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Abstract
Seismic imaging aims to create images of Earth’s interior by solving an inverse problem.
One technique to address this problem is full waveform inversion, which uses surface
measurements to infer subsurface properties. In this approach, seismic waves generated by
surface vibrations propagate through Earth’s layers. As they pass through different layers,
the waves refract, reflect, and convert, with the reflected waves returning to the surface
to be recorded by receivers. These measurements are then used to reconstruct subsurface
images. The key of this inverse problem is estimating the velocity field of Earth’s layers,
as seismic wave velocity varies across different materials. In this thesis, the acoustic
wave equation is used to model the forward problem, with the aim of reconstructing
the velocity coefficient of this equation. Full waveform inversion is formulated as an
optimisation problem, where the velocity parameter of the wave equation is adjusted to
ensure that the simulated waves match the measured data. Therefore, a misfit function
must be defined. The L2-norm is commonly used to quantify this mismatch between the
measurements and the simulated data, but it often leads to trapping in local minima.
In this thesis, we use the Wasserstein metric from optimal transport theory as misfit
function.

In Section 1, we provide the necessary background on inverse problems and present
a fundamental technique from seismic geophysics used to create seismic images, namely
reverse time migration. In Section 2, the solution of the forward problem is described using
finite differences and reverse time migration is presented within the context of inverse
problems. From there, full waveform inversion is derived in Section 3 and the choice of
misfit function is discussed. In Section 4, relevant results from optimal transport theory
are given and the Wasserstein metric is considered in the context of seismic imaging.
Moreover, data normalisation is discussed, which is necessary when applying optimal
transport. Numerical results are presented in Section 5. Finally, Section 6 discusses the
results, and the Python code can be found in the appendix.
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1 Introduction
The study of earthquakes is a long-standing yet still highly relevant and significant field.
Earthquakes create seismic waves that can be measured even hundreds of kilometres away
from the eruption site. These waves contain information about the media they propagate
through, offering valuable insights into Earth’s subsurface. To this end, the study of
seismic waves does not only increase the understanding of earthquakes but is also an
important tool for finding new water reservoirs and raw minerals. To gain knowledge
on Earth’s interior, geophysicists set up small explosions to simulate earthquakes. To
this end, they set up vibrations that serve as the source of seismic waves, allowing the
waves to propagate through Earth. While propagating through Earth’s subsurface, the
waves encounter several heterogeneities, different earth layers of various materials, where
they refract, convert and reflect [Rob10]. The reflected waves travel back to the surface,
where they are eventually recorded by receivers. From these recordings, images of Earth’s
interior structure can be reconstructed. The reconstruction of detailed images of Earth’s
interior is the aim of seismic imaging and there are a several techniques to achieve that.
The key point behind many of these techniques is that the velocity of seismic waves
changes when propagating from one layer of Earth into another.

Seismic waves propagate at a characteristic acoustic velocity, which depends on the
medium they are travelling through. In order to create an image of the subsurface, we
need to estimate the velocity field of Earth’s layers through which the waves propagate
[Rob10]. From a mathematical point a suitable model that describes the wave propagation
has to be found. In the context of this thesis, we approximate the wave propagation by
the acoustic wave equation

m(x)∂
2u(x,t)
∂t2

−∆u(x, t) = s(x, t),

u(x, 0) = 0,
∂u
∂t
(x, 0) = 0.

[1]

There, u(x, t) describes the wave at location x and time t, the coefficient m(x) is the
velocity coefficient. The latter captures information on the acoustic velocity at location
x. In this thesis, we focus on the imaging technique of full waveform inversion (FWI).
In FWI, we aim to reconstruct the layers of the subsurface by using the data measured
by the receivers. To this end, we solve the inverse problem of finding the waves’ velocity
coefficient by using the measurements made by the receivers. FWI consists of the following
steps:

1. Guessing the velocity coefficient and solving the model equation to obtain the cor-
responding synthetic data u(x, t),

2. Calculating the misfit between the measured and synthetic data,

3. Minimising the misfit by iteratively adjusting the velocity coefficient via a gradient-
based method.

To accomplish the second step, we have to find a suitable metric that measures this
misfit. A common choice of misfit function often found in literature is the L2-norm of the
difference between the two data sets. The application of the L2-norm in the context of
FWI was discussed in [Bun+95; Tar05; VO09] for instance. However, to overcome certain
issues arising with the L2-norm, we use the Wasserstein distance instead, which is known
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from optimal transport theory. The idea of applying optimal transport to seismic signals
was proposed in [EF14] and further developed in [Yan+16; Yan+17a; Yan+17b].

1.1 Inverse Problems

Sometimes one wishes to deduce a non–observable quantity x from an observable quantity
y. This is a situation where one solves an inverse problem. In general, the quantities x
and y do not need to be related to each other. However, in applications, most often x
is referred to as the cause for the effect y. There are many fields of applications where
inverse problems arise. In the following, we put our definition of inverse problems in a
more formal framework.

Definition 1.1 (Inverse problem, [Stu10]). Let G be the mathematical model describing
a phenomenon and let y be the measurements made by observing this phenomenon. The
inverse problem is then to find the input x of the model, such that it fits the observations
made. Formally, we solve

G(x) = y [2]

for x ∈ X, given y ∈ Y , where X and Y are Banach spaces and G : X → Y is a mapping.
We call G the modelling operator.

Remark 1.2. One might ask, if in analogy to inverse problems, there are also correspond-
ing forward problems. Assume we are given a model G and call y the observations and
x the input as in definition [1.1]. Then, the forward problem asks to find y for given x.
That is, we search for the effects given the causes. Therefore, we can specify our naming
of G and call it the forward modelling operator.

Figure 1: Scheme of the forward problem (red arrows) and the corresponding inverse
problem (blue arrows)

It is typical of inverse problems, that they are ill–posed. A mathematical problem is
called ill–posed, if it is not well–posed. Thus, if at least one of the properties in definition
[1.3] does not hold.

Definition 1.3 (Well-posedness, [Stu10]). An inverse problem is called well-posed, if it
fulfils the following three properties.

1. There exists a solution x,

2. The solution is unique,

3. The solution depends continuously on the input data y.
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There are many ways to solve inverse problems and handle the ill–posedness. One of
them is the Least–Squares approach (LS). A similar approach is the Bayesian framework.
There, the aim is to find the most likely input x to fit the data y. While the Bayesian ap-
proach is probabilistic, the Least–Squares approach is deterministic. Further background
information on these techniques can be found in [Ric20] and [Stu10]. The Least–Squares
approach will be described in the sequel of this section and this approach provides the
basis for the methods considered in the subsequent sections.

Definition 1.4 (Linear problem, [Ric20]). Let x, y live in vector spaces X ∈ Rm and
Y ∈ Rn and let m,n ∈ N. In case of a linear forward problem, we write

Ax = y, [3]

where the matrix A ∈ Rn×m characterises the linear forward modelling operator.

Remark 1.5.

