the ELW scheme.

In the next chapter, we numerically verify the convergence rate and non-oscillatory property of the

TeCNO scheme.

53

10 Numerical Examples – Interval

In the following section, we present our numerical results obtained by the TeCNO scheme. Most im-

portantly, we compute the numerical convergence rate and show that our method behaves the way we

expect it from the formal rate of convergence. For this, we require a reference solution to compare

our numerical results to. For certain problems such as the advection equation or initial Riemann data

for the shallow water equations, we analytically compute an exact solution that serves as a reference

solution. However, in general, we do not have access to a closed-form solution. Therefore, we need to

employ reference solutions computed on a very fine grid using the local Lax-Friedrichs method

un+1i = uni −
∆t

∆x
(F̃ni+1/2 − F̃

n
i−1/2) (10.1a)

with

F̃ni+1/2 =
1

2
(fi+1 + fi) − max

j=1,...m
(λj(ui+1), λj(ui)) (uni+1 − uni). (10.1b)

To increase the order of accuracy, we apply the minmod reconstruction procedure:

Rminmodi(x;ui−1, ui, ui+1) = ui +minmod(σLi , σri)(x − xi) (10.2)

where

σLi = 2
ui − ui−1

∆xi +∆xi−1
= ui − ui−1

∆xi
(10.3a)

σRi = 2
ui+1 − ui

∆xi +∆xi+1
= ui+1 − ui

∆xi
(10.3b)

and

minmod(a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a, if ∣a∣ ≤ ∣b∣ and ab > 0
b, if ∣b∣ < ∣a∣ andab > 0
0, if ab ≤ 0

. (10.4)

Note that the reconstruction procedure is applied to each component of the cell averages separately for

systems of equations. Finally, this results in a second-order accurate method.

For the integration in time we use strong stability preserving Runge-Kutta methods [27] for order two

and three and for order four and five the respective Runge-Kutta method.

Strong stability preserving Runge-Kutta methods consist of subsequent applications and convex combi-

nations of forward Euler steps. The second-order method takes the form

u(1) = un − ∆t

∆x
L(un) (10.5a)

un+1 = 1

2
(un + u(1) − ∆t

∆x
L(u(1))) (10.5b)

where

L(u)i = Fi+1/2 − Fi−1/2 (10.6)

54

denotes the flux at the interface i computed using the respective cell averages u.

Similarly, the third-order strong stability preserving Runge-Kutta scheme is given by

u(1) = un − ∆t

∆x
L(un) (10.7a)

u(2) = 3

4
un + 1

4
(u(1) − ∆t

∆x
L(u(1))) (10.7b)

un+1 = 1

3
un + 2

3
(u(2) − ∆t

∆x
L(u(2))) (10.7c)

with L(u) as defined above.

Since the computation of a fourth- and fifth-order strong stability preserving Runge-Kutta method

involves negative coefficients and is therefore computationally expensive, we use the standard fourth-

and fifth-order Runge-Kutta method in this case.

They are all implemented in update() in the file basics.time integration.py. If the passed order is not an

integer in {1, . . . ,5}, the program raises an exception.

Furthermore, for the stability of the system, we require that the CFL-number

c = ∆t

∆x
max
i∈Z
∣f ′(ui)∣ (10.8)

is less than one, i.e. we need to choose ∆t accordingly. In the following numerical experiments, we

consider the TeCNO scheme with Lax-Friedrichs type ELF (5.50) diffusion operator and a CFL number

of 0.2, i.e.

∆t = 0.2 ⋅∆x
maxi∈Z ∣f ′(ui)∣

. (10.9)

Furthermore, recall that k in (7.2) needs to be chosen such that 2k ≥ p. In our numerical experiments,

we mostly choose k = p/2 for p even and k = (p + 1)/2 for p odd. Only for the dam-break shallow water

problem we use k = p since this smooths the solutions in the vicinity of the shock.

10.1 Experimental Order of Convergence

The experimental order of convergence is a measure for the efficiency of the numerical method in practice,

i.e. we verify how quickly the numerical solutions u∆x for ∆x→ 0 converge to the actual solution u. In

this chapter, we describe how we can compute the numerical convergence rate (see [28]).

First, we compute the relative error

ε∆x = 100 ⋅
∣∣u∆x − uref∣∣L1

∣∣uref∣∣L1

. (10.10)

The required reference solution uref is either given by the exact solution or by a numerical solution

computed on a very fine grid where the number of grid cells should be approximately one order of

magnitude larger than the highest one used for any u∆x. Then, the experimental order of convergence

can be computed using the formula

EOC∆x,∆y =
log(ε∆x) − log(ε∆y)
log(∆x) − log(∆y)

. (10.11)

55

Since we use increasing powers of two as the number of grid cells, we always have ∆y = 2∆x. Fur-

thermore, even though the order depends on both solutions u∆x and u∆y, we display it in the row

corresponding to ∆x, i.e. the higher number of grid cells.

10.2 Pseudocode

The following algorithm explains how we compute the convergence rate on an interval. All solutions

need to be computed on 2x grid cells in order to be comparable to each other.

Algorithm 5 compute convergence rate interval()

Computes convergence rate on intervals for a fixed order. TeCNO and reference solutions must be

computed on 2x grid cells. For each solution that should be compared to the reference solution, the

number of grid cells is stored in the list grid cells.

1: load reference solution as ref sol

2: norm exact solution ▷ compute l1-norm of exact solution

3: errors = [] ▷ list to store l1-errors

4: for g ∈ grid cells do ▷ i.e. all numerical solutions

5: load TeCNO solution on g grid cells as num sol

6: step = length(ref sol) / g

7: ref sol new = [sum(ref sol[j ⋅ step : j ⋅ step + step]) / step for j ∈ {1, . . . , g}] ▷ reduce

reference solution to g grid cells

8: errors.append(norm l1((ref sol new - num sol))⋅∆x)
9: end for

10: convergence rate formula() ▷ compute convergence rate depending on the errors and the norm

norm exact solution

10.3 Advection Equation

The first equation we consider is the linear advection advection equation (2.13) with a = 1. In this case,

the exact solution (2.14) serves as reference solution.

The initial data is of the form

u0 = sin(πx) (10.12)

and we use periodic boundary conditions.

The solutions computed with the TeCNOp scheme on different numbers of grid cells and the respective

exact solution are displayed in Figure 10.1. Clearly, the solution is computed to a high degree of accuracy

and improves as the number of grid cells increases for a fixed p. Furthermore, in Figure 10.2, we fix

the number of grid cells n = 128 and can observe an increase in accuracy as the expected order of

convergence p increases.

The error computed by the l1-norm and the experimental orders of convergence for this problem can

be found in Table 10.1. We can easily see that they are very close to the expected orders and improve

for increasing numbers of grid cells. Hence, the TeCNO scheme behaves as expected for this advection

problem.

56

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

TeCNO1 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

TeCNO2 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

TeCNO3 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

TeCNO4 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

Figure 10.1: Solutions to the advection equation computed by using the TeCNOp scheme for different
orders p and numbers of grid cells.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Solution at time = 1, 128 grid cells
Order

1
2
3
4
Exact

−0.65 −0.60 −0.55 −0.50 −0.45 −0.40 −0.35
0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Solution at time = 1, 128 grid cells

Order
1
2
3
4
E act

Figure 10.2: Solutions to the advection equation computed by the TeCNOp scheme for different orders
p. Right: Close-up around x = −0.5.

57

TeCNO1 TeCNO2 TeCNO3 TeCNO4 TeCNO5

n Error Order Error Order Error Order Error Order Error Order
32 2.78e-1 – 6.62e-2 – 2.52e-3 – 4.90e-4 – 1.93e-5 –
64 1.48e-1 0.914 1.99e-2 1.732 3.16e-4 2.992 3.42e-5 3.842 6.07e-7 4.990
128 7.62e-2 0.956 5.47e-3 1.864 3.96e-5 2.998 2.30e-6 3.892 1.899e-8 4.997
256 3.87e-2 0.978 1.46e-3 1.906 4.95e-6 3.000 1.55e-7 3.892 5.94e-10 4.999
512 1.95e-2 0.989 3.90e-4 1.906 6.18e-7 3.000 1.02e-8 3.923 1.86e-11 5.000
1024 9.78e-3 0.994 1.02e-4 1.931 7.73e-8 3.000 6.65e-10 3.941 5.80e-13 5.000
2048 4.90e-3 0.997 2.65e-5 1.946 9.66e-9 3.000 4.30e-11 3.950 1.82e-14 4.994

Table 10.1: Experimental order of convergence and the L1-error of the TeCNOp scheme for the advection
equation. n denotes the number of grid cells.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
TeCNO3 (Solution at t=1)

#grid cells
64
Exact

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
TeCNO3 (Solution at t=1)

#grid cells
128
Exact

Figure 10.3: The exact and the TeCNO3 solution to Burger’s equation on 64 and 128 grid cells at t = 1.

10.4 Burger’s Equation

The next scalar equation we consider is Burger’s equation (2.15). To present the non-oscillatory prop-

erty of the TeCNO scheme around shocks, we repeat the numerical example from 7.2 and expect a

numerical solution that mimics the shock more accurately and prevents spurious oscillations. The result

is displayed in Figure 10.3.

We can clearly see that the TeCNO scheme has a smoothing effect on the solution close to the discon-

tinuity, there are only a few very small oscillations left at the shock. Especially in comparison to the

ELW scheme solution in Figure 7.1, the TeCNO scheme performs very well around in the vicinity of the

shock and can therefore be used to model discontinuities in the solution.

10.5 Linear Wave Equation

Now, we move on to investigating systems of equations and begin with the linear wave equation as

defined in (2.16) with a = 1. We consider initial data of the form

u0 =
⎡⎢⎢⎢⎢⎣

− sin(πx)
0

⎤⎥⎥⎥⎥⎦
(10.13)

on the domain [−1,1] with periodic boundary conditions. We compute the solution up to t = 0.4. The

resulting l1-errors can be found in Table 10.2. Again, we see that the numerical convergence rates are

very close to the expected ones.

58

TeCNO1 TeCNO2 TeCNO3 TeCNO4 TeCNO5

n Error Order Error Order Error Order Error Order Error Order
32 1.48e-1 – 4.50e-2 – 1.22e-3 – 3.22e-4 – 9.36e-6 –
64 7.65e-2 0.951 1.35e-2 1.738 1.56e-4 2.970 2.27e-5 3.824 2.99e-7 4.967
128 3.89e-2 0.975 3.65e-3 1.889 1.97e-5 2.985 1.55e-6 3.871 9.47e-9 4.981
256 1.96e-2 0.988 9.87e-4 1.885 2.48e-6 2.992 1.05e-7 3.886 2.98e-10 4.992
512 9.85e-3 0.994 2.62e-4 1.915 3.11e-7 2.996 6.87e-9 3.936 9.33e-12 4.996
1024 4.94e-3 0.997 6.88e-5 1.929 3.89e-8 2.998 4.52e-10 3.925 2.92e-13 4.998

Table 10.2: Experimental order of convergence and the L1-error of the TeCNOp scheme for the linear
wave equation. n denotes the number of grid cells.

