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Chapter 1

Introduction

In modern financial markets, traders can choose from a large variety of financial deriva-
tives. This term denotes financial instruments that have a value determined or ’derived’
by other, so called underlying variables (see [Hul12] Chapter 1), which explains the name
’derivative’. Underlying variables can have many different forms, for example one can
find1 derivatives on commodity prices like the oil price or the price of coffee or sugar, on
exchange rates for currencies, on interest rates or even on the weather. But most often
the underlying variables are given as shares of companies or stock market indices. They
are also called underlying assets if the variable is an asset occurring in the market .

Originally, derivatives were invented to reduce the risk of uncertain prices, especially
in agricultural markets where one could have long periods between sowing and harvest.
However, they also open up opportunities for speculation. The following historical exam-
ples show derivatives used for both purposes.
The first record of a derivative-like trade goes back to a Babylonian law from late 18th
century BC protecting debtors in case of crop failure by remitting their interest payments
for that year. The annual interest payment of the debtor can be seen as a derivative
paying the interest in case of a normal harvest and nothing in case of crop failure, as
explained in [Wha07] Chapter 1.
Another reference on derivative trading can be found in Aristotle’s Politics. He tells the
story of the philosopher Thales who predicted a good olive harvest long before by his as-
tronomical knowledge. He therefore paid a deposit for the right to rent all olive oil presses
for the next harvesting season so he can sublet them to the olive farmers. A good harvest
would lead to a high demand for oil presses such that he could charge a high fee and make
a lot of money. However, if the harvest was bad and the demand for oil presses was low,
he would be forced to rent the presses for a small fee. His return on investing the deposit
hence depended on the harvest and therefore represented an agricultural derivative used
for speculative purposes. A more detailed description can be found in [CS96] Chapter I.
Fortunately for him, Thales’ plan worked out and it was a good olive harvest.

1Derivatives and corresponding underlying variables can be found on https://www.finanzen.net/ for
instance.
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CHAPTER 1. INTRODUCTION 1.0

An example explaining the minimization of risk by derivatives was given by Dutch tulip
merchants and growers in the 17th century. Tulips were a popular trading asset and lux-
ury item back then leading to a rapid increase in prices. Merchants of the bulbs therefore
managed their risk in rising purchase prices by buying Call options on the tulips, i.e.
rights to buy the tulip bulbs in the future for a predefined price. The growers conversely
bought Put options, rights to sell the bulbs at a predefined price in the future, to manage
the risk of falling prices, see e.g. [Wha07] Chapter 1.
By means of such options as well as forward contracts, i.e. contracts for delivering a certain
good in the future for a predefined price, farmers and merchants of different agricultural
assets as grain, cotton, butter, eggs, coffee etc. managed their risks at the Chicago Board
of Trade in 19th century America for instance, compare [Wha07] Table 1.1. In the middle
of the 20th century, the first derivatives on metals like silver and lead were introduced and
not long after that, in the 1970s, also foreign currencies and stocks served as underlying
assets, see [Wha07] Table 1.1.

With the rapidly evolving market also the need for a pricing formula for derivatives grew
in the 20th century, since incorrectly priced derivatives are themselves potential risks. A
breakthrough was made by Black, Scholes [BS73] and Merton [Mer73] in 1973 when they
contemporaneously formulated a model allowing the evaluation of derivatives, for which
they were later awarded the Nobel prize in economics. Derived from this model, the Black
Scholes equation

∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0, S ∈ (0,∞), t ∈ [0, T ],

explains the behaviour of the price V of the derivative by means of a partial differential
equation (PDE). This derivative is allowed to depend on the time t up to maturity T and
only one underlying stochastic asset, whose price is denoted by S and follows a geometric
Brownian motion (e.g. a stock, an index or some commodity price). The constant r
denotes the risk free rate of interest in the market and σ ∈ R is the so called volatility
of the stochastic asset. For European Call and Put options, they could even derive a
closed form solution to this PDE and thus an explicit pricing formula. Later, this model
was extended to multiple underlying assets and adjusted for certain kinds of underlying
variables like interest rates, see e.g. [CIR85].

With this pricing model at hand, the derivative market increased up to its nowadays
size with 66 million transactions and a corresponding gross volume of e735 trillion just
in the European Union (EU) in 2018, according to EU supervising agencies [SA19].

However, the comparison to real data soon showed that the volatility σ of one and the
same stochastic asset can take values that differ more than one can explain by rounding
errors etc., see e.g. [Rub85], [Sco87] and [GJ10]. The most popular approaches to deal
with this are to model the volatility either as local volatility, i.e. a function of the asset
price S and the time t, (see [Dup94], [CLV99], [Cre02] and [HR05]) or as a stochastic
process, compare e.g. the famous Heston model [Hes93] or [Rub85], [Sco87] and [HW87].
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CHAPTER 1. INTRODUCTION 1.0

Another approach is used in [NK12], [PvE09] and [Dra16]: The volatility is modelled as a
random variable Σ(ω) = Θ(ω) (in [NK12]) or a function of a random variable Σ(Θ(ω)) (in
[PvE09] and [Dra16]) for ω from a probability space. The resulting stochastic version of
the Black Scholes equation is then studied by means of uncertainty quantification. Since a
similar model is used in this thesis, the methods of these three papers are briefly explained
below.

In all these papers, the solution V , now also depending on Θ, is developed in a gen-
eralized Polynomial Chaos (gPC) expansion

V (S, t,Θ(ω)) =
∞∑
n=0

vn(S, t)pn(Θ(ω)) (1.1)

for orthogonal polynomials pn w.r.t. the distribution of Θ and coefficients given by the
expected value vn(S, t) = E(V (S, t,Θ)pn(Θ)). If Θ has a density µ : D → R, one can
alternatively calculate the coefficients by

vn(S, t) =

∫
D
V (S, t, x)pn(x)µ(x) dx.

For this purpose, a quadrature rule with nodes xj and weights wj is used in [NK12] for

the above integral vn(S, t) ≈
∑J

j=1 V (S, t, xj)pn(xj)µ(xj)wj. The solutions V (S, t, xj)
needed in the quadrature formula are the solutions of the deterministic Black Scholes
equation with σ = xj (recall that the stochastic volatility model Σ = Θ is used).
With the thus derived coefficients vn(S, t), the approximate solution is calculated by
V (S, t,Θ(ω)) ≈

∑N
n=0 vn(S, t)pn(Θ(ω)) for some N ∈ N. This method is a so called

Stochastic Collocation method, since the equation is exactly satisfied by the solution in
some points, the quadrature nodes xi, and the overall stochastic solution is constructed
from these exact solutions, see e.g. [Sul15] Section 13.2.

In [PvE09] and [Dra16] however, the Stochastic Galerkin method is used for comput-
ing the coefficients vn(S, t). By inserting the gPC expansion 1.1 into the stochastic Black
Scholes equation, multiplying the equation by an orthogonal polynomial pk(Θ) and ap-
plying the expected value on both sides, deterministic PDEs for the coefficients vn(S, t)
are derived

0 =
∂vk(S, t)

∂t
+

1

2
S2

∞∑
n=0

∂2vn(S, t)

∂S2
E
(
(Σ(Θ))2pk(Θ)pn(Θ)

)
+rS

∂vk(S, t)

∂S
−rvk(S, t). (1.2)

After the system and the coupling term were truncated to attain a maximum index N ,
they are solved numerically by the method of lines in [PvE09] and the finite element
method in [Dra16]. The expected value and the variance of the solution V (S, t,Θ) are
then calculated.

Now this thesis provides a more detailed explanation on the theoretical background of
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CHAPTER 1. INTRODUCTION 1.0

the Stochastic Galerkin method and its application to the Black Scholes equation with
random volatility. To obtain numerical results, an explicit finite difference scheme will be
used. The model will be extended to volatility depending on finitely many independent
random variables and a possibility to reduce the computational cost when calculating the
gPC coefficients of the solution V will be shown.

At the beginning, the original deterministic Black Scholes equation and the reason for
modelling the volatility not as a constant but a random variable are given as well as the
stochastic Black Scholes equation used in the following chapters.
Then, the theoretical background of the gPC expansion is described in detail including
facts on orthogonal polynomials that will be useful for computations and conditions on
when they span the space of twice integrable functions w.r.t. the density of the random
variable.
In chapter 4, the Stochastic Galerkin method is applied to stochastic Black Scholes equa-
tion explaining also the general procedure.
The numerics for solving the system of PDEs for the gPC coefficients vn(S, t) of the
stochastic Black Scholes solution is shown in the next chapter followed by numerical re-
sults obtained by the programs from the numerics chapter.
Subsequently, the model is extended to volatility depending on finitely many random
variables in chapter 7. Again, the theoretical background of the gPC expansion in this
case is explained, the Stochastic Galerkin method is applied and the numerics for solving
the system of PDEs for the gPC coefficients of the solution is illustrated, before numerical
results are presented.
Finally, we introduce a Bi-Fidelity technique in order to save computational cost, since
the computational cost rises fast if a finer grid is used or more gPC coefficients should
be computed, especially when volatility depends one more than one random variable.
This technique is applied to the model derived in the previous chapter and numerical
experiments are done.
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Chapter 2

The Black Scholes Equation

In financial mathematics, the Black Scholes equation is a very famous partial differential
equation (PDE) that describes the development of the price of a financial derivative
underlying just one stochastic asset. Together with the corresponding Black Merton
Scholes model, it marked a breakthrough in the theory of option pricing and is - in
modified versions - still used in practice, see for example [Eli19] footnote 22. The Black
Scholes equation is introduced in this chapter and common techniques for deriving the
value of volatility are explained. Since these techniques reveal significant deviations in
the derived volatility values, models extending the Back Scholes equation to non constant
volatility are mentioned and the model used in this work is derived.

2.1 The deterministic case

The Black Scholes equation has its origin in the Black Merton Scholes model first men-
tioned by Black and Scholes [BS73] and Merton [Mer73] in the year 1973 who were awarded
the Nobel prize in economics for their work in 1997 [Nob97].
The model describes a market with two assets, the deterministic asset B and the stochastic
asset S. The market is assumed to be

� free of arbitrage, i.e. money cannot come from nowhere, which is a necessary as-
sumption for reasonable pricing,

� frictionless, meaning there are no transaction costs, taxes, fees etc., and

� liquid, i.e. at any time there exists someone you can buy an asset from or sell it to.

It is assumed to allow

� buying and selling of assets at any time and at any fraction.

� short selling, which means selling an asset without having it at hand. Usually the
price of the asset is then paid instead of transferring the asset.

� borrowing money from the deterministic asset at the same rate of interest that one
would get for investing money in the deterministic asset.

5



CHAPTER 2. THE BLACK SCHOLES EQUATION 2.1

The evolution of the stochastic asset S, which is supposed not to pay any dividends, and
the deterministic asset B are specified by means of stochastic differential equations

dSt = µSt dt+ σSt dWt, (2.1)

dBt = rBt dt,

where the model parameter µ is the drift rate and σ the volatility of S and r is called the
risk free rate of interest in the market. The process Wt is a standard Brownian motion.
For valuation purposes, the drift rate is insignificant and can therefore be neglected in
the following. The risk free rate of interest can easily be obtained by bank data, whereas
the volatility has to be reconstructed from historical asset or option prices.
By using Itô-calculus one can now derive a PDE that describes the development of a
general financial derivative’s price V (S, t) depending on the time t and the price of the
underlying asset S at that moment, see e.g. [Mer73], [Hul12] Chapter 14 or [GJ10]. The
so called Black Scholes equation states, that

∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0, S ∈ (0,∞), t ∈ [0, T ].

(2.2)
Solving this PDE according to the derivative’s condition at maturity T and its boundary
conditions in S, one obtains the price process of the derivative. Since the Black Scholes
equation is a parabolic PDE, the existence and uniqueness of weak solutions in L2([0, T ]×
(0,∞),R) is guaranteed, see for instance [Eva98]. However, in general it can only be
obtained numerically.

Example 1 ([GJ10] Chapter 4.2.2. and Satz 4.12). A European Call option grants its
holder the right to buy an asset with price S at the time T in future for a predefined
strike price strike.
At time T , the output of the option will therefore be (S−strike)+ := max(S−strike, 0).
This should coincide with the fair price V (S, T ) at time T to avoid arbitrage, since a
higher (lower) price V̂ would guarantee the vendor (buyer) an instant positive output
V̂ − (S− strike)+ > 0 ((S− strike)+− V̂ > 0) at no cost. This is the final condition. For
the boundary conditions in S, consider at first St = 0 at one time t ∈ [0, T ]. Then the
asset price dynamic shows Su = 0 for all u ≥ t, so that the final output is 0. But in an
arbitrage free market, a zero output is worth nothing, hence V (0, t) = 0 for all t ∈ [0, T ].
For very high S however, it is very likely that the Call will be exercised at T with output
ST − strike > 0. This output is approximately worth St − strike er(T−t) at time t and
therefore V (S, t)→∞ for S →∞.
Thus, if one postulates the Black Scholes model for the considered market and the asset
price S, the option price can be calculated by solving the Black Scholes equation 2.2 with
the final and boundary conditions

V (S, T ) = (S − strike)+, S ∈ (0,∞),

V (S, t)
S→0−−→ 0, t ∈ [0, T ] and

V (S, t)

S

S→∞−−−→ 1, t ∈ [0, T ].
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CHAPTER 2. THE BLACK SCHOLES EQUATION 2.2

For this special case, the PDE can be solved analytically to obtain the Black Scholes
formula for European Call options

V (S, t) = SΦ(d1)− strike e−r(T−t)Φ(d2), S > 0, 0 ≤ t < T,

with the distribution function Φ of the standard normal distribution

Φ(x) =
1

2π

∫ x

−∞
e−s

2/2 ds, x ∈ R,

and

d1/2 =
ln(S/strike) + (r ± σ2/2)(T − t)

σ
√
T − t

.

2.2 Techniques for deriving the volatility

Within the years, different techniques were developed to derive a value of the volatility
from historical market data as described in [GJ10]. The two most popular will be por-
trayed in this section.

The historic volatility makes use of the fact, that σ2 is just the variance of the loga-
rithmic yearly difference of the asset prices:

d ln(St) =
dSt
St

= µ dt+ σ dWt.

Because the Brownian motion has independent increments Wt1−Wt2 with variance t1− t2
for t1 > t2 and the drift term grows deterministically, the variance of

d ln(St1)− d ln(St2) = µ(t1 − t2) + σ(Wt1 −Wt2)

is given by σ2(t1−t2). Hence, it makes sense to determine the volatility from n sequentially
collected daily asset prices Si corresponding to time ti for i = 1, ..., n. The squared historic
volatility is computed as the sample variance of daily logarithmic asset price differences
yi := ln(Si+1)− ln(Si) multiplied by the mean number of trading days in one year td, i.e.

σhist =
√
td

(
1

n− 2

n−1∑
i=0

(yi − ȳ)2

)
,

where ȳ is the arithmetic mean of the yi. This is a consistent and convergent estimate for
σ due to the properties of the sample variance.

Another approach makes use of option pricing, as the Black Scholes equation can be
solved analytically in the case of European options, see example 1. They resemble op-
tional future contracts, i.e. the right to buy (Call option) or sell (Put option) an asset at
a predefined strike price strike at the maturity T . As the price of these options depends

7



CHAPTER 2. THE BLACK SCHOLES EQUATION 2.3

monotonously on σ before maturity, it is possible to fit their calculated prices to the mar-
ket prices by varying σ. This gives a well-defined value (see [GJ10] section 4.4.2) which is
called the implied volatility σimpl. If one refers to the market price of a European option
at a specific time t̃ and value of the stochastic asset S̃ as Ṽ , then σimpl satisfies

Vσimpl(S̃, t̃) = Ṽ . (2.3)

Here, the notation Vx should illustrate, that the value x was used for σ in the formula for
the option price V .

Either way, the computation of volatility depends on random observations of S or on
the values of European options, which could be influenced by rounding errors or supply
and demand, leading to slightly different prices. Indeed, as shown in [Rub85], [Sco87] and
[GJ10] Tabelle 4.1 e.g., the implied volatility takes significantly different values.
Trying to explain this, [Dup94], [CLV99], [Cre02] and [HR05] for instance modelled the
volatility as a function of S and t. The so called local volatility hence exchanges every σ
in the Black Scholes model by σ(S, t), leading to some extra terms in the Black Scholes
equation in order to deal with the volatility risk.
Another common way to cope with the variability in σ is to model it as a stochastic
process just as S. This approach was e.g. used in the Heston model [Hes93] as well as in
[Rub85], [Sco87] and [HW87].

2.3 Volatility as a random variable

In this work, however, the volatility will be described in a different way: It will be assumed
to be a random variable Σ that is independent of the asset price S and does not change in
time. This could e.g. reflect the uncertainty in deriving the right value for σ. If one uses
the implied volatility to obtain values for σ, as we will do in this work, the independence
is a quite rational assumption, because the asset price S is already considered during the
computation of option prices. Therefore, one could assume the asset price to be already
’priced in’ and as a result, the implied volatility could be assumed to be independent on it.

In this model, deriving the Black Scholes equation works the same way as it did in the
case of a constant volatility. The Black Scholes equation with random volatility is then
given by

∂V (S, t)

∂t
+

1

2
Σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0 (2.4)

for S ∈ (0,∞), t ∈ [0, T ], where Σ is a random variable reflecting the random volatility. It
should be pointed out that the solution of this equation V (S, t) is a random variable, which
takes values according to the value of Σ. If Ω is the sample space of Σ, i.e. Σ : Ω → R,
then V (S, t) is for all (S, t) ∈ (0,∞) × [0, T ] a function Ω → R, too. Furthermore, a
realization of the solution V (S, t)(ω), ω ∈ Ω, equals the solution to the deterministic
Black Scholes equation with σ = Σ(ω), i.e. in the notation as in equation 2.3 one has

V (S, t)(ω) = VΣ(ω)(S, t), ω ∈ Ω. (2.5)

8



Chapter 3

Towards the Stochastic Galerkin
method

This chapter explains the ideas behind the Stochastic Galerkin method, that is demon-
strated by applying it to the Black Scholes equation with random volatility 2.4 in the
next chapter.
Since the Stochastic Galerkin method is based on the general Polynomial Chaos (gPC)
expansion of random variables, that makes use of orthogonal polynomials, these topics
have to be discussed first.

The aim of this chapter is therefore to derive another representation of random variables
X : Ω → F , where Ω is a probability space and F is a Hilbert space, in our case R or a
space Lp(D,R) of Lebesgue Lp functions from some domain D to R for p = 0, 1, 2. This
representation should only depend on another continuous random variable Θ : Ω → R
with density µ : D → R for D ⊂ R and be of the type

∑∞
k=0 xkpk(Θ) for xk ∈ F and

pk orthogonal polynomials w.r.t. µ. It should equal X in distribution, since this work
always considers equality of random variables in distribution.
To make sure X can be represented by Θ in a proper way, we assume X = X̃(Θ) in
distribution with X̃ ∈ L2

µ(D,F).

Notation:
As usual, L2

µ := L2
µ(D,R) describes the space of all functions D → R with finite L2

µ norm
‖ · ‖µ modulo µ null sets. The norm is defined by

‖f‖2
µ :=

∫
D

(f(x))2µ(x) dx for f : D → F ,

which is actually the natural norm defined by the scalar product

〈f, g〉µ :=

∫
D
f(x)g(x)µ(x) dx for f, g ∈ L2

µ.

For sake of easier readability, the integral of f ∈ L2
µ will also be written in the following

way

〈f〉µ :=

∫
D
f(x)µ(x) dx.

9



CHAPTER 3. TOWARDS THE STOCHASTIC GALERKIN METHOD 3.1

Note that with this notation, the subsequent relations hold for f, g ∈ L2
µ:

〈f, g〉µ = 〈fg〉µ,
‖f‖2

µ = 〈f, f〉µ = 〈f 2〉µ.

For F = Lp(D,R), the space L2
µ(D, Lp(D,R)) and the above notation is defined accord-

ingly, with the difference that the integrals lie in Lp(D,R) and finite norm is meant to
hold pointwise for all points in D. Note that the random variable X is then actually a
stochastic process D × Ω→ R. Therefore, values of X will also be written as X(t, ω) for
t ∈ D and ω ∈ Ω.
Furthermore, the difference between f and f(x) will be dealt with in a loose fashion such
that sometimes f(x) will denote the function instead of its value in x. It should be clear
from the context if the function or the value is meant.

3.1 Orthogonal polynomials

Orthogonal Polynomials were extensively studied in literature, e.g. by [Sze59] and [Chi78]
and [Fre71], because they are of great advantage in approximation theory and numerics
for PDEs, where they serve as basis functions for the Galerkin approach for instance. We
will use them to approximate a random variable by another one via a series of orthogonal
polynomials evaluated in the latter random variable.

Definition 1 ([Chi78]). Let N := N0 or N := {0, 1, ..., N}, N ∈ N, and µ be a probability
density on D ⊂ R. Then, the set {pn |n ∈ N} of polynomials in x defined on D is called
an orthogonal system of polynomials with respect to the probability density µ, if for all
n ∈ N , the polynomial pn has degree deg(pn) = n and it satisfies

〈pnpm〉µ =

∫
D
pn(x)pm(x)µ(x) dx = 0 for m 6= n and

〈p2
n〉µ =

∫
D
p2
n(x)µ(x) dx = ‖pn‖2

L2
µ
> 0. (3.1)

The pn are called the orthogonal polynomials w.r.t. µ.

Using the Kronecker delta function δxy := 1{x=y}, x, y ∈ R, condition 3.1 can be sum-
marized: 〈pnpm〉µ = γnδnm with γn := ‖pn‖2

L2
µ
> 0.

Orthogonal polynomials can be defined for a greater class of distributions, for instance
distributions that do not necessarily have densities or are not necessarily probability
distributions, see [Chi78] or [Fre71]. For our purposes however, the above definition is
sufficient and more illustrative, because only probability distributions with densities will
be considered in this work.

The existence of orthogonal systems w.r.t. an arbitrary probability density function µ
is guaranteed by the Gram Schmidt algorithm applied to the monomials xn, n ∈ N , as
long as all corresponding moments

∫
D x

nµ(x) dx are finite, see e.g. [Fre71].

10
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It is obvious, that orthogonal systems are not unique, take for example {2pn |n ∈ N}
for a set of orthogonal polynomials {pn |n ∈ N}. However, the Gram Schmidt algorithm
shows that the polynomials are unique up to multiplication by constants, see also [Chi78].

Some important orthogonal polynomials with corresponding density functions are
given in the next example.

Example 2 ([Chi78], [Sul15]). We will consider orthogonal polynomials for the proba-
bility density of a standard normal and a uniformly on [−1/2, 1/2] distributed random
variable.

(a) The monic orthogonal polynomials of the standard normal distribution with density
function µ : R→ R,

µ(x) =
1√
2π
e−

x2

2

are the Hermite polynomials

Hen(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 , for n ∈ N.

It holds, that 〈HenHem〉µ = n!δnm. The first six polynomials are given by

He0(x) = 1,

He1(x) = x,

He2(x) = x2 − 1,

He3(x) = x3 − 3x,

He4(x) = x4 − 6x2 + 3,

He5(x) = x5 − 10x3 + 15x.

Figure 3.1: Graphs of the first Hermite polynomials He0,
He1, He2, He3, He3 and He3 together with the density µ.

(b) The orthogonal polynomials of the uniform distribution on [−1/2, 1/2] with density
function µ(x) = 1 for all x ∈ [−1/2, 1/2] are called the Legendre polynomials Len.
They are in particular the solutions y to the differential equations

(1− x2)
d2

dx2
y + 2x

d

dx
y + n(n+ 1)y = 0

for n ∈ N and satisfy 〈LenLem〉µ = 1
2n+1

δnm. The Legendre polynomials of degree
smaller than six are

11
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Le0(x) = 1,

Le1(x) = 2x,

Le2(x) = 6x2 − 1

2
,

Le3(x) = 20x3 − 3x,

Le4(x) = 70x4 − 15x2 +
3

8
,

Le5(x) = 252x5 − 70x3 +
15

4
x.

Figure 3.2: Graphs of the first Legendre polynomials
Le0 = µ, Le1, Le2, Le3, Le4 and Le5.

Orthogonality of the pn in particular enables a fast computation of integrals of pn with
another polynomial.

Theorem 1 ([Chi78], Theorem I.2.1). For a probability density function µ and a set N
like in definition 1 and polynomials {pn |n ∈ N} on D with deg(pn) = n, it is equivalent
that is

(i) {pn |n ∈ N} is an orthogonal system of polynomials w.r.t. µ,

(ii) 〈pnq〉µ =
∫
D pn(x)q(x)µ(x) dx = 0 for every polynomial q on D of degree smaller

than n and unequal to zero for n = deg(q).

Proof. We prove this in two steps.

(i)⇒(ii) Let {pn |n ∈ N} be an orthogonal system of polynomials w.r.t. µ. Due to
deg(pk) = k, the set {pk | k = 0, ...,m} is a basis for the vector subspace of
polynomials of degree smaller or equal to m ∈ N . Then every polynomial q on
D of degree m can be written as a linear combination of the pk, k = 0, ...,m,
i.e.

q(x) =
m∑
k=0

ckpk(x), ck ∈ R for k = 0, ...,m and cm 6= 0.

Now, for m < n linearity of the integral gives

〈pnq〉µ =
m∑
k=0

ck〈pkpn〉µ = 0

by orthogonality of the {pn, n ∈ N} and for m = n

〈pnq〉µ =
m∑
k=0

ck〈pkpn〉µ = cm〈p2
m〉µ = cmγm 6= 0.

12
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(ii) ⇒ (i) Assuming (ii) holds and choosing q = pm, one obtains that {pn |n ∈ N} form
an orthogonal system of polynomials w.r.t. µ.

To calculate the orthogonal polynomials w.r.t. a probability distribution µ, one could
use the Gram Schmidt algorithm. However, there is an easier and computationally faster
way given by the recursion formulas for orthogonal polynomials.

Theorem 2 ([Chi78], Theorem I.4.1). Let µ be a probability density on D ⊂ R and
{pn |n ∈ N} a corresponding orthogonal system of monic polynomials, that means the
coefficient of the highest potency of x in pn(x) is 1. Then for n ∈ N the pn satisfy a
recursion relation

pn+1(x) = (x− an)pn(x)− bnpn−1(x)

for an =
〈xp2

n(x)〉µ
〈p2
n(x)〉µ

∈ R, bn =
〈p2
n(x)〉µ

〈p2
n−1(x)〉µ

> 0.

Here, one defines p−1(x) := 0.