1. Note that the forward problem asks to solve Ax = y for y, while the corresponding
inverse problem asks to find x for given y. Symbolically, in the inverse problem,
we want to solve A−1y = x for x. This formulation makes clear, why we call the
problem an inverse problem.

2. Note that the inverse of A might not exist.

Remark 1.6. It is well known from linear algebra, that in the case of A ∈ Rn×m being
a matrix, the existence and the uniqueness of [1.4] are equivalent to m = n and A being
regular, which implies that A−1 ∈ Rn×m exists and A is a continuous linear mapping
from X to Y [Fis13]. If X and Y are infinite-dimensional, this reasoning does not work
anymore [Kel76].

As we stated in definition [1.3], the inverse problem might have no (unique) solution
or the solution may depend continuously on the observations. This can be due to noisy
measurement data or an inappropriate choice of the model. In fact, dealing with noisy
data is one of the main challenges when solving inverse problems. Before we discuss these
challenges, we summarise the meaning of the three properties in definition [1.3] in terms
of equation [1.4].

Corollary 1.7 (On well-posedness). If A is a linear mapping as defined in [1.4], the three
requirements for well-posedness correspond to the following three properties respectively.

1. y ∈ range(A) := {Ax ∈ Y | x ∈ X},

2. A is injective on X, i.e. x2 ̸= x1 implies Ax2 ̸= y,

3. A−1 is continuous.

If the first property is violated, then y /∈ range(A). In that case, there might be x,
which minimises the residual

r(x) := y − Ax. [4]

To solve the minimisation problem, we recall the definition of a norm.
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Definition 1.8 (Normed space on R, [Ste23]). Let X be a vector space over R. A mapping

∥ · ∥ : X → [0,∞)

is called norm on X, if for all x ∈ X holds:

1. ∥λx∥ = |λ|∥x∥ for all λ ∈ K,

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all y ∈ X,

3. ∥x∥ = 0 if and only if x = 0 ∈ X.

Definition 1.9 (p-norms, [Ste23]).

• Let X = RN . The p−norm is defined as

∥x∥p =
(

N∑
i=1

|xi|p
)1/p

for p ∈ [1,∞).

• Let X = Lp(Ω), i.e. the space of real-valued p–fold integrable functions on Ω ⊂ Rd.
The p−norm or Lp−norm is defined as

∥u∥p =
(∫

Ω

|u(x)|pdx
)1/p

for p ∈ [1,∞).

To solve the minimisation problem 4, a common choice is the 2-norm, which we will also
use here. Then, the minimisation problem reads

min
x∈X

∥y − Ax∥2, [5]

which is the Least-Squares approach [Kel76][Ric20].

Remark 1.10. Since we consider X and Y in equation [1.4] as vector spaces, the 2−norm
is given by

∥x∥2 =

√√√√ N∑
i=1

|xi|2.

Remark 1.11. We make use of the second part of definition 1.9, where X = Lp, in the
further course of this thesis.

To solve the linear Least-Squares problem 23, we rewrite equation [4]. Since x, y live in
real vector spaces, it follows that

f(x) := ∥r(x)∥22 = ⟨r(x), r(x)⟩ = r(x)T r(x)

= ⟨y − Ax, y − Ax⟩
= xTATAx− 2xTATy + yTy.

To minimise for x, we need to calculate the gradient in x direction and solve for ∇f(x) = 0.
This yields the normal equations, with which x can be calculated [Ric20].
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Remark 1.12. The general version of AT is referred to as the adjoint of A, denoted by A∗.
Since we consider the special case of real vector spaces (and not complex vector spaces),
the adjoint A∗ is equivalent to the transpose of A and therefore we write AT instead of
A∗.

Proposition 1.13 (Normal equations, [Ric20]). The minimiser x can be obtained by
x = (ATA)−1ATy.

Proof. First, we calculate the gradient of f(x).

∇f(x) = ∇xTATAx−∇2xTATy +∇yTy
= ∇xTATAx− 2ATy.

To calculate the gradient of the first term, consider aij as the entry of the symmetric
matrix ATA in column i and row j. Then, xTATAx can be rewritten as

(
x1 . . . xn

)a11x1 . . . a1nxn
... . . . ...

annx1 . . . annxn

 =
∑
i

aiix
2
i +

∑
i ̸=j

2aijxixj. [6]

The derivative of [6] with respect to xk now reads

∇
(∑

i

aiix
2
i +

∑
i ̸=j

2aijxixj

)
= 2akkxk +

∑
k ̸=j

xj.

The result above is exactly the kth component of 2ATAx. Thus, the gradient of f(x) in
x direction is given by

∇f(x) = 2ATAx− 2ATy.

Secondly, a necessary condition for a minimiser x∗ is that ∇f(x∗) = 0. Thus,

∇f(x) = 0 [7]
⇔ ATAx = AT b, [8]

where [8] represents the normal equations.

Remark 1.14. Note that the matrix ATA is quadratic and of dimension n. A is invertible
if and only if it has full rank. In that case, the linear Least-Squares problem admits a
unique solution [Fis13].

Remark 1.15. The normal equations are also solvable if A is singular. Then, the residual
is also unique, while the solution x is not [Ric15].

Remark 1.16. Note that ATA can be very difficult to invert and may cause high compu-
tational complexity.

Remark 1.17. Assuming ATA is invertible, we can calculate the minimiser by x =
(ATA)−1ATy.
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When ATA is not invertible, one can define the pseudoinverse, also known as Moore-
Penrose inverse. This serves as a generalisation for the inverse. Since we do not need this
concept for the thesis, we mention it only for the sake of completeness and refer to [Ric20]
and [Kel76] for more literature on this topic.

Remark 1.18. So far we have only considered the case where Ax = y has no solution.
If, on the other hand, ker(A) ̸= {0}, there exist infinitely many solutions. In this case,
we choose the minimal norm solution, that is the solution x of the Least-Squares problem
with minimal norm ∥x∥X [Kel76].

We now state a relationship between the solvability of Ax = y and the adjoint operator
AT . This relationship is given by the Fredholm–Alternative theorem.

Theorem 1.19 (Fredholm–Alternative theorem, [Kut20][Her24]). Given A ∈ Rm×n, y ∈
Rm and x ∈ Rn.
First alternative: Ax = y admits solution x if and only if ⟨y, v⟩ = 0 for all v satisfying
ATv = 0.
Second alternative: A solution x for Ax = y exists and is unique if and only if x = 0
is the only solution of Ax = 0.

Proof of Theorem 1.19, [Her24]. We start by proving the first alternative. Let ATv = 0
and Ax0 = y.

⟨y, v⟩ = ⟨Ax0, v⟩ = ⟨x0, ATv⟩ = 0.

Then we have shown that if Ax = y has a solution x, ⟨y, v⟩ = 0 for all v satisfying
ATv = 0.
For the other implication, assume that ⟨y, v⟩ = 0 for all v such that ATv = 0. We can
write y as a decomposed sum of a part that lives in the range of A and a part of the space
orthogonal to the range of A. We write y = yR + yO. Then

⟨bO, Ax⟩ = ⟨ATy, x⟩ = 0

for all x. Since ⟨y, v⟩ = 0 for all v ∈ ker(AT ), it follows that

⟨y, v⟩ = 0 = ⟨b, bO⟩.