The solution for increasing orders up to four with a fixed number of grid cells n = 128 and a corre-

sponding close-up of the hump in each component can be found in Figure 10.4. Clearly, the solutions

already nearly coincide with the exact solution, so the TeCNO scheme gives very good results even for

small numbers of grid cells.

10.6 Shallow Water Equation

Finally, we consider the shallow water system (2.27). Since these equations are the most important ones

in the context of this work, we investigate two different examples to display the different strengths of

the TeCNO scheme.

Dam Break Problem: First, we consider the dam break problem with initial data given by (3.2) with

hl = 2 and hr = 1.5. We have seen in Section 3.1.1 that this specific problem results in a right-going shock

wave and a left-going rarefaction. In Figure 10.5, we observe that the numerical solution computed by

the TeCNO scheme does not exhibit any oscillations around the discontinuity and remains smooth,

similar to the results we have seen in Section 10.4. This shows again the non-oscillatory property of the

TeCNO scheme.

Gaussian Wave: Next, we consider an initial wave that results in a smooth solution. The initial data

is a Gaussian wave with zero velocity, i.e.

h(x,0) = a exp(−(x − x0)2/(2s2)) + h0, w(x,0) = 0 (10.14)

where a = 0.15 denotes the amplitude of the wave, the position of the peak of the initial hump is at x0 = 0,
the standard deviation s = 0.5 controls the width of the curve and h0 = 2 is the vertical displacement of

the function.

As time evolves, the initial water hump splits into two waves propagating in opposite directions. For

some initial Gaussian functions, the waves develop leading shock waves, however if the initial amplitude

is very small compared to the water depth d, they propagate with basically unchanged shape at speed

±
√
gh0 and remain smooth.

The resulting water height on varying numbers of grid cells for order one and three are displayed in

Figure 10.6. The reference solution is computed on 215 grid cells.

The numerical convergence rates for the TeCNOp scheme with p = 1,2,3, are given in Table 10.3.

59

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Solution at time = 0.4, 128 grid cells
Order

1
2
3
4
Exact

−0.56 −0.54 −0.52 −0.50 −0.48 −0.46 −0.44
0.285

0.290

0.295

0.300

0.305

0.310

0.315
Solution at time = 0.4, 128 grid cells

Order
1
2
3
4
Exact

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Solution at time = 0.4, 128 grid cells

Order
1
2
3
4
Exact

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
0.90

0.91

0.92

0.93

0.94

0.95

0.96
Solution at time = 0.4, 128 grid cells

Order
1
2
3
4
Exact

Figure 10.4: Solutions and close-ups to the linear wave equation computed by the TeCNOp scheme for
different orders p on 128 grid cells. The first row shows the first component and the second
row the second component.

TeCNO1 TeCNO2 TeCNO3

n Error Order Error Order Error Order
32 1.68e-1 – 8.44e-2 – 2.96e-2 –
64 1.06e-1 0.666 3.12e-2 1.434 4.67e-3 2.666
128 6.14e-2 0.785 1.06e-2 1.559 7.79e-4 2.583
256 3.33e-2 0.884 3.52e-3 1.589 1.13e-4 2.779
512 1.74e-2 0.936 9.96e-4 1.821 1.56e-5 2.860
1024 8.90e-3 0.967 2.68e-4 1.891 2.11e-6 2.889

Table 10.3: Experimental order of convergence and the l1-error of the TeCNOp scheme for the shallow
water system with Gaussian initial data. n denotes the number of grid cells.

60

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.6

1.7

1.8

1.9

2.0

TeCNO1 (Solution at t=0.35)
#grid cells

32
64
128
256
512
1024
E act

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TeCNO1 (Solution at t=0.35)
#grid cells

32
64
128
256
512
1024
Exact

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.6

1.7

1.8

1.9

2.0

TeCNO4 (Solution at t=0.35)
#grid cells

32
64
128
256
512
1024
E act

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TeCNO4 (Solution at t=0.35)
#grid cells

32
64
128
256
512
1024
Exact

Figure 10.5: Solutions to the shallow water equations computed with the TeCNO1 and TeCNO4 scheme
on different numbers of grid cells at t = 0.35. The left column displays the water height h
and the right one the momentum hw.

61

−4 −3 −2 −1 0 1 2 3 4

2.00

2.01

2.02

2.03

2.04

2.05

2.06

2.07

TeCNO1 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

−4 −3 −2 −1 0 1 2 3 4

−0.10

−0.05

0.00

0.05

0.10

TeCNO1 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

−4 −3 −2 −1 0 1 2 3 4

2.00

2.01

2.02

2.03

2.04

2.05

2.06

2.07

TeCNO3 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

−4 −3 −2 −1 0 1 2 3 4

−0.10

−0.05

0.00

0.05

0.10

TeCNO3 (Solution at t=1)
#grid cells

32
64
128
256
512
1024
Exact

Figure 10.6: Solutions to the shallow water equations computed with the TeCNO1 and TeCNO3 scheme
on different numbers of grid cells at t = 1. The left column displays the water height h and
the right one the momentum hw.

62

11 Water Flow Through Networks

In the following, we model water flow through a network, i.e. a collection of straight channels connected

by junctions. For this purpose, we employ the shallow water equations (2.27) and solve them with the

TeCNO scheme for different orders. From a numerical point of view, the most straightforward treatment

of a network would consist of computing solutions with a two-dimensional numerical solver. However,

this procedure is computationally expensive and can be simplified by exploiting the specific structure

of the problem. Since the network consists of channels separated by junctions, we can solve these two

problems independently. The main difficulty here is the treatment of the junctions. Throughout the

channels, we can use a one-dimensional numerical solver to compute solutions. For this purpose, we use

the TeCNO scheme defined in Chapter 9. To update the cell averages across the junctions, however, we

use the coupling conditions published by Briani et al. in [2] that are derived in this chapter.

Note that the following considerations require a fluvial regime, i.e. we expect ∣w∣ <
√
gh. Hence, the

eigenvalues of the shallow water system (2.33) fulfill

λ1 < 0, λ2 > 0 (11.1)

which results in two waves propagating in opposite directions.

In this chapter, we first describe the overall setting of the networks we consider in this thesis. Then,

we derive the coupling conditions that are used to compute the states across the junctions. In the next

chapter, we present the numerical results for the solution throughout a network obtained by coupling

the conditions at the junctions with the one-dimensional TeCNO scheme in the channels.

11.1 Definition of the Network

In this work, we only consider networks consisting of straight channels that are connected by junctions.

Furthermore, we assume that each junction consists of one incoming and one or two outgoing channels.

For simplicity, we only define networks consisting of one junction in the following. However, by connect-

ing several of these simple networks – and possibly adapting the reference system – we can construct

longer and more complicated structures.

First, we define the terminology for the junctions that is used throughout this thesis. For a moment,

assume the channels are one-dimensional, i.e. they have width zero and that we have three channels

meeting at the junction.

We fix the intersection of the channels at the origin of the reference system. The incoming channel is

labeled Channel 1 and is assumed to be parallel to the x-axis. On the other hand, the outgoing channels

are labeled Channel 2 and Channel 3 and they are at the angles ϕ and θ to the x-axis, respectively.

Moreover, we assume θ ≥ 0 and ϕ ≤ 0. Therefore, we obtain the geometry depicted in Figure 11.1.

However, to interpret the channels as two-dimensional objects, they need to be equipped with a certain

width. Then, the one-dimensional setup described above serves as the skeleton of the two-dimensional

setting. Let 2sk, k = 1,2,3 denote the width of each channel. Furthermore, we define the intersection

point of the channel walls of channel i and j as Pij , i = 1,2, j = 2,3, j ≠ i. These points form a triangle

at the junction as can be seen in Figure 11.2 and we will refer to that triangle as T and to its edges

as ek, k = 1,2,3. The outward-pointing normals are denoted by nk. Note that they are not necessarily

parallel to the respective channel, this only happens in the special case when θ = −ϕ.
Moreover, let Ik, k = 1,2,3 denote the interface separating channel k from the junction, i.e. the point

63

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

Channel 1

C
ha
nn
el
3

Channel 2

ϕ ≤ 0

θ ≥ 0

Figure 11.1: One-dimensional setup for a channel junction
where θ = π

4
and ϕ = −π

6

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

Channel 1

C
ha
nn
el
3

Channel 2

P13

P23

P12

e3

e1

e2n1

n2

n3

Figure 11.2: Two-dimensional setup for a channel junction

Parameters are s1 = s2 = s3 = 1, θ =
π
4
and ϕ = −π

6

where the one-dimensional channel intersects ek. Furthermore, we refer to the state variable at Ik facing

the channel k as U⋆k and to the one facing the junction as Uk, k = 1,2,3. Note that the states in the

channel can be computed with the one-dimensional numerical solver. Hence, the purpose of the junction

Riemann solver is to compute the junction states Uk given U⋆k .

11.2 Junction Solver

In the following, we derive the conditions at the junctions that enable us to compute the state variables

Uk for each channel. Note that each of these state variables is composed of the height and velocity,

i.e. hk and wk, which leads to six unknowns at a junction. Hence, we need six equations in order to

obtain a unique solution to the system. The first three equations result from Riemann problems across

the interfaces Ik while the other three are derived from conservation of mass and momentum across the

junction.

Recall from Chapter 3 that the intersection of the equations (3.38) defines the intermediate state between

64

two waves under fluvial flow. Hence, the first three equations in the junction system are

w1 = ϕl(h1;U⋆1) (11.2a)

w2 = ϕr(h2;U⋆2) (11.2b)

w3 = ϕr(h3;U⋆3) (11.2c)

To derive the remaining three equations, we exploit the two-dimensional configuration of the channels

and introduce the following notation:

1. h denotes the water height

2. w = (wx,wy) denotes the two-dimensional velocity

3. q = hw denotes the two-dimensional discharge

4. qk = hk(wx,k,wy,k), k = 1,2,3 denotes the average discharge at the interface Ik

Recall that the shallow water equations in two dimensions are given in (2.41).