Proof. Because xpn(x) is a monic polynomial of degree n+ 1, it can be written as a linear
combination of the pk, k = 0, ..., n+ 1:

xpn(x) =
n+1∑
k=0

cn,kpk(x) with cn,k =
〈xpn(x)pk(x)〉µ
〈p2
k(x)〉µ

and cn,n+1 = 1 due to the monic property. For k < n − 1, the polynomial xpk(x) is of
degree k + 1 < n and hence cn,k = 0 by theorem 1 and we are left with

xpn(x) = pn+1(x) + cn,npn(x) + cn,n−1pn−1(x)

for n ≥ 1. By replacing xpn−1 by
∑n

k=0 cn−1,kpk(x) with cn−1,n = 1 and using the orthog-
onality of the pk, one has

cn,n−1 =
〈xpn(x)pn−1(x)〉µ
〈p2
n−1(x)〉µ

=

∑n
k=0 cn−1,k〈pn(x)pk(x)〉µ

〈p2
n−1(x)〉µ

= cn−1,n
〈p2
n(x)〉µ

〈p2
n−1(x)〉µ

= bn.

Since cn,n = an, the result follows.

Note, that also non monic orthogonal polynomials pn satisfy a recursion relation of
the form

pn+1(x) = (cnx− an)pn(x)− bnpn−1(x) (3.2)

for an, bn, cn ∈ R. This can easily be shown using the formula for the monic polynomials.

13
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Example 3 ([Chi78], [Sul15]). The Hermite and Legendre polynomials satisfy the recur-
sion formulas

Hen+1(x) = xHen(x)− nHen−1(x),

Len+1(x) =
2n+ 1

n+ 1
2xLen(x)− n

n+ 1
Len−1(x).

The monic Legendre polynomials L̃en := Len/(2
n
∏n−1

i=1
2i+1
i+1

) satisfy the recurrence relation

L̃en+1(x) = xL̃en(x)− n2

4(4n2 − 1)
L̃en−1(x).

These results will be of great advantage for the implementation of the final model
obtained by the Stochastic Galerkin method, see program 2.

3.2 Generalized Polynomial Chaos expansion

The reason we considered orthogonal polynomials last section is, that they are used for
general Polynomial Chaos (gPC) expansions. A special case that considers the normal dis-
tribution, the so called Wiener-Hermite Polynomial Chaos, was first published by Wiener
in 1938 [Wie38]. Further derivations and more general definitions can be found in many
books about uncertainty quantification, e.g. [Sul15], [Xiu10] or [GHO19].

General polynomial Chaos expansions try to represent a random variable X : Ω → F
for some space F by means of a series of orthogonal polynomials pk in another continuous
random variable Θ : Ω→ R with coefficients xk ∈ F

X =
∞∑
k=0

xkpk(Θ).

The reason such expansions are studied is, that usually the density µ : D → R of Θ will be
chosen to belong to an easier distribution than the one of X, making it less complicated
to deal with the (potentially truncated) series than with X itself.

However the distributions of X and Θ must be of a ’similar type’. Imagine e.g. a constant
random variable Θ. It would be impossible to represent a Gaussian random variable X,
that takes values in every non trivial interval of R with probability greater than zero,
but takes one fix value with probability zero, by means of a constant series of orthogonal
polynomials evaluated in Θ.
Thus, put in mathematical terms, one assumes that

X = X̃(Θ) in distribution, with X̃ ∈ L2
µ(D,F). (3.3)

Furthermore, it is assumed that the distribution of Θ and hence its density µ is chosen
such that infinitely many orthogonal polynomials exist. This is true for the standard
normal distribution or the uniform distribution on [−1/2, 1/2] for instance.

14
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If there exist only finitely many orthogonal polynomials, it will not be possible to write
every random variable X̃(Θ) in the desired form, take for instance a polynomial in Θ of
degree higher than the highest degree of orthogonal polynomials.

In order to write every random variable of the form X̃(Θ) in such a way, the orthog-
onal polynomials w.r.t. µ need to span L2

µ.

Definition 2 ([Isk18] Definition 6.22). A complete basis (φn)n∈N0 of L2
µ is a sequence of

linearly independent functions in L2
µ, such that span(φn |n ∈ N0) = L2

µ.

In the following, conditions on when orthogonal polynomials form such a complete
basis are given. Note, that linear independence of orthogonal polynomials on non trivial
intervals is always given by the condition on their degrees and the fact that non zero
polynomials can only have as many zeros as their degree. For the proofs of completeness,
the following lemma will be useful.

Lemma 1 ([Isk18] Theorem 6.26). Let µ be a density function on D ⊂ R. For linearly
independent functions (φn)n∈N0 the following is equivalent:

(i) (φn)n∈N0 is a complete basis of L2
µ,

(ii) if f ∈ L2
µ is orthogonal to every φn, i.e. 〈fφn〉µ = 0 for all n, then f has to be

0 ∈ L2
µ.

Proof. We can assume w.l.o.g. that the φn are orthonormal. If they are not, apply the
Gram Schmidt algorithm and normalise the polynomials to go over to the orthonormalised
basis for which the assertions hold, if and only if they hold for the φn.

(i)⇒(ii) Assume (φn)n∈N0 is a complete orthonormal basis and f ∈ L2
µ is orthogo-

nal to every φn. By completeness, for each ε > 0 there exist N ∈ N0 and
sN ∈ span(φ0, ..., φN) with ‖sN − f‖ < ε. As known from linear algebra,
the orthogonal projection Pn(f) :=

∑n
k=0〈fφk〉µφk of f onto the orthonormal

basis φ0, ..., φn is the best approximation of f in span(φ0, ..., φn) and hence
satisfies for n ≥ N

‖Pn(f)−f‖µ = inf
s∈span(φ0,...,φn)

‖s−f‖µ ≤ inf
s∈span(φ0,...,φN )

‖s−f‖µ ≤ ‖sN−f‖ < ε.

Therefore, Pn(f) → f for n → ∞. The continuity of the L2
µ-norm together

with the orthonormality of the φk then gives

‖f‖2
µ = lim

n→∞
‖Pn(f)‖2

µ = lim
n→∞

n∑
k=0

〈fφk〉2µ = 0.

Hence, f = 0 in L2
µ.

(ii) ⇒ (i) Define S := span(φn |n ∈ N0) ⊂ L2
µ and S⊥ as the orthogonal complement of

S in L2
µ. Per definition, f ∈ L2

µ is an element of S⊥ if and only if 〈fφn〉µ = 0
for all n. By (ii), only f = 0 satisfies this condition and therefore S⊥ = {0}
and L2

µ = S ⊕ S⊥ = S, which proves the assertion.
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CHAPTER 3. TOWARDS THE STOCHASTIC GALERKIN METHOD 3.2

If µ is defined on a bounded interval [a, b] ⊂ R, an infinite system of orthogonal poly-
nomials is always a complete basis of L2

µ, which will be shown below as in [KS51].

The famous Theorem of Weierstraß already suggests, that polynomials might be a good
choice for approximation, since they lie dense in the continuous functions on compact
intervals, which are again dense in L2

µ on compact intervals:

Theorem 3 (Theorem of Weierstraß, [Sul15] Theorem 8.20 or [Isk18] Korollar 6.12). For
any continuous function f : [a, b] → R on a compact interval [a, b] ⊂ R and any ε > 0,
there exists a polynomial p such that

sup
a≤x≤b

|f(x)− p(x)| < ε.

The proof will be omitted here and can be found in various literature as in [Isk18].

Theorem 4 (Completeness on bounded intervals, adapted from [KS51] Kapitel VIII. §7).
Let [a, b] ⊂ R be a bounded interval and µ a probability density on it. Then every infinite
system of orthogonal polynomials w.r.t. µ is a complete basis of L2

µ.

Proof. Assume (pn)n∈N0 is a system of orthogonal polynomials w.r.t. µ. By Lemma 1,
it remains to show that for a function f ∈ L2

µ, the condition 〈fpn〉µ = 0 for all n ∈ N0

implies f = 0.
By the density of continuous functions in L2

µ (see e.g. [AE08] Theorem X.4.18) and the
theorem 3 of Weierstraß, for every ε > 0 there exists a continuous function g : [a, b]→ R
with ‖f − g‖µ < ε/2 and a polynomial q(x) with supa≤x≤b |g(x)− q(x)| < ε/2. With the
triangle inequality, it follows

‖f − q‖µ ≤ ‖f − g‖µ + ‖g − q‖µ = ‖f − g‖µ +

(∫ b

a

|g(x)− q(x)|2µ(x) dx

)1/2

<
ε

2
+

((ε
2

)2
∫ b

a

µ(x) dx

)1/2

= ε.

Furthermore, 〈fpn〉µ = 0 implies 〈fq〉µ = 0, as one can develop q(x) =
∑deg(q)

k=0 ckpk(x)
in the orthogonal polynomials. This together with Hölders inequality (see e.g. [AE08]
X.4.2) yields

‖f‖2
µ = 〈f 2〉µ = 〈f 2〉µ − 〈fq〉µ

= 〈f(f − q)〉µ =

∫ b

a

f(x)
(
f(x)− q(x)

)
µ(x) dx

≤
(∫ b

a

|f(x)|2µ(x) dx

)1/2(∫ b

a

|f(x)− q(x)|2µ(x) dx

)1/2

= ‖f‖µ‖f − q‖µ

< ε‖f‖µ.

Dividing by ‖f‖µ <∞ shows that ‖f‖µ = 0 and therefore f = 0 in L2
µ.
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For unbounded intervals, [KS51] described a sufficient condition for the completeness.

Theorem 5 (Completeness on R, [KS51], Kapitel VIII. §7). Let µ : R→ R be a probability
density and v(t) =

∫∞
−∞ |x|

tµ(x) dx. If

lim
n→∞

1

n
v(2n)1/2n = 0, (3.4)

then all infinite systems of orthogonal polynomials form a complete basis of L2
µ.

Note that the function v represents the absolute moments of a distribution given by
the density function µ, which for even natural numbers coincide with the (non absolute)
moments. Thus, expressed in a sloppy way, the condition states that the even moments
grow slowly enough.

Proof. Let f be a function in L2
µ and (pn)n∈N0 a set of orthogonal polynomials. Assume

that µ satisfies condition 3.4 and that 〈fpn〉µ = 0 for all n. In the following, we try to
show, that this implies f = 0 in order to apply theorem 1.
Define α2 :=

∫∞
−∞ |f(x)|2µ(x) dx ≥ 0, then the inequality of Hölder, see e.g. [AE08]

Theorem X.4.2, yields∣∣∣∣∫ ∞
−∞

f(x)xnµ(x) dx

∣∣∣∣ ≤ (∫ ∞
−∞
|f(x)|2µ(x) dx

)1/2(∫ ∞
−∞
|xn|2µ(x) dx

)1/2

= αv1/2(2n). (3.5)

Now consider the function F : R→ C,

F (t) =

∫ ∞
−∞

f(x)eixtµ(x) dx

for i =
√
−1. This function exists since the Hölder inequality gives

|F (t)| ≤
∫ ∞
−∞
|f(x)||eixt|µ(x) dx =

∫ ∞
−∞
|f(x)|µ(x) dx

≤
(∫ ∞
−∞
|f(x)|2µ(x) dx

)1/2(∫ ∞
−∞
|1|2µ(x) dx

)1/2

= α · 1.

Inserting the series representation of the e function, we would like to show that F can
also be written as a series

F (t) =
∞∑
n=0

(it)n

n!

∫ ∞
−∞

f(x)xnµ(x) dx.

This is true as long as this series converges, hence we calculate Hadamard’s radius of
convergence (limn→∞

n
√
|cn|)−1, where cn are the coefficient of the potencies of t in the

series, see e.g. [AE06a] Theorem II.9.2. By equation 3.5 they satisfy

|cn| =
|i|n

n!

∣∣∣∣∫ ∞
−∞

f(x)xnµ(x) dx

∣∣∣∣ ≤ 1

n!
αv1/2(2n).
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Hence, we have

0 ≤ lim
n→∞

n
√
|cn| ≤ lim

n→∞
n

√
1

n!
αv(2n)1/2 = lim

n→∞

(
n

√
nn

n!
α

1

n
v(2n)1/2n

)
= 0,

where the last equality arises from assumption 3.4 together with the boundedness of

n

√
nn

n!
α ≤ n

√
en max(α, 1)n = emax(α, 1)

due to the series representation of en. The radius of convergence∞ now tells us, that the
series converges for every t ∈ R and thus it is a representation of F (t) on R.
Furthermore, our assumption 〈fpn〉µ = 0 for all n is equivalent to 〈fxn〉µ = 0 for all
n, what can be seen by developing xn in the orthogonal polynomials p0, ..., pn and using
linearity of the integral 〈·〉µ. Therefore, all coefficients cn in the series representation
vanish and one obtains F (t) = 0 for all t ∈ R.
Since F is - up to some constant - equal to the so called Fourier transform of f(x)µ(x),
it is zero if and only if f(x)µ(x) is zero everywhere except for Lebesgue null sets. This
result can e.g. be found in [KS51] Kapitel VIII. §7 or [AE08] Theorem X.9.12. But µ is
non negative, implying f to be zero on {x |µ(x) > 0} except for some Lebesgue null sets,
which are µ null sets, too, and hence f = 0 in L2

µ.

For intervals that are bounded on one side, the proof can be modified and leads to
similar results, see [KS51] Kapitel VIII §7.
There exists further research on the completeness of orthogonal polynomial systems, for
instance a generalization concerning the support of the densities [Cra71]. However for our
purposes the above results are sufficient.

Example 4. 1. The Legendre polynomials Len form a complete basis of L2
µ for the

density function µ : [−1/2, 1/2]→ R, µ(x) = 1.
This is a direct consequence of Theorem 4.

2. The Hermite polynomials Hen provide a complete basis of L2
µ for the density µ of

the standard normal distribution on R.
To show this, we want to apply Theorem 5. The moments v(2n) can be found in
[PR96]:

v(2n) =
(2n)!

2nn!
.

They fulfil the requirements of Theorem 5, since

0 ≤ 1

n
v(2n)1/2n =

1

n

(
(2n)!

2nn!

)1/2n

=
1√
2n

(
(2n)!

n!

)1/2n

=
(2n(2n− 1)...(n+ 1))1/2n

√
2n

≤((2n)n)1/2n

√
2n

=

√
2n√
2n

=
1√
n
→ 0

for n→∞.
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With the above, we can define gPC expansions in a reasonable way.

Theorem 6 (gPC expansion). Let Θ be a random variable with density µ : D → R,
such that there exists a complete basis of corresponding orthogonal polynomials pn for L2

µ.
Denote an arbitrary Hilbert space by F (take for instance R or Lp(D,R), p = 0, 1, 2).
Then for every random variable X : Ω → F that can be written in the form X = X̃(Θ)
with X̃ ∈ L2

µ(D,F), it holds that

X = X̃(Θ) =
∞∑
k=0

xkpk(Θ), (3.6)

where the xk ∈ F are given by

xk =
〈Xpk〉µ
〈p2
k〉µ

. (3.7)

Definition 3. Representation 3.6 is called the general Polynomial Chaos expansion of X
w.r.t. Θ.

Note, that for a real valued random variable X : Ω → R, the gPC expansion is the
orthogonal projection of X̃ onto span(pn |n ∈ N) evaluated in Θ.

Proof. Example E.12 in [Jan97] shows the isometry L2
µ ⊗ F ∼= L2

µ(D,F) by the map
g ⊗ f 7→ gf for g ∈ L2

µ, f ∈ F . But every element x ∈ L2
µ ⊗ F can be written as a linear

combination of simple tensors

x =
m∑
k=1

ck(uk ⊗ vk), m ∈ N, ck ∈ R, uk ∈ L2
µ, vk ∈ F .

By the isometry, then every X̃ ∈ L2
µ(D,F) can be represented in the form

X̃ =
m∑
k=1

ckukvk, m ∈ N, ck ∈ R, uk ∈ L2
µ, vk ∈ F .

Since the pn span L2
µ, one can find u

(n)
k ∈ R such that uk =

∑∞
n=0 u

(n)
k pn. Inserting this in

the above equation yields

X̃ =
m∑
k=1

ck

(∑
n∈N0

u
(n)
k pn

)
vk =

m∑
k=1

∑
n∈N0

cku
(n)
k pnvk =

∑
n∈N0

pn

(
m∑
k=1

cku
(n)
k vk

)
=
∑
n∈N0

pnxn,

where the linear combination xn :=
∑m

k=1 cku
(n)
k vk of vectors in F lies in F itself.

Due to orthogonality of the pn, the xn are the coefficients of the orthogonal projection of
X̃ onto the span of all pn which verifies representation 3.7.

The above derived gPC expansion allows us to study the Black Scholes equation with
uncertain volatility 2.4 by the Stochastic Galerkin method.
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Chapter 4

Application of the Stochastic
Galerkin method

The Stochastic Galerkin method serves to transform a differential equation with stochastic
variables into several deterministic differential equations that can be solved numerically.
The solution for the equation in stochastic variables can then be reconstructed from the
solutions of the deterministic ones. In this chapter, the method will be explained in detail
while applying it to the Black Scholes equation with random volatility.

The Stochastic Galerkin method became popular in uncertainty quantification within
the last years. Ghanem and Spanos are mentioned by [Sul15] to be the first to have
enhanced the method’s popularity with the book [GS91] and several articles like [GS97].
Later, many authors in uncertainty quantification treated the method in their books like
[Xiu10], [Sul15] and [GHO19] just to mention some. The theory applied in this chapter
was taken from the first two of them.

In the Black Scholes equation with random volatility 2.4

∂V (S, t, ·)
∂t

+
1

2
Σ2S2∂

2V (S, t, ·)
∂S2

+ rS
∂V (S, t, ·)

∂S
− rV (S, t, ·) = 0,

the volatility Σ : Ω→ R and the solution V : (0,∞)× [0, T ]×Ω→ R are modelled to be
a random variable and a stochastic process respectively on a common probability space.
We require the distribution of Σ to be given and try to find the solution V on that basis.

In the following the Stochastic Galerkin method will be explained and applied in 6 steps.

Step 1: Writing the stochastic variables as gPC expansions
First, we rewrite all variables modelled as random variables or stochastic processes as
gPC expansions w.r.t. a continuous random variable Θ : Ω→ R with density µ : D → R.
Assume, all conditions of theorem 6 are satisfied for Σ and V , i.e. there exists a complete
basis of orthogonal polynomials pn of L2

µ as well as an L2
µ functions Σ̃ : D → R and a
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L2
µ(D, L2((0,∞)× [0, T ],R)) function Ṽ : (0,∞)× [0, T ]×D → R with

Σ = Σ̃(Θ) and V (S, t, ·) = Ṽ (S, t,Θ) (4.1)

for all S and t in distribution. Then, theorem 6 shows that we can write Σ and V in the
gPC form

Σ =
∞∑
k=0

σkpk(Θ) and V (S, t, ·) =
∞∑
k=0

vk(S, t)pk(Θ),

with σk ∈ R and vk ∈ L2((0,∞)× [0, T ],R).

It should be mentioned that for Σ, condition 4.1 can be checked, as Σ’s distribution
is known, whereas the distribution of V should be derived by this method and is therefore
unknown. Thus, one can not verify condition 4.1 for V at this step. Instead one postu-
lates it without proof, applies the Stochastic Galerkin method and verifies the assumption
afterwards. However, this is a typical approach when applying the Stochastic Galerkin
method.

Step 2: Inserting the gPC expansions in the differential equation
In the next step, these expansions are inserted in the PDE. Here one takes into account
that the partial derivatives of V in S and t pass over to the coefficients vk

∂V (S, t, ·)
∂t

=
∞∑
k=0

∂vk(S, t)

∂t
pk(Θ),

∂V (S, t, ·)
∂S

=
∞∑
k=0

∂vk(S, t)

∂S
pk(Θ) and

∂2V (S, t, ·)
∂S2

=
∞∑
k=0

∂2vk(S, t)

∂S2
pk(Θ),

because theorem 6 is still applicable for these.
That is true since partial differentiation in S or t does not affect the integrability of Ṽ with
V = Ṽ (Θ) on D. If Ṽ ∈ L2

µ(D, L2{(0,∞)× [0, T ],R}) ∼= L2
µ(D, L2{(0,∞), L2([0, T ],R)})

holds, see [AE08] Theorem X.6.22 for the isomorphism, it follows that ∂Ṽ /∂t lies in
L2
µ(D, L2{(0,∞), L1([0, T ],R)}). The descending integrability in the differentiation vari-

able can be found in [Eva98] Chapter 5.2.3 Theorem 1, whereas the constant integrability
in the other variables is a consequence of Bemerkung VII.2.7 in [AE06b]. Thus, inte-
grability on D stays the same and ∂V/∂t = ∂Ṽ (Θ)/∂t can be written as function of Θ.
This function lies in L2

µ(D, L2{(0,∞), L1([0, T ],R)}). Because L2{(0,∞), L1([0, T ],R)} is

a Hilbert space, theorem 6 can be applied to ∂Ṽ /∂t and its kth gPC coefficient is given
by

1

〈p2
k〉µ

〈
∂Ṽ (Θ)

∂t
pk

〉
µ

=
1

〈p2
k〉µ

∫
D

∂Ṽ (x)

∂t
pk(x)µ(x) dx =

1

〈p2
k〉µ

∂

∂t

∫
D
Ṽ (x)pk(x)µ(x) dx

=
∂

∂t

1

〈p2
k〉µ

∫
D
Ṽ (x)pk(x)µ(x) dx =

∂vk
∂t
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due to independence of pk and µ of t. The same arguments show the existence of gPC
expansion for the considered partial derivatives in S.

So, after inserting the above gPC expansions, the Black Scholes equation becomes

0 =
∞∑
k=0

∂vk(S, t)

∂t
pk(Θ) +

1

2

(
∞∑
k=0

σkpk(Θ)

)2

S2

∞∑
k=0

∂2vk(S, t)

∂S2
pk(Θ) (4.2)

+ rS
∞∑
k=0

∂vk(S, t)

∂S
pk(Θ)− r

∞∑
k=0

vk(S, t)pk(Θ).

The reason of this becomes clear in the next step.

Step 3: Multiplication of the equation with an orthogonal polynomial evalu-
ated in Θ and application of the expectation, for all orthogonal polynomials
The equation is multiplied by pn(Θ), and the expected value is applied on both sides
of the PDE 4.2. This is done for each n ∈ N0. Keeping in mind that for function f
integrable w.r.t. µ, the expected value of f(Θ) is given by E(f(Θ)) = 〈f〉µ, one obtains
deterministic equations for all coefficients vn, n ∈ N0

0 = 〈0 · pn〉µ =
∞∑
k=0

∂vk(S, t)

∂t
〈pkpn〉µ +

1

2
S2

∞∑
i,k,l=0

σiσk
∂2vl(S, t)

∂S2
〈pipkplpn〉µ

+ rS
∞∑
k=0

∂vk(S, t)

∂S
〈pkpn〉µ − r

∞∑
k=0

vk(S, t)〈pkpn〉µ.

Due to orthogonality, all 〈pkpn〉µ with k 6= n vanish and one obtains a countably infinite
system of coupled PDEs similar to the Black Scholes equation

0 =
∂vn(S, t)

∂t
〈p2
n〉µ +

1

2
S2

∞∑
i,k,l=0

σiσk
∂2vl(S, t)

∂S2
〈pipkplpn〉µ

+ rS
∂vn(S, t)

∂S
〈p2
n〉µ − rvn(S, t)〈p2

n〉µ.

This can be reformulated by dividing by 〈p2
n〉µ > 0 and renaming the so called Galerkin

multiplication tensor

Mikln :=
〈pipkplpn〉µ
〈p2
n〉µ

. (4.3)

These values exist for all i, k, l, n ∈ N0 even if the pk are just in L2
µ, since their products

pipkplpn are polynomials again and can therefore be written as linear combinations of the
orthogonal polynomials p0, ..., pi+k+l+n. The linearity of the integral shows that 〈pipkplpn〉µ
is finite.
With this, we get the equations we will be working with for numerical evaluation

0 =
∂vn(S, t)

∂t
+

1

2
S2

∞∑
i,k,l=0

σiσk
∂2vl(S, t)

∂S2
Mikln + rS

∂vn(S, t)

∂S
− rvn(S, t), (4.4)

n ∈ N0, S ∈ (0,∞), t ∈ [0, T ].
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The term containing the multiplication tensors will be called coupling term, as the equa-
tions are coupled by it.

Step 4: Transforming the boundary values to the solution’s gPC coefficients
To solve these equations, boundary values need to be stated. They are given by the par-
ticular financial derivative to be priced and are usually deterministic.

In this work, European Call options, as in example 1, will be considered for demonstrative
purposes. In the deterministic case, the final value V (S, T ) = (S − strike)+, S ∈ (0,∞)
and the boundary values V (0, t) = 0 and V (S, t)/S → 1 for S →∞, t ∈ [0, T ] are indepen-
dent of the value of σ. Equation 2.5 shows, that the boundary values of the solution to the
Black Scholes equation with random volatility 2.4 are deterministic, too. It follows that
they appear only in the coefficient v0, whose polynomial p0 ≡ 1 is deterministic, since all
other orthogonal polynomials lead to stochastic behaviour of the solution. Therefore, the
other coefficients vanish at the boundaries. The final value and the boundary conditions
for the system of equations 4.4 can be summarized as

v0(S, T ) = (S − strike)+, S ∈ (0,∞),

vn(S, T ) = 0, S ∈ (0,∞),

v0(S, t), vn(S, t)
S→0−−→ 0, t ∈ [0, T ], (4.5)

v0(S, t)/S
S→∞−−−→ 1, t ∈ [0, T ],

vn(S, t)/S
S→∞−−−→ 0, t ∈ [0, T ]

for all n ∈ N\{0}.

Step 5: Solving the system of differential equations
Now, one can solve the system 4.4 (approximately), what is typically done numerically.
Therefore the gPC expansions and hence the system of equations have to be truncated to
finite length.
For the Black Scholes equation, one first approximates Σ by its truncated gPC expansion

ΣK :=
K∑
k=0

σkpk(Θ)

for one K ∈ N0, which is possible because of the convergence of gPC expansions given by
Theorem 6. Then, we search for the solution of system 4.4 of the form

V N(S, t, ω) :=
N∑
k=0

vNk (S, t)pk(Θ(ω)), S ∈ (0,∞), t ∈ [0, T ], ω ∈ Ω (4.6)

for some N ∈ N0 and vNk ∈ L2((0,∞)× [0, T ],R) for that we hope to get a good approxi-
mation V N of V . Since V is not known, one cannot choose N to bound the error V N −V
to some prescribed size as one can for K.
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The system of equations for the vNk is then given by

0 =
∂vNn (S, t)

∂t
+

1

2
S2

K∑
i,k=0

N∑
l=0

σiσk
∂2vNl (S, t)

∂S2
Mikln + rS

∂vNn (S, t)

∂S
− rvNn (S, t), (4.7)

n = 0, ..., N, S ∈ (0,∞), t ∈ [0, T ],

so to say a truncated version of the original infinite system 4.4.