Our decomposition yields

0 = ⟨b, bO⟩ = ⟨bR + bO, bO⟩ = ⟨b, bO⟩.

Since bR ∈ range(A), this gives bO = 0. We conclude, that Ax = b has a solution x.
We continue by proving the second alternative. Assume Ax = 0 for x ̸= 0 and Ax0 = y.
Then A(x0 + αx) = y for all α ∈ R. Then the solution is not unique. Conversely, if there
are two different solutions x1 and x2, which satisfy Ax1 = y respectively Ax2 = y, then
one has a nontrival solution x = x1 − x2, such that Ax = A(x1 − x2) = 0.

The following corollary summarises this result by using the definition of the adjoint of
A.

Corollary 1.20. Let Ax = y and ATv = 0 for v ∈ ker(A). Note that since X, Y are
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vector spaces, we can multiply Ax = b from the right using the dot product.

Ax = y

⇔ Ax · v = y · v
⇔ Ax · v = x · ATv

⇔ b · v = 0,

which implies v ∈ range(A) [Kut20].

Our results do not only hold for x, y living in vector spaces, but also for X, Y be-
ing function spaces. For that purpose, we consider a linear differential operator L with
L(m)u = f , which we shortly denote as Lu = f . Here, m is a coefficient and L, f and
u are prescribed continuously on some interval and might also incorporate initial and
boundary conditions.

In function spaces, the first Fredholm alternative states that Lu = s admits a solution
if and only if there exists v such that LTv = 0. Analogously to the case for vector spaces,
we formulate the following corollary for function spaces.

Corollary 1.21. Let Lu = s and LTv = 0 for v ∈ ker(L). Thus,

Lu = s

⇔ ⟨v, Lu⟩ = ⟨v, s⟩
⇔ ⟨LTv, u⟩ = ⟨v, s⟩
⇔ ⟨v, s⟩ = 0,

which implies s ∈ range(L) [Kut20].

Many boundary value problems are non–linear. They arise in various fields like quan-
tum mechanics or elasticity theory. However, if we are able to find an appropriate linear
formulation of the problem, we can use the above results to solve it.

In this chapter we have established the necessary basic understanding of inverse prob-
lems. We have not yet considered the seismic inverse problem and therefore not yet
discussed the choice of the model operator. These questions are addressed in section 2.
Beforehand, we build the fundamentals for seismic imaging.

1.2 Seismic Geophysics

In this section, some fundamentals of seismic imaging are given. With this knowledge
at hand, we will be able to develop corresponding imaging techniques such as reverse
time migration (section 2.3). And as we will see, reverse time migration (RTM) can be
formulated in the fashion of a linear Least-Squares problem. Finally we will be able to
fully understand the concept of full waveform inversion, the main technique of this thesis.

In seismic imaging, one cares about reflection images. In a geophysical setup, vi-
brations imitate the source of seismic waves. These waves then propagate into Earth’s
subsurface, and while travelling through Earth, they encounter heterogeneities, the dif-
ferent materials layered under Earth’s surface. Passing a heterogeneity, the waves refract,
reflect or convert [Rob10]. The reflected waves travel back to Earth’s surface, where re-
ceivers measure and record the amplitude of the seismic waves. The recorded data at a
single receiver is called seismic trace, while the entire data set consists of the time history
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measured at all receivers. The goal of seismic imaging is to create an image of these
heterogeneities from all the recordings (see Figure [2]).

Figure 2: A seismic wave (red) is reflected (blue) at the first boundary layer, propagates
further into the second and third layers, where it is reflected again at each boundary. The
reflected waves are measured by receivers (three blue solid circles)

There are two main classes of seismic waves, named according to their arrival times
at the receivers: primary waves (P-waves), which arrive first and secondary waves (S-
waves), which are the second type of seismic wave to be measured by the receivers. The
P–waves travel with 2 km/s to 8 km/s and are thus faster than S–waves, which merely
reach velocities up to 4.5 km/s. Furthermore, P–waves are longitudinal waves, i.e. they
oscillate in the direction of their propagation. During their travel through interfaces, some
of the P–wave’s energy is transformed into S–waves. S–waves are transversal, meaning
they oscillate transverse to the direction of propagation. In addition to the P-waves and
S–waves, there are also surface waves, which arise from the superposition of the P–waves
and the S–waves. However, as their name suggests, they are characterised by the fact
that they run on the surface and their amplitudes decrease heavily with depth. Thus,
the latter do not have such a huge impact on seismic imaging. In fact, the waves that
seismic reflection imaging deals with is mainly aboutP–waves [Rob10]. Therefore, seismic
reflection imaging is sometimes referred to as P–wave seismic imaging.

Consequently, for this thesis, we neglect the existence of S–waves and focus on the
propagation of P–waves. Hence, we focus on the class of pressure and sound waves.
Furthermore, we neglect the elasticity of the media the waves travel trough. An approxi-
mative model which describes the propagation of P–waves is given by the (acoustic) wave
equation 9. 

m(x)∂
2u(x,t)
∂t2

−∆u(x, t) = s(x, t),

u(x, 0) = 0,
∂u
∂t
(x, 0) = 0.

[9]

The coefficient m(x) in the wave equation is defined as m(x) = 1
c(x)2

, where c(x) is the
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velocity of the wave [Rob10][TW98][Yan+16].1. The wave equation will be addressed in
detail in Section 2. With the wave equation at hand, we can understand the reflection
process more precisely. We can already state that reflection occurs any time when the
propagating wave encounters a change in the acoustic impedance. The acoustic impedance
Z is a property of any medium, it is defined as

Z = ρ · c, [10]

where ρ is the density of the medium and c the propagation velocity [Rob10]. As stated
in equation [10], the acoustic impedance depends proportionally on the propagation ve-
locity c. Assuming we know the wave’s velocity c at a specific location x, we can deduce
information on the density of the medium at x, especially on the density difference be-
tween different locations. Therefore, it is poslensible to distinguish different Earth layers
and possibly obtain information on their nature and material properties. From there,
geophysicists can eventually find mineral deposits for instance [Rob10].

1In seismology, the definition of m(x) is often referred to as squared slowness [Rob10].
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2 Solving the Inverse Problem in the Setting of Seismic
Geophysics

To define the inverse problem, we need to choose a model and observed data. As stated
in Section 1.2, we choose the wave equation for modelling the wave propagation:

m(x)∂
2u(x,t)
∂t2

−∆u(x, t) = s(x, t),

u(x, 0) = 0,
∂u
∂t
(x, 0) = 0

and define m(x) = 1
c(x)2

, where c(x) is the wave’s velocity at location x, u(x, t) is the
propagated wave at time t and location x and s(x, t) is the source. In [GKnd] it was
shown that the Ricker function not only provides good empirical results for modelling wave
propagation, but it was also theoretically proven that the Ricker function is a reasonable
source term to the wave equation for this purpose. Therefore, we stick to the Ricker
wave as source term for our model equation. The Ricker wave is defined as the negative,
normalised second derivative of a Gaussian function. It describes how the amplitude of a
seismic signal changes within time t.
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Figure 3: Ricker wave in time and frequency domain respectively

Definition 2.1. (Ricker wave, [GKnd]) The function

ψ(t) =
2√
3σπ

1
4

(
1−

(
t

σ

)2
)
e−

t2

2σ2

is called Ricker wave. The parameter σ describes the duration of the Ricker wave.