If n denotes the outward-pointing normal of ∂T conservation of mass leads to

∫
∂T

q ⋅ n = 0. (11.3)

Similarly, the conservation of the two components of momentum yields

∫
∂T

⎛
⎝
wxq +

1

2
gh2
⎛
⎝

1

0

⎞
⎠
⎞
⎠
⋅ n = 0, (11.4a)

∫
∂T

⎛
⎝
wyq +

1

2
gh2
⎛
⎝

0

1

⎞
⎠
⎞
⎠
⋅ n = 0. (11.4b)

Recall that the boundary ∂T of the triangle is composed of the edges ek, k = 1,2,3, and qk denotes the

average value of the discharge along each edge. We define the length of ek by lk. Therefore, we obtain

the three conservation equations

∑
k=1,2,3

lkqk ⋅ nk = 0 (11.5a)

∑
k=1,2,3

lk
⎛
⎝
wx,kqk +

1

2
gh2k
⎛
⎝

1

0

⎞
⎠
⎞
⎠
⋅ nk = 0 (11.5b)

∑
k=1,2,3

lk
⎛
⎝
wy,kqk +

1

2
gh2k
⎛
⎝

0

1

⎞
⎠
⎞
⎠
⋅ nk = 0. (11.5c)

Note that the discharge in the three channels can be written as

q1 = q1
⎛
⎝

1

0

⎞
⎠
, q2 = q2

⎛
⎝

cos(ϕ)
sin(ϕ)

⎞
⎠
, q3 = q3

⎛
⎝

cos(θ)
sin(θ)

⎞
⎠

(11.6)

65

where qk = ∣∣qk ∣∣.
Using this and recalling wk = qk

hk
, we can rewrite (11.5a) as

l1h1w1

⎛
⎝

1

0

⎞
⎠
⋅ n1 + l2h2w2

⎛
⎝

cos(ϕ)
sin(ϕ)

⎞
⎠
⋅ n2 + l3h3w3

⎛
⎝

cos(θ)
sin(θ)

⎞
⎠
⋅ n3 = 0, (11.7a)

(11.5b) as

l1
⎛
⎝
h1w

2
1

⎛
⎝

1

0

⎞
⎠
+ 1

2
gh21
⎛
⎝

1

0

⎞
⎠
⎞
⎠
⋅ n1 + l2

⎛
⎝
h2w

2
2 cos(ϕ)

⎛
⎝

cos(ϕ)
sin(ϕ)

⎞
⎠
+ 1

2
gh22
⎛
⎝

1

0

⎞
⎠
⎞
⎠
⋅ n2

+l3
⎛
⎝
h3w

2
3 cos(θ)

⎛
⎝

cos(θ)
sin(θ)

⎞
⎠
+ 1

2
gh23
⎛
⎝

1

0

⎞
⎠
⎞
⎠
⋅ n3 = 0 (11.7b)

and (11.5c) as

l1
⎛
⎝
1

2
gh21
⎛
⎝

0

1

⎞
⎠
⎞
⎠
⋅ n1 + l2

⎛
⎝
h2w

2
2 sin(ϕ)

⎛
⎝

cos(ϕ)
sin(ϕ)

⎞
⎠
+ 1

2
gh22
⎛
⎝

0

1

⎞
⎠
⎞
⎠
⋅ n2

+l3
⎛
⎝
h3w

2
3 sin(θ)

⎛
⎝

cos(θ)
sin(θ)

⎞
⎠
+ 1

2
gh23
⎛
⎝

0

1

⎞
⎠
⎞
⎠
⋅ n3 = 0. (11.7c)

In order to work with these equations, we have to derive the formulas for computing the normals nk to

the respective edges ek and the lengths lk, k = 1,2,3.
The equations for the one-dimensional channels as depicted in Figure 11.1 are given by

y1 = t1
⎛
⎝

1

0

⎞
⎠
, (11.8a)

y2 = t2
⎛
⎝

cos(ϕ)
sin(ϕ)

⎞
⎠
, (11.8b)

y3 = t3
⎛
⎝

cos(θ)
sin(θ)

⎞
⎠
, (11.8c)

with tk ∈ R for k = 1,2,3. Hence, the walls of the channels are the lines parallel to (11.8) at a distance

of sk, i.e.

y±1 = t1
⎛
⎝

1

0

⎞
⎠
± s1
⎛
⎝

0

1

⎞
⎠
, (11.9a)

y±2 = t2
⎛
⎝

cos(ϕ)
sin(ϕ)

⎞
⎠
± s2
⎛
⎝
− sin(ϕ)
cos(ϕ)

⎞
⎠
, (11.9b)

y±3 = t3
⎛
⎝

cos(θ)
sin(θ)

⎞
⎠
± s3
⎛
⎝
− sin(θ)
cos(θ)

⎞
⎠
. (11.9c)

66

As can be seen in Figure 11.2, the points Pij are obtained by intersecting the respective channel walls.

Therefore, intersecting the walls y+1 and y+3 yields the point P13, i.e.

y+1 = y+3 ⇐⇒ t1
⎛
⎝

1

0

⎞
⎠
+ s1
⎛
⎝

0

1

⎞
⎠
= t3
⎛
⎝

cos(θ)
sin(θ)

⎞
⎠
+ s3
⎛
⎝
− sin(θ)
cos(θ)

⎞
⎠

⇐⇒
⎧⎪⎪⎨⎪⎪⎩

t1 = t3 cos(θ) − s3 sin(θ)
s1 = t3 sin(θ) + s3 cos(θ)

⎫⎪⎪⎬⎪⎪⎭
.

(11.10)

Assume for the moment that θ ≠ 0. Then, we obtain

t3 =
s1 − s3 cos(θ)

sin(θ)
(11.11)

that can now be inserted in y+3 to derive the intersection point

P13 =
s1 − s3 cos(θ)

sin(θ)
⎛
⎝

cos(θ)
sin(θ)

⎞
⎠
+ s3
⎛
⎝
− sin(θ)
cos(θ)

⎞
⎠

=
⎛
⎝

s1 cos(θ)
sin(θ)

− s3(cos
2
(θ)+sin2

(θ)
sin(θ)

s1 − s3 cos(θ) + s3 cos(θ)
⎞
⎠

=
⎛
⎝

s1 cos(θ)−s3
sin(θ)

s1

⎞
⎠
. (11.12)

However, when θ = 0, the system only has a solution if s1 = s3, that is, y+1 and y+3 coincide. In this case,

define P13 = (0, s1).
Analogous to the previous derivation, one can compute the remaining intersection points.

Intersecting y−1 and y−2 yields

P12 =
⎛
⎝

−s1 cos(ϕ)+s2
sin(ϕ)

−s1

⎞
⎠

(11.13)

assuming ϕ ≠ 0. However, for ϕ = 0, s1 = s2 must hold in order for the system to have a solution and we

define P12 = (0,−s1).
Lastly, we can intersect the channel walls y−3 and y+2 to obtain the remaining point

P23 =
⎛
⎝

s3 cos(ϕ)+s2 cos(θ)
sin(θ−ϕ)

s3 sin(ϕ)+s2 sin(θ)
sin(θ−ϕ)

⎞
⎠
. (11.14)

This quantity is no longer well defined if sin(θ − ϕ) = 0, that is ϕ = θ = 0 or −ϕ = θ = π
2
. These special

cases are considered later.

Using the intersection points P12, P13 and P23, we can compute the necessary quantities nk and lk,

k = 1,2,3.
Recall that lk is the length of ek, i.e. the distance between its two endpoints. Therefore, we obtain

l1 = ∣∣P12 − P13∣∣, l2 = ∣∣P12 − P23∣∣, l3 = ∣∣P13 − P23∣∣. (11.15)

67

Furthermore, the normals are given by

n1 =
1

l1

⎛
⎝

−2s1
s1 sin(θ+ϕ)−s2 sin(θ)−s3 sin(ϕ)

sin(ϕ) sin(θ)

⎞
⎠
, (11.16a)

n2 =
1

l2

⎛
⎝

s1 + s2 sin(θ)+s3 sin(ϕ)
sin(θ−ϕ)

− s2 cos(θ)+s3 cos(ϕ)
sin(θ−ϕ)

− s1 cos(ϕ)−s2
sin(ϕ)

⎞
⎠
, (11.16b)

n3 =
1

l3

⎛
⎝

s1 − s2 sin(θ)+s3 sin(ϕ)
sin(θ−ϕ)

s2 cos(θ)+s3 cos(ϕ)
sin(θ−ϕ)

− s1 cos(θ)−s3
sin(θ)

⎞
⎠
. (11.16c)

Consequently, all necessary components in (11.7) are defined and the system can now be solved in order

to derive the state variables Uk for each channel.

In the following, we examine the special cases we excluded earlier and determine the points Pij in these

cases. Afterwards, we are able to compute the Uk’s regardless of the specific channel setting.

T-junction: First, we consider T-junctions, i.e. channels where θ = −ϕ = π
2
. If s2 = s3, we can define

the points Pij as illustrated in Figure 11.3 (i):

P12 =
⎛
⎝
−s2
−s1

⎞
⎠
, P13 =

⎛
⎝
−s2
s1

⎞
⎠
, P23 =

⎛
⎝
s2

0

⎞
⎠

(11.17)

Hence, the equations in (11.7) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−s1h1w1 + s2h2w2 + s2h3w3 = 0

−2 (h1w2
1 + 1

2
gh21) + 1

2
gh22 + 1

2
gh23 = 0

− (h2w2
2 + 1

2
gh22) + h3w2

3 + 1
2
gh23 = 0.

(11.18)

Furthermore, if s2 ≠ s3 the point P23 can instead be defined as

P23 =
⎛
⎝

min(s2, s3)
0

⎞
⎠

(11.19)

(compare Figure 11.3 (ii)).

Straight channel: Next, we consider the straight channel, i.e. θ = ϕ = 0. The x-coordinate of the

intersection of the channels in the one-dimensional skeleton and hence the center of the reference system

is set to the end of channel 1. Naturally, we define the points

P12 =
⎛
⎝

0

−s1
⎞
⎠
, P13 =

⎛
⎝

0

s1

⎞
⎠
. (11.20)

For the point P23 it is sensible to set the y-coordinate to 0. Since there is no natural definition of the

x-coordinate, we set it to s1. Hence, we obtain

P23 =
⎛
⎝
s1

0

⎞
⎠
. (11.21)

68

Figure 11.3: Two different versions of T-junctions: in both cases θ = −ϕ = π
2
.

(i) s1 = 1, s2 = s3 = 2. (ii) s1 = 1, s2 = 1, s3 = 2.

Figure 11.4: Straight channel with s1 = 1, s2 = 1.5, s3 = 2.5.

The resulting triangle T is illustrated in Figure 11.4.

Hence, the equations (11.7) reduce to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−2h1w1 + h2w2 + h3w3 = 0

−2 (h1w2
1 + 1

2
gh21) + (h2v22 + 1

2
gh22) + (h3w2

3 + 1
2
gh23)) = 0

− 1
2
gh22 + 1

2
gh23 = 0.