Remark 1. Note that the space of all functions f : (0,∞) × [0, T ] × D of the type
f(S, t, x) =

∑N
k=0 fk(S, t)pk(y) with fk ∈ L2((0,∞)× [0, T ],R) is a subspace of the space

L2
µ(D, L2[(0,∞)× [0, T ],R]) that is spanned in x direction by the first N ∈ N orthogonal

polynomials. In this notation, solving the truncated Stochastic Galerkin system 4.7 is
equivalent to searching the solution to the original infinite system 4.4 in the subspace
explained above. The truncated solution is therefore optimal in a certain sense.

Remark 2. However, convergence of this solution V N , with coefficients derived by 4.7,
to V as N → ∞ is not trivial, as in general vNn 6= vk for k = 0, ..., N . This can be seen
by comparing the PDEs 4.7 and 4.4 for vNn and vk especially in the coupling term. Thus,
the error between V N and V consists of an error made by solving a slightly different PDE
plus the gPC truncation error whose size cannot be prescribed.
We tried to estimate this total error and proof convergence by adapting the convergence
proof in [GX08]. But our attempt failed, since unlike the problem in the paper, second
derivatives appear in the coupling term and its coefficient depends on S, ruining some
important arguments. After consulting further literature on the convergence of truncated
Stochastic Galerkin systems for different PDEs like [DJL19], [SJ18], [LJ18] and [AN16]
for ordinary differential equations, it turned out to be a very problem related task for
PDEs. The proof for the Black Scholes equation with random volatility is therefore still
open to further research.

Assuming convergence is given in order to consider the truncated Stochastic Galerkin
solution as meaningful, the numerics used in this work will be explained in the next chap-
ter.

For the following computations, one usually summarizes the system of PDEs to one vector
valued PDE defining

v(S, t) :=


vN0 (S, t)
vN1 (S, t)

...
vNN (S, t)

 .

System 4.7 can be reformulated to

0N+1 =
∂v(S, t)

∂t
+

1

2
S2A

∂2v(S, t)

∂S2
+ rS

∂v(S, t)

∂S
− rv(S, t), (4.8)
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where bold variables indicate vectors in RN+1 like 0N+1 = (0, ..., 0)T or matrices in
R(N+1)×(N+1) like the so called coupling matrix A with

A[n, l] :=
K∑

i,k=0

σiσkMikln, n, l = 0, ..., N. (4.9)

This system is parabolic, if the real values of all eigenvalues of A are positive, see [Str04]
Chapter 6.2. Then, by [Str04] Theorem 6.2.1, it is well posed, i.e. for every final value
v(S, T ), there exists a unique solution depending continuously on the initial data. Be-
cause of this and the Lax-Richtmeyer theorem showing convergence of a finite difference
solution to the continuous solution, the later derived numerics will only consider the case
of parabolicity, see next section.

The boundary conditions and the final condition in time corresponding to the European
Call option can be written as

v(S, T ) =


(S − strike)+

0
...
0

 , S ∈ (0,∞),

v(S, t)
S→0−−→ 0N+1, t ∈ [0, T ], and (4.10)

1

S
v(S, t)

S→∞−−−→


1
0
...
0

 , t ∈ [0, T ].

Step 6: Reconstructing the stochastic solution
After one obtained the vNk numerically, one can reconstruct V N by formula 4.6. One can
also consider more illustrative quantities directly from the gPC coefficients like

� the expected value

E(V N) = E

(
N∑
k=0

vNk pk(Θ)

)
=

〈
N∑
k=0

vNk pk

〉
µ

=
N∑
k=0

vNk 〈pk〉µ = vN0 , (4.11)

since 〈pk〉mu = 〈1pk〉mu = 〈p0pk〉mu = γ0δ0k with γ0 =
∫
D µ(x)dx = 1,

� or the variance

V ar(V N(S, t)) = E((V N − E(V N))2) =

〈(
N∑
k=0

vNk pk − vN0

)2〉
µ

=
N∑

k,j=1

vNk v
N
j 〈pkpj〉µ =

N∑
k=1

(vNk )2γk.
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Chapter 5

Numerical implementation

This chapter will explain numerical methods used to obtain an approximate solution to
the truncated system of PDEs 4.8 for the gPC coefficients v := (vN0 , ..., v

N
N )

0N+1 =
∂v(S, t)

∂t
+

1

2
S2A

∂2v(S, t)

∂S2
+ rS

∂v(S, t)

∂S
− rv(S, t),

S ∈ (0,∞), t ∈ [0, T ], that was obtained by the Stochastic Galerkin method in the last
chapter. The explicit finite difference scheme that will be derived by discretization of
equation 4.8 will be investigated for properties like consistency, stability and convergence
needed to ensure meaningful computations, see section 5.2.

All derivations consider a European Call option with maturity T and strike price strike >
0, leading to final and boundary conditions as in 4.10

v(S, T ) =


(S − strike)+

0
...
0

 , S ∈ (0,∞),

v(S, t)
S→0−−→ 0N+1, t ∈ [0, T ], and

1

S
v(S, t)

S→∞−−−→


1
0
...
0

 , t ∈ [0, T ].

For the computation, the domain of the v : (0,∞) × [0, T ] → RN+1 has to be adapted
to a finite domain. This is done via a transformation of variables analogue to the one in
[ZWCS13] Chapter 2.2.5

ζ =
S

S + strike
,

τ = T − t, (5.1)

v̄(ζ, τ) =
v(S, t)

S + strike
=

(1− ζ)v(strike ζ/(1− ζ), T − τ)

strike
.
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Then v̄ is defined on the finite domain (0, 1)×[0, T ]. Later, the results will be transformed
back by

S = strike
ζ

1− ζ
,

t = T − τ, (5.2)

v(S, t) = (S + strike)v̄(ζ, τ) = (S + strike)v̄
( S

S + strike
, T − t

)
.

Computing the partial derivatives needed in 4.7 in terms of v̄ := (v̄N0 , ..., v̄
N
N )T , ζ and τ

yields as in [ZWCS13]

∂v(S, t)

∂t
= −strike

1− ζ
∂v̄(ζ, τ)

∂τ

∂v(S, t)

∂S
= v̄(ζ, τ) + (1− ζ)

∂v̄(ζ, τ)

∂ζ

∂2v(S, t)

∂S2
=

(1− ζ)3

strike

∂2v̄(ζ, τ)

∂ζ2
.

Inserting this in PDE 4.8, it follows that v̄ satisfies

∂v̄(ζ, τ)

∂τ
=

1

2
ζ2(1− ζ)2A

∂2v̄(ζ, τ)

∂ζ2
+ rζ(1− ζ)

∂v̄(ζ, τ)

∂ζ
− r(1− ζ)v̄(ζ, τ), (5.3)

ζ ∈ (0, 1), τ ∈ [0, T ],

with A as defined before in 4.9.
As discussed for equation 4.8, this PDE is also parabolic according to the definition in
[Str04] chapter 6.2., if the real parts of all eigenvalues of A are positive. Then the equa-
tion is well posed, meaning for all initial values there exists a unique solution depending
continuously on the initial value, see [Str04] Theorem 6.2.1 and chapter 1.2. Since we wish
to have this property, in the following we assume that the real parts of all eigenvalues of
A are positive. In real computations, this has to be checked.

The boundary conditions and the final condition in time 4.10 transform to

v̄(ζ, 0) =


(2ζ − 1)+

0
...
0

 , ζ ∈ (0, 1),

v̄(ζ, τ)
ζ→0−−→ 0N+1, τ ∈ [0, T ], and

v̄(ζ, τ)
ζ→1−−→


1
0
...
0

 , τ ∈ [0, T ].
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With this, v̄ can be continuously extended to [0, 1] × [0, T ] by v̄(0, τ) := 0N+1 and
v̄(1, τ) := (1, 0, ..., 0)T . This simplifies the boundary conditions and the scheme derived
below. Now, we can start deriving a scheme to compute v̄ and finally v. However, at first
the coupling matrix A has to be computed, as it will be a coefficient in the scheme.

5.1 Computation of the coupling matrix

Whichever scheme might be used, usually one has to compute the coupling matrix A from
4.9

A[n, l] :=
K∑

i,k=0

σiσkMikln, n, l = 0, ..., N,

where the Mikln were defined to be

Mikln :=
〈pipkplpn〉µ
〈p2
n〉µ

,

as it will occur in the scheme. One way to do this is explained in this section.

The difficulty lies in the computation of the integrals occurring here, but suitable quadra-
ture methods were e.g. explained in [Sul15], [Wil62] or [GST07]. In this work we will use
Gauss quadrature formulas since they enable exact computation of 〈pipkplpn〉µ.

Definition 4 ([Sul15] Definition 9.8). A quadrature formula∫
D
f(x)µ(x) dx ≈

G∑
i=1

wif(xi)

with G nodes x1, ..., xG ∈ D and weights w1, ..., wG ∈ R for any real valued function f
on D is called a G- point Gaussian quadrature rule, if the nodes xi are the zeros of the
µ-orthogonal polynomial pG and the weights are the integrals over the Lagrange basis
polynomials, i.e.

wi :=

∫
D

G∏
j=1, j 6=i

x− xj
xi − xj

µ(x) dx. (5.4)

Note that all zeros of orthogonal polynomials are distinct, see e.g. [Sul15] Theorem
8.16 (a).
The Gaussian quadrature rule is the most powerful in the sense of order of accuracy.

Theorem 7 ([Sul15] Lemma 9.2, Theorem 9.9). (a) There is no quadrature rule with
G nodes of order greater or equal to 2G, i.e. there do not exist nodes x1, ..., xG ∈ D
and weights w1, ..., wG ∈ R, such that the quadrature rule is exact∫

D
q(x)µ(x) dx =

G∑
i=1

wiq(xi)

for all polynomials q with degree smaller or equal to 2G.
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(b) The G-point Gauss quadrature rule has order of accuracy 2G− 1, i.e. for all poly-
nomials of degree less than or equal to 2G−1, the quadrature gives the correct value
for the integral.

Proof. (a) Let x1, ..., xG ∈ D and w1, ..., wG ∈ R be arbitrary and consider the poly-
nomial q(x) := ((x− x1)...(x− xG))2 of order 2G. Since the xi are zeros of q, the
quadrature rule gives

G∑
i=1

wiq(xi) = 0 <

∫
D
q(x)µ(x) dx,

where the integral is greater than zero by monotonicity of the integral, because q is
a non-negative function with zeros only in the xi, i.e. q is positive on D apart from
some µ null sets.

(b) Let q be a polynomial of degree deg(q) ≤ 2G − 1 and pG denote the orthogonal
polynomial w.r.t. µ of degree G. Dividing q by pG with remainder we obtain

q(x) = g(x)pG(x) + r(x),

where g and r are polynomials of degree less than or equal to G − 1. Integration
w.r.t. µ(x) dx and application of the quadrature rule gives∫

D
q(x)µ(x) dx =

∫
D
g(x)pGµ(x) dx+

∫
D
r(x)µ(x) dx

G∑
i=1

wiq(xi) =
G∑
i=1

wig(xi)pG(xi) +
G∑
i=1

wir(xi),

where the xi are the zeros of pG and the wi are defined as in 5.4. Therefore, the first
term on the right hand side of the equation for the Gauss quadrature rules vanishes.
But the first term on the right hand side of the integral equation also equals zero,
since pG is orthogonal to every polynomial of degree smaller than G, see Theorem
1, in particular to g.
It remains to show

∫
D r(x)µ(x) dx =

∑G
i=1wir(xi). This is true, as r coincides with

its Lagrange interpolation on the G > deg(r) points x1, ..., xG, see [Sul15] Theorem
8.18 together with the fact that polynomials p are uniquely determined by their
values in deg(p) distinct points. Therefore∫

D
q(x)µ(x) dx =

∫
D
r(x)µ(x) dx =

∫
D

G∑
i=1

(
r(xi)

G∏
j=1, j 6=i

x− xj
xi − xj

)
dx

=
G∑
i=1

r(xi)

∫
D

x− xj
xi − xj

dx =
G∑
i=1

r(xi)wi =
G∑
i=1

wiq(xi).
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The Gaussian quadrature with K + N + 1 nodes enables exact computation of the
Mikln, since only polynomials of degree up to K+K+N +N = 2(K+N) are integrated.

Computation of the Gauss quadrature nodes and weights:
The computation of the nodes is done via a companion matrix as described in [GW69]
Chapter 2 or [GST07] Chapter 5.3. Since the zeros of the considered orthogonal polyno-
mials coincide with the zeros of the monic or normalized orthogonal polynomials, we will
work with the latter two below. Assume the monic orthogonal polynomials p̂ w.r.t. µ
satisfy the recurrence relation from Theorem 2

p̂n+1(x) = (x− an)p̂n(x)− bnp̂n−1(x), where bn =
γ̂n
γ̂n−1

, n ≥ 0.

Then the normalized orthogonal polynomials p̃n = p̂n/γ̂n, where γ̂n := 〈p̂2
n〉µ, satisfy

p̃n+1(x) =
p̂n+1(x)√
γ̂n+1

= (x− an)

√
γ̂n√
γ̂n+1

p̃n(x)− bn
√
γ̂n−1√
γ̂n+1

p̃n−1(x)

= (x− an)

√
γ̂n√
γ̂n+1

p̃n(x)− γ̂n√
γ̂n−1

√
γ̂n+1

p̃n−1(x)

⇔ xp̃n(x) =

√
γ̂n+1

γ̂n
p̃n+1(x) + anp̃n(x) +

√
γ̂n
γ̂n−1

p̃n−1(x) (5.5)

=: βnp̃n+1(x) + αnp̃n(x) + βn−1p̃n−1(x)

with βn :=
√
γ̂n+1/γ̂n and αn := an. Written in in matrix form, this gives

x



p̃0(x)
p̃1(x)
p̃2(x)

...
p̃G−2(x)
p̃G−1(x)


=



α0 β0

β0 α1 β1

β1 α2 β2

. . . . . . . . .

βG−3 αG−2 βG−2

βG−2 αG−1





p̃0(x)
p̃1(x)
p̃2(x)

...
p̃G−2(x)
p̃G−1(x)


+



0
0
0
...
0

βG−1p̃G(x)


,

where empty entries are zeros.
Denoting the matrix in the above equation by R and the vector of polynomials by p̃(x), a
value xi is a zero of p̃G and therefore also of pG if and only if xip̃(xi) = Rp̃(xi). Expressed
differently, the zeros of pG are exactly the eigenvalues of R. The nodes are therefore de-
termined by calculating the eigenvalues of R.

For the weights, we consider eigenvectors of R and proceed as in [GST07]. Because
the p̃n are orthonormal and p̃np̃m is of maximum degree 2(G − 1) < 2G − 1, the Gauss
quadrature can be applied on the orthogonality condition 3.1

δnm =

∫
D
p̃n(x)p̃m(x)µ(x) dx =

G∑
i=1

wip̃n(xi)p̃m(xi).
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In matrix notation, this is equivalent to

IG = P̃WP̃T

for the matrix P̃[i, j] = p̃i(xj+1) and the diagonal matrix W[i, i] = wi+1 for i, j = 0, ..., G−
1. Since IG is invertible, P must have this property, too, and we can write

W = (P̃T P̃)−1,

i.e. wj =
(∑G−1

k=0 (p̃k(xj))
2
)−1

.

Assume now, v(j) = (v
(j)
0 , ..., v

(j)
G−1)T is an eigenvector of R corresponding to the eigenvalue

xj with Euclidean norm ‖v(j)‖E = 1 and note that p̃(xj) is one as well. Because all
eigenvalues have multiplicity 1, as the zeros of orthogonal polynomials are all different see
e.g. [Sul15] Theorem 8.16 (a), eigenvectors are unique up to multiplication by a scalar,
i.e. we obtain

v(j) =
v

(j)
0

p0(xj)
p̃(xj) = v

(j)
0 p̃(xj),

from comparing the first entries and inserting p̃0 ≡ 1. Now, one can compute the wj by

wj =

(
G−1∑
k=0

(p̃k(xj))
2

)−1

= ‖p̃k(xj)‖−2
E =

∥∥∥∥∥ 1

v
(j)
0

v(j)

∥∥∥∥∥
−2

E

=
(v

(j)
0 )2

‖v(j)‖2
E

= (v
(j)
0 )2.

This tells us that the weight wj corresponding to the node xj is given by the squared first
entry of the normalized eigenvector of R corresponding to the eigenvalue xj.

In summary, using Pseudo code in Matlab notation, where blue text denotes comments
and descriptions, one computes the G Gauss quadrature weights w := (w1, ..., wG)T and
nodes x := (x1, ..., xG)T by

Algorithm 1 Deriving the Gauss Quadrature nodes

Input: Number G of Gauss quadrature points.
Output: Gauss quadrature nodes x = (x1, ..., xG)T and weights w = (w1, ..., wG)T .

Calculating the companion matrix R:
Calculate α := (α0, ..., αG−1)T and β := (β0, ..., βG−2)T by formula 5.5;
R := diag(β, 1) + diag(α) + diag(β,−1);

Computing its eigenvectors (columns of V) and eigenvalues (diagonal entries of L):
[V L] = eig(R);

Saving the nodes xi and weights wi in sorted column vectors x and w:
[x SortIndex] = sort(diag(L));
V = V(:,SortIndex)′;
w = V(:, 1).ˆ2;
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After we derived theG = K+N+1 Gauss nodes x1, ..., xK+N+1 and weights w1, ..., wK+N+1,
we can calculate the Mikln by Gaussian quadrature. Denote by M the 4 dimensional tensor
with

M[i, k, l, n] = Mikln =
〈pipkplpn〉µ
〈p2
n〉µ

=
〈pipkplpn〉µ

γn
=

1

γn

K+N+1∑
r=1

wrpi(xr)pk(xr)pl(xr)pn(xr).

Assume the γn are known, see for instance example 2 for Hermite and Legendre polyno-
mials. If they are not they can be calculated by Gauss quadrature, too. Hence, we need
to calculate all values pn(xr) where xr is a Gauss quadrature node. This is done by using
the recursion formula for the orthogonal polynomials 3.2. One sets

p0 := (p0(x1), ..., p0(xK+N+1)) := (1, ..., 1),

p1 := (p1(x1), ..., p1(xK+N+1)) := (x1, ..., xK+N+1) = xT

and calculates the values of the polynomials p2, ..., pK+N by the recursion formula

pn+1 = (cnx
T .− an). ∗ (pn(x1), ..., pn(xK+N+1))− bn(pn−1(x1), ..., pn−1(xK+N+1))

= (cnx
T .− an). ∗ pn − bnpn−1.

Here .◦ means element wise execution of the operator ◦. In Matlab Pseudo code, we have

Algorithm 2 Calculate the Galerkin Multiplication Tensor M

Input: Truncation numbers K,N of the truncated gPC expansions of V and Σ.
Output: Galerkin multiplication tensor M.

Compute the K+N + 1-point Gauss quadrature nodes x and weights w by program 1.

Calculate the matrix P with P[i, j] = pi(xj+1) by the recursion formula of the pn:
P(0, :) = ones(1, K +N);
P(1, :) = x′;
for i = 1 : max(K − 1, N − 1) do

P(i+ 1, :) = (cn ∗ x′.− an). ∗P[i, :]− bnP[i− 1, :] ;
end for

Calculate M by Gauss quadrature:
M = zeros (K + 1, K + 1, N + 1, N + 1);
for n = 0 : N do

Compute γn by a given formula or by Gauss quadrature P[n, :].ˆ2 ∗w;
for i, k = 0 : K, l = 0 : N do

M(i, k, l, n) = (P(i, :). ∗P(k, :). ∗P(l, :). ∗P(n, :)) ∗w/γn
end for

end for
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Note that if the model is computed for multiple options with the same density µ and
truncation numbers N,K, the Galerkin multiplication tensor M has to be calculated only
once, since it only depends on µ, N and K. This would reduce computational cost. The
multiplication tensor can also be stored for later usage.

With this, we calculate A with

A[n, l] :=
K∑

i,k=0

σiσkMikln = σM[:, :, l, n]σT , n, l = 0, ..., N,

where σ := (σ0, ..., σK) is the row vector of the first K + 1 gPC coefficients of Σ and
M[:, :, l, n] stands for the matrix of all elements on M, whose last two indices are l, n.

Algorithm 3 Compute the coupling matrix A

Input: Truncation numbers K,N of the truncated gPC expansions of V and Σ, vector
of gPC coefficients σ := (σ0, ..., σK) of Σ.
Output: Coupling matrix A.

Compute M by program 2.

Calculate A:
A = zeros(N + 1, N + 1);
for l, n = 0 : N do

A(n, l) = σM(:, :, l, n)σ′;
end for

5.2 Deriving a finite difference scheme

The PDE 5.3 for the vector of transformed gPC coefficients v̄ : [0, 1]× [0, T ]→ RN+1

∂v̄(ζ, τ)

∂τ
=

1

2
ζ2(1− ζ)2A

∂2v̄(ζ, τ)

∂ζ2
+ rζ(1− ζ)

∂v̄(ζ, τ)

∂ζ
− r(1− ζ)v̄(ζ, τ)

is now discretised on Mζ + 1 equidistant values in ζ and Nτ + 1 equidistant values in τ ,
where Mζ , Nτ ∈ N are chosen large enough to represent the solution in a proper way and
in the right proportion to obtain a stable scheme, see later. Define

ζm := m
Mζ

= m∆ζ, m = 0, ...,Mζ

τn := T n
Nτ

= n∆τ, n = 0, ..., Nτ ,
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and ∆ζ := 1/Mζ ,∆τ := T/Nτ . The partial derivatives are approximated component wise
by finite differences as in [ZWCS13] Chapter 8.1.1. We use

forward differences for ∂v̄
∂τ

(ζm, τ
n) ≈ v̄(ζm, τ

n+1)− v̄(ζm, τ
n)

∆τ
and

central differences for ∂v̄
∂ζ

(ζm, τ
n) ≈ v̄(ζm+1, τ

n)− v̄(ζm−1, τ
n)

2∆ζ

and for ∂2v̄
∂ζ2

(ζm, τ
n) ≈ v̄(ζm+1, τ

n)− 2v̄(ζm, τ
n) + v̄(ζm−1, τ

n)

(∆ζ)2
,

for m = 1, ...,Mζ − 1, n = 0, ..., Nτ − 1. Approximating equation 5.3 in (ζ, τ) = (ζm, τ
n)

by these finite differences, we obtain an explicit finite difference scheme

v̄(ζm, τ
n+1) = ∆τ

(
1

2
ζ2
m(1− ζm)2A

v̄(ζm+1, τ
n)− 2v̄(ζm, τ

n) + v̄(ζm−1, τ
n)

(∆ζ)2
(5.6)

+rζm(1− ζm)
v̄(ζm+1, τ

n)− v̄(ζm−1, τ
n)

2∆ζ
− r(1− ζm)v̄(ζm, τ

n)

)
+ v̄(ζm, τ

n),

for m = 1, ...,Mζ − 1, n = 0, ..., Nτ − 1 with initial value

v̄(ζm, 0) =


(2ζm − 1)+

0
...
0

 , m = 1, ...,Mζ − 1.

The remaining values for m ∈ {0,Mζ}, i.e. ζm ∈ {0, 1}, are given by the boundary con-
ditions v̄(0, τn) = 0N+1 and v̄(1, τn) = (1, 0, ..., 0)T for all n. Note that this is an explicit
scheme, as the value at time τn+1 is derived only from values at time τn.

In the following, we will show some properties of this scheme needed to provide a reason-
able approximation to the true solution.

Consistency:
Consistency expresses the fact that the considered scheme represents the original PDE, if
the discretization step widths go to zero, i.e. the scheme is a reasonable discretization of
the PDE.

Definition 5 ([Str04] Definition 1.4.2). Consider a PDE in the variables x, t of the form
L(u) = f for some differential operator L and a source term f together with a finite
difference scheme L∆x,∆t(v) = f with discretization step width ∆x in x and ∆t in t. This
scheme is called consistent, if for any smooth function φ(x, t) we have pointwise

L(φ)− L∆x,∆t(φ)→ 0 as ∆x,∆t→ 0.

34



CHAPTER 5. NUMERICAL IMPLEMENTATION 5.2

For our scheme, consider a C2 function φ : [0, 1]× [0, T ]→ RN+1. The Taylor formula,
see [AE06a] Korollar IV.3.3), gives

∂φ
∂τ

(ζm, τ
n) =

φ(ζm, τ
n+1)− φ(ζm, τ

n)

∆τ
+ oτ (1), for ∆τ → 0,

∂φ
∂ζ

(ζm, τ
n) =

φ(ζm+1, τ
n)− φ(ζm−1, τ

n)

2∆ζ
+ oζ(∆ζ), for ∆ζ → 0 and

∂2φ
∂ζ2

(ζm, τ
n) =

φ(ζm+1, τ
n)− 2φ(ζm, τ

n) + φ(ζm−1, τ
n)

(∆ζ)2
+ oζ(1), for ∆ζ → 0.

Now, one brings all terms in the PDE 5.3 and the finite difference scheme 5.6 for φ to the
left hand side and obtains the form L(φ) = 0N+1 for both equations. Subtracting the left
hand sides evaluated in the points (ζm, τ

n) yields

∂φ(ζm, τ
n)

∂τ
− 1

2
ζ2
m(1− ζm)2A

∂2φ(ζm, τ
n)

∂ζ2
− rζm(1− ζm)

∂φ(ζm, τ
n)

∂ζ
+ r(1− ζm)φ(ζm, τ

n)

−
(
φ(ζm, τ

n+1)− φ(ζm, τ
n)

∆τ
− 1

2
ζ2
m(1− ζm)2A

φ(ζm+1, τ
n)− 2φ(ζm, τ

n) + φ(ζm−1, τ
n)

(∆ζ)2

−rζm(1− ζm)
φ(ζm+1, τ

n)− φ(ζm−1, τ
n)

2∆ζ
+ r(1− ζm)φ(ζm, τ

n)

)
=

(
∂φ(ζm, τ

n)

∂τ
− φ(ζm, τ

n+1)− φ(ζm, τ
n)

∆τ

)
−1

2
ζ2
m(1− ζm)2A

(
∂2φ(ζm, τ

n)

∂ζ2
− φ(ζm+1, τ

n)− 2φ(ζm, τ
n) + φ(ζm−1, τ

n)

(∆ζ)2

)
−rζm(1− ζm)

(
∂φ(ζm, τ

n)

∂ζ
− φ(ζm+1, τ

n)− φ(ζm−1, τ
n)

2∆ζ

)
= oτ (1)− 1

2
ζ2
m(1− ζm)2Aoζ(1)− rζm(1− ζm)oζ(∆ζ).