Definition 2.2. (Power spectrum, [GKnd]) The power spectrum of the Ricker wave is
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defined as

S(ω) = K · ω2 · exp(−cω2),

where ω is the frequency of the signal.

2.1 Solving the Forward Problem Analytically

We solve the wave equation using the method of Separation of Variables (cf. [TW98],
chapter 5). The idea is to express u(x, t) as a product of two functions: one depending
only on x and the other one only on t. Thus, we seek functions F (x) and G(t) such that

u(x, t) = F (x)G(t). [11]

As a first step, we differentiate u(x, t) twice with respect to t and twice with respect
to x:

utt = F (x)G′′(t), uxx = F ′′(x)G(t).

Inserting this into the wave equation gives

F (x)G′′(t) = c2F ′′(x)G(t)

⇔ F (x)

F ′′(x)
= c2

G(t)

G′′(t)

Since the left–hand side depends only on t and the right-hand side only on x, both
expressions are independent of x and t. Thus, we can separate the variables as follows:

G′′(t)

G(t)
= c2

F ′′(x)

F (x)
= −κ, [12]

for a constant κ ∈ R. This gives two ordinary differential equations (ODE), one for F (x)

−F ′′(x) = κF (x), F (0) = F (L) = 0, [13]

and one for G(t)

−G′′(t) = κG(t). [14]

The calculation of the corresponding eigenvalues of [13] and [14] is due to the following
lemma.

Lemma 2.3. (Eigenvalues of boundary value problems, [TW98]) We denote the general
continuous eigenvalue problem corresponding to [9] by

Lu = λu

for a suitable nonzero twice differentiable function u. The corresponding eigenvalues and
eigenfunctions are given by

λk = (kπ)2, for k ∈ {1, 2, 3, . . . }
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and

uk(x) = sin(kπx), for k ∈ {1, 2, 3, . . . }

respectively.

Proof. To find the eigenvalues and eigenfunctions, we make use of the positive definiteness
of L, which is proven in Lemma 2.4 in [TW98]. Also note that the eigenfunction must
not be zero. Combining both properties, we conclude that λ > 0. Hence, we define

κ =
√
λ.

Therefore, we have to solve the second-order linear differential equation

u′′(x) + κ2u(x) = 0.

It is well known that the solutions to the above equation is given by

u(x) = c1 cos(κx) + c2 sin(κx)

for constants c1 and c2. Using the boundary condition u(0) = 0, we obtain c1 = 0. For
the second boundary condition, u(L) = 0, we obtain c2 sin(κ) = 0. And thus

κ = κk = kπ for k ∈ {1, 2, 3, . . . }.

Hence, for k ∈ {1, 2, 3, . . . } the eigenvalues are given by

λk = (kπ)2

and the corresponding eigenfunctions by

uk(x) = sin(kπx).

We continue with solving [13] and [14]. We consider the ODE for F (x) first. Therefore,
we solve the boundary value problem:

F ′′(x) + κF (x) = 0, F (0) = F (L) = 0 [15]
⇔ −F ′′(x) = κF (x), F (0) = F (L) = 0. [16]

By Lemma 2.3 we know that the eigenvalues λk are given by

λk = kπ for k ∈ {1, 2, 3, . . . },

and the corresponding eigenfunctions are

Fk(x) = sin(kπx).

Next, we consider G(t). Therefore we solve the ODE:

G′′
k(t) + λkGk(t) = 0, [17]

17



which has the general solution:

Gk(t) = αk cos(kπt) + βk sin(kπt),

where αk and βk are constants determined by the initial conditions. By combining the
solutions for F (x) and G(t), we obtain the general solution for u(x, t)

uk(x, t) = sin(kπx) (αk cos(kπt) + βk sin(kπt)) .

This satisfies the boundary conditions u(0, t) = u(L, t) = 0. Since the wave equation is
linear, the superposition principle holds [TW98]. That is, if u1(x, t) and u2(x, t) are solu-
tions to the homogenous wave equation, then every linear combination of these solutions
is a solution as well. Therefore, the general solution can be written as a sum over all k:

u(x, t) =
∞∑
k=1

sin(kπx) (αk cos(kπt) + βk sin(kπt)) , [18]

with initial conditions given by

u(x, 0) =
∞∑
k=1

αk sin(kπx), ut(x, 0) =
∞∑
k=1

βkkπ sin(kπx). [19]

To simplify the result, recall the following trigonometric identity (see [GS01], chapter 7.9,
for a proof of 20):

sin(ψ) sin(ϕ) =
1

2
[cos(ψ − ϕ)− cos(ψ + ϕ)] . [20]

Hence, the final solution can be written as

u(x, t) =
∞∑
n=1

[
sin
(nπ
L

(x+ ct)
)
+ sin

(nπ
L

(x− ct)
)]
. [21]

The first summand sin
(
nπ
L
(x+ ct)

)
is a wave travelling to the left and the second

summand sin
(
nπ
L
(x− ct)

)
is a wave travelling to the right with both the same shapes,

which is why the wave equation is also called two–way wave equation [TW98].

2.2 Solving the Forward Problem Numerically

The finite difference method (FD) is a numerical technique used to approximate solu-
tions of ordinary and partial differential equations. This is done by replacing derivatives
with difference quotients calculated on a discrete grid. By discretising time and space
into uniformly distributed points, the continuous problem is transformed into a discrete
problem that can be solved iteratively. Finite difference methods are commonly used to
solve equations such as the wave equation as they are easy to implement. Further, they
often exhibit good numerical stability and convergence, especially when combined with
the Courant-Friedrichs-Lewy (CFL) condition [TW98].

To apply the finite difference method, we define a discrete grid on both the spatial and
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time domain. The grid defines the discrete points at which the values of the wave function
u(x, t) are approximated. In a spatially one-dimensional problem, the spatial domain is
divided into a final number of Sections of length ∆x and the time axis is divided into
a final number of steps of size ∆t. Each node in the grid represents a combination of a
spatial and a temporal point, and the finite difference scheme approximates the derivatives
at these points. The sequel of this Section on Finite Differences is based on chapter 5.3
in [TW98].

Let the spatial grid spacing be given by ∆x = 1/(n + 1), where n ∈ N. Then, the
associated grid points are xj = j∆x for j ∈ {0, 1, 2, 3, . . . , n + 1}. The time points are
given by tm = m∆t for m ∈ N0 with the time step ∆t > 0.

We write umj = u(xj, tm) for the approximation of u(x, t). In the following the finite
differences are amplified by means of the derivative with respect to t. The finite differences
regarding the spatial direction are build analogously. In a general analytical way, we write

df

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t

for the derivative of f with respect to t. With the numerical scheme, we approximate the
derivative by

df

dt
≈ f(t+∆t)− f(t)

∆t
.