(11.22)

Finally, we considered all possible cases that can come up in our setting. To derive the six unknowns

necessary for Uk, we solve the six equations in (11.2) and (11.7) as analyzed in this section.

In the next section, we investigate how the resulting states can be used to update the cell averages in

the finite volume method, especially the ones adjacent to the junction. This enables us to compute a

solution in networks without applying a two-dimensional solver.

69

11.3 Coupling of Junction Conditions and Finite Volume Scheme

Recall that we solve the system along each channel using a one-dimensional finite volume scheme.

Therefore, we apply (4.8) in each channel, i.e. for k = 1,2,3

Un+1j,k = Unj,k −
∆t

∆x
[Fnj+1/2,k − F

n
j−1/2,k]. (11.23)

For simplicity, we assume all channels have length L. If we construct a uniform grid with M + 1 grid

cells Ck0 , . . . ,CkM in each channel k, they all have length ∆x = L
M+1

. Hence, the interfaces between the

channels and the junction are given by xM+1/2,1 and x−1/2,k, k = 2,3, where the first subindex refers to

the interface value and the second to the respective channel.

However, at the junction, we update the states using the equations we derived above. The states U∗k ,

i.e. the cell values in C1M , the rightmost cell of Channel 1, and Ck0 , k = 2,3, the leftmost cell in Channel 2

and 3, are updated using the junction solver, i.e. the numerical flux at the interface facing the junction

is computed by the coupling conditions as described in the following and the other ones by the one-

dimensional solver in the channels.

Recall that combining (11.2) and (11.7) results in a nonlinear system of six equations. Given U∗k , its

solution yields the three states Uk = (hk, hkwk), k = 1,2,3. Hence, we can update the cell averages

adjacent to the junction by defining FnM+1/2,1 = f(U1), Fn−1/2,2 = f(U2) and Fn−1/2,3 = f(U3) where f is

the original flux function given by the conservation law, i.e. (2.27b).

11.4 Pseudocode

The numerical program accompanying this work contains the file network.py which computes the solu-

tion of a finite volume method on a network. This section explains the two most important functions in

pseudocode. Note that in our numerical program, a network can consist of several junctions connected

by channels. However, it needs to have one in-going channel and each junction must be of the type

described in Chapter 11.

Each run of the network solver requires a network that is initialized at the beginning using Network()

in the file network.py. It fixes the following parameters:

1. the order that is used in the specific run

2. length of the network, i.e. number of channels

3. number of junctions (given by the number of channels, since each junction connects three channels)

4. since the network solver is constructed for the shallow water equations, the only valid choice in

EquationKind is the shallow water system

5. number of grid cells for each channel

6. define each channel using Channel() in channel.py ▷ see below

7. define each junction using Junction() in junction.py ▷ see below

8. define numerical flux function ▷ e.g. TeCNO, Lax-Friedrichs or Godunov flux

9. if necessary: k and αk in 7.2 ▷ e.g. for TeCNO or ELW scheme

70

Each channel has the fixed parameters:

1. start and end points, length of the channel

2. half width s

3. uniform grid ▷ see grid.py

4. number of grid cells

They are fixed for each run of the network solver by calling the function Channel().

Furthermore, each junction consists of the following:

1. three channels ▷ Channel 1 aligned with x-axis

2. outgoing channel angles θ and ϕ

3. intersection points P12, P13, P23

4. lengths of the ’junction triangle’ walls li, i = 1,2,3

5. outward-pointing normals ni, i = 1,2,3

They are fixed for each run of the network solver by calling the function Junction().

Furthermore, the file junction.py contains all functions necessary to compute the values above, e.g.

intersection points() or normals().

Now, we introduce the general method that computes solutions across networks.

Algorithm 6 solve network()

Computes solution on a network using the finite volume method in the channels and the junction solver

to update states across the junction.

1: net = Network(): ▷ initializes a new network consisting of channels and junctions

2: cell averages: compute the initial cell averages depending on the initial function in each channel

3: fluxes: initialize fluxes with zero-arrays for each channel

4: t = start time

5: while t < end time do:

6: compute ∆t using compute.cfl condition() ▷ choose minimum over all channels

7: update cell averages with respect to the required order ▷ see solve network timestep()

8: t = t +∆t
9: end while

10: cut off ghost cells

11: return cell averages

Now, we consider the function that computes one time step of the finite volume method.

71

Algorithm 7 solve network timestep()

Computes one time step in the finite volume method on networks.

1: for each channel do

2: compute fluxes according to the respective scheme to update cell averages in each channel

3: end for

4: for each junction do

5: solve junction solver to obtain fluxes at the junction interfaces

6: end for

Note that updating the cell averages can be done by employing either the TeCNO scheme, the Lax-

Friedrichs scheme or the Godunov scheme that are implemented in the files solver.tecno.py, solver.lax-

friedrichs.py and solver.godunov.py.

11.5 Solutions to the Junction Solver

In this section, we want to discuss solutions to the nonlinear system at the junction. However, since

existence and uniqueness results for solutions to general nonlinear systems are difficult to prove, we can

only present partial solutions here.

As before, let h∗k, w
∗
k denote the values obtained by the one-dimensional solver in Channel k, k = 1,2,3

adjacent to the junction and hk, wk the values facing the junction. Furthermore, we define

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h1

h2

h3

w1

w2

w3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, X∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h∗1

h∗2

h∗3

w∗1

w∗2

w∗3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

hM,1

h0,2

h0,3

wM,1

w0,2

w0,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(11.24)

where, again, the first index refers to the cell and the second to the channel. Since we considered a

fluvial regime, the open set of admissible states is defined by

Ω = {hk ∈ R+,wk ∈ R ∶ ∣wk ∣ <
√
ghk, k = 1,2,3} . (11.25)

Solving the equations (11.2) and (11.7) can now be interpreted as solving the system

Ψ(X;X∗) = 0 (11.26)

with Ψ ∶ Ω ×Ω→ R6.

Assume the system has been solved up to t = tn, i.e. we have a solution Xn,∗ adjacent to the junction.

Furthermore, assume we have found a solution Xn such that Ψ(Xn;Xn,∗) = 0. Let DΨ denote the

Jacobian with respect to the first argument. If Det(DΨ(Xn;Xn,∗)) ≠ 0, i.e. DΨ(Xn;Xn,∗) is invertible,
we can apply the implicit function theorem. It states that there exists an open set Θ(Xn,∗) containing
Xn,∗ such that there exists a unique, continuously differentiable functionX ∶ Θ→ R3, X∗ ↦X(X∗) such
that Ψ(X;X∗) = 0. Hence, for a smooth flow, we can find ∆t small enough such that Xn+1,∗ ∈ Θ(Xn,∗)
and therefore there exists a unique Xn+1 such that Ψ(Xn+1;Xn+1,∗) = 0.

72

In summary, we can apply this procedure in each iteration n if we can prove DΨ(Xn;Xn,∗) ≠ 0. This

guarantees the existence of a solution Xn+1 to the system Ψ(Xn+1;Xn+1,∗) = 0.
In particular, if all waves are rarefaction waves, the equations in (11.2) yield

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w1 + 2
√
gh1 = w∗1 + 2

√
gh∗1

w2 − 2
√
gh2 = w∗2 − 2

√
gh∗2

w3 − 2
√
gh3 = w∗3 − 2

√
gh∗3

. (11.27)

Since the equations (11.7) do not depend on X∗, the Jacobian DΨ does not either. Hence, in this case,

it can be proven that a solution exists at each time step if we start with data X∗ and a solution X such

that Ψ(X;X∗) = 0 and can show that Det(DΨ(X;X∗)) ≠ 0, ∀X ∈ Ω.

11.6 Reference Solutions on Networks

To evaluate the numerical solution obtained by coupling the junction solver and the one-dimensional

scheme, we additionally require a solution on the network that can serve as a reference solution. In

general, we can use another numerical solver, e.g. the Lax-Friedrichs method (10.1), in the channel

and compare the resulting solution to the one obtained by applying the TeCNO scheme. However, for

specific initial data, we can exploit the junction solver in Section 11.2 to derive a reference solution

without applying a numerical solver in the channels. This works for example for a dam-break Riemann

problem where the jump is located at the junction. Since the flow in each channel in the network can

be modeled as a one-dimensional problem, we use the formulas for rarefaction and shock waves derived

in Chapter 3. However, in order to apply these formulas, we require knowledge about the specific type

of wave in each channel. As explained in Section 3.1.1, the solution to the dam-break problem (3.2)

always consists of a rarefaction wave going in the direction of the higher initial water height and a shock

wave leading in the opposite direction.

Using this fact enables us to derive solutions to certain Riemann problems on networks. First, we

assume a constant water height in each channel and a global velocity w∗ ≡ 0. Using the notation from

Chapter 11, we denote the initial water height in channel k by h∗k, i.e. the initial data is given by

h(x,0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h∗1, x in Channel 1

h∗2, x in Channel 2

h∗3, x in Channel 3

, w∗(x,0) = 0. (11.28)

If h∗2 = h∗3 > h∗1, we know that the solution consists of a left-going shock wave in Channel 1 and right-going

rarefaction waves in Channel 2 and 3. Analogously, for h∗2 = h∗3 < h∗1, we have a left-going rarefaction

and two right-going shock waves.

However, the formulas for computing rarefaction and shock waves require knowledge about the middle

state. Instead of applying a root finder to the function ϕ(h) defined in Section 3.5, we exploit the

junction solver from Section 11.2.

Hence, to determine the middle state across all channels, we apply the junction solver to the states

U∗k = (h∗k, h∗kw∗k) = (h∗k,0) given by the initial data. The resulting states Uk then yield the respective

middle state for each channel. Using this approach, we can compute the evolution of the waves in the

network and obtain a reference solution.

The corresponding implementation can be found in solver.exact solution.py. This method uses the

73

functions rarefaction wave 1(), rarefaction wave 2(), shock 1() and shock 2() that compute the waves

based on Chapter 3.

Algorithm 8 riemann solution on network()

Computes the Riemann solution on a network as explained in this section.

1: junction states = network.solve nonlinear system: ▷ returns cell states across junction

In Channel 1:

2: if hm < hl then: ▷ i.e. rarefaction wave in Channel 1

solution channel 1 = rarefaction wave 1()

3: else ▷ i.e. shock in Channel 1

solution channel 1 = shock 1()

4: end if

In Channel i=2, 3:

5: if hm < hl then: ▷ i.e. rarefaction wave in Channel 2/3

solution channel i = rarefaction wave 2()

6: else ▷ i.e. shock in Channel 2/3

solution channel i = shock 2()

7: end if

74

12 Numerical Results – Network

This Chapter presents numerical solutions on networks. To evaluate their quality, we compare them to a

reference solution. For initial data of the form (11.28), we can apply the procedure explained in Section

11.6. However, for general initial data, we need to compute a numerical reference solution. Similar to

Chapter 10, we use the local Lax-Friedrichs method (10.1) with minmod reconstruction (10.2) as the

one-dimensional solver in each channel. Furthermore, we again use the junction solver to determine the

fluxes across the junction.