Because of ζm ∈ [0, 1], the coefficients ζ2
m(1− ζm)2 and ζm(1− ζm) are bounded and there-

fore the difference goes to zero as ∆ζ and ∆τ do. This shows consistency.

Stability:
Stability tells us, that small perturbation in the initial data cause small errors in the
solution, see [TW98] chapter 1.2.1. We require this for our computation to be useful,
since e.g. rounding errors can introduce small errors at any time step that could destroy
the computation if stability is not given.

Definition 6 (adapted from [Str04] Definition 1.5.1). Consider a one step finite difference
scheme u(xm, t

n+1) = f∆x,∆t(u(x0, t
n), ...,u(xM , t

n)) in N dimensions with discretization
step width ∆x in x and ∆t in t. Define ũn := (uT (x0, t

n), ...,uT (xM , t
n))T ∈ R(M+1)N for

all n. The finite difference scheme is said to be stable, if there exists an integer J such
that for some norm ‖ · ‖ for any T > 0, a constant CT exists with

‖ũn‖2 ≤ CT

J∑
j=0

‖ũj‖2 for every n with 0 ≤ n∆t ≤ T.
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In the following, we find a sufficient condition for our scheme 5.6 to be stable. At first
we rewrite our scheme for ṽn in the notation of definition 6 and obtain

ṽn+1 =


v(ζ0, τ

n+1)
v(ζ1, τ

n+1)
...

v(ζMζ−1, τ
n+1)

v(ζMζ
, τn+1)

 (5.7)

=

[
I(M+1)(N+1) + ∆τ

{
1

2(∆ζ)2


A

A
. . .

A
A

 ·

·


η2

0I
η2

1I
. . .

η2
Mζ−1I

η2
Mζ

I




−2I I

I −2I I
. . . . . . . . .

I −2I I
I −2I



+
r

2∆ζ


η0I

η1I
. . .

ηMζ−1I
ηMζ

I




0 −I
I 0 −I

. . . . . . . . .

I 0 −I
I 0



−r


(1− ζ0)I

(1− ζ1)I
. . .

(1− ζMζ−1)I
(1− ζMζ

)I


}]

v(ζ0, τ
n)

v(ζ1, τ
n)

...
v(ζMζ−1, τ

n)
v(ζMζ

, τn)


=: Cṽn

where ηm := ζm(1− ζ)m and I := I(N+1) is the unit matrix and 0 := 0(N+1)×(N+1) the zero
matrix in R(N+1)×(N+1) and C ∈ R(N+1)(Mζ+1)×(N+1)(Mζ+1) denotes the matrix in square
brackets.
With the above recursion formula we have ṽn = Cnṽ0 and it follows for any vector norm
and its corresponding operator norm

‖ṽn‖2 = ‖Cnṽ0‖2 ≤ ‖Cn‖2‖ṽ0‖2.

Therefore, stability is given if ‖Cn‖2 is bounded for n→∞.

The Kreiss matrix theorem, to be found e.g. in [Str04] Theorem 9.4.1, tells us that
this is the case if and only if C is unitary trigonalisable, i.e. a unitary matrix U and a
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upper tridiagonal matrix S exist with S = UCU−1, and the entries of S satisfy

|S[i, i]| ≤ 1 and (5.8)

|S[i, j]| ≤ Cb min(1− |S[i, i]|, 1− |S[j, j]|) (5.9)

for some boundary constant Cb for all i, j. Schur’s theorem, see [HJ13] Theorem 2.3.1,
shows that every matrix is unitary trigonalisable over C. Furthermore the diagonal entries
of S are the eigenvalues of C, therefore C satisfies the first condition 5.8 if and only if all
eigenvalues λk of C satisfy |λk| ≤ 1.
Since we want to determine the maximal ∆τ for which the scheme is stable for a given
Mζ , we reformulate the condition |λk| ≤ 1 such that it is a condition for ∆τ . To do this,
we write C = I(M+1)(N+1) +∆τB, where B is the matrix in curly brackets in equation 5.7.
Note that B is independent of ∆τ and that the eigenvalues λk of C satisfy λk = 1+∆τνk,
where νk denotes an eigenvalue of B. I.e. |λk| ≤ 1 is equivalent to

0 ≤ νk and 0 ≤ ∆τ ≤ −2

νk
for all νk eigenvalue of B.

Where division by zero in the second condition is understood as −2/0 = −2/0− =∞.

If condition 5.8 is given, condition 5.9 is equivalent to

|S[̃i, j]| = |S[j, ĩ]| = 0 (5.10)

for all j, if |S[̃i, ĩ]| = 1. The direction 5.9 ⇒ 5.10 is clear, whereas if condition 5.10 holds,
one can choose Cb large enough to fulfil condition 5.9:

Cb ≥ max
i,j≤i with |S[i,i]|,|S[j,j]|<1

|S[i, j]|
min(1− |S[i, i]|, 1− |S[j, j]|)

.

In summary, the scheme is stable, if ‖Cn‖2 is bounded which is equivalent to

0 ≤ νk and 0 ≤ ∆τ ≤ −2
νk
, for all νk eigenvalue of B (5.11)

|S[i, i]| = 1⇒ |S[i, j]| = |S[j, i]| = 0, S = UCU−1 upper trigonal with U unitary.

This has to be checked before the computation of the finite difference scheme, for instance
by a program like the following given in Matlab notation.
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Algorithm 4 Test for Stability

Input: Interest rate r, coupling matrix A, number of discretization points Mζ in ζ.
Output: Boolean variable stable to determine if stability is possible, dtaumax maxi-
mum ∆τ allowed for stability to hold.

Calculate the matrix B from equation 5.7.

stable = 1;
S = schur(B);

Condition 2: Save the positions of diagonal entries equal to 1 in diag1, set them to 0
in a copy of S:
diag1 = (diag(S) == 1);
S2 = S;
S2(diag1,diag1) = 0;
Select all entries in the same column (Scol) or row (Srow) as a diagonal entry 1:
Scol = S2(:,diag1);
Srow = S2(diag1, :);
S3 = [Scol Srow′];
Test them to be numerically equal to zero, i.e. in absolute value smaller than a maxi-
mum value maxval > 0 reflecting the computer precision:
if max(max(abs(S3))) > maxval then
stable = 0;
dtaumax = 0;

end if

Condition 1: Test the eigenvalues EV of B to be non-positive for stability, calculate
dtaumax in that case:
EV = diag(S);
if sum((EV > 0)) > 0 then
stable = 0;
dtaumax = 0;

else if sum((EV 6= 0)) == 0 then
dtaumax = 1;

else
dtaumax = 2/max(abs(EV(EV = 0)));

end if

Convergence:
Convergence of a finite difference scheme expresses the fact, that the finite difference
solution converges to the solution of the approximated PDE as the discretization step size
goes to zero, i.e. the scheme provides an approximate solution to the PDE.

Definition 7. A one step finite difference scheme for a PDE is called convergent if for
any solution u(x, t) of the PDE it holds for all solutions w(xm, t

n) of the finite difference
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scheme for which the initial condition w0(xm)→ u0(x) as xm → x, one has

w(xm, t
n)→ u(x, t) for (xm, t

n)
∆x,∆t→0−−−−−→ (x, t).

The Lax-Richtmyer Equivalence Theorem provides a useful tool to investigate the
convergence of a finite difference scheme.

Theorem 8 (Lax-Richtmyer Equivalence Theorem, see [Str04] Theorem 1.5.1). A con-
sistent finite difference scheme for a well posed PDE is convergent if and only if it is
stable.

A proof can be found in [Str04] Chapter 10.5 for instance.
With this, our derived finite difference scheme 5.6 is convergent if it is stable and equation
5.3 is parabolic. Hence, to ensure a reasonable computation, the stability condition 5.11
and the positivity of the real parts of all eigenvalues of A have to be checked.

After a successful computation of v̄, one transforms v̄ back to v by

S = strike
ζ

1− ζ
,

t = T − τ, (5.2)

v(S, t) = (S + strike)v̄(ζ, τ) = strike
1

1− ζ
v̄(ζ, τ).

In total, the pseudo code for the computation of v given in Matlab notation is

Algorithm 5 Computing the truncated gPC coefficients v of V

Input: Truncation numbers K,N of the truncated gPC expansions of V and Σ, vector
of gPC coefficients σ := (σ0, ..., σK) of Σ, interest rate r, maturity T of the option, its
strike price strike and number of discretization points Mζ in ζ.
Output: Tensor v with v(k,m, n) = vk(Sm, t

n), k = 0, ..., N,m = 0, ...,Mζ − 1, n =
0, ..., Nτ , vectors S := (S0, ..., SMζ−1) and t = (t0, ..., tNτ ) where Sm, t

n are the trans-
formed back ζm, τ

n.

Calculate the coupling matrix A by program 3.

Check for parabolicity:
if min(real(eig(A))) ≤ 0 then

error(’Error: Equation not parabolic’);
end if

Code continues on the next page.
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Check for stability by program 4 and obtain the output variables stable and dtaumax
if stable == 0 then

error(’Error: Scheme not stable’);
end if
Calculate the minimum Nτ to have stability:
Nτ = ceil(T/dtaumax);

v̄ = zeros(N + 1,Mζ + 1, Nτ + 1);

Setting the initial condition for v̄:
v̄(0, :, 0) = max(2/Mζ ∗ (0 : Mζ)− 1, 0);
Calculating v̄ for the remaining times by scheme 5.6:
for n = 0 : Nτ − 1 do

Boundary conditions:
m = 0;
v̄(:,m, n+ 1) = zeros(N + 1, 1);
m = Mζ ;
v̄(:,m, n+ 1) = zeros(N + 1, 1);
v̄(0,m, n+ 1) = 1;

Scheme:
for m = 1 : Mζ − 1 do
dvdzeta = Mζ/2 ∗ (v̄(:,m+ 1, n)− v̄(:,m− 1, n));
d2vdzeta2 = M2

ζ ∗ (v̄(:,m+ 1, n)− 2 ∗ v̄(:,m, n) + v̄(:,m− 1, n));

v̄(:,m, n+1) = T/Nτ ∗(1/2∗(m/Mζ)
2∗(Mζ−m)2/M2

ζ ∗A∗d2vdzeta2+r∗m/Mζ ∗
(Mζ −m)/Mζ ∗ dvdzeta− r ∗ (Mζ −m)/Mζ ∗ v̄(:,m, n)) + v̄(:,m, n);

end for
end for

Transforming back v̄ to v, calculating S and t:
v = zeros(N + 1,Mζ , Nτ + 1);
for n = 0 : Nτ do

v(:, :, n) = strike ∗ (1 : −1/Mζ : 1/Mζ).
∧(−1). ∗ v̄(:, 1 : Mζ , Nτ − n);

end for
S = strike ∗ (0 : Mζ − 1)./(Mζ : −1 : 1);
t = 0 : T/Nτ : T ;
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Chapter 6

Numerical results

This chapter shows numerical results obtained by the programs of last chapter for the
truncated system of equations 4.7. For our numerical experiments, we will always con-
sider European Call options. For more convenient reading, the maturity T and times t
will be given in days instead of years as needed for the computation. In the computation,
these times were multiplied by 1/251 since there were 251 trade days in 2019.

In the following, a European call option with strike price 100 and maturity T = 20
days is considered. Note that this corresponds to a period of slightly less than one month
in real time, since financial markets are usually closed on weekends and holidays. The
interest rate in the market is assumed to be r = 0 and the volatility of the stochastic asset
is supposed to follow a normal distribution with mean σ0 = 0.3 and standard deviation
σ1 = 0.1, i.e. we have the gPC expansion

Σ(Θ) = 0.3 + 0.1Θ,

where Θ is standard normal distributed with density function µ(x) = 1/
√

2πex
2/2. There-

fore, Hermite polynomials are used as orthogonal polynomials, see example 2. The
Stochastic Galerkin (SG) solution was truncated after degree N = 5 for which the system
of equations for the gPC coefficients 5.3 is parabolic. For the calculation a grid with
Mζ + 1 = 200 + 1 values in ζ and Nτ + 1 = 84 + 1 in τ was used. This was chosen such
that the finite difference scheme is stable.

The expected value surface of the Stochastic Galerkin solution is displayed in figure 6.1,
where contour lines were drawn in black at each quarter of the maximum value. The
’smoothing area’ denotes the area around S = 100, where the expected value of the SG
solution in t < T differs from the final condition of the option, since the final condition is
smoothed by the parabolicity of PDE 4.7. It is visualized by drawing its borders in red.
Figure 6.2 shows the expected value in the times t = 0, t = 5, t = 10, t = 15 and
t = T = 20. One recognizes that the value in t = T = 20 coincides with the output
of the option that is given by (S − 100)+ which is the final condition. The non differen-
tiable point at S = strike = 100, t = T = 20 gets smoothed as t moves away. This is what
one would expect form a parabolic PDE. For small S < 100 the solution is approximately
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zero and for big S > 100 it approximately attains the value S − strike. These properties
are consistent with the boundary conditions.

Figure 6.1: Expected value surface for a European Call option with Σ(Θ) = 0.3+0.1Θ, Θ
normal distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84 with contour
lines at quarters of its maximum value and its smoothing area circled in red.

Figure 6.2: Expected value at some times t for a European Call option with Σ(Θ) =
0.3+0.1Θ, Θ normal distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84.
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Note that the expected value surface is similar to the solution of the deterministic
Black Scholes equation for σ = 0.3 = E(Σ(Θ)) in figure 6.3, however a difference between
the expected value of the SG solution and the deterministic solution exists as shown in
figure 6.4. This difference between expected value of the SG solution and the deterministic
solution is due to the coupling term occurring in the PDE 4.4 for the 0th gPC coefficient
which equals the expected value of the SG solution, see equation 4.11.

Figure 6.3: Solution of the deterministic Black Scholes equation for a European Call
option with σ = 0.3, T = 20, strike = 100 with contour lines at quarters of its maximum
value and its smoothing area circled in red.
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Figure 6.4: Absolute difference of the expected values of the SG solution and the deter-
ministic solution for a European Call option with Σ(Θ) = 0.3+0.1Θ, Θ normal distributed
and σ = 0.3 respectively, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84 with
contour lines at quarters of its maximum value and the smoothing area of the stochastic
solution circled in red.

The variance of the SG solution is displayed in figure 6.5 as a surface and figure 6.6 in
the times t = 0, t = 5, t = 10, t = 15 and t = T = 20. Observe that it decreases as t→ T
and vanishes in t = T . This is a desired behaviour since the value at maturity is the final
condition and therefore deterministic.
The angular shape and the slight asymmetry w.r.t. S = 100 is due to the interpolation
procedure used to adapt the values in S direction for reasonable plotting, since the original
coordinates in S are not linear but determined by the transformation of variables 5.2
applied to a equidistant grid in ζ.
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Figure 6.5: Variance surface for a European Call option with Σ(Θ) = 0.3+0.1Θ, Θ normal
distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84 with contour lines
at quarters of its maximum value and the smoothing area circled in red.

Figure 6.6: Variance at some times t for a European Call option with Σ(Θ) = 0.3 + 0.1Θ,
Θ normal distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84.

For comparison, the same model will be considered for a uniformly on [−0.5, 0.5]
distributed random variable ∆. The corresponding orthogonal polynomials are Legendre
polynomials from example 2. One can easily check that the variance of ∆ is 1/12. Thus,
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to obtain similar conditions, we exchange the model for the volatility by Σ(∆) = 0.3 +
0.1
√

12∆ to obtain a distribution of the volatility that has the same mean and variance
as for the standard normal distributed Θ. All the other parameters stay the same.
The expected value of the SG solution in this model is shown in figure 6.7. It looks
very similar to the one for the normal distributed Θ in figure 6.1. The comparison of
the expected values for both models in t = 0 in figure 6.8 and the plot of the absolute
difference of the expected values in figure 6.9 confirm that there is practically no difference
in the expected values. This leads to the experimental conclusion that for the expected
value of the solution, the expected value of the volatility is most important and its actual
distribution is rather irrelevant.

Figure 6.7: Expected value surface for a European Call option with Σ(∆) = 0.3+0.1
√

12∆,
∆ uniformly on [−1/2, 1/2] distributed, T = 20, strike = 100, K = 1, N = 5,Mζ =
200, Nτ = 84 with contour lines at quarters of its maximum value and its smoothing area
circled in red.
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Figure 6.8: Expected values at t = 0 for European Call option in the models Σ(∆) =
0.3+0.1

√
12∆, ∆ uniformly on [−1/2, 1/2] distributed, and Σ(Θ) = 0.3+0.1Θ, Θ standard

normal distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84.

Figure 6.9: Absolute difference in expected values of the models Σ(Θ) = 0.3 + 0.1Θ, Θ
standard normal distributed, and Σ(∆) = 0.3 + 0.1

√
12∆, ∆ uniformly on [−1/2, 1/2]

distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84 with contour lines at
quarters of its maximum absolute value and the smoothing area for normal Σ(Θ) circled
in red.

47



CHAPTER 6. NUMERICAL RESULTS 6.0

Figure 6.10 displays the variance of the SG solution where the volatility is modelled
by a uniform distribution. Its shape is similar to the variance for the normal distributed
volatility in figure 6.5, but the maximum attained value of the variance is approximately
0.6 whereas solution for the normal distributed Σ(Θ) attains a variance of roughly 1.3.
This difference is evident when looking at the plot of variances of both models at time
t = 0 in figure 6.11 or plotting the absolute difference of both variances for all S ∈ [60, 140]
and t ∈ [0, T ] in figure 6.12.
The reason for the lower variance in case of a uniformly distributed volatility could be
that the uniform distribution generates bounded realizations, i.e. every realization of ∆
lies in [−0.5, 0.5] whereas the realizations of Θ spread over the whole real numbers. To
be precise, the probability that Θ attains a value outside of [−0.5, 0.5] is given by

1−
∫ 0.5

−0.5

1

2π
e−

x2

2 dx ≈ 1− 0.3829 = 0.6170.

Figure 6.10: Variance surface for a European Call option with Σ(∆) = 0.3 + 0.1
√

12∆,
∆ uniformly on [−1/2, 1/2] distributed, T = 20, strike = 100, K = 1, N = 5,Mζ =
200, Nτ = 84 with contour lines at quarters of its maximum value and the smoothing area
circled in red.
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Figure 6.11: Variances at t = 0 for European Call option in the models Σ(∆) = 0.3 +
0.1
√

12∆, ∆ uniformly on [−1/2, 1/2] distributed, and Σ(Θ) = 0.3 + 0.1Θ, Θ standard
normal distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84.

Figure 6.12: Absolute difference of variances of the models for Σ(Θ) = 0.3 + 0.1Θ, Θ
standard normal distributed, and Σ(∆) = 0.3 + 0.1

√
12∆, ∆ uniformly on [−0.5, 0.5]

distributed, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84 with contour lines
at quarters of its maximum value and the smoothing area for normal Σ(Θ) circled in red.
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Comparing the expected value and variance for different volatility models of
the form Σ(Θ) = σ0 + σ1Θ:
From now on, let Θ be standard normal distributed again. In the following, the influence
of σ0 and σ1 will be determined by experiments.
Therefore, the same European Call option with strike price strike = 100 and maturity
T = 20 in the same market with interest rate r = 0 will be considered for three different
volatility models

Σ1(Θ) = 0.3 + 0.1Θ,

Σ2(Θ) = 0.5 + 0.1Θ and

Σ3(Θ) = 0.3 + 0.2Θ.

The truncation numbers K = 1, N = 5 were chosen and a grid with Mζ + 1 = 200 + 1
points in ζ direction and Nτ + 1 = 400 + 1 in τ direction was used for all models. This
framework guarantees stability of the scheme and parabolicity of the system of equations
4.8 for every volatility model Σ1, Σ2 and Σ3, such that the system can be solved numeri-
cally in a proper way.
Figure 6.13 shows the expected values of the corresponding SG solutions at t = 0. As one
can see, the expected values for Σ1 and Σ3 nearly coincide, whereas the one corresponding
to Σ2 significantly differs. The smoothing area is larger for Σ2 as one would expect in
the deterministic model for a larger value of σ. This leads to the conclusion that for the
expected value, almost exclusively the 0th gPC coefficient σ0 matters. This coincides with
the observation from comparing the models for normal and uniformly distributed volatil-
ities, as σ0 is the mean of the volatility. The absolute difference between the expected
values in the models Σ1 and Σ2 is shown in figure 6.14, where one can see that mainly
lies in the smoothing area.

Figure 6.13: Expected values at t = 0 for a European Call option for the models Σ1(Θ) =
0.3 + 0.1Θ, Σ2(Θ) = 0.5 + 0.1Θ and Σ3(Θ) = 0.3 + 0.2Θ, Θ normal distributed, with
T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 400.
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Figure 6.14: Absolute difference in the expected values for a European Call option for
the models Σ1(Θ) = 0.3 + 0.1Θ and Σ2(Θ) = 0.5 + 0.1Θ, Θ normal distributed, with
T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84 where the smoothing area for Σ2

is circled in red.

However, figure 6.15, that displays the expected values at S = strike = 100, illustrates
that there also is a small difference between the expected value for Σ1 and Σ3, which is
caused by the different values in σ1. The absolute difference of the solution’s expected
values for Σ1 and Σ3 is displayed in figure 6.16 for all S ∈ [60, 140] and t ∈ [0, T ] showing
that it mainly lies in the neighbourhood of S = strike = 100.

Figure 6.15: Expected values at S = strike = 100 for a European Call option for the
models Σ1(Θ) = 0.3 + 0.1Θ, Σ2(Θ) = 0.5 + 0.1Θ and Σ3(Θ) = 0.3 + 0.2Θ, Θ normal
distributed, with T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 400.
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Figure 6.16: Absolute difference in expected values for a European Call option for the
models Σ1(Θ) = 0.3 + 0.1Θ and Σ3(Θ) = 0.3 + 0.2Θ, Θ normal distributed, with T =
20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 84 where the smoothing area for Σ3 is
circled in red.

The variance of the solution for Σ3 is approximately four times as high as for Σ1, as
the plot of the variances in t = 0 in figure 6.17 shows. This coincides with the relation
of variances V ar(Σ(Θ)) = σ2

1 of the different models for Σ(Θ). Hence, σ1 determines the
maximum value of the variance of the corresponding SG solution.
The variance for Σ2 attains the same maximum as Σ1, however the curve is flatter. Figure
6.18 displays the absolute differences of variances of the SG solutions for Σ1 and Σ2. One
can identify the difference to lie in the neighbourhood of the strike price S = 100. This
coincides with the larger smoothing area in the case of Σ2 that one could observe in figure
6.13. The shape of the variance is therefore determined by the value of σ0: the larger it
is, the flatter the curve.
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Figure 6.17: Variances at t = 0 for a European Call option for the models Σ1(Θ) =
0.3 + 0.1Θ, Σ2(Θ) = 0.5 + 0.1Θ and Σ3(Θ) = 0.3 + 0.2Θ, Θ normal distributed, with
T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 400.

Figure 6.18: Absolute difference in variances for a European Call option for the models
Σ1(Θ) = 0.3+0.1Θ and Σ2(Θ) = 0.5+0.1Θ, Θ normal distributed, with T = 20, strike =
100, K = 1, N = 5,Mζ = 200, Nτ = 84 where the smoothing area for Σ2 is circled in red.

Comparison to real market data:
As a last step, the model will be tested on real data. For this, the end of day values of
a European Call option on the DAX index issued on the January 7th 2019 with strike
price strike = 10275 and maturity on September 20th 2019, i.e. T = 180 days, were
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obtained1. The implied volatilities were calculated by formula 2.3. They are visualized as
a histogram in figure 6.19. A normal distribution was fitted to these data by maximum
likelihood, i.e. one searched for σ0 and σ1 such that Σ(Θ) = σ0 + σ1Θ with a standard
normal distributed random variable Θ is most likely to attain the values of the implied
volatilities as realizations. From statistics, it is known that these optimal values are given
by the arithmetic mean of the implied volatilities σ0 = 0.2292 and their standard deviation
σ1 = 0.1126, see e.g. [Kre05] Beispiel 13.1.

Figure 6.19: Implied volatilities of the European Call option data with fitted normal
distribution.

With this model for Σ(Θ), the SG solution can be computed. The truncation numbers
K = 1 and N = 5, for which the system of equations 4.8 is parabolic, are chosen and the
number of grid points in ζ is set to Mζ = 200. The number Nτ = 678 of grid points in τ
is chosen to be large enough such that the scheme is stable.
Figure 6.20 shows the real market data together with the expected value of the SG solution
and the range expected value plus/minus the standard deviation. A closer plot of the last
55 days of the option can be found in figure 6.21. One observes that the expected value
is very close to the real data in this time span. For earlier times, the expected value lies
almost everywhere above the data, but the data always lies in the range expected value
plus/minus the standard deviation. This is consistent with stochastic theory that tells
us by the inequality of Tschebyscheff, see [Kre05] Satz 3.15, that the probability that a
random variable lies in the interval of its expected value plus/minus twice its standard
deviation is greater than 75%.

1The values were taken from the website https://www.finanzen.net/.
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Figure 6.20: Market values of the option together with the expected value of the SG
solution and the range expected value plus minus standard deviation.
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Figure 6.21: Market values of the option together with the expected value of the SG
solution and the range expected value plus minus standard deviation for the last 55 days
of the option.

Figure 6.22 compares the market prices,the expected value of the SG solution and the
prices according to a deterministic model, where the average of all implied volatilities
was taken as a value for the constant volatility. Note that also the deterministic prices
lie above the market prices. However, our stochastic SG solution allows realizations that
differ from the expected value within a certain range as the market prices do. Clearly,
this is not possible for a deterministic model.
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Figure 6.22: Market values of the option together with the deterministic solution and the
expected value of the SG solution.
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Chapter 7

Extension of the model to volatility
depending on finitely many
independent random variables

The Stochastic Galerkin method allows the stochastic parameter to depend an more than
one random variable, as described in [Xiu10] Chapter 6.1 or [Sul15] Chapter 8.7. Such
a model will be applied to the Black Scholes equation with uncertain volatility in this
chapter by formulating the Black Scholes equation with uncertain volatility depending
on finitely many independent random variables. Afterwards, the theoretical background
of gPC expansions in multiple random variables will be explained and the Stochastic
Galerkin method will be applied. Then, a numerical implementation of this model will
be derived followed by numerical examples.