To be precise, we approximate the derivative by Taylor expansion. By doing so, we obtain
the forward difference scheme:

df

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t
≈ df

dt
+
d2f

dt2
∆t

2!
+
d3f

dt3
∆t2

3!
+ · · · .

Analogously, we can define the backward difference scheme:

df

dt
= lim

∆t→0

f(t)− f(t−∆t)

∆t
≈ df

dt
− d2f

dt2
∆t

2!
+
d3f

dt3
∆t2

3!
− · · · .

Note that the leading error terms are of order O(∆t). To reduce the order of the error
term, we define the central difference:

df

dt
≈ f(t+∆t)− f(t−∆t)

2∆t
=
df

dt
+
d3f

dt3
∆t2

3!
+
d5f

dt5
∆t4

5!
+ · · · .

Now, the leading error term is of order O(∆t2). Analogously to the derivatives of first
order, we can define differences for the second derivatives:

d2f

dt2
= lim

∆t→0

f ′(t+∆t)− f ′(t)

∆t
.

Then, the second central difference in time becomes

d2f

dt2
≈ f(t−∆t)− 2f(t) + f(t−∆t)

∆t2
+O(∆t2).
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Analogously, the second central difference in space becomes

d2f

dx2
≈ f(x−∆x)− 2f(x) + f(t−∆x)

∆x2
+O(∆x2).

See Figure 4 for an illustration of the corresponding stencil. When applying the above
results to the wave equation, we obtain the following iterative formula for the finite
difference scheme:

um−1
j − 2umj + Um+1

j

∆t2
+O(∆t2) = c2

umj+1 − 2umj + Um
j−1

∆x2
+O(∆x2).

Figure 4: Five-point-stencil with equidistant grid points

Figure 5: Backward difference (left red dashed line), forward difference (right red dashed
line), central difference (green dashed line) and tangent (blue line)

The discrete solution also satisfies the boundary conditions, i.e.

um0 = umn+1 = 0 for m ≥ 0.

When {umj }nj=1 and {umj }nj=1 are known, the solutions {umj +1}nj=1 can be computed directly
with the finite difference scheme. To run the scheme, we need to define starting values
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for the first two time steps u0j and u1j . By the initial condition, we choose u0j = f(xj)
for j = 1, 2, ..., n. Next we derive an approximation for v1j . To this end, we use a Taylor
expansion with respect to t:

u(x,∆t) = u(x, 0) + (∆t)ut(x, 0) +
(∆t)2

2!
utt(x, 0) +O((∆t)3)

Since utt(x, 0) = uxx(x, 0) = f ′′(x), we conclude that

u(x,∆t) = f(x) + (∆t)g(x) +
(∆t)2

2!
f ′′(x) +O((∆t)3).

Therefore, we have obtained the following approximation u1j for u(xj,∆t):

u1j = v0j +∆tg(xj) +
(∆t)2

2

v0j−1 − 2v0j + f 0
j+1

(∆x)2
.

Alternatively, to express the finite difference scheme in a more compact form, we define
the vector um ∈ Rn as um = (um1 , u

m
2 , . . . , u

m
n )

T , and A ∈ Rn,n as the tridiagonal matrix

A =
1

(∆x)2


2 −1 0 . . . 0

−1 2 −1 . . .
...

0 −1
. . . . . . 0

... . . . . . . 2 −1
0 . . . 0 −1 2

 .

Then, the finite difference scheme can be written as

um+1 = (2I − (∆t)2A)um − um−1 for m ≥ 1,

where the initial approximations u0 and u1 are determined by the given initial condi-
tions. The time step size ∆t is chosen to satisfy the CFL condition ∆t

∆x
≤ 1. If the mesh

parameters satisfy this bound, the numerical solution behaves qualitatively as the exact
analytical solution [TW98]. The information given in this section draws on [TW98]. The
reader is referred to this reference and to [But16] for further reading on finite differences.

2.3 Reverse Time Migration

Since seismic imaging is mainly about reflections, our goal is to find those reflection points.
Reverse time migration (RTM) is one technique to achieve that. The main point of RTM
relies on the imaging condition. This goes back to 1971, when Claerbout stated his famous
imaging principle [Cla71; Rob10]:

’Reflectors exist at points in the ground, where the first arrival of the downgo-
ing wave is time coincident with an upgoing wave.’

Let us define xr as location, where a propagated wave is reflected. We refer to the reflected
wave as upgoing wave, since it travels up to Earth’s surface, and we refer to the incident
wave before it reaches the reflection point as downgoing wave (see Figure 2; downgoing
waves in red and upgoing in blue). When the reflected wave is measured by the receivers,
we do not know the reflection point yet. The aim of RTM is to determine this reflection
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point. By solving the wave equation for guessed m(x), we know the wave’s position at
any certain point in the time interval. To determine the reflection coefficient, we solve
two modelling tasks:

1. Forward modelling of the downgoing wave by solving the wave equation [9].

2. Backward modelling of the upgoing wave by solving the wave equation in reversed
time.

Once the velocity coefficient is fixed, the workflow of the first step is clear by Section
2.1 and Section 2.2. To make a good guess for the velocity coefficient is quite unlikely
without further ado. Therefore, helpful resources like borehole techniques need to apply
beforehand [FN24]. The reader is pointed to [Rob10] and [BM21] for further reading on
the geophysical techniques behind.

In the second step, to calculate the propagation of the upgoing wave field in reversed
time, we use the measurements at the surface as new source term of the original wave
equation [9]. The wave equation is then solved backwards in time, thus from the final
recording time t = T to t = 0.

Following Claerbout’s imaging condition, we need to determine when the downgoing
and upgoing waves are coincident in time and we eventually have found the reflection
point. Recall that in the end we want to estimate reflection coefficients at every location
in the subsurface. If the reflection coefficient at xr is r ∈ R, the amplitude of the reflected
wave field is r ·u(x, t). The existence of a reflector at xr is indeed revealed by the similarity
between the two wave fields. In general, the imaging condition is equal to the ratio of the
amplitude of the reflected wave to the incident wave. Therefore, we could take the ratio
of the two wave fields in the time interval in which the reflection occurs, or an average
of this ratio for all times, but this is not defined once the downgoing wave is zero for
some time in that interval. Therefore it is not common to calculate the ratio of the two
fields, but to choose an alterative method to solve this: calculating the cross correlation
coefficient between the upgoing and downgoing wave fields [Cla71][Rob10].

Definition 2.4. (Cross–correlation coefficient, [Cla71][Rob10]) We call R(x) calculated
by

R(x) =
∑
shots

∫ T

0

u(x, t) · v(x, t) dt [22]

the cross–correlation coefficient at location x.