In this chapter, the number of grid cells n for a numerical solution always denotes the number of cells

in each channel, i.e. if e.g. n = 64, we have a total of 3 ⋅ 64 = 192 cells. In this section, we always use

k = p in (7.2).

12.1 Dam-Break Riemann Problem

In this section, we compare the exact solution to the Riemann problem on networks as explained in

Section 11.6 to the numerical solution obtained by the junction solver derived in Section 11.2.

We consider a network consisting of three channels with θ = −ϕ = π
4
, i.e. the solutions in Channel 2 and

3 coincide. Furthermore, we choose the channel width 2sk = 2, k = 1,2,3.
The initial data is given in (11.28) with h∗1 = 2, h∗2 = h∗3 = 1.5. Hence, we expect a left-going rarefaction

wave in Channel 1 and a right-going shock in Channel 2 and 3.

The numerical solutions on different numbers of grid cells for fixed orders as well as the reference

solution derived as explained in Section 11.6 are depicted in Figure 12.1. Clearly, the numerical solutions

approach the reference solution as the number of grid cells and the order increases.

12.2 Dam-Break Riemann Problem for Different Angles

Now, we study the influence of the angle on the solution to the dam-break Riemann problem on networks.

Furthermore, we show that the solution in a network on a straight channel (see Section 11.2) is consistent

with the solution on an interval. We repeat the same numerical examples we considered in the previous

section. However, now we vary the angle θ = −ϕ ∈ {0, π
12
, π
6
, π
3
, π
2
} with s1 = 1, s2 = s3 = 0.5. We use the

TeCNO2 scheme in the channels with 256 grid cells. The resulting solutions for the water height h can

be found in Figure 12.2. Note that the solutions on Channel 2 and Channel 3 coincide, so we derive

the displayed solution by connecting the solutions to Channel 1 and Channel 2 at the junction, which is

here represented by a dashed vertical line. Note that the blue line in the figure represents the numerical

network solution on a straight channel. As expected, it is very close to the exact Riemann solution on

an interval (pink line), so these two variants are consistent.

We can see that the angle of the outgoing channels has an effect on the resulting numerical network

solutions. For a straight channel, there is no jump in water height at the junction. However, the jump

expands as the angle increases. Furthermore, we can see the angle has apparently no impact on the

location of the shock and rarefaction wave.

12.3 Smooth Initial Data

In the following, we investigate numerical solutions to smooth initial data. Since we are not able to

derive exact solutions for our problems, we use reference solutions on fine grids computed with the

local Lax-Friedrichs scheme (10.1) with minmod reconstruction (10.2). The channel widths are given

75

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

1.5

1.6

1.7

1.8

1.9

2.0
Solution at t=1, order 1

#grid cells
64
128
256
512
1024
Reference

0.0 0.5 1.0 1.5 2.0 2.5

1.5

1.6

1.7

1.8

1.9

2.0
Solution at t=1, order 1

#grid cells
64
128
256
512
1024
Reference

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

1.5

1.6

1.7

1.8

1.9

2.0
Solution at t=1, order 3

#grid cells
64
128
256
512
1024
Reference

0.0 0.5 1.0 1.5 2.0 2.5

1.5

1.6

1.7

1.8

1.9

2.0
Solution at t=1, order 3

#grid cells
64
128
256
512
1024
Reference

Figure 12.1: Solutions to the dam-break Riemann problem on varying numbers of grid cells for order
one and three on a network with θ = −ϕ = π

4
resulting from combining the one-dimensional

TeCNOp scheme and the junction solver. The left column shows the solutions in Channel
1 and the right column the solutions in Channel 2 and 3.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.6

1.7

1.8

1.9

2.0

TeCNO2 (Solution at t=1)
θ= −ϕ

0
π/12
π/6
π/3
π/2
Exact

−1.0 −0.5 0.0 0.5 1.0

1.738

1.739

1.740

1.741

1.742

1.743

TeCNO2 (Solution at t=1)

θ= −ϕ
0
π/12
π/6
Exact

Figure 12.2: Comparison of solutions to different network geometries for the same initial problem. The
pink line shows the exact solution on an interval. The others are composed of the numerical
network solutions of Channel 1 and Channel 2 where the junction is represented by the
vertical dashed line. The left image shows the resulting water height and the right image
a close-up for some angles.

76

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Solution at t=1, order 1

#grid cells
32
64
128
256
512
1024
Reference

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Solution at t=1, order 1

#grid cells
32
64
128
256
512
1024
Reference

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Solution at t=1, order 4

#grid cells
32
64
128
256
512
1024
Reference

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Solution at t=1, order 4

#grid cells
32
64
128
256
512
1024
Reference

Figure 12.3: Solutions to an initial Gaussian wave on varying numbers of grid cells for order one and
three on a network with θ = −ϕ = π

4
resulting from combining the one-dimensional TeCNOp

scheme and the junction solver. The left column shows the solutions in Channel 1 and the
right column the solutions in Channel 2 and 3.

by sk = 1, k = 1,2,3.
The initial data is determined by a Gaussian function (10.14) with a = 1, x0 = −1.5, s = 0.2 and h0 = 1.
We have seen in Section 10.6 that an initial Gaussian hump in a one-dimensional channel develops two

waves propagating in different directions. However, as soon as the right-going wave reaches the junction,

it splits again into three waves, two continue to propagate into Channel 2 and Channel 3 and the other

one ricochets back into Channel 1.

The solution at time t = 2 is depicted in Figure 12.3. The reference solution is computed on 4096 grid

cells in each channel. We can clearly see that the TeCNO solutions approach the reference solution as

the grid is refined. Furthermore, we see that TeCNO4 solutions capture the shocks more accurately

than the TeCNO1 solutions using the same number of grid cells.

12.4 Smooth Initial Problem for Different Angles

In this section, we consider smooth initial data on different networks to determine the influence of the

angle on the water height as the wave propagates through the junction. As initial data, we use the

Gaussian wave defined in the previous section and compute solutions up to t = 2. We consider the

TeCNO2 scheme on 256 grid cells in each channel and assume θ = −ϕ. Hence, the solutions in Channel

2 and Channel 3 coincide. We choose s1 = 1, s2 = s3 = 0.5. The results can be found in Figure 12.4. As

77

−2 −1 0 1 2

0.9

1.0

1.1

1.2

1.3

1.4

TeCNO2 (Solution at t=2)
θ= −ϕ

0
π/6
π/3
π/2

Figure 12.4: Comparison of solutions to different networks for the same initial problem. The solutions are
composed of the numerical network solutions of Channel 1 and Channel 2 (which coincides
with the solution on Channel 3) where the junction is represented by the vertical dashed
line.

in Section 12.2, the image shows the solutions in Channel 1 and Channel 2, composed at the junction

which is represented by a vertical dashed line. We can see, that the angle indeed has an impact on

the resulting wave. The wave height in Channel 2 rises as the angle increases, but only slightly. The

impact on the reflecting wave however is much greater, while there is essentially no reflecting wave for

a straight channel or a small angle, it develops a downward deflection as the angle increases. This fits

our intuitive expectations since the incoming wave hits the channel walls differently for larger angles.

These findings are important for real-world applications. For example in the construction of harbours,

it is important to take into account how the angle between channels influences the water and can lead

to large perturbations. To ensure that the water remains as smooth as possible – as it is desired to

prevent inundations or large waves impacting boats – the angle should be chosen small.

78

13 Stochastic Collocation Method

The model described previously can be used to model water in a collection of channels separated by

junctions. So far, we required specifically given initial data in order to compute a solution. In practical

applications, however, this data is not always available and one has to account for a certain level of

inaccuracy that could, for instance, be caused by measurement errors. Hence, the initial variables can

vary in a small interval without the possibility of determining them exactly. Recall Example 3.1.1 where

the initial water heights are piecewise constant and the velocity is zero. In practice, we might obtain

something of the form

u(x, t) =
⎧⎪⎪⎨⎪⎪⎩

ul + ν1
ur + ν2

(13.1)

where ν1, ν2 are small, unknown deviations from the base states ul, ur.

Hence, in this chapter, we investigate random differential equations and apply the stochastic collocation

method to solve them based on [10,11] to derive their sample mean and standard deviation.

13.1 Random Differential Equations

First, let (Ω,A,P) be a complete probability space. Ω denotes the event space, A ⊂ 2Ω the σ-algebra and

P the probability measure. In this section, we introduce differential equations that contain a random

component, so-called random differential equations. In their general form, they are given by

L(ω̃, x;u) = g(ω̃, x), x ∈D (13.2a)

with boundary conditions

B(ω̃, x;u) = f(ω̃, x), x ∈ ∂D (13.2b)

where D ⊂ Rd is a d-dimensional bounded domain with boundary ∂D, L a differential operator, B a

boundary operator and u the unknown function we seek to determine. We assume that this governing

equation is well-posed for P-a.e. ω̃ ∈ Ω.
To solve the differential equation numerically, the infinite-dimensional probability space needs to be

reduced to a finite-dimensional one, see [10] for more details on that. From now on, we assume the

random inputs can be represented by r real variables {ωi}ri=1. Then, following the Doob-Dynkin lemma

[29], the problem (13.2a) can be written as

L (ω1(ω̃), . . . , ωr(ω̃) , x;u) = g (ω1(ω̃), . . . , ωr(ω̃), x) , x ∈D. (13.3)

In the following, we often just write

L(ω(ω̃), x;u) = L(ω,x;u) = g(ω,x), x ∈D (13.4)

79

instead of using the expression in (13.3).

Now, we assume the random variables {ωi}ri=1 are independent with probability density functions

ρi ∶ Γi → R+ (13.5)

and images Γi ≡ ωi(Ω) that are bounded intervals in R. Then, we can write the joint probability density

function of ω = (ω1, . . . , ωr) as

ρ(ω) =
r

∏
i=1

ρi(ωi), ω ∈ Γ (13.6)

with support

Γ ≡
r

⨉
i=1

Γi ⊂ Rr. (13.7)

Note that we can extend (13.3) to time-dependent problems by defining D as a d+ 1 dimensional space

where the spacial variable x ∈ Rd and the temporal variable t ∈ R+. Then, for the one-dimensional

shallow water equations (2.27), we have L(ω, (x, t);u) = u(ω,x, t)t + f(u(ω,x, t))x and g(ω, (x, t)) = 0.
Hence, (13.3) takes the form

u(ω,x, t)t + f(u(ω,x, t))x = 0 (13.8a)

with

u(ω,x, t) =
⎡⎢⎢⎢⎢⎣

h

hw

⎤⎥⎥⎥⎥⎦
, f(u(ω,x, t)) =

⎡⎢⎢⎢⎢⎣

hw

hw2 + 1
2
gh2

⎤⎥⎥⎥⎥⎦
(13.8b)

where h = h(ω,x, t) and w(ω,x, t) – now depending on the random variable ω – denote the water height

and the velocity, respectively.