7.1 The Black Scholes equation with uncertain volatil-

ity depending on multiple random variables

In economics, there is plenty of research on impact factors on the volatility for different
assets. For example, the impact of ratings from rating agencies on the volatility of a
countries stock market and its bonds was studied in [RM98]. Using time series mod-
els, [RTA16] investigated the influence of central bank intervention on the volatility of
exchange rates and [RKB12] examined the effects on the volatility of asset prices when
futures on those assets, i.e. contracts to buy or sell the asset for a predefined price at a
fixed point in the future, were introduced.

Returning to our model, assume information on influence factors on the volatility of
the stochastic asset is given. The actual state of such an influence factor may be difficult
to obtain from the market. Thus, we will model the influence factor as a random variable.
By introducing dependency of the volatility on this random variable, the volatility model
can be extended to use information from the influence factor. Nonetheless, the volatility
might still behave stochastic even if a state of the influence factor is fixed. In this case,
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one might model the volatility to also depend on another random variable. This mimicks
the stochastic nature of the volatility.
In total, one obtains models for the volatility of the form

Σ(Θ1, ...,ΘL),

for a natural number L ∈ N, where the random variables Θ1, ...,ΘL are assumed to be
continuous.

If the volatility is modelled as above, the Black Scholes equation with uncertain volatility
is given by

0 =
∂V (S, t,Θ1, ...,ΘL)

∂t
+

1

2
Σ2(Θ1, ...,ΘL)S2∂

2V (S, t,Θ1, ...,ΘL)

∂S2
(7.1)

+rS
∂V (S, t,Θ1, ...,ΘL)

∂S
− rV (S, t,Θ1, ...,ΘL).

Below, we will study this equation by applying the Stochastic Galerkin method.

7.2 Generalized Polynomial Chaos expansions in finitely

many independent random variables

In this section, the generalized Polynomial Chaos (gPC) expansion of functions of more
than one random variable will be explained, because we will need them for the Stochastic
Galerkin method.
Denote by Θ1, ...,ΘL continuous random variables with joint density, i.e. density of
(Θ1, ...,ΘL), given by µ̄ : D̄ → R for a multivariate domain D̄ ⊂ RL. As in the case
of one random variable, for a function f̄ : D̄ → R we will use the following notation for
integration with respect to the density µ̄:

〈f̄〉µ̄ :=

∫
D̄
f̄(x1, ..., xL)µ̄(x1, ..., xL) d(x1, ..., xL).

Orthogonal polynomials w.r.t. µ̄ can be defined al follows:

Definition 8 (adapted from [Sul15] Definition 8.24). Let µ̄ : D̄ → R be a multivariate
probability density defined on the domain D̄ ⊂ RL. Then a system of polynomials {p̄α :
D̄ → R |α = (α1, .., αL) ∈ NL

0 }, where the polynomial p̄α(x1, ..., xL) has degree in the i-th
variable degxi(p̄α) = αi, is called an infinite system of orthogonal polynomials, if for all
multi indices α, β ∈ NL

0 one has

〈p̄αp̄β〉µ̄ = 0 for α 6= β,

〈p̄2
α〉µ̄ =: γ̄α > 0.

Existence of orthogonal polynomial systems again follows from the Gram Schmidt al-
gorithm, if for all α = (α1, ..., αL) ∈ NL

0 the moments 〈xα1
1 · ... · x

αL
L 〉µ̄ are finite. Hence,
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uniqueness of the orthogonal polynomials is given up to multiplication by constants.

In the following, assume for simplicity that Θ1, ...,ΘL are independent continuous random
variables with corresponding densities µi : Di → R, Di ⊂ R for i = 1, ..., L. Then their
joint density is given by µ̄(x1, ..., xL) = µ1(x1) · ... · µL(xL). Therefore, infinite orthogo-
nal polynomial systems w.r.t. µ̄ exist if and only if they exist w.r.t. every µi and the
orthogonal polynomials w.r.t. µ̄ are of the form

p̄α(x1, ..., xL) = p(1)
α1

(x1) · ... · p(L)
αL

(xL), α = (α1, ..., αL) ∈ NL
0 , (7.2)

where the p
(i)
αi are the orthogonal polynomials w.r.t. µi of degree αi, i = 1, ..., L, see e.g.

[Xiu10] Chapter 5.2. The γ̄α are products of the γ
(i)
αi corresponding to the polynomials

p
(i)
αi , i.e. γ̄α = γ

(1)
α1 · ... · γ

(L)
αL .

The space L2
µ̄ of all square integrable functions w.r.t. the density µ̄ from D̄ = D1× ...×DL

to R is by iterative application of Example E.10 from [Jan97] isometric to the tensor
product

L2
µ̄ := L2

µ1×...×µL(D1 × ...×DL,R) ∼= L2
µ1
⊗ ...⊗ L2

µL
.

Example E.5 in the same book shows, that if the p
(i)
n , n ∈ N0, form a complete basis of

L2
µi

for every i = 1, ..., L, then the p̄α, α ∈ NL
0 , as defined in equation 7.2 form a complete

basis of L2
µ̄. In this case, the gPC expansion can be defined as in the case of dependence

on one random variable:

Theorem 9. For i = 1, ..., L let Θi : Ωi → R be a continuous random variable with
corresponding density µi : Di → R such that the Θi are independent and the orthogonal
polynomials (p

(i)
n )n∈N w.r.t. µi form a complete basis of L2

µi
. Denote by F an arbitrary

Hilbert space, e.g. the real numbers R or a space of the form Lp(D,R), p = 0, 1, 2, for
some domain D ⊂ Rn. Then every random variable X : Ω1 × ...× ΩL → F that equals a
function X̃ ∈ L2

µ1×...×µL(D1 × ...×DL,F) evaluated in the Θi in distribution

X = X̃(Θ1, ...,ΘL)

can be represented in the form

X =
∑
α∈NL0

xαp̄α(Θ1, ...,ΘL) =
∞∑

i1,...,iL=0

x(i1,...,iL)p
(1)
i1

(Θ1)...p
(L)
iL

(ΘL) (7.3)

where the p̄α = p
(1)
α1 ...p

(L)
αL , α = (α1, ..., αL) ∈ NL

0 , are the orthogonal polynomials w.r.t. the
joint density of the Θi given by µ̄ = µ1 · ... · µL. The xα are given by

xα =
〈Xp̄α〉µ̄
〈p̄2
α〉µ̄

∈ F . (7.4)

Again equality of random variables is meant in distribution. The proof works anal-
ogously to the proof of the gPC expansion theorem 6 for dependency on one random
variable.

60



CHAPTER 7. EXTENSION OF THE MODEL TO VOLATILITY DEPENDING ON
FINITELY MANY INDEPENDENT RANDOM VARIABLES 7.3

Definition 9. A representation as in equation 7.3 is again called generalized Polynomial
Chaos expansion of X.

If one does not assume independence of the Θi, one can still define gPC expansions. For
further details, see [Rah18]. However, for our purposes the assumption of independence
is sufficient.

7.3 Application of the Stochastic Galerkin method in

multiple random variables

In this section, the Stochastic Galerkin method will be applied to the Black Scholes
equation with uncertain volatility depending on L ∈ N random variables 7.1

0 =
∂V (S, t,Θ1, ...,ΘL)

∂t
+

1

2
Σ2(Θ1, ...,ΘL)S2∂

2V (S, t,Θ1, ...,ΘL)

∂S2

+ rS
∂V (S, t,Θ1, ...,ΘL)

∂S
− rV (S, t,Θ1, ...,ΘL).

The aim of this is to transform the stochastic PDE into a system of deterministic PDEs for
the gPC coefficients of the solution V (S, t,Θ1, ...,ΘL). The application of the Stochastic
Galerkin method will be explained in six steps, as it was done in chapter 4 for dependency
on one random variable. In literature, the general procedure of application is explained
in [Xiu10] chapter 6.1 for instance.

In the following, let Θ1, ...,ΘL be independent continuous random variables with den-
sity functions µ1, ..., µL such that the orthogonal polynomials (p

(i)
n )n∈N w.r.t. every µi

form a complete basis of L2
µi

. Denote by p̄α(x1, ..., xL) = p
(1)
α1 (x1)...p

(L)
αL (xL) the orthogo-

nal polynomials of degree α = (α1, ..., αL) ∈ NL
0 w.r.t. the joint density µ̄(x1, ..., xL) =

µ1(x1)...µL(xL) of the Θi.
Additionally, assume that Σ ∈ L2

µ̄ and V ∈ L2
µ̄(D̄, L2((0,∞) × [0, T ],R)) for the domain

D̄ = D1 × ...×DL of µ̄, where Di denotes the domain of µi.

Step 1: Writing the stochastic variables as gPC expansions
At first, represent Σ(Θ1, ...,ΘL), V (S, t,Θ1, ...,ΘL) and the partial derivatives of V in S
and t by their gPC expansions. This is possible because of theorem 9. The partial deriva-
tives pass over to the gPC coefficients by the same reason as in the case of dependency
on one random variable, see chapter 4 Step 2.

Σ(Θ1, ...,ΘL) =
∑
α∈NL0

σαp̄α(Θ1, ...,ΘL)

V (S, t,Θ1, ...,ΘL) =
∑
α∈NL0

vα(S, t)p̄α(Θ1, ...,ΘL) (7.5)

∂V (S, t,Θ1, ...,ΘL)

∂t
=
∑
α∈NL0

∂vα(S, t)

∂t
p̄α(Θ1, ...,ΘL)
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∂V (S, t,Θ1, ...,ΘL)

∂S
=
∑
α∈NL0

∂vα(S, t)

∂S
p̄α(Θ1, ...,ΘL)

∂2V (S, t,Θ1, ...,ΘL)

∂S2
=
∑
α∈NL0

∂2vα(S, t)

∂S2
p̄α(Θ1, ...,ΘL)

Step 2: Inserting the gPC expansions in the differential equation
Now, one can insert the gPC expansions in the Black Scholes equation 7.1 to obtain

0 =
∑
α∈NL0

∂vα(S, t)

∂t
p̄α(Θ1, ...,ΘL)

+
1

2

∑
α∈NL0

σαp̄α(Θ1, ...,ΘL)

2

S2
∑
α∈NL0

∂2vα(S, t)

∂S2
p̄α(Θ1, ...,ΘL) (7.6)

+ rS
∑
α∈NL0

∂vα(S, t)

∂S
p̄α(Θ1, ...,ΘL)− r

∑
α∈NL0

vα(S, t)p̄α(Θ1, ...,ΘL).

Step 3: Multiplication of the equation with an orthogonal polynomial evalu-
ated in Θ1, ...,ΘL and applying the expectation, for all orthogonal polynomials
The equation is multiplied by p̄δ(Θ1, ...,ΘL) and the expected value is applied on both
sides of PDE 7.6, for each δ ∈ NL

0 at a time. Because of 〈p̄αp̄δ〉µ̄ = 0 for α 6= δ by
orthogonality, these terms drop out. Dividing by 〈p̄2

δ〉µ̄ = γ̄α > 0, one obtains a coupled
system of deterministic equations for all coefficients vδ, δ ∈ NL

0 ,

0 =
∂vδ(S, t)

∂t
+

1

2
S2

∑
α,β,γ∈NL0

σασβ
∂2vγ(S, t)

∂S2

〈p̄αp̄β p̄γ p̄δ〉µ̄
〈p̄2
δ〉µ̄

+ rS
∂vδ(S, t)

∂S
− rvδ(S, t).

Introducing the Galerkin multiplication tensor

Mαβγδ :=
〈p̄αp̄β p̄γ p̄δ〉µ̄
〈p̄2
δ〉µ̄

,

that exists since the integrated functions are all polynomials in L variables, the coupled
system can be reformulated

0 =
∂vδ(S, t)

∂t
+

1

2
S2

∑
α,β,γ∈NL0

σασβ
∂2vγ(S, t)

∂S2
Mαβγδ + rS

∂vδ(S, t)

∂S
− rvδ(S, t). (7.7)

Step 4: Transforming the boundary conditions to the solution’s gPC coeffi-
cients
The boundary conditions have to be converted to boundary conditions for the system of
PDEs 7.7 for the gPC coefficients. They are given by the particular financial derivative
one wants to price and usually they are deterministic.
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Recall, that the price of a European Call option as in example 1 satisfies the final condi-
tion V (S, T ) = (S − strike)+, S ∈ (0,∞), and the boundary conditions V (0, t) = 0 and
V (S, t)/S → 1 for S →∞, t ∈ [0, T ]. The final and boundary conditions for the Stochas-
tic Galerkin solution are deterministic too by the same argumentation as in chapter 4. So,
they only appear in the coefficient v(0,...,0), whose corresponding orthogonal polynomial
p̄(0,...,0) ≡ 1 is the only polynomial independent of all Θi and therefore deterministic when
evaluated in Θ1, ...,ΘL. Thus, the boundary condition for the system of equations 7.7 are

v(0,...,0)(S, T ) = (S − strike)+, S ∈ (0,∞),

vα(S, T ) = 0, S ∈ (0,∞),

v(0,...,0)(S, t), vα(S, t)
S→0−−→ 0, t ∈ [0, T ],

v(0,...,0)(S, t)/S
S→∞−−−→ 1, t ∈ [0, T ],

vα(S, t)/S
S→∞−−−→ 0, t ∈ [0, T ]

for all (0, ..., 0) 6= α ∈ NL
0 .

Step 5: Solving the system of differential equations
In order to solve system 7.7 numerically, we truncate the gPC expansions of Σ and V
to a finite number of terms. The truncation is done such that the polynomials attain a
maximum total degree degx1 + ... + degxL as it was done in [Xiu10] Chapter 6.1. Define
|α| := α1 + ...+ αL for α = (α1, ..., αL) ∈ NL

0 , then the total degree of p̄α equals |α|. This
leads to the truncated gPC expansion

ΣK(Θ1, ...,ΘL) :=
∑

α∈NL0 , |α|≤K

σαp̄α(Θ1, ...,ΘL)

V N(S, t,Θ1, ...,ΘL) :=
∑

δ∈NL0 , |δ|≤N

vNδ (S, t)p̄δ(Θ1, ...,ΘL) (7.8)

for fixed K,N ∈ N0 and vNδ ∈ L2((0,∞)× [0, T ],R).
The system of equations for the truncated gPC coefficients vNδ , δ ∈ NL

0 with |δ| ≤ N , is
then given by

0 =
∂vNδ (S, t)

∂t
+

1

2
S2

∑
α,β,γ∈NL0 ,
|α|,|β|≤K,
|γ|≤N

σασβ
∂2vNγ (S, t)

∂S2
Mαβγδ + rS

∂vNδ (S, t)

∂S
− rvNδ (S, t). (7.9)

The numerical methods used to solve this are explained in the next section.

As in the case of dependency on one random variable, convergence of the truncated
Stochastic Galerkin solution 7.8 to the true solution 7.5 as N → ∞ is open to further
research. However, one assumes convergence to be given in order to trust the numerical
solution to represent the true solution.
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Step 6: Reconstructing the stochastic solution
The truncated solution V N can be approximately reconstructed from the numerically ob-
tained vNδ by formula 7.8. However, mean and variance of the truncated solution can also
be computed directly from the gPC coefficients:

� The expected value is given by E(V N) = vN(0,...,0) and

� the variance by V ar(V N(S, t)) =
∑

δ∈NL0 , |δ|≤N, δ 6=(0,...,0)(v
N
δ )2γ̄δ,

as one can show by the same arguments as in the case of dependency on one random
variable.

7.4 Numerics

In this section, the numerics used for solving the system of equations 7.9 is presented.
Again European Call options with strike price strike and maturity T will be considered
for demonstrative purposes.

In order to reuse as much of the code developed for dependence on one random vari-
able as possible, we will at first rewrite system 7.9 in vector form as in equation 4.8. To
put the gPC coefficients of V in a vector, one needs to define an order in which they will
appear in the vector. This is done via a bijection φ from the set {0, ..., |I|−1} of positions
in the vector to the set of multi indices I := {δ ∈ NL

0 | |δ| ≤ N}.
In this work, a bijective mapping was used that is equivalent to sorting the multi indices
as shown in table 7.1 and assigning them their sorting index, as suggested by [Sul15]
Chapter 8.7.

vector position multi index
0 (0, 0, ..., 0, 0)
1 (0, 0, ..., 0, 1)
...

...
N (0, 0, ..., 0, N)
N + 1 (0, 0, ..., 1, 0)
N + 2 (0, 0, ..., 1, 1)
...

...
2N (0, 0, ..., 1, N − 1)
...

...
|I| − 1 (N, 0, ..., 0)

Table 7.1: Mapping φ from the set of vector positions to the multi indices

Note that |I| can easily be computed by a program like the following.
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Algorithm 6 Compute the cardinality |I|
Input: Truncation number N .
Output: cardinality cardI = |I| with I = {δ ∈ NL

0 | |δ| ≤ N}.

cardI = 0;
for i1 = 0 : N do

for i2 = 0 : N − i1 do
...
for iL = 0 : N − i1 − ...− iL−1 do
cardI = cardI + 1;

end for
end for

end for

Define v := (vNφ(0), ..., v
N
φ(|I|−1))

T , then one can represent system 7.9 by

0|I| =
∂v(S, t)

∂t
+

1

2
S2A

∂2v(S, t)

∂S2
+ rS

∂v(S, t)

∂S
− rv(S, t),

where the coupling matrix A is given by

A[n, l] =
∑

α,β∈NL0 ,
|α|,|β|≤K

σασβMαβ(φ(l))(φ(n)), for n, l = 0, ..., |I| − 1. (7.10)

This system has the same shape as the vector form PDE 4.8 for dependency on one
random variable. Hence, it is parabolic and therefore well posed, if the real values of all
eigenvalues of A are positive, which has to be checked for convergence of the numerical
scheme.
The boundary conditions and the final value in vector form are

v(S, T ) =


(S − strike)+

0
...
0

 , S ∈ (0,∞),

v(S, t)
S→0−−→ 0|I|, t ∈ [0, T ], and

1

S
v(S, t)

S→∞−−−→


1
0
...
0

 , t ∈ [0, T ].
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After applying the same transformation of variables 5.1 as in chapter 5

ζ =
S

S + strike
,

τ = T − t,

v̄(ζ, τ) =
v(S, t)

S + strike
=

(1− ζ)v(strike ζ/(1− ζ), T − τ)

strike
,

the PDE for v̄ can be formulated:

∂v̄(ζ, τ)

∂τ
=

1

2
ζ2(1− ζ)2A

∂2v̄(ζ, τ)

∂ζ2
+ rζ(1− ζ)

∂v̄(ζ, τ)

∂ζ
− r(1− ζ)v̄(ζ, τ), (7.11)

ζ ∈ (0, 1), τ ∈ [0, T ],

with boundary and initial conditions

v̄(ζ, 0) =


(2ζ − 1)+

0
...
0

 , ζ ∈ (0, 1),

v̄(ζ, τ)
ζ→0−−→ 0|I|, τ ∈ [0, T ], and

v̄(ζ, τ)
ζ→1−−→


1
0
...
0

 , τ ∈ [0, T ].

This has the same shape as equation 5.3 and therefore the same numerical methods can
be used to solve it, as explained later. The only differences lie the dimension of the vector
v̄ ∈ R|I| and definition 7.10 of the coupling matrix A.

Before one can apply a numerical scheme, the coupling matrix given in equation 7.10

A[n, l] =
∑

α,β∈NL0 ,
|α|,|β|≤K

σασβMαβ(φ(l))(φ(n)), for n, l = 0, ..., |I| − 1

has to be computed, since the scheme will depend on A. To calculate the Galerkin
multiplication tensor with entriesMαβγδ, one can take advantage of the methods in chapter
5, since by independence of the Θi one has

Mαβγδ =
〈p̄αp̄β p̄γ p̄δ〉µ̄

γ̄δ
=
〈p(1)
α1 (x1)...p

(L)
αL (xL) · ... · p(1)

δ1
(x1)...p

(L)
δL

(xL)〉µ1(x1)...µL(xL)

γ
(1)
δ1
...γ

(L)
δL

=
〈p(1)
α1 p

(1)
β1
p

(1)
γ1 p

(1)
δ1
〉µ1

γ
(1)
δ1

...
〈p(L)
αL p

(L)
βL
p

(L)
γL p

(L)
δL
〉µL

γ
(L)
δL

= M
(1)
α1β1γ1δ1

...M
(L)
αLβLγLδL

,
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where M
(j)
ikln denotes the entry of the Galerkin multiplication tensor corresponding to

density µj, j = 1, ..., L. With this, one can compute the Galerkin multiplication tensor
M with M[i, k, l, n] = Mφ(i)φ(k)φ(l)φ(n), l, n = 0, ...|I| − 1 and i, k = 0, ..., |J | − 1 with
J := {α ∈ NL

0 | |α| ≤ K} by the following program given in Pseudo Matlab Code.

Algorithm 7 Compute the Galerkin multiplication tensor matrix M for L random vari-
ables

Input: Truncation number N,K of the truncated gPC expansions of V and Σ.
Output: Galerkin multiplication tensor M.

Compute M(j), j = 1, ..., L, with M(j)[i, k, l, n] = M
(j)
ikln by program 2 from chapter 5.

Compute M: The value of φ−1(α) gets stored in phiα, respectively for β, γ and δ
phiα = −1; phiβ = −1; phiγ = −1; phiδ = −1;

Compute cardI := |I|, cardJ := |J | by program 6.
M = zeros(cardI, cardI, cardJ, cardJ);
for α1, β1 = 0 : K, γ1, δ1 = 0 : N do

for α2 = 0 : (K − α1), β2 = 0 : (K − β1), γ2 = 0 : (N − γ1), δ2 = 0 : (N − δ1) do
...
for αL = 0 : (K − α1 − ...− αL−1) do
phiα = phiα + 1;
for βL = 0 : (K − β1 − ...− βL−1) do
phiβ = phiβ + 1;
for γL = 0 : (N − γ1 − ...− γL) do
phiγ = phiγ + 1;
for δL = 0 : (N − δ1 − ...− δL) do
phiδ = phiδ + 1;
M[phiα, phiβ, phiγ, phiδ] = M(1)[α1, β1, γ1, δ1] ∗ ... ∗M(L)[αL, βL, γL, δL];

end for
end for

end for
end for

end for
end for

Now one can compute A by

A[φ−1(δ), φ−1(γ)] =
∑

α,β∈NL0 ,
|α|,|β|≤K

σασβMαβγδ

for γ, δ ∈ I as follows.
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Algorithm 8 Calculation of the coupling matrix A for L random variables

Input: Truncation number N,K of the truncated gPC expansions of V and Σ, vector
σ = [σφ0 , ..., σφ(|J |−1)] of the gPC coefficients of Σ ordered by φ.
Output: Coupling matrix A.

Compute the Galerkin multiplication tensor M by program 7.

Compute the cardinality cardI = |I| by program 6.

A = zeros(cardI, cardI);
Again, phiγ denotes the value φ−1(γ), respectively for δ.
phiγ = −1; phiδ = −1;
for γ1, δ1 = 0 : N do

for γ2 = 0 : (N − γ1), δ2 = 0 : (N − δ1) do
...
for γL = 0 : (N − γ1 − ...− γL), δL = 0 : (N − δ1 − ...− δL) do
phiγ = phiγ + 1; phiδ = phiδ + 1;
A[phiδ, phiγ] = σM[:, :, phiγ, phiδ]σ

′;
end for

end for
end for

For L = 2 and σ given in matrix form

σ =


σ00 σ01 . . . σ0(K−1) σ0K

σ10 σ11 . . . σ1(K−1) 0
...

... ... ...
...

σ(K−1)0 σ(K−1)1 . . . 0 0
σK0 0 . . . 0 0

 (7.12)

one can alternatively calculate A by

A[φ−1(δ), φ−1(γ)] =
∑

α,β∈NL0 ,
|α|,|β|≤K

σασβMαβγδ =
K∑

α1,β1=0

K−α1∑
α2=0

K−β1∑
β2=0

σα1α2σβ1β2M
(1)
α1β1γ1δ1

M
(2)
α2β2γ2δ2

=
K∑

α1,β1=0

K−α1∑
α2=0

K−β1∑
β2=0

σ[α1, α2]M(2)[α2, β2, γ2 δ2]σ[β1, β2]M(1)[α1, β1, γ1, δ1]

=
K∑

α1=0

(
σM(2)[:, :, γ2, δ2]σT (M(1)[:, :, γ1, δ1])T

)
[α1, α1]

= tr(σM(2)[:, :, γ2, δ2]σT (M(1)[:, :, γ1, δ1])T ),

where tr denotes the trace of a matrix and M(2)[:, :, γ2, δ2] stands for the matrix of all
elements on M(2), whose last two indices are γ2, δ2. This does not require the computation
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of M but directly uses M(1) and M(2). Note that φ−1 is given by (α1, α2) 7→ α1(N + 1)−
α1(α1 − 1)/2 + α2 for L = 2. In Pseudo code, A is then calculated as follows:

Algorithm 9 Alternative calculation of the coupling matrix A for L = 2 random variables

Input: Truncation number N,K of the truncated gPC expansions of V and Σ, matrix
σ as in equation 7.12 of the gPC coefficients of Σ ordered by φ.
Output: Coupling matrix A.

Compute M(j), j = 1, ..., L, with M(j)[i, k, l, n] = M
(j)
ikln by program 2 from chapter 5.

Compute the cardinality cardI = |I| by program 6.

A = zeros(cardI, cardI);
for γ1, δ1 = 0 : N do

for γ2 = 0 : (N − γ1), δ2 = 0 : (N − δ1) do
A[(δ1(N + 1)− δ1(δ1 − 1)/2 + δ2) , (γ1(N + 1)− γ1(γ1 − 1)/2 + γ2)]

= tr(σM(2)[:, :, γ2, δ2]σ′(M(1)[:, :, γ1, δ1])′);
end for

end for

After A was computed, one can apply the same explicit finite difference scheme as in
chapter 5 to solve equation 7.11:

v̄(ζm, τ
n+1) =∆τ

(
1

2
ζ2
m(1− ζm)2A

v̄(ζm+1, τ
n)− 2v̄(ζm, τ

n) + v̄(ζm−1, τ
n)

(∆ζ)2
(5.6)

+ rζm(1− ζm)
v̄(ζm+1, τ

n)− v̄(ζm−1, τ
n)

2∆ζ
− r(1− ζm)v̄(ζm, τ

n)

)
+ v̄(ζm, τ

n).