Corollary 2.5. (RTM workflow, [Rob10])

1. Forward modelling of a wave field with a (good) velocity model to get ufwd at suc-
cessive time steps ηdt for η ∈ N.

2. Backward propagation of the measured data d through the same value of m(x) to get
ubwd.

3. Cross–correlation of the downgoing and upgoing wave fields with equation [22].
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(a) Forward modelling (b) Backward modelling

Figure 6: Modelling workflow for RTM

The back propagation can equivalently be formulated by solving the adjoint wave
equation in time reversed order. We will study the adjoint state method in Section 3.3
and derive the adjoint wave equation there. Also in Section 3, we will see that the adjoint
wave equation is a useful tool for computing the gradient of the misfit function. Moreover,
we link the notion of the adjoint wave equation to the adjoint operator that we mentioned
in 1.1 in the context of the normal equations.

2.4 Least-Squares Reverse Time Migration

As described in Section 1.1, the Least-Squares problem is in general given by

min
x∈X

∥y − Ax∥2. [23]

There, A is the model, y represents the measurements taken and x is the input to the
model. The problem is to find the most fitting x for given measurements y, that is, we
wish to reconstruct the true data which generated the measurements. In the setting of
this thesis we choose the scalar wave equation for modelling the wave propagation:

m(x)∂
2u(x,t)
∂t2

−∆u(x, t) = s(x, t),

u(x, 0) = 0,
∂u
∂t
(x, 0) = 0.

[24]

We aim to find the wave that fits the measured signals. From now on, we refer to the
observed data as dobs. The inverse problem is to find the input m(x) to the the forward
model 24 that fits dobs. The quantity which determines the solution u to the PDE is given
by m(x). Thus, we consider a coefficient based inverse problem. In analogy to dobs we
refer to u(x, t) as synthetic data dsyn. Recall the measurements are taken at the boundary
of the model space. To this end, we define a restriction operator R, to formally ensure u
is evaluated at the boundary (cf. [Dem16], [Yan18]). So far, the problem we aim to solve
reads

min
m

1

2
∥Ru(m)− dobs∥22. [25]

It is important to keep in mind, that u depends on m. Although the wave equation
is linear, we have a non-linear mapping F(m) from model domain M to data domain
that maps m to u. Therefore, to view the inverse problem 25 as a linear Least-Squares
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problem, linearisation of the forward model is necessary. We call the linearised forward
model L(m). In Section 2.4.1 we study a suitable linearisation for this forward map. The
inverse problem is then to solve the following minimisation problem for m:

min
m

1

2
∥L(m)− dobs∥22. [26]

2.4.1 A Linearisation for the Forward Map

We linearise the forward map F(m) to the first order, such that the linearisation is given
by L(m) = ∂F(m)

∂m
. The well–known Born approximation is such a linearisation. Originally

coming from quantum mechanics, it is a perturbation-theoretical approximation for scat-
tering problems.2 In seismology, it is common to consider a smooth background velocity
and explain the scattered waves as reflections due to perturbations to this background
velocity [HH80; Dem16].

That said, the perturbed m(x) from [9] reads

m(x) = m0(x) + εm1(x). [27]

See Figure 7 and the blue lines in Figure 2 for illustrations of scattered waves. Since the
choice of m(x) determines the solution u of the wave equation [9], the wave field u also
splits into two parts

u(x) = u0(x) + us(x), [28]

where us is the scattered wave field and u0 solves the wave equation in the undisturbed
wave equation with m0, such that

m0(x)
∂u0
∂t2

−∆u0 = f(x, t) [29]

with initial conditions as in [9]. The corresponding equation for the scattered wave usc
can be determined as follows [Dem16]: By putting u = u0 + usc in [9] we obtain

m(x)
∂2(u0 + usc)

∂t2
−∆(u0 + usc) = f(x, t) [30]

⇔ m(x)
∂2u0
∂t2

+m(x)
∂2usc
∂t2

−∆u0 −∆usc = f(x, t). [31]

Subtracting [29] from [31] yields(
m(x)

∂2u0
∂t2

+m(x)
∂2usc
∂t2

−∆u0 −∆usc

)
−
(
m0(x)

∂2u0
∂t2

−∆u0

)
= 0 [32]

⇔ (m(x)−m0(x))
∂2u0
∂t2

+m(x)
∂2usc
∂t2

−∆usc = 0 [33]

Since m(x) = m0(x)− εm1(x) ⇔ εm1(x) = m(x)−m0(x), we plug this into [32]:

εm1(x)
∂2u0
∂t2

+m(x)
∂2usc
∂t2

−∆usc = 0.

2It is named after Max Born who proposed this approximation during development of quantum theory.
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As stated in [28], we assume that u(x) describes the fully propagated wave in the
sense that u(x) consists of two parts: the incident wave u0(x) and the scattering usc
[Dem16]. For the Born approximation, we suppose the scatterings are small, such that
we can roughly estimate u(x) ≈ u0(x). Therefore, we finally obtain the wave equation for
the scattered wave usc:

m(x)
∂2usc
∂t2

−∆usc = −εm1
∂2u

∂t2
. [34]

We can rewrite usc in terms of a Green’s function by

usc(x, t) = −ε
∫ t

0

∫
Rn

G(x, y; t− s)m1(y)
∂2u

∂t2
(y, s)dyds. [35]

Detailed literature on Green’s functions can be found in [TW98] for instance. With [35]
at hand, we find

u = u0 − εGm1
∂2u

∂t2

by plugging [35] into [28]. For the further derivation of the Born approximation, we
rewrite the above equation to

u = u0 − εGm1
∂2u

∂t2
[36]

⇔ u0 = u+ εGm1
∂2u

∂t2
[37]

⇔ u0 =

(
I + εGm1

∂2u

∂t2

)
u [38]

⇔ u =

(
I + εGm1

∂2u

∂t2

)−1

u0, [39]

where I is the identity operator. For simplification, we define

T := εGm1
∂2u

∂t2
. [40]

Therefore, [39] becomes

u = (I + T )−1 u0.

This gives rise to the Neumann series, which is well known from operator theory [Dem16;
Alt12].

Definition 2.6. (Neumann series, [Alt12]) Let (X, ∥ · ∥) be a normed space and T : X →
X a continuous operator. This series

∑∞
n=0 T

n is called Neumann series.

Lemma 2.7. (On Neumann series, [Alt12]) If the Neumann series converges with respect
to the operator norm, then I − T is invertible and it holds

(I − T )−1 =
∞∑
k=0

T k.
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Remark 2.8. A series converges with respect to the operator norm, if ∥T∥ < 1 [Alt12].

Figure 7: Single scattering (black) and multiple scatterings (blue and green)

Applying the Neumann series, we obtain by inserting 40 into definition 2.6

u = u0 − ε

(
Gm1

∂2

∂t2

)
u0 + εGm1

∂d2

∂t2

(
Gm1

∂d2

∂t2

)
+ . . . ,

and summarise to
u = u0 + εu1 + ε2u2 + . . . εnun. [41]

The series [41] is called Born series. A detailed proof of convergence of the Born series
can be found in [Dem16] for instance. The basic idea relies on the assumption that the
perturbation has a rather small influence on the wave propagation and thus multiple
scatterings are not taken into account. This reasoning is also intuitive. If we measure the
wave propagation at a fixed time tf , it is more probable that the wave has been scattered
only once by that time. The probability decreases further for a second scattering event,
and even more so for subsequent scatterings. Thus, we approximate the Born series to
the first order, which is the Born approximation [HH80; Dem16]:

usc(x) = εu1(x). [42]

From u1 = −Gm1
∂2u0

∂t2
we can derive analogously to [34] the wave equation for u1(x):

m0(x)
∂2u1
∂t2

−∆u1 = −m1(x)
∂2u0
∂t2

.