There are several numerical methods available to solve this type of equation. One of the most intuitive

ones is the Monte Carlo method which we briefly introduce in the following. Note that for each fixed

ω ∈ Γ, (13.3) is a deterministic problem and can be solved with a standard deterministic solver such as

the finite volume method with the TeCNO scheme. However, it has the drawback that for changing ω

we always have to recompute the solution which highly increases the computational complexity. The

Monte Carlo method relies on the law of large numbers, i.e. that the average of the results approaches

the expected value with an increasing number of samples. While the stochastic collocation method is,

in principle, similar to the Monte Carlo method, the random variables are fixed at certain points and

not randomly chosen. Here, the choice of collocation points, i.e. the points in the random variable space

that are fixed in order to solve the deterministic problem is crucial. We discuss their importance and

different choices in Section 13.3.2.

13.2 Monte Carlo Method

The Monte Carlo method is a standard method for computing statistics from a number of random

samples. Let ω1, . . . ωn denote n independent and identically distributed points in the random variable

space. Then, the problem (13.3) can be solved for u(ωi, x) for each ωi, i = 1, . . . n with a deterministic

80

solver. The resulting solutions ui(ωi, x), i = 1, . . . , n can now be used to approximate the mean by the

sample mean:

E[u(x)] = ∫
Γ
ρ(ω)u(ω,x)dω ≈ En[u(x)] =

n

∑
i=1

u(zi, x)ρ(zi). (13.9)

By the law of large numbers, we expect the sample mean to be close to the actual mean if n is big

enough.

This approach has the advantage of being quite intuitive and easy to implement. However, a typical

Monte Carlo simulation consisting of n realizations has a very slow convergence rate of 1
√
n
, i.e. in

order to halve the error, one has to quadruple the number of samples. Hence, the procedure requires

many sample points, i.e. many applications of the deterministic solver in order to be accurate. This is

computationally very expensive and, therefore, less applicable in practice.

13.3 Stochastic Collocation Method

Now, we introduce the stochastic collocation method. Similar to the Monte Carlo method, it is intuitive

and easy to implement once the deterministic solver is available, while it has a higher resolution resulting

from polynomial approximations in random spaces.

The construction of high-order stochastic collocation methods is based on polynomial interpolations in

the random space. In this section, we first introduce the Lagrange interpolation problem which is crucial

for the stochastic collocation method. Then, we discuss suitable choices of collocation points such that

the resulting function is as accurate as possible with the least number of points.

13.3.1 Lagrange Interpolation

To introduce Lagrange interpolation, first denote by Πr the space of all r-variate polynomials with real

coefficients and by Πqr the subspace of polynomials with a degree of at most q.

Definition 13.1. Let xi, i = 1, . . . , n be a given set of n nodes. Then, the n Lagrange basis polynomials

are given by

Li(x) ∶=
n

∏
j=1
j≠i

x − xj
xi − xj

. (13.10)

Note that they satisfy deg(Li) = n − 1 and Li(xj) = δij , i, j = 1, . . . , n.

Definition 13.2. Let ω1, . . . , ωM ∈ Γ denote points in the random space and b1 . . . , bM ∈ R real con-

stants. Given a subspace V ⊂ Πr, find a polynomial p ∈ V such that

p(ωi) = bi, i = 1, . . . ,M. (13.11)

This is called Lagrange interpolation. The points ωi, i = 1, . . . ,M are called interpolation nodes and the

subspace V interpolation space.

Definition 13.3. Let ω1, . . . , ωM ∈ Rr be given interpolation points. The Lagrange interpolation

problem in Definition (13.2) is called poised in V if for all b1, . . . , bM ∈ R there exists a function g ∈ V
such that g(ωi) = bi, i = 1, . . . ,M . When the Lagrange interpolation problem is poised in V for all M

distinct points in Rr, then V is called a Haar space of order M.

81

However, even though there are several available Haar spaces for r = 1, there are none for r > 1,

this is the so-called loss-of-Haar (see [30, 31] for more details on that). Hence, especially in higher

dimensional spaces it is important to select suitable points ωi such that the approximation by a Lagrange

interpolation is still good.

So, for now, assume we are given M distinct points {ω1, . . . , ωM} = Θr and an interpolation space

V ∈ Πr such that the interpolation problem is poised in V . If we want to interpolate a smooth function

f ∶ Rr → R using Lagrange interpolation, equation (13.11) takes the form

I(f)(ωi) = f(ωi), i = 1, . . . ,M (13.12)

where I(f) ∈ V is the polynomial function we want to find. This polynomial can be written as

I(f)(ω) =
M

∑
i=1

f(ωi)Li(ω) (13.13)

where Li(ω) ∈ V are the Lagrange polynomials. Since Li(xj) = δij for 1 ≤ i, j ≤ M , I(f) satisfies the

interpolation property (13.12).

If we equip the interpolation space V with the supremum-norm ∣∣ ⋅ ∣∣∞ and define

∣∣I ∣∣ = sup
f≠0

∣∣I(f)∣∣∞
∣∣f ∣∣∞

. (13.14)

Then, Lebesgue’s theorem guarantees that the interpolation error is uniformly bounded as

∣∣f(ω) − f∗(ω)∣∣∞ ≤ ∣∣f(ω) − I(f)(ω)∣∣∞ ≤ (1 +Λ)∣∣f(ω) − f∗(ω)∣∣∞ (13.15)

where f∗(ω) is the best approximating polynomial for f and Λ = ∣∣I ∣∣ is the Lebesgue constant. However,

it is important to note that finding f∗(ω) is in general an unsolved problem for r-dimensional spaces

with r > 1. Furthermore, even for r = 1, estimating the Lebesgue constant is a non-trivial task.

13.3.2 Choices of Collocation Points

As mentioned earlier, the stochastic collocation method solves the deterministic system that arises for

a fixed random variable at predetermined points. Hence, it works similarly to the Monte Carlo method

where the points were chosen at random. The crucial part in the application of the stochastic collocation

method is the choice of the collocation points. Here, two conflicting objectives have to be balanced:

Firstly, the computational complexity highly depends on the number of points – for each point we have to

solve a deterministic problem, i.e. for n points the computational effort is n times that of the underlying

deterministic solver. Therefore, in order to decrease the computational costs, the amount of collocation

points should remain small. Secondly, however, too few points lead to an inaccurate interpolation – we

need sufficiently many points to be able to accurately reconstruct the original function f . Hence, we

need to choose a nodal set Θn with the fewest possible number of collocation points from the random

variable space under a prescribed accuracy requirement.

Without loss of generality, we restrict the bounded support of the random space to the r-dimensional

hypercube [−1,1]r. In the following, we investigate two different choices of points. We mainly focus on

multi-dimensional random parameter spaces, i.e. Γ ⊂ Rr, r > 1.

82

For r = 1 and smooth functions f ∶ [−1,1]→ R, the interpolating function is of the form

U(f) =
m

∑
k=1

f(ωk) ⋅ ak (13.16)

where Θr = {ω1, . . . , ωm} ⊂ [−1,1] and ak ≡ ak(ωk) ∈ C([−1,1],R). This problem is well studied and

there is a variety of collocation points available to obtain a good approximation, e.g. Gaussian quadrature

points or extrema of Chebyshev polynomials. However, for higher-dimensional random variables, the

construction of suitable collocation points is more difficult and we investigate that problem in the

remainder of this section.

Tensor Product Since there are several good interpolation formulas available for one-dimensional ran-

dom spaces, it is a natural choice to use a tensor product of one-dimensional nodes in more dimensions.

For every component i = 1, . . . , r, we use a nodal set

Θir = {ωi1, . . . , ωimi
} (13.17)

with ωij ∈ [−1,1]. In this case, (13.16) takes the form

U i(f) =
mi

∑
k=1

f(ωik) ⋅ aik (13.18)

with aik ≡ ak(ωi) ∈ C([−1,1],R). Combining them results in the following tensor product formula:

I(f) ≡ (U i1 ⊗ ⋅ ⋅ ⋅ ⊗ U ir)(f) =
mi1

∑
k1=1

⋅ ⋅ ⋅
mir

∑
kr=1

f(ωi1k1 , . . . , ω
ir
kr
) ⋅ (ai1k1 ⊗ ⋅ ⋅ ⋅ ⊗ a

ir
kr
) (13.19)

Hence, the tensor product of these sets consists of M =m1 ⋅ . . . ⋅mr nodes. If we use the same number of

nodes for each dimension, i.e. m1 = . . . =mr =m, we obtain a total of M =mr points. Unfortunately, in

high-dimensional spaces, this number grows quickly. Even for m = 2, i.e. only two collocation points in

each component – which would still lead to a very poor approximation – we obtain a set with total size

M = 2r ≫ 1 for r ≫ 1. This curse of dimensionality is the reason that this approach is not applicable in

practice whenever the underlying random space is high-dimensional. Hence, in this case, we can instead

use the sparse grid approach considered in the next section.

Sparse Grid In order to prevent these quickly growing nodal sets, we solve the problem on a sparse

grid constructed by the Smolyak algorithm. Here, we have a linear combination of product formulas

chosen such that an interpolation property for r = 1 is preserved for r > 1.
Define U i(f) by (13.18). The Smolyak algorithm is given by

I(f) ≡ A(q, r) = ∑
q−r+1≤∣i∣≤q

(−1)q−∣i∣ ⋅
⎛
⎝
r − 1
q − ∣i∣

⎞
⎠
⋅ (U i1 ⊗ ⋅ ⋅ ⋅ ⊗ U ir) (13.20)

where i = (i1, . . . , ir) ∈ Nr and ∣i∣ = i1 + ⋅ ⋅ ⋅ + ir. Hence, we only need to evaluate f on the sparse grid

Θr ≡H(q, r) = ⋃
q−r+1≤∣i∣≤q

(Θi11 × ⋅ ⋅ ⋅ ×Θ
ir
1). (13.21)

83

In this work, we use Smolyaks formulas based on collocation points that are based on the extrema of

Chebyshev polynomials:

ωji = − cos(
π ⋅ (j − 1)
mi − 1

) , j = 1, . . . ,mi (13.22)

for mi > 1 and ω1
i = 0 if mi = 1.