By the Lax-Richtmyer Equivalence Theorem 8, convergence of the numerical solution to
the solution of the truncated system of PDEs 7.9 is given in the sense of Definition 7, if
the scheme is consistent and stable and the system of equations is well posed. To show
well posedness, one checks the real parts of the eigenvalues of A to be positive, since then
the equation is parabolic and therefore well posed. Consistency of the scheme 5.6 is shown
in the same way as in chapter 5 and stability can be investigated by the same program
4 as in chapter 5. In total, a program to calculate the gPC coefficients of the truncated
Stochastic Galerkin solution 7.8 is given below in Matlab Pseudo Code.
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Algorithm 10 Computing the truncated gPC coefficients v of V for L random variables

Input: Truncation numbers K,N of the truncated gPC expansions of V and Σ, vector
of gPC coefficients σ := (σφ(0), ..., σφ(|J |−1)) of Σ (or matrix of gPC coefficients of Σ in
the same form as in equation 7.12 for L = 2 and usage of program 9 for A), interest
rate r, maturity of the option T , and strike price strike, number of discretization points
Mζ in ζ.
Output: Tensor v with v(k,m, n) = vk(Sm, t

n), k = 0, ..., N,m = 0, ...,Mζ − 1, n =
0, ..., Nτ , vectors S := (S0, ..., SMζ−1) and t = (t0, ..., tNτ ) where Sm, t

n are the trans-
formed back ζm, τ

n.

Calculate the coupling matrix A by program 8 (or programm 9 for L = 2 and σ as in
7.12).
Check for parabolicity:
if min(real(eig(A))) ≤ 0 then

error(’Error: Equation not parabolic’);
end if

Check for stability by program 4, this yields the output variables stable and dtaumax.

if stable == 0 then
error(’Error: Scheme not stable’);

end if
Calculate the minimum Nτ to have stability:
Nτ = ceil(T/dtaumax);

Compute v̄:
[cardI,∼] = size(A);
v̄ = zeros(cardI,Mζ + 1, Nτ + 1);

Setting the initial condition for v̄:
v̄(0, :, 0) = max(2/Mζ ∗ (0 : Mζ)− 1, 0);

Code continues on the next page.
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Calculating v̄ for the remaining times by scheme 5.6:
for n = 0 : Nτ − 1 do

Boundary conditions:
m = 0;
v̄(:,m, n+ 1) = zeros(cardI, 1);
m = Mζ ;
v̄(:,m, n+ 1) = zeros(cardI, 1);
v̄(0,m, n+ 1) = 1;

Scheme:
for m = 1 : Mζ − 1 do
dvdzeta = Mζ/2 ∗ (v̄(:,m+ 1, n)− v̄(:,m− 1, n));
d2vdzeta2 = M2

ζ ∗ (v̄(:,m+ 1, n)− 2 ∗ v̄(:,m, n) + v̄(:,m− 1, n));

v̄(:,m, n+1) = T/Nτ ∗(1/2∗(m/Mζ)
2∗(Mζ−m)2/M2

ζ ∗A∗d2vdzeta2+r∗m/Mζ ∗
(Mζ −m)/Mζ ∗ dvdzeta− r ∗ (Mζ −m)/Mζ ∗ v̄(:,m, n)) + v̄(:,m, n);

end for
end for

Transforming back v̄, calculating S and t:
v = zeros(cardI,Mζ , Nτ + 1);
for n = 0 : Nτ do

v(:, :, n) = strike ∗ (1 : −1/Mζ : 1/Mζ).
∧(−1). ∗ v̄(:, 1 : Mζ , Nτ − n);

end for
S = strike ∗ (0 : Mζ − 1)./(Mζ : −1 : 1);
t = 0 : T/Nτ : T ;

7.5 Numerical results for the extended model

In this section, numerical solutions to the truncated system of equations 7.9 are visualized
by plotting their means and variances. These solutions were obtained by the programs
described in the last section. European Call options will be considered for demonstrative
purposes. As in chapter 6, times t and the maturity T will be given in days for more
convenient reading, whereas for the computations, these values were multiplied by 1/251
to go over to years.

At first we consider a European Call option with strike price strike = 100 and matu-
rity T = 20 in a market with risk free rate of interest r = 0. The volatility of the
underlying stochastic asset is modelled to be a linear combination of a standard normal
distributed random variable Θ and a uniformly on [−0.5, 0.5] distributed random variable
∆ independent of Θ given by

Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1
√

12∆.
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For this model, we search for an approximate solution of the truncated system of equa-
tions 7.9 of the form 7.8 for N = 5. For this N , system 7.9 is parabolic. The numbers of
grid points Mζ = 200 in ζ and Nτ = 319 in τ were chosen such that the applied explicit
finite difference scheme 5.6 is stable.

The expected value surface of the Stochastic Galerkin (SG) solution is displayed in figure
7.1. Contour lines were drawn at height of quarters of the maximum absolute value and
the borders of the smoothing area were drawn in red. These lines will be present in each
of the following surface plots. Note that the surface is very similar to the expected value
surfaces considered in chapter 6.
Figure 7.2 displays the variance of the Stochastic Galerkin solution whose shape resembles
the characteristic shape in the case of dependence on one random variable in figure 6.5
for instance. The difference of this model compared to the models for dependence on one
random variable will be studied below.

Figure 7.1: Expected value surface for a European Call option with Σ1(Θ,∆) = 0.5 +
0.2Θ+0.1

√
12∆, Θ normal distributed, ∆ uniform distributed, T = 20, strike = 100, K =

1, N = 5,Mζ = 200, Nτ = 319 with contour lines at quarters of its maximum value and
its smoothing area circled in red.
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Figure 7.2: Variance surface for a European Call option with Σ1(Θ,∆) = 0.5 + 0.2Θ +
0.1
√

12∆, Θ normal distributed, ∆ uniform distributed, T = 20, strike = 100, K =
1, N = 5,Mζ = 200, Nτ = 319 with contour lines at quarters of its maximum value and
smoothing area circled in red.

Comparing the expected value and variance for different volatility models of
the form Σ(Θ,∆) = σ00 + σ10Θ + σ01∆:
One can compare the SG solution for the volatility models

Σ0(Θ,∆) = Σ0(Θ) = 0.5 +
√

0.05Θ,

Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.2
√

12∆

Σ2(Θ,∆) = 0.5 + 0.1Θ + 0.2
√

12∆ and

Σ3(Θ,∆) = Σ3(∆) = 0.5 +
√

0.05 · 12∆.

Note that all Σi(Θ,∆) have the same variance σ2
01/12 + σ2

10 = 0.05 and Σ1 is the model
considered before.
For these volatility models, the systems of equations 7.9 are parabolic for N = 5 and
the finite difference scheme remains stable if one chooses Mζ = 200, Nτ = 319. The
expected values at t = 0 of the SG solutions for all four models are illustrated in figure
7.3 for all S ∈ [80, 120]. Since the differences are not easily observable, figure 7.4 shows
an enlarged area of this plot around S = 100. Here one can see that the expected values
for the volatility models Σ1,Σ2 properly depending on two random variables lie between
the expectations of the one random variable models Σ1,Σ3. A larger value of σ10 in
comparison to σ01 leads to a solution more similar to the solution in case of dependency
on Θ only given by model Σ0. Vice versa, for larger values of σ01 the solution lies closer
to the solution for Σ3 that depends on ∆ only.
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Figure 7.3: Expected values in t = 0 for a European Call option for the models Σ0,Σ1,Σ2

and Σ3, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 319.

Figure 7.4: Expected values in t = 0 for a European Call option for the models Σ0,Σ1,Σ2

and Σ3 zoomed in, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 319.

The same behaviour can be observed for the variances in figure 7.5.
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Figure 7.5: Variances in t = 0 for a European Call option for the models Σ0,Σ1,Σ2 and
Σ3, T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 319.

To get a notion of the differences between model Σ1 and the models Σ0 and Σ3 de-
pending on one random variable only, the absolute differences in the expected values of
the solutions for Σ0 and Σ1 and for Σ1 and Σ3 are displayed in figure 7.6 and figure 7.7
respectively. As one would expect from figures 7.3 and 7.4, the differences mostly lie in
the smoothing area and the difference between the expected values for Σ1 and Σ0 is not
as large as the one between the solutions for Σ1 and Σ3.
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Figure 7.6: Absolute difference in the expected values for a European Call option for the
models Σ0 and Σ1 with T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 319 with
contour lines at quarters of the maximum absolute difference and smoothing area for Σ0

circled in red.
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Figure 7.7: Absolute difference in the expected values for a European Call option for the
models Σ1 and Σ3 with T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 319 with
contour lines at quarters of the maximum absolute difference and smoothing area for Σ1

circled in red.

Also the differences in variance between these three models, as illustrated in figures
7.8 and 7.9, are located in the smoothing area and the variance of model Σ1 is closer to
the variance for model Σ0 than to the one for model Σ3.
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Figure 7.8: Absolute difference in variance for a European Call option for the models Σ0

and Σ1 with T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 319 with contour lines
at quarters of the maximum absolute difference and smoothing area for Σ0 circled in red.
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Figure 7.9: Absolute difference in variance for a European Call option for the models Σ1

and Σ3 with T = 20, strike = 100, K = 1, N = 5,Mζ = 200, Nτ = 319 with contour lines
at quarters of the maximum absolute difference and smoothing area for Σ1 circled in red.

In summary, the experiment shows that volatility models of the form Σ(Θ,∆) =
σ00 + σ10Θ + σ01∆ lead to SG solutions that ’lie between’ the solutions for volatility de-
pending on Θ or ∆ only that have the same mean and variance of the volatility. The
higher σ10 is in comparison to σ01, the closer the solution is to the solution for volatility
depending on Θ only and the further away it is from the solution for the model depending
on ∆ only, vice versa.

Comparison to real market data:
The model will now be compared to market prices of a European Call option. Consider
again the end of day values of a European Call option on the DAX index from January
7th 2019 to September 20th 2019 with strike price strike = 100 and maturity T = 180
days 1 as in chapter 6.

In the following, a volatility model of the form Σ(Θ,∆) = σ00 + σ10Θ + σ01∆ for in-
dependent random variables Θ and ∆, where Θ is standard normal distributed and ∆
follows a uniform distribution on [−0.5, 0.5], is fitted to the data. To do this, the implied

volatilities σ
(i)
impl, i = 1, ..., 180, were calculated by formula 2.3.

Consider at first σ00, which coincides with the expected value of Σ(Θ,∆). By the law of
large numbers, see e.g. [Kre05] Satz 12.4, the mean of the implied volatilities converges

1The values were obtained from https://www.finanzen.net/.
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to σ00 as the number of implied volatilities converges to infinity. This justifies the choice
σ00 = mean(σ

(i)
impl, i = 1, ..., 180).

The values of σ10 and σ01 are derived by a constrained maximum likelihood approach
as follows: As constraint, the variance of Σ(Θ,∆) given by

V ar(Σ(∆,Θ)) = V ar(σ00 + σ10Θ + σ01∆) = σ2
10V ar(Θ) + σ2

01V ar(∆) = σ2
10 · 1 + σ2

01 ·
1

12

should coincide with the empirical variance S2
180 of the implied volatilities, which is again

motivated by the law of large numbers. Hence, one can represent σ01 by σ10 in the
following form

σ01 =
√

12(S2
180 − σ2

10).

Thus, we search for σ10 ∈ (0,
√
S2

180) that maximizes the probability that 180 independent

realizations Σ(Θ1,∆1), ...,Σ(Θ180,∆180) of Σ(Θ,∆) attain the values σ
(1)
impl, ..., σ

(180)
impl . Since

Σ(Θ,∆) is continuous, this is done by maximizing the joint density fσ10 of Σ(Θ1,∆1), ...,

Σ(Θ180,∆180) evaluated in the point σ
(1)
impl, ..., σ

(180)
impl in σ01. Denoting the density of

aΘ +
√

12(S2
180 − a2)∆ by ga, this joint density can be rewritten by independence of

the realizations as

fσ10(σ
(1)
impl, ..., σ

(180)
impl ) =

180∏
i=1

gσ10(σ
(i)
impl − σ00).

The density ga can be calculated as the convolution of the density h1(x) = 1/(
√

2πa)e−x
2/(2a2),

x ∈ R, of the random variable aΘ and the density h2(x) = 1/
√

12(S2
180 − a2), x ∈

[−0.5
√

12(S2
180 − a2), 0.5

√
12(S2

180 − a2)], of the random variable
√

12(S2
180 − a2)∆, see

e.g. [Kre05] Satz 11.8, by

ga(x) =

∫
t∈R

h1(t)h2(x− t) dt =

∫ x+ 1
2

√
12(S2

180−a2)

x− 1
2

√
12(S2

180−a2)

h1(t)
1√

12(S2
180 − a2)

dt

=
1√

12(S2
180 − a2)

(
H1

(
x+

1

2

√
12(S2

180 − a2)

)
−H1

(
x− 1

2

√
12(S2

180 − a2)

))
.

Here, H1(x) :=
∫ x
−∞ h1(t) dt denotes the cumulative distribution function of the normal

distribution with mean 0 and standard deviation a which is available in most calculation
software.
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In summary, we choose

σ00 = mean(σ
(i)
impl, i = 1, ..., 180),

σ10 = argmax
a∈(0,
√
S2
180)

fa(σ
(1)
impl, ..., σ

(180)
impl ) = argmax

a∈(0,
√
S2
180)

180∏
i=1

ga(σ
(i)
impl − σ00)

= argmax
a∈(0,
√
S2
180)

180∏
i=1

1√
12(S2

180 − a2)

(
H1

(
σ

(i)
impl − σ00 +

1

2

√
12(S2

180 − a2)
)

(7.13)

−H1

(
σ

(i)
impl − σ00 −

1

2

√
12(S2

180 − a2)
))
,

σ01 =
√

12(S2
180 − σ2

10).

Applying these formulas to our data leads to the volatility model

Σ(Θ,∆) = 0.2292 + 0.1126Θ + 0.0115∆. (7.14)

The fitted density of Σ(Θ,∆) is shown in figure 7.10 together with a histogram density
estimator.

Figure 7.10: Histogram density estimator of Σ(Θ,∆) derived by the implied volatilities
together with the density of Σ(Θ,∆) fitted to the implied volatilities by maximum likeli-
hood.

With volatility model 7.14, one can compute the SG solution. The truncation number
N = 5 and the numbers of grid points Mζ = 200 and Nτ = 678 were chosen to obtain a
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stable scheme for the parabolic system of equations 7.9.
Figure 7.11 shows the market prices and the expected value of the SG solution as well as
the range expected value plus/minus standard deviation. A more detailed plot of those
graphs for the last 55 days of the option is given in figure 7.12. Again one observes that
the expected value of the SG solution is very close to the data in these days but slightly
above the data at earlier times. However, the data is always in the range expected value
plus/minus standard deviation, as one would expect from stochastic theory.

Figure 7.11: Market values of the option together with the expected value of the SG
solution and the range expected value plus minus standard deviation.
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Figure 7.12: Market values of the option together with the expected value of the SG
solution and the range expected value plus minus standard deviation for the last 55 days.

A comparison of the SG solution to the market data and the solution to the determin-
istic Black Scholes equation 2.2, where the mean of the implied volatilities was taken as a
value for the volatility, is given in figure 7.13. This figure shows, that also the determinis-
tic solution lies above the market data for early times. Recall that unlike the deterministic
solution, the SG solution allows realizations to differ from the expected value within a
certain range.
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Figure 7.13: Market values of the option together with the expected value of the SG
solution and deterministic solution.
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Chapter 8

Integration of a Bi-Fidelity approach

In the previous chapter, an explicit finite difference scheme for the computation of system

0 =
∂vNδ (S, t)

∂t
+

1

2
S2

∑
α,β,γ∈NL0 ,
|α|,|β|≤K,
|γ|≤N

σασβ
∂2vNγ (S, t)

∂S2
Mαβγδ + rS

∂vNδ (S, t)

∂S
− rvNδ (S, t) (7.9)

for δ ∈ I = {(δ1, ..., δL) ∈ NL
0 | δ1 + ... + δL ≤ N} was presented. Here, the number of

random variables, the volatility depends on, was denoted by L ∈ N and the truncation
number of the gPC expansion of V by N ∈ N. Recall that for L = 2, one already had
|I| = (N + 1)(N + 2)/2 gPC coefficients of V and hence (N + 1)(N + 2)/2 coupled equa-
tions. This number of equations |I| and with it the computational cost rapidly increase
as N or L increases.
This becomes a problem especially if one wants to compute the SG solutions for many
options at a time. A solution to this problem is given by applying a Bi-Fidelity approach,
if system 7.9 has to be solved many times for the same type of option (e.g. European Call
options) with the same maturity T and interest rate r, but varying coefficients σα of the
volatility model Σ(Θ1, ...,ΘL) =

∑
α∈NL0

σαp̄α(Θ1, ...,ΘL). A situation like this arises for
instance when comparing financial derivatives of the same type and maturity date, but
with different underlying stochastic assets, compare e.g. the mechanism of deriving the
gPC coefficients of Σ(Θ,∆) in 7.13.

In this section, at first the general procedure of applying a Bi-Fidelity approach will
be explained. Afterwards, it will be applied to our problem 7.9 and the numerical imple-
mentation be explained. Finally, some numerical examples will be given comparing the
Bi-Fidelity solution to the high fidelity solution.
In literature, the method is frequently described for uncertainty quantification via Stochas-
tic Collocation methods, see e.g. [Zhu14] and [Nar14] for the general procedure and [LZ20]
for an application to the multi-scale Boltzmann equation. However, the same procedure
can be applied to equations derived by a Stochastic Galerkin method, if one takes care of
the classification of the random variable, as it will become clear in section 8.2.
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8.1 General Procedure

The general procedure of applying a Bi-Fidelity approach for solving a PDE will be ex-
plained in this section, loosely following [Nar14] and [Zhu14].
Consider the general initial value problem depending on a possibly multidimensional ran-
dom variable Ξ : Ω→ D

∂u

∂t
(x, t,Ξ) = L(u)(x, t,Ξ), x ∈ D, t ∈ (0, T ],

B(u)(x, t,Ξ) = 0, x ∈ ∂D, t ∈ (0, T ],

u(x, 0,Ξ) = u0(t,Ξ), t ∈ (0, T ],

for some spacial domain D, a differential operator L, a boundary operator B and some
initial conditions given by u0.

In order to apply a Bi-Fidelity approach, one needs to define two different models de-
scribing the solution of this initial value problem. The solution one is actually interested
in, that is expensive to calculate, will be called high fidelity solution and denoted by
uH . Then, a second model that is much cheaper to compute, but one does not trust the
solution as much as the accurate high fidelity solution, is needed. However, to obtain in-
formation about the high fidelity solution, the low fidelity model has to be similar enough
to the high fidelity model as explained later.The solution corresponding to the low fidelity
model will be called the low fidelity solution and be denoted by uL.
One could for instance choose the solution of an easier but similar PDE, as it was done
in [LZ20], or a less accurate numerical scheme by using lower order methods or a coarser
grid as low fidelity solution.

Below, uL(ξ) with ξ ∈ D stands for the function uL(·, ·, ξ). Note that each uL(ξ) is
the (approximate) solution to a deterministic PDE and therefore lies in a Hilbert space
UL := span(uL(ξ) | ξ ∈ D) with corresponding inner product 〈·, ·〉L and induced norm
‖ · ‖L. The same notation is used for the high fidelity solution.

The aim of applying the Bi-Fidelity procedure is to approximate the high fidelity so-
lution in an arbitrary but fixed value z ∈ D of the random variable Ξ by information from
the low fidelity solution in z together with some stored high fidelity solutions to certain Ξ
values z1, ..., zA, where A ∈ N is the number of high fidelity computations one can afford.
To obtain a good approximation for as many z ∈ D as possible, the choice of z1, ..., zA is
important. The following procedure describes the selection of the values z1, ..., zA and the
corresponding low and high fidelity solutions uL(zi), u

H(zi), i = 1, ..., A in three steps:

Step 1: Compute the low fidelity solutions in many Ξ values
Let B denote the number of affordable low fidelity simulations with B >> A. A set
Y = {yi ∈ D | i = 1, ..., B} of B ∈ N possible values of Ξ is chosen such that the yi ’cover’
D well enough. Usually, one either takes Monte Carlo sample points, i.e. independent
realizations of Ξ, or the points of a deterministic grid on D. The low fidelity solution
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uL(yi) is computed in every point yi.

Step 2: Select important values of Ξ
Since it would be too costly to compute the high fidelity solution in every point yi,
i = 1, ..., B, one has to detect the A most important points. For a subset Ŷ ⊂ Y , de-
fine the spanned solution space UL(Ŷ ) := span(uL(ŷ) | ŷ ∈ Ŷ ). With this notation, one
searches the points whose solutions differ the most in the sense that they span the largest
subspace of UL(Y ). This is guaranteed by the choice

zi+1 := argmax
y∈Y

dL(uL(y), UL(Zi)), i = 0, ..., A− 1, (8.1)

see e.g. [Nar14], where dL(v, U) := infu∈U ‖v − u‖L is the distance of a point v ∈ UL(Y )
to the set U ⊂ UL(Y ) induced by the norm ‖ · ‖L and Zi := {z1, ..., zi} is the set of the
first i important values z1, ..., zi with Z0 := ∅.

Step 3: Compute the high fidelity solution in the important points
The high fidelity solution is computed in the important values z1, ..., zA of Ξ. By the
assumed similarity of the high and low fidelity solutions, the uH(zi) are expected to also
approximately span the largest subspace of UH(Y ) in the same sense as in Step 2.

These steps have to be performed only once, since the results, the high fidelity solu-
tions uH(zi) and low fidelity solutions uL(zi) in the zi, i = 1, ..., A, are stored. Thus,
they are called ’Offline’ steps in [LZ20]. They build the data basis for later computations
of an approximate high fidelity solution in a value z ∈ D of Ξ in the so called ’Online’ steps.

Assume therefore, a value z ∈ D of Ξ is given and the corresponding high fidelity solu-
tion uH(z) shall be derived. To save computational cost, one computes an approximation
uBF (z), the Bi-Fidelity solution, instead of uH(z). Using the data stored from the Offline
steps, one can calculate uBF (z) as follows:

Step 1: Compute the low fidelity solution in the point z
At first, the low fidelity solution uL(z) for the value z of Ξ is computed. Note that this
was assumed to be much cheaper than computing the high fidelity solution.

Step 2: Project the low fidelity solution onto UL(ZA)
The low fidelity solution uL(z) is then projected onto UL(ZA) leading to the projection
law

uL(z) ≈ PUL(ZA)u
L(z) =

A∑
i=1

ciu
L(zi)

for some constants ci := ci(z) ∈ R depending on z. Here PXx := PX(x) denotes the
orthogonal projection of an element x of some space onto the subspace X.
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Step 3: Calculate the Bi-Fidelity solution
By applying the same projection law to the high fidelity solutions, one obtains the Bi-
Fidelity solution

uBF (z) :=
A∑
i=1

ciu
H(zi), (8.2)

where the ci are the coefficients derived in the last step. For sufficient similarity between
the high and low fidelity models, a good choice of y1, ..., yB and A large enough, this
should lead to a good approximation of uH(z).

A bound on the approximation error ‖uH(z)− uBF (z)‖H will be given in Theorem 10 by
similar arguments as in [Nar14]. To investigate the approximation error, at first the projec-
tion error ‖uH(z)−PUH(ZA)u

H(z)‖H and the interpolation error ‖PUH(ZA)u
H(z)−uBF (z)‖H

will be considered in the following lemmas. Define for a finite subset Ỹ ⊂ D

zLi+1 := argmax
y∈Ỹ

dL(uL(y), UL(ZL
i )), (8.3)

zHi+1 := argmax
y∈Ỹ

dH(uH(y), UH(ZH
i )),

i = 0, ..., A − 1, with ZL
i = {z1, ..., zi} and ZL

0 := ∅, respectively for the high fidelity
model.

Lemma 2. Let A be even and assume that there exist constants 0 < KL, KH ≤ 1 such
that the low and high fidelity model satisfy

dH(uH(z), UH(E)) ≥ KLdL(uL(z), UL(E)) and (8.4)

dL(uL(z), UL(E)) ≥ KHdH(uH(z), UH(E))

for all z ∈ D and every finite subset E of D. Then one has for any finite Ỹ ⊂ D

max
z∈Ỹ
‖uH(z)− PUH(ZLA)u(z)‖ ≤

√
2

KLKH

√
dA/2(u(Ỹ )), (8.5)

where
dn(X) := inf

U subspace of UH

dim(U)=n

sup
x∈X

dH(x, U)

denotes the Kolmogorov n-width.

Condition 8.4 tells us that the distances of the solutions are comparable for high and
low fidelity model.

Proof.(adapted from [Nar14] Theorem 4.2). By the assumptions on the distances and the
definition of zLi+1, the following inequality is true for all i = 0, ..., A− 1

dH(uH(zLi+1), UH(ZL
i )) ≥ KLdL(uL(zLi+1), UL(ZL

i )) = KL max
z∈Ỹ

dL(uL(z), UL(ZL
i ))

≥ KL max
z∈Ỹ

KHdH(uH(z), UH(ZL
i ))

= KLKH max
z∈Ỹ

dH(uH(z), UH(ZL
i )).
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Since 0 < KLKH ≤ 1 holds, this shows that the point selection procedure by equation
8.1 is a weak greedy procedure as defined in [DPW13] equation 1.8. Therefore, applying
Corollary 3.3 (i) in the same paper yields equation 8.5.

To bound the interpolation error ‖PUH(ZA)u
H(z)−uBF (z)‖H in z ∈ D, rather technical

conditions are needed. For their description, define the following matrices and vectors:

� The Gramian matrix GL ∈ RA×A corresponding to the inner product 〈·, ·〉L of to
the Hilbert space UL is given by GL[i− 1, j − 1] = 〈uL(zi), u

L(zj)〉L, i, j = 1, ..., A.
Note that GL is invertible by choice of zi.

� The vector fL ∈ RA is defined by fL[i− 1] = 〈uL(zi), u
L(z)〉, i = 1, ..., A.

� The matrix GH ∈ RA×A and the vector fH ∈ RA are defined analogously for the
high fidelity solutions. Since GH is semi positive definite, its semi positive root√

GH = O
√

ΛO can be explained by the spectral decomposition GH = OΛOT for
an orthogonal matrix O and a diagonal matrix Λ. Furthermore, denote the Moore
Penrose pseudo inverse of GH by (GH)† (see e.g. [BIG03] Chapter 1.1), since GH

is not necessarily invertible.

� The orthogonal projection matrix onto the kernel of GH is denoted by Q.

The Euclidean norm ‖ · ‖ is chosen as a vector norm.