Thus, we can approximate us explicitly with εu1. Therefore, we obtain a linear map
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from m1 to u1: 
m0(x)

∂2u1(x,t)
∂t2

−∆u1(x, t) = −m1
s(x,t)

∂2u0(x,t)
,

u1(x, 0) = 0,
∂u1

∂t
(x, 0) = 0.

[43]

Note that ui for all i ∈ {1, 2, 3, . . . } depends on m1. To this end, the Born series can be
seen as a Taylor series ([HH80; Dem16]) of the forward map u = F(m) in the sense of

u = u0 + ε
∂F
∂m

[m0]m1 +
ε2

2

〈
∂2F
∂m2

[m0]m1,m1

〉
+ · · ·

or written compactly as

u =
∞∑
n=0

F (n)(m0)

n!
(m(x)−m0(x)).

The functional derivative ∂F
∂m

: m1 7→ u1 is the linear approximation for the forward
map F(m), which we denote by L. With the linearised model at hand, we are able to
solve the Least-Squares reverse time migration. This is addressed in the next section.

2.4.2 Solving the Least-Squares Reverse Time Migration Problem

In the previous section we chose m0 as the background velocity. With m0 known, we
need to solve the wave equation to obtain the corresponding background wave field u0.
Afterwards, we need to solve equation [43], where we have to make a guess on the model
perturbation εm1 to simulate the scattered wave field εu1. By solving this modelling task,
we solve the forward problem.

Assuming the chosen background velocity m0 was an accurate guess, the linearised
map L maps the reflectivity mr to the scattered wave field dr = F(m)−F(m0), that is

Lmr = dr. [44]

The inverse problem we aim to solve in the Least-Squares reverse time migration problem
(LSRTM) is to solve equation [44] for m∗

r. In the Least-Squares approach, we find m∗
r by

minimising the distance between the observed data dr and the predicted scattered wave
field mr:

min
m

∥Lmr − dr∥22.

The solution given by the normal equations is m∗
r = (LTL)−1LTdr, where LT is the adjoint

operator. It is well-known that solving the normal equations numerically, especially to
invert LTL, can be quite expensive and unstable [Ric20]. Therefore, the LSRTM problem
is rather solved iteratively. In an iterative scheme like gradient descent m(x) is updated
successively until a certain tolerance is reached. Gradient descent is a local optimisation
method, which can lead to the algorithm ending up in a local minimum [BTT11]. Global
optimisation methods like swarm–based optimisation can avoid trapping into local minima
[LTZ24b].
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Although the accuracy of the images can be improved by the Least-Squares reverse
time migration (compared to RTM), this method depends heavily on the choice of the
background velocity. In practise, it is nearly impossible to make an exact guess for the
background velocity. Furthermore, even small errors can make the forward and backward
wave fields meet at a wrong location, which results in a wrong reflection point. Hence, we
are not able to determine the true velocity coefficient m(x). If we invert for the full m(x)
instead of guessing the background velocity m0 first, we end up with a method called full
waveform inversion [Rob10].
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3 Full Waveform Inversion
The goal of full waveform inversion (FWI) is to reconstruct the velocity coefficient m(x) in
the wave equation [9], such that it fits the observed data. Once the true velocity coefficient
is found, we gain information on the density of the corresponding media the waves have
transmitted. By using many receivers and many sources, an image of the subsurface can
eventually be reconstructed.

3.1 Overview

After one has chosen a proper model, full waveform inversion consists of three main
iterative steps. See Figure 8 for an illustration of the scheme.

1. Solve the forward problem.

2. Compare solution of forward modelling and observed data.

3. Update the velocity coefficient and go back to the first step.

For n ∈ N, let us denote by dsyn ∈ Rn the synthetic data, which are generated by a guess
for m(x). By dobs ∈ Rn, we denote data which was previously observed by the receivers.
We now want to find the true m(x), which describes the measurements correctly. To this
end, we measure the distance dist(dsyn(m), dobs) between the synthetic and the observed
data and calculate

argmin
m

dist(dsyn(m), dobs). [45]

In this thesis, we choose to use gradient descent to update and therefore minimise the
coefficient.

To measure the distance, we first need to define a misfit function. As in LSRTM,
a common choice is to consider the L2-norm of the distance between the synthetic and
observed data. In time domain, the Least-Squares waveform misfit is defined as

dist(f, g) =
1

2

∑
r

∫
|f(xr, t;m)− g(xr, t)|2dt, [46]

where xr are the receiver locations, r ∈ {1, 2, 3, · · · , n} [BOV09].
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Figure 8: Scheme for FWI

3.2 Gradient Calculation

As we have seen in Section 1.1 and Section 1.2, we can find a solution for the inverse
problem by using the adjoint of the model operator. What we aim for in FWI is the
minimisation of the distance between the synthetic and the observed data. A common
choice for the distance function is given by the L2-norm. In Section 2.4.1 we have found
a linearised forward model L(m). Thus, the inverse problem is to solve the following
minimization for m:

J(m) =
1

2
∥L(m)− dobs∥22. [47]

Our goal is now to minimise J with respect to m. We choose gradient descent as iterative
optimisation scheme. The gradient descent scheme for [47] is given by

mk+1 = mk − α
∂J

∂m
[mk], [48]

where α is for instance determined by a linesearch.
Proposition 3.1. (On the adjoint operator, [Dem16]) Define the linearisation of F(m)
as (cf. 2.4.2)

L(m) :=
∂F
m

[m].

Then ∂J
∂m

[m] = L∗(L[m]− d).
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Proof of Proposition 3.1, [Dem16].

∂J

∂m
[m](h) = lim

h→0

J(m+ h)− J(m)

h

= lim
h→0

1
2
∥L(m+ h)− d∥ − 1

2
∥L(m)− d∥

h

∥L(m+ h)− d∥ = ⟨L(m+ h)− d,L(m+ h)− d⟩
= ⟨L(m− d),L(m− d)⟩+ 2⟨Lh,L[m]− d⟩+O(∥h∥2)

We calculate the distance J [m+ h]− J [m]:

J [m+ h]− J [m] =
1

2
2⟨Lh,L[m]− d⟩+O(∥h∥2)

= ⟨h,L∗(L[m]− d)⟩+O(∥h∥2),

where the last equality follows by definition of the adjoint.