Furthermore, choose m1 = 1 and mi = 2i−1 + 1 for i > 1. Then, the one-dimensional sets Θi1 are nested,

i.e. Θi1 ⊂ Θi+11 , and therefore H(q, r) ⊂ H(q + 1, r). This makes it easier to extend the collocation set if

required without the necessity to compute a new solution at every point.

If we set q = r + k, then A(r + k, r) is exact for all polynomials in Πkr [32]. We call k the level of the

Smolyak construction. Furthermore, the total number of nodes for r ≫ 1 is given by [33]

M = dim(A(r + k, r)) ∼ 2k

k!
rk, k fixed, r ≫ 1. (13.23)

Figure 13.1 emphasises the importance of using the sparse grid approach instead of the tensor product

in terms of computational complexity. The two-dimensional interpolation nodes are given by the sparse

grid H(r + k, r) with r = 2, k = 5 sum up to 145 points. On the other side, the tensor product of the

same one-dimensional nodes results in 1089 points, i.e. a seven-fold increase.

The numerical solutions obtained by applying the deterministic solver to the equation (13.3) with fixed

ω ∈ Θr can now be used to approximate the mean by the sample mean

E(û)(x) =
n

∑
k=1

u(ωk, x)∫
Γ
Lk(ω)ρ(ω)dω. (13.24)

Since the integral requires explicit knowledge about the polynomials Lk, this expression is not straight-

forward to evaluate, especially in the multivariate case.

However, it can be simplified by using cubature rules to approximate the integral. Here, choosing M

cubature points yields

∫
Γ
f(ω)dω ≃

M

∑
i=1

f(ωi)wi (13.25)

where {wi}Mi=1 are the corresponding weights. If the cubature point set is chosen as the collocation point

set Θr, the computation of the mean can be performed by

E(û) =
n

∑
k=1

u(ωk, x)ρ(ωk)wk (13.26)

since Li(ωj) = δij .

13.4 Pseudocode

The code for the stochastic collocation method can be found in stochastics.stochastic collocation method.py.

84

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 13.1: Two-dimensional interpolation nodes based on the extrema of Chebyshev polynomials
(13.22). Left: tensor product with 1089 nodes. Right: sparse grid H(r+k, r) from Smolyak
algorithm with k = 5: 145 nodes.

Algorithm 9 stochastic collocation method()

Solves the random differential equation using the stochastic collocation method for r = 2 for a fixed

number of grid cells g and order order.

1: define probability density function

2: compute collocation points Θ either on a sparse grid or tensor product ▷ with potential scaling

3: for ω ∈ Θ do

4: define initial function depending on ω

5: compute solution u(ω,x, t) with deterministic solver ▷ e.g. solve network()

6: save u(ω,x, t)
7: end for

8: interpolate with respect to ω using Lagrange interpolation

9: for i in range(g) do ▷ for each grid cell

10: compute sample mean and standard deviation

11: end for

12: plot the computed sample mean and standard deviation

13.5 Numerical Experiments

In the following, we consider numerical examples for the stochastic collocation method using the shallow

water equations as the underlying system of equations. First, we consider one-dimensional random

spaces that determine the amplitude or width of an initial Gaussian wave on an interval. Afterwards,

we apply the sparse grid approach to a dam-break Riemann problem on a network. In both cases, we

compute the sample mean and standard deviation for both components.

85

−4 −3 −2 −1 0 1 2 3 4

2.00

2.02

2.04

2.06

2.08
Estimated mean
Standard deviation

−4 −3 −2 −1 0 1 2 3 4

−0.10

−0.05

0.00

0.05

0.10

Estimated mean
Standard deviation

Figure 13.2: Estimated mean and standard deviation for an initial Gaussian wave on an interval with
varying amplitude. The left image shows the water height and the right image the momen-
tum.

13.5.1 One-Dimensional Random Space

Consider an initial Gaussian wave of the form (10.14). We repeat the numerical experiment in Section

10.6, i.e. the position of the peak of the initial hump is at x0 = 0 and h0 = 2 is the vertical displacement

of the function. However, we now consider the amplitude a or the width s to be a random variable

that is uniformly distributed in the interval Γ = [0.1,0.2] or Γ = [0.4,0.6], respectively. We use eleven

collocation points in the stochastic collocation method that are given as the extrema of the Chebyshev

polynomial of degree twelve, i.e. we apply the deterministic solver eleven times for each problem.

We consider the TeCNO2 scheme on 128 grid cells. Using the Lagrange interpolation formula

If(ω,x, t) =
11

∑
i=1

ui(ωi, x, t)Li(ω) (13.27)

in each cell Cj , j = 1, . . . ,128, we compute the sample mean and standard deviation on 500 sample points

uniformly distributed on the random variable space.

Varying amplitude: First, we consider the amplitude a to be a random variable that is uniformly

distributed in the interval Γ = [0.1,0.2] and set the width to s = 0.5. The resulting sample mean and

standard deviation can be found in Figure 13.2. We can clearly see, that the locations of the humps are

almost not affected by the varying amplitude. The height of the humps however differs with changing

a.

Varying width: Now, we repeat the experiment, but with varying widths. We fix the amplitude a = 0.15
and consider the width s as a uniformly distributed random variable in the space Γ = [0.4,0.6]. The

results are displayed in Figure 13.3. In contrast to the previous experiment, the wave height is now only

slightly influenced by the random variable, while it greatly affects the lower widths of the humps and

the middle state between them.

86

−4 −3 −2 −1 0 1 2 3 4

2.00

2.01

2.02

2.03

2.04

2.05

2.06

2.07

Estimated mean
Standard deviation

−4 −3 −2 −1 0 1 2 3 4

−0.10

−0.05

0.00

0.05

0.10 Estimated mean
Standard deviation

Figure 13.3: Estimated mean and standard deviation for an initial Gaussian wave on an interval with
varying width. The left image shows the water height and the right image the momentum.

13.5.2 Multi-Dimensional Random Space

In this section, we apply the stochastic collocation method to the dam-break Riemann problem in

networks with initial data

h(x,0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h∗1 + ω1, x in Channel 1

h∗2 + ω2, x in Channel 2

h∗3 + ω2, x in Channel 3

, w∗(x,0) = 0 (13.28)

where (ω1, ω2) ∈ Γ denotes the random variable.

In our experiment, we set h∗1 = 2, h∗2 = 1.5 and h∗3 = 1.5 and the final time t = 1. This problem contains

two random variables ω1, ω2 and is therefore the smallest possible problem one can apply the Smolyak

algorithm to. We fix the number of grid cells in each channel to 128 and apply the TeCNO2 method in

the channels.

We define the random space Γ = [−0.3,0.3]2. To obtain the sparse grid of collocation points, we use

the Smolyak algorithm at level k = 5, i.e. we obtain the grid depicted on the left in Figure 13.1 with

appropriate scaling. Hence, we have 145 executions of the deterministic solver.

Furthermore, we fix the channel widths sk = 1, k = 1,2,3 and the channel lengths to 2.5 in each channel,

the angles θ = −ϕ = π
4
and use k = p = 2 in (7.2).

Note that the choice of the collocation points does not depend on the probability density functions of

the random variables. Hence, we compute the estimated mean and standard deviation on the same

solutions to the deterministic solver on the sparse grid but for different ρi. First, we consider a uniform

distribution, i.e. each deviation from the water height h∗i is equally likely. Since this is not a particularly

realistic assumption, we also consider a truncated normal distribution around zero where deviations close

to zero from the basic water height h∗i are more likely than other ones.

Uniform Distribution: First, we assume the probability density functions ρi are uniform distributions.

The resulting estimated mean and standard deviation can be found in Figure 13.4. We can clearly see

that the water height is influenced by the varying initial data on the whole computational domain. This

was expected, since the water heights on the left and right are given by the initial water heights, as

87

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

1.4

1.6

1.8

2.0

2.2 Estimated mean
Standard deviation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.3

1.4

1.5

1.6

1.7

1.8
Estimated mean
Standard deviation

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Estimated mean
Standard deviation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 Estimated mean
Standard deviation

Figure 13.4: Estimated mean and standard deviation for a dam-break Riemann problem with varying
initial water heights where the probability density functions are uniform distributions. The
left images show Channel 1 while the right images show Channel 2 (which coincides with the
solutions on Channel 3). The first row displays the water height, the second the momentum.

long as the rarefaction or shock wave has not reached these points. Furthermore, even though we only

computed a solution on 128 grid cells, we can clearly distinguish the rarefaction from the shock wave.

The momentum however is not influenced on the whole domain. Since the water only gets accelerated

by the rarefaction and shock wave and it is at rest otherwise, the standard deviation is zero in these

intervals.

Normal Distribution: Now, we consider a probability density function where small deviations in terms

of the absolute value are more likely than higher ones. In a real-world scenario, this is plausible, if

the basic water heights h∗i , i = 1,2,3 result from measurements since it is more likely to have smaller

measurement errors than larger ones. This behavior is usually modeled by a normal distribution.

However, since it is not compactly supported, we need to adapt it to our setting by using a truncated

normal distribution [34]. Here, we choose a normal distribution as “parent function”, truncate it to the

interval (a, b) and scale it appropriately. For a normal distribution with mean µ and variance σ, this is

88

defined as

ψ(µ,σ, a, b;x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if x ≤ a
ϕ(µ,σ;x)

Φ(µ,σ;b)−Φ(µ,σ;a)
if a < x < b

0 if x ≥ b
(13.29)

where ϕ(µ,σ;x) denotes the probability density of the normal distribution with mean µ and standard

deviation σ, i.e.

ϕ(µ,σ;x) = 1

σ
√
2π
e−

(x−µ)2
2σ2 (13.30)

and Φ denotes the cumulative distribution function

Φ(µ,σ;x) = 1

2
(1 + erf(ξ√

2
)) (13.31)

where ξ = x−µ
σ

and erf(∗) denotes the error function.

As underlying normal distribution for our experiments, we choose N (0,0.15), i.e. a normal distribution

with mean µ = 0 and variance σ = 0.15. Note that they do not necessarily coincide with the mean and

standard deviation of the resulting truncated normal distribution. In our case, they are given by µ̄ = 0
and σ̄ = 0.017.
The resulting estimated mean and standard deviation can be found in Figure 13.5. As expected, the

standard deviation decreased in comparison to the uniform distribution, since the values of the random

variables close to zero, i.e. initial water heights hi = h∗i + ωi close to h∗i are more likely than other ones.

However, apart from that the resulting standard deviations have a similar form than in the previous

example.