Lemma 3 ([Nar14] Lemma 4.3). Suppose that there exist small ε1, ε2 > 0 such that∥∥∥∥(√GH
)†

(fH − fL)

∥∥∥∥ ≤ ε1

∥∥∥∥(√GH
)†

fH
∥∥∥∥

holds for all z ∈ D and the Gramian matrices satisfy∥∥∥√GH(GL)−1
√

GH − IA

∥∥∥ < ε2. (8.6)

Then the interpolation error in z ∈ D with ‖PUH(ZA)u
H(z)‖H > 0 is bounded by

‖PUH(ZA)u
H(z)− uBF (z)‖H ≤ (ε1 + ε2 + ε1ε2)‖PUH(ZA)u

H(z)‖H +
∥∥∥√GH(GL)−1QfL

∥∥∥ .
(8.7)

Formulated in an illustrative manner, condition 8.6 means that the projection coeffi-
cients of PUL(ZA)u

L(z) and of PUH(ZA)u
H(z) behave similarly, whereas condition 8.7 states

that the Gramian matrices are similar enough. Details can be found in [Nar14] chapter
4.2.

Remark 3. Note that the last term on the right hand side of inequality 8.7 vanishes if GH

is invertible, because then the orthogonal projection onto the kernel of GH is Q = 0A×A.
By the density of invertible matrices in the set of all quadratic matrices of a certain
dimension, it is a very rare event that GH is not invertible, which neither occurred in our
numerical experiments nor in those in [Nar14].
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Proof. Denoting the projection coefficients of PUH(ZA)u
H(z) by cHi , i.e. PUH(ZA)u

H(z) =∑A
i=1 c

H
i u

H(zi), one obtains

(
‖PUH(Z)u

H(z)− uBF (z)‖H
)2

=

(
‖

A∑
i=1

cHi u
H(zLi )− ciuH(zLi )‖H

)2

=
A∑

i,j=1

(cHi − ci)(cHj − cj)〈uH(zLi ), uH(zLj )〉H

= (cH − c)TGH(cH − c) = ‖
√

GH(cH − c)‖2.

for c, cH ∈ RA with cH [i−1] = cHi and c[i−1] = ci. Because of f [i−1] = 〈uL(zi), u
L(z)〉 =

〈uL(zi), PUL(ZA)u
L(z)〉, one has

GLc = fL. (8.8)

In analogy, GHcH = fH holds. Now consider
√

GH(cH − c). Because the kernels of GH

and
√

GH coincide, one can rewrite Q = IA −
√

GH
(√

GH
)†

, see e.g. [BIG03] Ex.42.

Using this representation, a little calculation shows

√
GH(cH − c) =

(√
GH(GL)−1

√
GH − IA

)(√
GH
)†

fH

+
(√

GH(GL)−1
√

GH − IA

)(√
GH
)†

(fL − fH)

+
(√

GH
)†

(fL − fH) +
√

GH(GL)−1QfL.

Inserting assumptions 8.6 and 8.7 yields

‖PUH(Z)u
H(z)− uBF (z)‖H = ‖

√
GH(cH − c)‖ ≤ ε2‖

(√
GH
)†

fH‖+ ε2ε1‖
(√

GH
)†

fH‖

+ε1‖
(√

GH
)†

fH‖+ ‖
√

GH(GL)−1QfL‖.

To obtain inequality 8.7, it remains to show ‖
(√

GH
)†

fH‖ = ‖PUH(ZA)u
H(z)‖H , which

is by true because

(
‖PUH(ZA)u

H(z)‖H
)2

=
A∑

i,j=1

cHi c
H
j 〈uH(zi), u

H(zj)〉H = cHGHcH = ‖
√

GHcH‖2

= ‖
(√

GH
)†

fH‖2,

where the last equality is obtained by inserting cH =
(
GH
)†

fH .

In summary, one can now formulate the following theorem on bounds of the Bi-Fidelity
approximation error.
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Theorem 10 (adapted from [Nar14], Theorem 4.4). Assume that A is an even natural
number, that there exist constants 0 < KL, KH ≤ 1 such that

dH(uH(z), UH(E)) ≥ KLdL(uL(z), UL(E)) and

dL(uL(z), UL(E)) ≥ KHdH(uH(z), UH(E))

for all z ∈ D and every finite subset E of D and that the assumptions of lemma 3 are
satisfied for ε1, ε2. Then the Bi-Fidelity approximation is bounded in the following way

‖uH(z)− uBF (z)‖H ≤
√

2

KLKH

√
dA/2(u(Y )) + (ε1 + ε2 + ε1ε2)‖PUH(Z)u

H(z)‖H

+
∥∥∥√GH(GL)−1QfL

∥∥∥ . (8.9)

Proof. The triangle inequality shows that the approximation error can be decomposed
into the projection error and the interpolation error considered above

‖uH(z)− uBF (z)‖H ≤ ‖uH(z)− PUH(ZA)u
H(z)‖H + ‖PUH(ZA)u

H(z)− uBF (z)‖H .

Inserting the derived estimates yields the desired upper bound for the approximation
error.

To show convergence of the Bi-Fidelity solution to the high fidelity solution, the par-
ticular equation to be solved and the chosen models have to be investigated.
Nevertheless, let us consider the terms on the right hand side of equation 8.9 for the gen-
eral model. For the first term, suppose that the Kolmogorov width dA/2(u(Y )) becomes
small if A,B → ∞ and Y is chosen such that it is a good ’cover’ of D. If this is not the
case, one cannot expect to find a good approximation of uH(z) for all z by considering
finitely many data points uH(z1), ..., uH(zA). The third term vanishes, if GH is invertible
by the same arguments as in remark 3. Invertibility of GH is for instance automatically
given if one chooses the low fidelity model equal to the high fidelity model. Also the
coefficient (ε1 + ε2 + ε1ε2) of the second term can be chosen equal to zero, if high and low
fidelity model coincide, as conditions 8.6 and 8.7 show.
This way one can expect that for a good choice of the low fidelity model, the last two
terms on the right hand side of equation 8.9 become small. If one can in addition show
that they converge to zero as the low fidelity model converges to the high fidelity model
and that the Kolmogorov n-width goes to zero as n becomes large, then inequality 8.9
establishes convergence of the Bi-Fidelity solution to the high fidelity solution.

8.2 Application to the Black Scholes equation with

uncertain volatility and numerical implementa-

tion

As explained at the beginning of this chapter, computation of the truncated SG solution
of the Black Scholes equation with uncertain volatility depending on L ∈ N random
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variables 7.9

0 =
∂vNδ (S, t)

∂t
+

1

2
S2

∑
α,β,γ∈NL0 ,
|α|,|β|≤K,
|γ|≤N

σασβ
∂2vNγ (S, t)

∂S2
Mαβγδ + rS

∂vNδ (S, t)

∂S
− rvNδ (S, t),

δ ∈ I = {(δ1, ..., δL) ∈ NL
0 | δ1 + ...+ δL ≤ N}, becomes costly if large truncation numbers

N are chosen or if L is large. To reduce this cost in case one wants to compute the SG
solution multiple times for the same option type with the same maturity T and interest
rate r, a Bi-Fidelity approach is applied as explained in the last section. Therefore, high
and low fidelity models have to be defined and the random variable Ξ has to be assigned.
This will be done in the following and the numerical implementation of the procedure will
be explained.

Define the high fidelity model as a high resolution numerical solution to 7.9 derived by
the explicit finite difference scheme 5.6

v̄(ζm, τ
n+1) = ∆τ

(
1

2
ζ2
m(1− ζm)2A

v̄(ζm+1, τ
n)− 2v̄(ζm, τ

n) + v̄(ζm−1, τ
n)

(∆ζ)2

+rζm(1− ζm)
v̄(ζm+1, τ

n)− v̄(ζm−1, τ
n)

2∆ζ
− r(1− ζm)v̄(ζm, τ

n)

)
+ v̄(ζm, τ

n), for m = 1, ...,Mζ − 1, n = 0, ..., Nτ − 1,

i.e. a high MH
ζ and corresponding to that, for stability, a high NH

τ are chosen. The low
fidelity model is taken to be the same numerical solution on a coarse grid, i.e. with small
ML

ζ and NL
τ . This is computationally cheaper, since on the one hand, by a smaller NL

τ

less iteration steps of the scheme are needed to reach the solution at maturity T , and on
the other hand a smaller ML

ζ yields less applications of scheme 5.6 at every single time
step.
However, NL

τ must not be chosen too small. Otherwise, due to stability problems there
might not exist a large number of low fidelity solutions covering D well enough. In addi-
tion, the calculation of the Bi-Fidelity solution might not work for many Ξ values, since
the computation of the low fidelity solution in Online step 1 would be unstable.

Now, one has to assign the random variable Ξ. It does not coincide with (Θ1, ...,ΘL),
since we want our solution and therefore also the Bi-Fidelity solution to be a random
variable depending the Θi such that we can explore its behaviour. Instead, we suppose
the distribution of Σ(Θ1, ...,ΘL) to change from calculation to calculation, as it would
be the case when different underlying assets are considered. By truncation after total
polynomial degree K, the gPC expansion of ΣK(Θ1, ...,ΘL) is of the form

ΣK(Θ1, ...,ΘL) =
∑

α∈NL0 , |α|≤K

σαp̄α(Θ1, ...,ΘL).

A variation in the distribution of the volatility therefore means a variation in at least one
of the gPC coefficients σα, |α| ≤ K, since the distribution of the Θi is supposed to stay
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the same. Hence, the random variable Ξ in this case describes the values of all σα with
|α| ≤ K.

Below, the numerical implementation of the Bi-Fidelity method for calculating the SG
solution of the Black Scholes equation is explained, where the volatility is assumed to
depend on L = 2 random variables Θ1,Θ2 for a better readability. In case of dependence
on more than two random variables, the programs can easily be adapted. The truncation
number K = 1 is chosen such that the random variable Ξ represents the gPC coefficients
σ00, σ10 and σ01. The values of Ξ are hence assumed to be of the form

z =

(
σ00 σ01

σ01 0

)
(8.10)

as in 7.12. This definition enables us to directly insert z as a volatility model in the
computation of v̄, see programs 9 and 10.

Note that the actual computational effort lies in the calculation of the transformed system
of equations 7.11 for v̄ = (v̄Nφ(0), ..., v̄

N
φ(|I|−1))

T

∂v̄(ζ, τ)

∂τ
=

1

2
ζ2(1− ζ)2A

∂2v̄(ζ, τ)

∂ζ2
+ rζ(1− ζ)

∂v̄(ζ, τ)

∂ζ
− r(1− ζ)v̄(ζ, τ), (8.11)

ζ ∈ (0, 1), τ ∈ [0, T ].

This is why the Bi-Fidelity approach will be applied on the calculation of v̄. In this way,
a transformation back to the original variables vN , S and t has to be done only once for
the Bi-Fidelity solution. If one applied the Bi-Fidelity procedure on the original system,
the transformation back would have to be performed for every low fidelity solution from
Offline Step 1, increasing the computational cost of the Offline part without providing
advantages like higher accuracy.
The numerical implementation, as suggested by [Nar14], will be explained in detail for
each Step from section 8.1.

Step 1: Compute the low fidelity solutions in many Ξ values
The set of low fidelity sample points Y = {yi ∈ D | i = 1, ..., B} is chosen as a structured
grid on the set of possible values of σ00, σ10, σ01. To do this, assumptions on the range
of the gPC coefficients have to be made, i.e. one has to choose finite intervals such that
σ00 ∈ [a00, b00], σ10 ∈ [a10, b10], σ01[a01, b01].
This can for example be done by experiments, i.e. calculating σ00, σ10, σ01 for some of the
later interesting stochastic assets by formula 7.13 and taking the minimum (maximum)
of these calculated values for σ00 minus (plus) some safety margin as lower (upper) bound
for σ00, accordingly for σ10 and σ01.
As an alternative, one can think of possible values of σ00 inspired by experiments e.g., and
choose bounds of σ10 and σ01 such that the variance of Σ(Θ1,Θ2) is bounded by σ00/2 or
another predefined value.
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The grid points yk were stored in a tensor Σ̂, where

Σ̂[:, :, k − 1] = yk =

(
σ

(k)
00 σ

(k)
01

σ
(k)
10 0

)

describes the volatility model Σ(Θ1,Θ2) = σ
(k)
00 + σ

(k)
10 Θ1 + σ

(k)
01 Θ2. For every of these

volatility models yk, the low fidelity solution v̄L(k), i.e. the numerical solution on a coarse

grid (ζLm, τ
L,n)m=0,...,ML

ζ ,n=0,...,NL
τ

, was computed. The solution is stored in a tensor ˆ̄v
L

by

ˆ̄v
L
[i,m, n, k − 1] = v̄

L(k)
φ(i) (ζLm, τ

L,n) = v̄L(k)[i,m, n].

To save computational cost in this step, the programs 9 and 10 for calculating the nu-
merical solution vL and the coupling matrix A were slightly modified:
Program 9 was changed such that Galerkin multiplication tensors are not calculated at
every simulation. Instead they are given as input variables.
In program 10, the transformation back of the variables from v̄ to v was left out, because
the Bi-Fidelity method is applied to v̄. In addition, the Galerkin multiplication tensors
were added as input variables to pass them over to the calculation of A by the modified
program 9 and the initial condition for v̄ is not calculated within the program but given
as an input variable, too. This saves computational cost, since the initial conditions for
options of the same type coincide and the Galerkin multiplication for fixed K and N
are always the same. Furthermore, the check for parabolicity and stability was altered.
Instead of displaying an error, a return variable stable equals 0, if the equation is not
parabolic or the scheme is not stable, and 1 else. The variable stable is necessary to
determine whether a volatility model is a suitable low fidelity sample point or not.

Algorithm 11 Bi-Fidelity Offline step 1: Compute the low fidelity solutions in many Ξ
values

Input: Truncation numbers K,N of the truncated gPC expansions of V and Σ, interest
rate r, maturity of the option T and numbers of discretization points in the low fidelity
model ML

ζ for ζ and NL
τ for τ .

Output: Tensor Σ̂ ∈ R2×2×B of low fidelity sample points with Σ̂[:, :, k − 1] = yk
is the kth volatility model, tensor of corresponding low fidelity solutions ˆ̄v

L ∈
R|I|×(ML

ζ +1)×(NL
τ +1)×B.

Compute the Galerkin multiplication tensors as well as the initial condition for the
option only once to save computational cost.
Derive the Galerkin multiplication tensors M(1) and M(2) corresponding to the distri-
bution of Θ1 and Θ2 by program 2.
initcondlow = zeros((N + 1) ∗ (N + 2)/2,ML

ζ + 1);
initcondlow(1, :) = max(2/ML

ζ ∗ (0 : ML
ζ )− 1, 0);

Code continues on the next page.

94



CHAPTER 8. INTEGRATION OF A BI-FIDELITY APPROACH 8.2

Compute Σ̂ and ˆ̄v
L

assuming σ00 ∈ [a00, b00], a00, b00 ∈ R+ and a variance of Σ(Θ1,Θ2)
less than σ00/2. The linear grid has step width step in every direction.
Σ̂ = [ ];
ˆ̄v
L

= [ ];
for σ00 = a00 : step : b00 do

for σ10 = 0 : step :
√
σ00/2 do

for σ01 = 0 : step :
√

12 ∗ (σ00/2− σ2
10) do

sigma = [σ00 σ01;σ10 0];
Calculate v̄L by modified program 10 as described above with volatility model
explained by sigma and ML

ζ + 1 grid points in ζ and NL
τ + 1 in τ .

If the computation was stable and the equation was parabolic, the values sigma

and v̄ are added to the tensors Σ̂ and ˆ̄v
L
.

if stable == 1 then
Σ̂ = cat(3, Σ̂, sigma);
ˆ̄v
L

= cat(4, ˆ̄v
L
, v̄L);

end if
end for

end for
end for

Step 2: Select important grid points
The algorithm for the selection of important low fidelity sample points as proposed in
[Nar14] algorithm 1 was adapted to our problem.
At the kth selection step, the vector d saves the squared distances (dL(v̄L(y), V̄ L(Zk)))

2,
where Zk := {z1, ..., zk} is the set of the first k important sample points z1, ..., zk and
V̄ L(Ŷ ) := span{v̄L(y) | y ∈ Ŷ } denotes the solution space spanned by the Ŷ ⊂ Y . Note
that selection rule 8.1 defines zk+1 as the y with maximum corresponding dL(v̄L(y), V̄ L(Zk)).
However, by taking the maximum over the values (dL(v̄L(y), V̄ L(Zk)))

2 of d in each step
k = 1, ..., A one obtains the same values due to the strict monotonicity of x 7→ x2.

To calculate d, at first the distance dL has to be chosen. In our case, the distance
dL induced by the Euclidean inner product 〈a, b〉L :=

∑
i,m,n a(i,m, n)b(i,m, n) for a, b ∈

R|I|×(ML
ζ +1)×(NL

τ +1) was taken. Then the values of d are derived iteratively: as an initial
value, the entries of d are set to

d[i− 1] = (dL(v̄L(yi), V̄
L(Z0)))2 = (dL(v̄L(yi), 0))2 = (‖ˆ̄v(yi)‖L)2, i = 1, ..., B,

before the first step k = 1 for the norm ‖ · ‖L induced by the inner product 〈·, ·〉L. Then,
in a loop over k = 1, ..., A the zk are detected as the yi with maximum corresponding

d[i − 1], i ≥ k, and their position is stored. In the tensors Σ̂ and ˆ̄v
L

and the vector d,
the kth position w.r.t. the sample points and the position of the maximum are exchanged
such that the zi are in the first positions of Σ̂. Finally, d[i − 1] are updated to the dis-
tances (dL(v̄L(ỹi), V̄

L(Zk)))
2, i > k. Here the ỹi are the new sorted sample points after

exchanging zk with yk.
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At the end of the kth step, this leads to vectors and tensors of the form

Σ̂[:, :, j − 1] = zj, j = 1, ..., k,

Σ̂[:, :, i− 1] = ỹi, i = k + 1, ..., B

ˆ̄v
L
[:, :, :, j − 1] = v̄L(zj), j = 1, ..., k,

ˆ̄v
L
[:, :, :, i− 1] = v̄L(ỹi), i = k + 1, ..., B,

d[j − 1] = (dL(v̄L(zj), V̄
L(Zj−1)))2, j = 1, ..., k, and

d[i− 1] = (dL(v̄L(ỹi), V̄
L(Zk)))

2, i = k + 1, ..., B.

Algorithm 12 Bi-Fidelity Offline Step 2: Identify the most important Ξ values z1, ..., zA ∈
Y

Input: Tensor Σ̂ ∈ R2×2×B of low fidelity sample points (set Yi) and tensor of corre-

sponding low fidelity solutions ˆ̄v
L ∈ R|I|×(ML

ζ +1)×(NL
τ +1)×B from Offline Step 1, number

A of affordable high fidelity simulations.
Output: Tensor Σ̂A ∈ R2×2×A of important sample points with Σ̂A[:, :, k − 1] = zk
is the kth important Σ models, tensor of corresponding low fidelity solutions ˆ̄v

L
A ∈

R|I|×(ML
ζ +1)×(NL

τ +1)×A and Cholesky decomposition factor L with GL = LLT for the
Gramian matrix GL from last section.

Initialization.
[∼,∼, B] = size(Σ̂);
L = zeros(B,A);
d = zeros(B, 1);
for k = 1 : B do

d(k − 1) =
∑

i,m,n(ˆ̄v
L
(i,m, n, k))2;

end for

Code continues on the next page.
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Selection procedure: m denotes the maximum dL(uL(yi), U
L(Zk)) value and p its posi-

tion in d.
for k=1:A do

[m p] = max(d(k − 1 : B − 1));
p = p+ k − 1;
To avoid ill conditioning, check if m 6= 0, i.e. if m is bigger than machine precision
eps.
if m < eps then
k = k − 1;
break;

end if

Exchange the entries of d, L, Σ̂ and ˆ̄v
L

corresponding to the kth and pth sample
point by each other.
d([k − 1 p]) = d([p k − 1]);
L([k − 1 p], :) = L([p k − 1], :);
ˆ̄v
L
(:, :, :, [k − 1 p]) = ˆ̄v

L
(:, :, :, [p k − 1]);

Σ̂(:, :, [k − 1 p]) = Σ̂(:, :, [p k − 1]);

Calculate the new distances d(i − 1) = (dL(v̄L(ỹi), V̄
L(Zk)))

2 for i > k. It will be
verified after this program that the following calculations lead to the right value.
LLT = L(:, 0 : (A− 2)) ∗ L(:, 0 : (A− 2))′;
for t = (k + 1) : B do

rt =
∑

i,m,n
ˆ̄v
L
(i,m, n, k)ˆ̄v

L
(i,m, n, t) − LLT(t, k); = 〈ˆ̄vL(:, :, :, k), ˆ̄v

L
(:, :, :, t)〉L −

LLT(t, k).
L(k − 1, k − 1) =

√
d(k − 1);

L(t− 1, k − 1) = rt/L(k − 1, k − 1);
d(t− 1) = d(t− 1)− L(t− 1, k − 1)2;

end for
end for
To avoid ill conditioning, if one m was smaller than eps.
A = k;

Truncate Σ̂, ˆ̄v
L

and L such that they contain only the A important points zk, corre-
sponding low fidelity solutions or the corresponding rows of L.
ˆ̄v
L
A = ˆ̄v

L
(:, :, :, 0 : A− 1);

Σ̂A = Σ̂(:, :, 0 : A− 1);
L = L(0 : A− 1, :);

In the following, the update step of d will be explained in order to show that d actually
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saves the right values at the end of the kth step

dnew = [
(
dL(v̄L(z1), V̄ L(Z0))

)2
, ...,

(
dL(v̄L(zk), V̄

L(Zk−1))
)2
, (8.12)(

dL(v̄L(ỹk+1), V̄ L(Zk))
)2
, ...,

(
dL(v̄L(ỹB), V̄ L(Zk))

)2
].

Denote a matrix or a vector X at the beginning of step k by Xold and the same matrix
or vector after the kth step by Xnew. Then, Xnew from step k will become Xnew at the
beginning of the (k + 1)st step.
The following induction shows that the update step from program 12 produces the right
dnew.

For step k = 1, compute at first the updated matrix Lnew. Recall that it was initialized by
Lold = 0B×A and therefore LLT = 0B. Denote by ũLk the Gram Schmidt orthonormalized
solution v̄L(zk), k = 1, ..., A. Then one has

Lnew(k − 1, k − 1) =
√

dold[0, 0] = dL(v̄L(z1), V̄ L(Z0)) = dL(v̄L(zk), V̄
L(Zk−1))

Lnew(t− 1, k − 1) =
rt

L(k − 1, k − 1)
=
〈v̄L(zk) , v̄

L(ỹt)〉L − LLT[t− 1, k − 1]

dL(v̄L(zk), V̄ L(Zk−1))

=
〈v̄L(z1) , v̄L(ỹt)〉L

dL(v̄L(z1), V̄ L(Z0))
=

〈
v̄L(z1)

‖v̄L(z1)‖L
, v̄L(ỹt)

〉L
= 〈ũL1 , v̄L(ỹt)〉L

= 〈ũLk , v̄L(ỹt)〉L = 〈v̄L(ỹt) , ũ
L
k 〉L

for t > k = 1. With this, the updated dnew is given by

dnew[t− 1] = dold[t− 1]− (L[t− 1, k − 1])2 = (‖v̄L(ỹt)‖L)2 − (〈ũL1 , v̄L(ỹt)〉L)2

=
〈
v̄L(ỹt) , v̄

L(ỹt)
〉L − 〈〈ũL1 , v̄L(ỹt)〉LũL1 , v̄L(ỹt)

〉L
=

〈
v̄L(ỹt)− PV̄ L(Z1)(v̄

L(ỹt)) , v̄
L(ỹt)

〉L
=

〈
v̄L(ỹt)− PV̄ L(Z1)(v̄

L(ỹt)) , v̄
L(ỹt)− PV̄ L(Z1)(v̄

L(ỹt))
〉L

=
(
‖v̄L(ỹt)− PV̄ L(Z1)(v̄

L(ỹt))‖L
)2

=
(
dL(v̄L(ỹt), V̄

L(Z1))
)2
,

where the equality in the second to last line follows from the fact that PV̄ L(Z1) is an orthogo-

nal projection and therefore
〈
PV̄ L(Z1)(x) , x− PV̄ L(Z1)(x)

〉L
= 0 for all x ∈ R|I|×(ML

ζ +1)×(NL
τ +1),

since Id−PV̄ L(Z1) is the orthogonal projection on the orthogonal complement of V̄ L(Z1),
if Id denotes the identity.

Assume now, that for a fixed but arbitrary k ∈ 1, ..., A− 1, at the end of the kth it-
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eration the matrix L and the vector d are given by

Lnew[j − 1, j − 1] = dL(v̄L(zj), V̄
L(Zj−1)) for j = 1, ..., k,

Lnew[i− 1, j − 1] = 〈v̄L(ỹi) , ũ
L
j 〉L for j = 1, ..., k, i > j,

Lnew[i− 1, j − 1] = 0, for j = 1, ..., k, i < j,

Lnew[i− 1, j − 1] = 0, for j = k + 1, ..., A, i = 1, ..., B, and

dnew[j − 1] =
(
dL(v̄L(zj), V̄

L(Zj−1))
)2

for j = 1, ..., k,

dnew[i− 1] =
(
dL(v̄L(ỹi), V̄

L(Zk))
)2

for i = k + 1, ..., B.