89

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

1.5

1.6

1.7

1.8

1.9

2.0

2.1
Estimated mean
Standard deviation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.4

1.5

1.6

1.7

Estimated mean
Standard deviation

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Estimated mean
Standard deviation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Estimated mean
Standard deviation

Figure 13.5: Estimated mean and standard deviation for a dam-break Riemann problem with varying
initial water heights where the probability density functions are truncated normal distri-
butions. The left images show Channel 1 while the right images show Channel 2 (which
coincide with the solutions on Channel 3). The first row displays the water height, the
second the momentum.

90

14 Conclusion and Future Work

In this thesis, we modeled water waves in networks by combining the TeCNO scheme with a nonlinear

junction solver. This reduces the originally two-dimensional problem that can be solved by a two-

dimensional solver to a one-dimensional problem coupled with a nonlinear system.

First, we presented the TeCNO scheme, a high-order accurate, entropy stable method for solving con-

servation laws. The main idea for constructing entropy stable fluxes is the combination of entropy

conservative fluxes with diffusion terms. We extended them to higher-order methods by coupling linear

combinations of second-order entropy conservative methods with particular diffusion terms based on the

reconstructed entropy variables. Since the reconstruction procedure needs to fulfill the sign property,

we chose the ENO reconstruction.

The numerical examples in Chapter 10 verified the numerical rate of convergence for scalar equations

and systems and demonstrated the non-oscillatory property of the TeCNO scheme in comparison to the

ELW scheme, which is also high-order accurate and entropy stable.

At the junction, we update the states using a nonlinear system. The equations are derived from Rie-

mann problems across the junction and conservation of mass and momentum in the “junction triangle”.

However, when modeling waves in a network, the junction solver requires a very specific setting. First,

we only consider channels with parallel walls such that the problems there can be interpreted as one-

dimensional. The channel width, however, influences the solution of the junction solver, so it does play

a role in the solution and cannot be neglected. Furthermore, we assume one junction connects exactly

three channels. Nonetheless, the angles the channels form with each other are mutable and also incorpo-

rated into the nonlinear system. In our numerical experiments, we investigated the influence of different

angles on the resulting wave and found that especially the reflected wave is affected by varying angles.

In real-world applications, it is important to consider how different compositions of channel angles or

channel widths influence the waves traversing the junction.

In future work, one could extend this simplified problem setting. We did not include a bathymetry term

in our equations, i.e. we assumed that the bottom topography is straight and without any elevations or

discontinuities since this is a reasonable assumption in artificially built channels. It would be interesting

to investigate the influence of a varying ground on the solutions in the network and how that interacts

with different channel angles. Furthermore, we assumed that the channel walls are parallel, i.e. each

channel has a fixed width since this was necessary to apply a one-dimensional solver in each channel.

However, in reality, e.g. in harbours this is not necessarily the case. Apparently, this changes the solu-

tion throughout the channels and one has to account for that. Hence, in order to apply this work to

a real-world scenario, one has to be aware of the simplifications that have been made and potentially

adapt them accordingly.

91

References

[1] Ulrik Skre Fjordholm, Siddhartha Mishra, and Eitan Tadmor. Arbitrarily high order accurate

entropy stable essentially non-oscillatory schemes for systems of conservation laws. SIAM Journal

on Numerical Analysis, 50(2):544–573, 2012.

[2] Maya Briani, Gabriella Puppo, and Magali Ribot. Angle dependence in coupling conditions for

shallow water equations at channel junctions. Computers and Mathematics with Applications,

108:49–65, 2022.

[3] David L. George. Finite Volume Methods and Adaptive Refinement for Tsunami Propagation and

Inundation. PhD thesis, University of Washington, 2006.

[4] Gnenakantanhan Coulibaly, Babacar Leye, Fowe Tazen, Lawani Adjadi Mounirou, and Harouna

Karambiri. Urban flood modeling using 2d shallow-water equations in ouagadougou, burkina faso.

Water, 12(8), 2020.

[5] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,,

2004.

[6] Jonas Philipp Berberich. Fluids in Gravitational Fields – Well-Balanced Modifications for Astro-

physical Finite-Volume Codes. PhD thesis, Julius-Maximilians-Universität Würzburg, 2020.

[7] Ulrik Skre Fjordholm. High-order accurate entropy stable numerical schemes for hyperbolic conser-

vation laws. PhD thesis, ETH Zurich, 2013.

[8] Randall J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser Verlag, 1992.

[9] Helge Holden and Nils Henrik Risebro. Front Tracking for Hyperbolic Conservation Laws. Springer

Verlag, 2 edition, 2015.

[10] Dongbin Xiu and Jan S. Hesthaven. High-order collocation methods for differential equations with

random inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005.

[11] Akil Narayan, Claude Gittelson, and Dongbin Xiu. A stochastic collocation algorithm with multi-

fidelity models. SIAM Journal on Scientific Computing, 36(2):A495–A521, 2014.

[12] S. N. Kružkov. First order quasilinear equations in several independent variables. Mathematics of

the USSR-Sbornik, 10(2):217, feb 1970.

[13] Peter D. Lax. Hyperbolic systems of conservation laws ii. Communications on Pure and Applied

Mathematics, 10:537–566, 1957.

[14] James Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Communications

on Pure and Applied Mathematics, 18:697–715, 1965.

[15] Alberto Bressan, Tai-Ping Liua, and Tong Yang. L1 stability estimates for n×n conservation laws.

Archive for Rational Mechanics and Analysis, 1999.

[16] Alberto Bressan, Graziano Crasta, and Benedetto Piccoli. Well-posedness of the cauchy problem

for ntimesn systems of conservation laws. Mem. Amer. Math. Soc., 146:viii+134, 01 2000.

92

[17] Peter Lax. Shock waves and entropy. In Eduardo H. Zarantonello, editor, Contributions to Non-

linear Functional Analysis, pages 603–634. Academic Press, 1971.

[18] Amiram Harten, James Hyman, Peter Lax, and Barbara Keyfitz. On finite-difference approxi-

mations and entropy conditions for shocks. Communications on Pure and Applied Mathematics,

29:297–322, 05 1976.

[19] Stanley Osher. Riemann solvers, the entropy condition, and difference approximations. SIAM

Journal on Numerical Analysis, 21(2):217–235, 1984.

[20] Eitan Tadmor. Numerical viscosity and the entropy condition for conservative difference schemes.

Mathematics of Computation, 43(168):369–381, 1984.

[21] Eitan Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws.

i. Mathematics of Computation, 49(179):91–103, 1987.

[22] P. G. LeFloch, J. M. Mercier, and C. Rohde. Fully discrete, entropy conservative schemes of

arbitrary order. SIAM Journal on Numerical Analysis, 40(5):1968–1992, 2002.

[23] Ulrik Skre Fjordholm. Structure preserving finite volume methods for the shallow water equations.

Master’s thesis, University of Oslo, Norway, 2009.

[24] Ulrik Fjordholm, Siddhartha Mishra, and Eitan Tadmor. Energy Preserving and Energy Stable

Schemes for the Shallow Water Equations, volume 363 of London Mathematical Society Lecture

Note Series, page 93–139. Cambridge University Press, 2009.

[25] Timothy J. Barth. Numerical Methods for Gasdynamic Systems on Unstructured Meshes, pages

195–285. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[26] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R. Chakravarthy. Uniformly high order

accurate essentially non-oscillatory schemes, iii. Journal of Computational Physics, 131(1):3–47,

1997.

[27] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving high-order time

discretization methods. SIAM REVIEW, 43(1):89–112, 2001.

[28] Neelabja Chatterjee. Numerical analysis of conservation laws involving non-local terms. PhD thesis,

University of Oslo, 2019.

[29] Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applications. Springer-

Verlag, 5 edition, 1998.

[30] P.J. Davis. Interpolation and Approximation. Dover Books on Mathematics. Dover Publications,

1975.

[31] G.G. Lorentz. Approximation of Functions. Approximation of Functions. Holt, Rinehart and

Winston, 1966.

[32] Erich Novak and Klaus Ritter. Simple cubature formulas with high polynomial exactness. Con-

structive Approximation, 15:499–522, 12 1999.

93

[33] Erich Novak and Klaus Ritter. High dimensional integration of smooth functions over cubes.

Numerische Mathematik, 75:79–97, 10 1996.

[34] Ion Mihoc and Cristina Fătu. Fisher’s information measure and truncated normal distributions

(ii). Revue d’Analyse Numérique et de Théorie de l’Approximation, 32, 01 2003.

94

	Introduction
	Hyperbolic Conservation Laws
	Derivation of Hyperbolic Conservation Laws
	Hyperbolicity
	Examples of Hyperbolic Conservation Laws
	Shallow Water Equations
	Weak Solutions and Entropy Conditions
	Existence and Uniqueness

	Exact Solutions to Riemann Problems for the Shallow Water Equations
	Examples of Riemann Problems
	Dam-Break Riemann Problem
	Two-Shock Riemann Problem

	Determining Solutions to the Shallow Water Equations
	Shock Waves
	Rarefaction Waves
	Determining the Middle State

	Finite Volume Method
	General Formulation
	Pseudocode

	First Order Entropy Conservative and Entropy Stable Methods
	Conditions for Entropy Conservation and Stability
	Entropy Stable Methods for Scalar Equations
	Entropy Stable Methods for Systems

	Reconstruction
	High-Order Entropy Stable Methods
	High-Order Entropy Conservative Fluxes
	Scalar ELW Scheme
	Reconstruction Based Entropy Stable Schemes: Scalar Equations
	Reconstruction Based Entropy Stable Schemes: Systems of Equations
	Reconstruction Along Scaled Entropy Variables

	ENO Reconstruction
	Stencil Selection
	ENO Sign Property

	TeCNO Scheme
	TeCNO Scheme for Scalar Conservation Laws
	TeCNO Scheme for Systems of Equations
	Pseudocode

	Numerical Examples – Interval
	Experimental Order of Convergence
	Pseudocode
	Advection Equation
	Burger's Equation
	Linear Wave Equation
	Shallow Water Equation

	Water Flow Through Networks
	Definition of the Network
	Junction Solver
	Coupling of Junction Conditions and Finite Volume Scheme
	Pseudocode
	Solutions to the Junction Solver
	Reference Solutions on Networks

	Numerical Results – Network
	Dam-Break Riemann Problem
	Dam-Break Riemann Problem for Different Angles
	Smooth Initial Data
	Smooth Initial Problem for Different Angles

	Stochastic Collocation Method
	Random Differential Equations
	Monte Carlo Method
	Stochastic Collocation Method
	Lagrange Interpolation
	Choices of Collocation Points

	Pseudocode
	Numerical Experiments
	One-Dimensional Random Space
	Multi-Dimensional Random Space

	Conclusion and Future Work
	References