Consider the (k + 1)st iteration. Here, Lnew and dnew from the kth step as given above
become Lold and dold of the (k + 1)st step. At first, compute rt for t > k + 1:

rt = 〈v̄L(ỹt) , v̄
L(zk+1)〉L − LLT[t− 1, k + 1 − 1]

= 〈v̄L(ỹt) , v̄
L(zk+1)〉L −

A−1∑
l=1

Lold[t− 1, l − 1]LT
old[l − 1, k + 1 − 1]

=(1) 〈v̄L(ỹt) , v̄
L(zk+1)〉L −

k∑
l=1

〈v̄L(ỹt) , ũ
L
l 〉L〈v̄L(zk+1) , ũLl 〉L

=

〈
v̄L(ỹt) , v̄

L(zk+1)−
k∑
l=1

〈v̄L(zk+1) , ũLl 〉LũLl

〉L

= 〈v̄L(ỹt) , v̄
L(zk+1)− PV̄ L(Zk)v̄

L(zk+1)〉L,

where equality (1) follows since LT
old[l − 1, k + 1 − 1] = 0 for l > k. With

Lnew[k + 1 − 1, k + 1 − 1] =
√

dold[k + 1 − 1] = dL(v̄L(zk+1, V̄
L(Zk)))

= ‖v̄L(zk+1)− PV̄ L(Zk)v̄
L(zk+1)‖L,

the matrix Lnew is of the same form as Lold for k + 1 instead of k, since for t > k + 1 one
has

Lnew[t− 1, k + 1 − 1] =
rt

Lnew[k + 1 − 1, k + 1 − 1]

=
〈v̄L(ỹt) , v̄

L(zk+1)− PV̄ L(Zk)v̄
L(zk+1)〉L

‖v̄L(zk+1)− PV̄ L(Zk)v̄L(zk+1)‖L
= 〈v̄L(ỹt) , ũ

L
k+1〉L.
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Using this, the update of vector d is given by

dnew[t− 1] = dold[t− 1]− L[t− 1, k + 1 − 1]2

=
(
dL(v̄L(ỹt), V̄

L(Zk))
)2 −

(
〈v̄L(ỹt) , ũ

L
k+1〉L

)2

=(1)
〈
v̄L(ỹt) , v̄

L(ỹt)− PV̄ L(Zk)v̄
L(ỹt

〉L − 〈v̄L(ỹt) , 〈v̄L(ỹt) , ũ
L
k+1〉LũLk+1

〉L
=

〈
v̄L(ỹt) , v̄

L(ỹt)−
k∑
j=1

〈v̄L(ỹt) , ũ
L
j 〉LũLj − 〈v̄L(ỹt) , ũ

L
k+1〉LũLk+1

〉L

=
〈
v̄L(ỹt) , v̄

L(ỹt)− PV̄ L(Zk+1)v̄
L(ỹt)

〉L
=(2)

〈
v̄L(ỹt)− PV̄ L(Zk+1)v̄

L(ỹt) , v̄
L(ỹt)− PV̄ L(Zk+1)v̄

L(ỹt)
〉L

=
(
dL(v̄L(ỹt), V̄

L(Zk+1))
)2
,

where the equalities (1) and (2) follow by the same argument as in the calculation of dnew
in step k = 1.

In summary, it was shown by induction that dnew is of the desired form 8.12 and therefore,
taking zk+1 as the ỹt, t > k, with maximum value corresponding to it in dold implements
the point selection rule explained in equation 8.1.

Step 3: Compute the high fidelity solution in the important points
As a next step, the high fidelity solution, i.e. the high resolution numerical solution with
MH

ζ + 1 grid points in ζ, is computed for every important volatility model zk = Σ̂A(:, :
, k − 1), k = 1, ..., A, by scheme 5.6. At first, the number of grid points NH

τ + 1 in τ is
chosen such that the numerical scheme is stable for all volatility models zk. Then the
numerical solution v̄H,k with v̄H,k[i,m, n] = v̄Hφ(i)(ζ

H
m , τ

H,n) is calculated for the volatility

model zk and stored in the tensor ˆ̄v
H ∈ R|I|×(MH

ζ +1)×(NH
τ +1)×A with ˆ̄v

H
[:, :, :, k− 1] = v̄H,k

for k = 1, ..., A.

Algorithm 13 Bi-Fidelity Offline step 3: Compute the high fidelity solution in the
important points

Input: Truncation number N of the truncated gPC expansions of V , interest rate r,
maturity of the option T , number of discretization points in the high fidelity model MH

ζ

for ζ, Galerkin multiplication tensors M(1) and M(2) as well as the important volatility
models collected in Σ̂A.
Output: Tensor of high fidelity solutions ˆ̄v

H ∈ R|I|×(MH
ζ +1)×(NH

τ +1)×A corresponding to
the important volatility models in Σ̂A.

Code continues on the next page.
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Compute the minimum NL
τ such that the finite difference scheme 5.6 is stable for all

important volatility models zk. The variable stable saves whether the scheme can be
stabilized by choosing a high NH

τ , the variable dtaumax saves the maximum attainable
value of ∆τH = T/NH

τ when stability holds for all zk.
dtaumax = Inf ;
for k = 1 : A do

Compute the coupling matrix A for volatility model sigma = Σ̂(:, :, k−1) by modified
program 9 from Offline step 1.
Compute stable and dt by the stability determining program 4. Then dt denotes
the maximum ∆τH value allowed for stability when considering the equation with
volatility model zk.
if stable == 0 then

error(’Unstable computation of high fidelity solutions.’);
end if
if dt < dtaumax then
dtaumax = dt;

end if
end for
NH
τ = ceil(T/dtaumax);

Generate the high fidelity solutions.
initcondhigh = zeros((N + 1) ∗ (N + 2)/2,MH

ζ + 1);
initcondhigh(1, :) = max(2/MH

ζ ∗ (0 : MH
ζ )− 1, 0);

ˆ̄v
H

= zeros((N + 1) ∗ (N + 2)/2,MH
ζ + 1, NH

τ + 1, A);
for k = 1 : A do

Calculate v̄H by modified program 10 from Offline step 1 for a volatility model
explained by Σ̂(:, :, k − 1) with MH

ζ + 1 grid points in ζ and NH
τ + 1 in τ .

By choice of NH
τ , the scheme is stable. The parabolicity of the equation follows

from the parabolicity check when calculating the low fidelity solutions. Therefore no
further check of these conditions is necessary.
ˆ̄v
H

= cat(4, ˆ̄v
H
, v̄H);

end for
Store the data, i.e. save r, T , N , ML

ζ , NL
τ , MH

ζ , NH
τ , A, Σ̂A, ˆ̄v

H
, ˆ̄v

L
A and L for later

usage.

For the online steps, assume a volatility model z ∈ D is given in the form 8.10 and one
wants to compute the Bi-Fidelity solution of the Black Scholes equation with uncertain
volatility of the form Σ(Θ1,Θ2) = σ00 + σ10Θ1 + σ01Θ2. This is done as follows:

Step 1: Compute the low fidelity solution in the point z
The low resolution numerical solution v̄L(z) is calculated by scheme 5.6. It is important
that the same number of grid points ML

ζ +1 and NL
τ +1 in ζ and τ direction are used as in

the computation of the low fidelity solutions in Offline step 1. The calculation is done via
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modified program 10 as explained in Offline step 1 and stability is checked by the output
variable stable. An error is displayed, if the scheme is unstable and the calculation is
aborted, as it is done in program 13.

Step 2: Project the low fidelity solution onto V̄ L(ZA)
In this step, the projection coefficients ck are derived with PV̄ L(ZA)v̄

L(z) =
∑A

k=1 ckv̄
L(zk).

To do this, recall the relation
GLc = fL (8.8)

for c = (c1, ..., cA)T and GL and fL defined as in the last section. Moreover, the matrix L
from Offline step 2 was computed such that GL = LLT . Since it was stored, one can use
it to easily compute the projection coefficients by

c =
(
LT
)−1

L−1fL.

Note that L is invertible because GL is by choice of the zk. This is the theoretical
background of the following program that resembles an implementation of algorithm 2
from [Nar14] in Matlab notation.

Algorithm 14 Bi-Fidelity Online step 2: Calculate of the projection coefficients ck

Input: Calculated low fidelity solution v̄L(z) from Online Step 1, number A of pro-

jection coefficients, low fidelity solutions ˆ̄v
L
A for the important volatility models zk as

collected in Σ̂A, matrix L from Offline step 2.
Output: Vector c = (c1, ..., cA)T of projection coefficients of PV̄ L(ZA)v̄

L(z) =∑A
k=1 ckv̄

L(zk).

Compute fL

fL = zeros(A, 1);
for k = 1 : A do

fL(k) =
∑

i,m,n v̄L(i,m, n) ∗ ˆ̄v
L
(i,m, n, k);= 〈v̄L(z), ˆ̄v

L
[:, :, :, k]〉L

end for

c = inv(L)′∗inv(L) ∗ fL;

Step 3: Calculate the Bi-Fidelity solution
Finally, the Bi-Fidelity solution is constructed by formula

v̄BF (z) :=
A∑
k=1

ckv̄
H(zk). (8.2)
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Algorithm 15 Bi-Fidelity Online step 3: Construct the Bi-Fidelity solution

Input: Truncation number N , computed vector c = (c1, ..., cA)T of projection coeffi-

cients and high fidelity solutions ˆ̄v
H

in important volatility models.
Output: Bi-Fidelity solution v̄BF for the volatility model declared by z with
v̄BF [i,m, n] = v̄BFφ(i)(ζ

H
m , τ

H,n).

v̄BF = zeros((N + 1 ∗ (N + 2)/2),MH
ζ + 1, NH

τ + 1);
for k = 1 : A do

v̄BF = v̄BF + c[k − 1] ∗ ˆ̄v
H

[:, :, :, k − 1];
end for

After deriving v̄BF , it has to be transformed back to the original variables v, S and t
by equation 5.2. This can be done by the same code used for the transformation back at
the end of program 10.
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8.3 Comparing Bi-Fidelity solution and high fidelity

solution

This section will present Bi-Fidelity solutions of the Black Scholes equation with uncertain
volatility 7.1 for a European Call option in two volatility models. They will be compared
to the corresponding high fidelity solutions derived by direct application of program 10.
After that, a simulation will be done to find the mean size and shape of the error in ex-
pected value and in variance between the Bi-Fidelity solution and the high fidelity solution.

The volatility was assumed to depend on two random variables Θ and ∆ with stan-
dard normal distribution and uniform distribution on [−0.5, 0.5] respectively. Its gPC
expansion was truncated after total polynomial degree K = 1.

The interest rate in the market was supposed to be r = 0 and a maturity of T = 23
days was chosen. This describes a period of slightly more than a month, since stock mar-
kets are usually closed on weekends and holidays. Again, for computations the maturity
and times t given in days were multiplied with 1/251 to obtain yearly values. The strike
price was set to strike = 100 and the gPC expansion of the solution was truncated after a
total polynomial degree of N = 5, as it was done in previous chapters on numerical results.

A rather coarse grid with ML
ζ = 50 and NL

τ = 150 was chosen for the low fidelity model.
This NL

τ is high enough such that the vast majority of all computations of low fidelity
solutions performed in the examples explained below was stable. In case of instability,
the corresponding sample point was removed from the set of low fidelity sample points.
The high fidelity solution was computed on a grid with MH

ζ + 1 = 200 + 1 grid points
in ζ direction. The number of grid points NH

τ + 1 = 1908 + 1 in τ direction was derived
by program 13 such that all high resolution computations for important volatility models
were stable.

The low fidelity sample points were of the form

yi =

(
σ

(i)
00 σ

(i)
01

σ
(i)
10 0

)

as in equation 8.10 with

σ
(i)
00 ∈ {0 < 0.05λ ≤ 0.8 |λ ∈ N \ {0}} ,

σ
(i)
10 ∈

{
0.05λ ≤

√
σ00/2 |λ ∈ N0

}
and (8.13)

σ
(i)
01 ∈

{
0.05λ ≤

√
12(σ00/2− σ2

10) |λ ∈ N0

}
.

The Bi-Fidelity solutions can then be derived by the numerics explained in the last chap-
ter.
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At first, the volatility model Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1
√

12∆ known from section
7.5 will be considered. Figures 8.1 and 8.2 show the expected value surfaces of the high
fidelity and the Bi-Fidelity solution with contour lines at each quarter of the maximum
absolute value and the borders of the smoothing area plotted in red. The expected values
seem to approximately coincide.

Figure 8.1: Expected value surface of the high fidelity solution for a European Call option
for volatility model Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1

√
12∆, Θ normal distributed, ∆ uniform

distributed, T = 23, strike = 100, K = 1, N = 5, MH
ζ = 200 and NH

τ = 1908 with
contour lines at quarters of its maximum value and its smoothing area circled in red.
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Figure 8.2: Expected value of the Bi-Fidelity solution for a European Call option for
volatility model Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1

√
12∆, Θ normal distributed, ∆ uniform

distributed, T = 23, strike = 100, K = 1, N = 5, ML
ζ = 50, NL

τ = 150, low fidelity
sample points as in 8.13, MH

ζ = 200 and NH
τ = 1908 with contour lines at quarters of its

maximum value and its smoothing area circled in red.

To study their deviations, the absolute difference in expected values is displayed in
figures 8.3 close to the strike price and figure 8.4 for a wider range of S values. One
can observe that there is some difference of size 10−3 within the smoothing area, but for
S → ∞ the difference of the two solutions seems to increase in absolute value. Figure
8.5 shows the difference for all values of S and t. The maximum absolute value of the
absolute difference is less than 0.3 and occurs close to S = ∞, where the option values
tends to infinity. Therefore, a difference of 0.3 in these regions means small deviation. The
difference in the smoothing area of size 3 · 10−3 is larger compared to the values attained
in this region that are close to zero. Recall however, that the solution is multiplies by
strike when transforming back the variables. Hence, an error of size 10−3 at strike 100
means an error of size 10−5 · strike.
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Figure 8.3: Absolute difference in expected value of the high fidelity and the Bi-Fidelity
solution for a European Call option close to the strike price for volatility model Σ1(Θ,∆) =
0.5+0.2Θ+0.1

√
12∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100,

K = 1, N = 5, ML
ζ = 50, NL

τ = 150, low fidelity sample points as in 8.13, MH
ζ = 200 and

NH
τ = 1908 with contour lines at quarters of its maximum absolute value and the high

fidelity smoothing area circled in red.
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Figure 8.4: Absolute difference in expected value of the high fidelity and the Bi-Fidelity
solution for a European Call option for a wider range of S values for volatility model
Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1

√
12∆, Θ normal distributed, ∆ uniform distributed, T = 23,

strike = 100, K = 1, N = 5, ML
ζ = 50, NL

τ = 150, low fidelity sample points as in 8.13,
MH

ζ = 200 and NH
τ = 1908 with contour lines at quarters of its maximum absolute value

and the high fidelity smoothing area circled in red.
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Figure 8.5: Absolute difference in expected value of the high fidelity and the Bi-Fidelity
solution for a European Call option for all S values for volatility model Σ1(Θ,∆) =
0.5+0.2Θ+0.1

√
12∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100,

K = 1, N = 5, ML
ζ = 50, NL

τ = 150, low fidelity sample points as in 8.13, MH
ζ = 200 and

NH
τ = 1908 with the high fidelity smoothing area circled in red.

Now look at the variances. They are shown in figures 8.6 and 8.7. Again they look
similar.
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Figure 8.6: Variance of the high fidelity solution for a European Call option for volatility
model Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1

√
12∆, Θ normal distributed, ∆ uniform distributed,

T = 23, strike = 100, K = 1, N = 5, MH
ζ = 200 and NH

τ = 1908 with contour lines at
quarters of its maximum value and its smoothing area circled in red.
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Figure 8.7: Variance of the Bi-Fidelity solution for a European Call option for volatility
model Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1

√
12∆, Θ normal distributed, ∆ uniform distributed,

T = 23, strike = 100, K = 1, N = 5, ML
ζ = 50, NL

τ = 150, low fidelity sample points as
in 8.13, MH

ζ = 200 and NH
τ = 1908 with contour lines at quarters of its maximum value

and its smoothing area circled in red.

We examine the absolute difference in variance as represented in figure 8.8 to lie in
the smoothing area. Figure 8.9 showing the difference for all S and t values supports this
conclusion. The error is again of size 10−3 = 10−7strike2.
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Figure 8.8: Absolute difference in variance of the high fidelity and the Bi-Fidelity solution
for a European Call option close to the strike price for volatility model Σ1(Θ,∆) =
0.5+0.2Θ+0.1

√
12∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100,

K = 1, N = 5, ML
ζ = 50, NL

τ = 150, low fidelity sample points as in 8.13, MH
ζ = 200

and NH
τ = 1908 with contour lines at quarters of its maximum value and the high fidelity

smoothing area circled in red.
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Figure 8.9: Absolute difference in variance of the high fidelity and the Bi-Fidelity solution
for a European Call option for all S values for volatility model Σ1(Θ,∆) = 0.5 + 0.2Θ +
0.1
√

12∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100, K = 1,
N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13, MH

ζ = 200 and
NH
τ = 1908 with the high fidelity smoothing area circled in red.

Now a second volatility model will be considered. The model is given by Σ2(Θ,∆) =
0.1π + 0.1eΘ + 0.1g∆, where g = (1 +

√
5)/2 denotes the golden ratio. The expected

value of the high fidelity and the Bi-Fidelity solution can be found in figures 8.10 and
8.11 respectively. Again the difference does not seem to be large.
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Figure 8.10: Expected value of the high fidelity solution for a European Call option for
volatility model Σ2(Θ,∆) = 0.1π + 0.1eΘ + 0.1g∆, Θ normal distributed, ∆ uniform
distributed, T = 23, strike = 100, K = 1, N = 5, MH

ζ = 200 and NH
τ = 1908 with

contour lines at quarters of its maximum value and its smoothing area circled in red.
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Figure 8.11: Expected value of the Bi-Fidelity solution for a European Call option for
volatility model Σ2(Θ,∆) = 0.1π + 0.1eΘ + 0.1g∆, Θ normal distributed, ∆ uniform
distributed, T = 23, strike = 100, K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity

sample points as in 8.13, MH
ζ = 200 and NH

τ = 1908 with contour lines at quarters of its
maximum value and its smoothing area circled in red.

The absolute difference is investigated in figure 8.12 close to the strike price and figure
8.13 for all times and S values. The figures show that the difference is also of the size
10−3 = 10−5strike and lies in the smoothing area and close to S =∞.

115



CHAPTER 8. INTEGRATION OF A BI-FIDELITY APPROACH 8.3

Figure 8.12: Absolute difference in expected value of the high fidelity and the Bi-Fidelity
solution for a European Call option close to the strike price for volatility model Σ2(Θ,∆) =
0.1π+0.1eΘ+0.1g∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100,
K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13, MH

ζ = 200 and
NH
τ = 1908 with contour lines at quarters of its maximum absolute value and the high

fidelity smoothing area circled in red.
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Figure 8.13: Absolute difference in expected value of the high fidelity and the Bi-Fidelity
solution for a European Call option for all S values for volatility model Σ2(Θ,∆) =
0.1π+0.1eΘ+0.1g∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100,
K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13, MH

ζ = 200 and
NH
τ = 1908 with the high fidelity smoothing area circled in red.

The variances are displayed in figures 8.14 and 8.15. Their absolute difference is
represented in figure 8.16 close to the strike price and figure 8.17 for all S and t. This time
the maximum absolute value of the difference in variance is of size 10−2 = 10−6strike2.
This indicates that the Bi-Fidelity solution for model Σ2 is not as close to the high fidelity
solution as it was for model Σ1. This hypothesis is supported by the Bi-Fidelity errors as
explained in section 8.1. The error for model Σ1 attains the value 3.4739 · 10−5, whereas
the error for model Σ2 equals 6.9868 · 10−5.
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Figure 8.14: Variance of the high fidelity solution for a European Call option for volatility
model Σ2(Θ,∆) = 0.1π + 0.1eΘ + 0.1g∆, Θ normal distributed, ∆ uniform distributed,
T = 23, strike = 100, K = 1, N = 5, MH

ζ = 200 and NH
τ = 1908 with contour lines at

quarters of its maximum value and its smoothing area circled in red.
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Figure 8.15: Variance of the Bi-Fidelity solution for a European Call option for volatility
model Σ2(Θ,∆) = 0.1π + 0.1eΘ + 0.1g∆, Θ normal distributed, ∆ uniform distributed,
T = 23, strike = 100, K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as

in 8.13, MH
ζ = 200 and NH

τ = 1908 with contour lines at quarters of its maximum value
and its smoothing area circled in red.
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Figure 8.16: Absolute difference in variance of the high fidelity and the Bi-Fidelity solution
for a European Call option close to the strike price for volatility model Σ2(Θ,∆) =
0.1π+0.1eΘ+0.1g∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100,
K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13, MH

ζ = 200
and NH

τ = 1908 with contour lines at quarters of its maximum value and the high fidelity
smoothing area circled in red.
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Figure 8.17: Absolute difference in variance of the high fidelity and the Bi-Fidelity solution
for a European Call option for all S values for volatility model Σ2(Θ,∆) = 0.1π+0.1eΘ+
0.1g∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100, K = 1,
N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13, MH

ζ = 200 and
NH
τ = 1908 with the high fidelity smoothing area circled in red.

Finally, a simulation of the errors was done to obtain the mean size and shape of the Bi-
Fidelity error. For this purpose, 100 volatility models of the form Σ(Θ,∆) = σ00 +σ10Θ+
σ01∆ were generated randomly by obtaining the coefficients σij as realizations of uniform

random variables such that σ00 ∈ [0, 0.8], σ10 ∈ [0,
√
σ00/2], σ01 ∈ [0,

√
12(σ00/2− σ2

10].
The mean absolute difference of the expected value of the Bi-Fidelity solution and the
expected value of the high fidelity solution is represented in figure 8.18 close to the strike
price and figure 8.19 for a larger range of S values. Figure 8.20 is a plot of the error for
all S and t values. The smoothing area is not plotted, since it differs for every volatility
model. The figures shows a shape of the error in expectation similar to the error shape
in the previous volatility models. There is an oscillation of size 10−4 = 10−6strike close
to the strike price and for S → ∞ the error steadily increases in absolute value. The
maximum absolute difference lies close to S = ∞ and has a size of 10−1 = 10−3strike,
which is small in relative terms. This shape seams to be characteristic for the considered
Bi-Fidelity model.
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Figure 8.18: Mean absolute difference in expected value of the high fidelity and the Bi-
Fidelity solution for a European Call option close to the strike price for 100 volatility
models Σ(Θ,∆) = σ00 + σ10Θ + σ01∆, Θ normal distributed, ∆ uniform distributed,
T = 23, strike = 100, K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points

as in 8.13, MH
ζ = 200 and NH

τ = 1908 with contour lines at quarters of its maximum
absolute value.
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Figure 8.19: Mean absolute difference in expected value of the high fidelity and the Bi-
Fidelity solution for a European Call option for a wider range of S values for 100 volatility
models Σ(Θ,∆) = σ00 + σ10Θ + σ01∆, Θ normal distributed, ∆ uniform distributed,
T = 23, strike = 100, K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points

as in 8.13, MH
ζ = 200 and NH

τ = 1908 with contour lines at quarters of its maximum
absolute value.
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Figure 8.20: Mean absolute difference in expected value of the high fidelity and the Bi-
Fidelity solution for a European Call option for all S values for 100 volatility models
Σ(Θ,∆) = σ00 + σ10Θ + σ01∆, Θ normal distributed, ∆ uniform distributed, T = 23,
strike = 100, K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13,

MH
ζ = 200 and NH

τ = 1908.

The characteristic error in variances derived by the same 100 volatility models is
displayed in figure 8.21. It shows some oscillation close to the strike price of size 10−2 =
10−6strike2, but vanishes elsewhere, as one can observe in figure 8.22.
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Figure 8.21: Mean absolute difference in variance of the high fidelity and the Bi-Fidelity
solution for a European Call option for 100 volatility models Σ(Θ,∆) = σ00+σ10Θ+σ01∆,
Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100, K = 1, N = 5,
ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13, MH

ζ = 200 and NH
τ = 1908

with contour lines at quarters of its maximum value.
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Figure 8.22: Mean absolute difference in variance of the high fidelity and the Bi-Fidelity
solution for a European Call option for all S values for 100 volatility models Σ(Θ,∆) =
σ00 + σ10Θ + σ01∆, Θ normal distributed, ∆ uniform distributed, T = 23, strike = 100,
K = 1, N = 5, ML

ζ = 50, NL
τ = 150, low fidelity sample points as in 8.13, MH

ζ = 200 and
NH
τ = 1908.
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Chapter 9

Summary and Conclusion

In this thesis, the Black Scholes equation was considered, where the volatility was assumed
to be a random variable, that can be written as a L2

µ function of another random vari-
able whose density µ is easy to compute. The theoretical background of the generalized
Polynomial Chaos expansion was illustrated, since it provides a basis of the Stochastic
Galerkin method. This method was then applied to the Black Scholes equation with un-
certain volatility in order to transform it to a system of deterministic PDEs. Techniques
for solving the system of PDEs were shown and their implementation was explained,
before numerical examples were presented. These examples experimentally investigated
the influence of the distribution of the volatility on the distribution of the solution and
compared the calculated solution to real market data.
Afterwards, the model was extended to volatility depending on finitely many independent
random variables. Again, the theoretical background of the Stochastic Galerkin method
was explained and the method was applied to the new model. The numerics was adapted
and numerical examples were given and compared to those for the model with one random
variable.
Since computational cost rises fast as the number of random variables rises, a Bi-Fidelity
technique was introduced in order to save computational cost. This method was adapted
to the model with volatility depending on two random variables, the numerical imple-
mentation was explained and experiments were done comparing the Bi-Fidelity solution
to the true solution.

In literature, the Stochastic Galerkin approach is applied to the Black Scholes equation
in [PvE09] and [Dra16], where the method of lines or the finite elements method are used
for solving the system of PDEs for the gPC coefficients. In this thesis, an explicit finite
difference scheme was used. The papers consider dependence on one random variable.
This model was extended to volatility depending on finitely many independent random
variables in this thesis. Furthermore, a Bi-Fidelity technique for reducing computational
cost was presented.

A topic that is still open to further research is the convergence of the truncated Stochas-
tic Galerkin solution to the true solution as mentioned in remark 2. Since the system of
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CHAPTER 9. SUMMARY AND CONCLUSION 9.0

PDEs for the gPC coefficients of the solution is coupled, a truncation (as necessary for
computations) changes the calculation of the coefficients and therefore does not lead to
the right coefficients. Hence, theorem 6 showing the convergence of the gPC expansion
can not be applied.
An extension of the model to random variables that are not necessarily independent could
be done. There already exists theory on gPC expansions with dependent random vari-
ables, see [Rah18].
Furthermore, the computational cost and the fit of the Stochastic Galerkin model to real
data could be compared to the model derived by stochastic Collocation in [NK12] or to
other volatility models like local volatility or the Heston model for instance.

An application of this model could be given in derivative pricing risk management. When
banks or other institutions emit derivatives, deviations in the volatility as observable in
the markets (see e.g. [Rub85], [Sco87] and [GJ10] Tabelle 4.1) mean a risk to them. If
they e.g. worked with the original Black Scholes equation and underestimated the volatil-
ity, their calculated price would be too low. A calculation with the model derived in
this work, however, would give them the possibility to choose a price such that the fair
emission price is lower or equal to this price with a certain probability p. To do this, they
would have to calculate the (approximate) distribution of V (0, S0), where S0 is the value
of the underlying asset at time 0, by the truncated gPC expansion 4.6 and take the p
quantile as their emission price.
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List of Abbreviations

BC Before Christ
e.g. for example
etc. etcetera
EU European Union
gPC generalized Polynomial Chaos
i.e. id est
PDE partial differential equation
SG Stochastic Galerkin
w.l.o.g. without loss of generality
w.r.t. with respect to
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