∂J

∂m
[m] = lim

h→0

( 1
2
∥L[m+ h]− d∥ − 1

2
∥L[m]− d∥

h

)
= L∗(L[m]− d)

Similar to the inverse problem formulated in Section 1.1, we can solve the inverse
problem by incorporating the adjoint of the model operator. Transposing3 the operator
L = δF

δm
is not an efficient way to compute the adjoint L∗ [Dem16]. The next paragraph

addresses the adjoint state method, which is an efficient way for computing the adjoint
L∗ [Cao+03; Dem16; Joh21; Ple06].

3.3 Adjoint State Method

Recall we want to find a suitable m, such that

J(m) =
1

2
∥L(m)− d∥22 [49]

is minimised. The first variation of 49 can by the chain rule be written as

∂J

∂m
=

〈
∂J

∂u
,
∂u

∂m

〉
. [50]

When computing [50] directly via the derivatives δu
δm

, the wave equation needs to be solved
for each value in m(x). The goal of the adjoint state method is to provide a more efficient
way to compute ∂u

∂m
. With the linearisation of the forward model we can write the wave

equation as

L(m)u = f, [51]

3Since seismic data consists of real numbers, transposing (instead of building the transpose and the
complex conjugate) is sufficient in the context of this thesis.
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to which we also refer as state equation [Ple06]. Differentiating with respect to m, we
obtain by the chain rule

∂L
∂m

u+ L ∂u

∂m
= 0. [52]

Next, we define the adjoint state equation

∂J

∂u
= L∗q, [53]

where L∗ is the adjoint operator and q the corresponding adjoint field [Ple06]. Therefore,
we can see the left hand side, δJ

δu
, as the source term of the state equation 51. We substitute

∂J
∂u

in [50] by L∗q and obtain

∂J

∂m

(1)
=

〈
L∗q,

∂u

∂m

〉
(2)
=

〈
q,L ∂u

∂m

〉
(3)
= −

〈
q,
∂L
∂m

u

〉
,

where the second equality follows by definition of the adjoint and the third equality by
transforming

∂L
∂m

u+ L ∂u

∂m
= 0

⇔ L ∂u

∂m
= − ∂L

∂m
u.

The last term, after the third equality sign, is the imaging condition [Dem16], as we will
prove in the sequel of this chapter. To this end, we compute the adjoint state equation,
in particular the adjoint field, for the case of the wave equation [9].

Recall that we want to determine

∂J

∂m
[m] = L∗ (L(m)− d) ,

where

L : m 7→ d

is a mapping from model to data space, and

L∗ : d 7→ m

is a mapping from data to model space. As we will see, the application of the adjoint is
a simple form of imaging. If we make a good guess for m0 and the experiment involves a
sufficient4 number of receivers, the first iteration of gradient descent

m(1) = αL∗(d− L(m0))

often provides an image close to the true εm1 [Dem16; Rob10]. Thus, L∗ is not only
called adjoint but also imaging operator. Indeed, the adjoint state method results in the
imaging condition, as was outlined in Section 6 on reverse time migration.

4The number of receivers necessary is determined by the specific details of the experiment.
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In general, by using the definition of the adjoint operator we can write

⟨d,Lm⟩ = ⟨d, u⟩ [54]
⇔ ⟨L∗d,m⟩ = ⟨d, u⟩ [55]
⇔ ⟨d,Lm⟩ = ⟨L∗d,m⟩. [56]

We can further rewrite [54] to

⟨d,Lm⟩ =
∑
r

∫ T

0

dr(t)u(xr, t)dt [57]

and we can also write

⟨L∗d,m⟩ =
∫
Rn

(L∗d)(x)m(x)dx. [58]

Since L is a differential operator, we need to integrate by parts in x to get from [57] to
[58]. Therefore, the sum over the receivers in [57] needs to be transformed to an integral.
To this end, we define for each measurement dr(t) a Dirac delta function located at xr to
take into account whether there are measurements made at x or not [Dem16].

Definition 3.2. (Dirac delta function, [Rud13]) The Dirac delta function is defined on
R as

δ(x) =

{
0, x ̸= 0

∞, x = 0,

such that ∫ ∞

−∞
δ(x) = 1.

We call the new function dnew(x, t) and define it formally as

dnew(x, t) =
∑
r

dr(t)δ(x− xr).

Then, equation [57] becomes

⟨d,Lm⟩ =
∫
Rn

∫ T

0

dext(x, t)u(x, t)dxdt. [59]

As explained above (compare to equation [53]), we now use the adjoint field q(x, t):(
m0

∂2

∂t2
−∆

)
q(x, t) = dext(x, t). [60]

We consider the boundary conditions below. Our next step is to derive the adjoint state
equation, which we briefly mentioned in Section 2.3. Recall that we want to find L∗ such
that

⟨d,Lm⟩ = ⟨L∗d,m⟩.
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To achieve this, we first substitute dext in equation [60] and then integrate by parts both
in time and in space [Dem16]:

⟨d,Lm⟩ =
∫
Rn

∫ T

0

(
m0

∂2

∂t2
−∆

)
q(x, t)u(x, t)dxdt

=

∫
Rn

[
m0

∂d

∂dt
q(x, t)u(x, t)

]T
0

−
∫
Rn

∫ T

0

m0
dq

dt

d

dt
u(x, t)dt

+

∫
∂Rn

∫ T

0

dq

dn
u(x, t)dSxdt−

∫
Rn

∫ T

0

∆u(x, t)q(x, t)dxdt

=

∫
Rn

[
m0

∂d

∂dt
q(x, t)u(x, t)

]T
0

−
∫
Rn

[
m0q(x, t)

d

dt
u(x, t)

]T
0

+

∫
Rn

∫ T

0

m0q(x, t)
d2

dt2
u(x, t)dxdt

+

∫
∂Rn

∫ T

0

u(x, t)
dq

dn
dSxdt−

∫
∂Rn

∫ T

0

q(x, t)
du

dn
dSx +

∫
Rn

∫ T

0

q(x, t) · (∆u(x, t))dx

=

∫
Rn

[
m0

∂d

∂dt
q(x, t)u(x, t)

]T
0

−
∫
Rn

[
m0q(x, t)

d

dt
u(x, t)

]T
0

+

∫
∂Rn

∫ T

0

u(x, t)
dq

dn
dSxdt−

∫
∂Rn

∫ T

0

q(x, t)
du

dn
dSx

+

∫
Rn

∫ T

0

q(x, t) · (−∆u(x, t)) + q(x, t)m0
d2

∂dt2
u(x, t)dx

=

∫
Rn

∫ T

0

(
m0

∂2

∂t2
−∆

)
q(x, t)u(x, t)dxdt

+

∫
Rn

[
m0

∂q

∂t
u

]T
0

dx−
∫
Rn

[
m0q

∂u

∂t

]T
0

dx+

∫
∂Rn

∫ T

0

dq

dn
udSxdt−

∫
∂Rn

∫ T

0

q
∂u

∂n
dSxdt.

We consider the wave equation with boundary conditions (cf. equation 9)

u(x, 0) = 0 and
∂u

∂t
(x, 0) = 0.

Hence the boundary terms become zero at t = 0. Since we are interested in the values of
q(x, t) for t ∈ [0, T ], we need to consider the other boundary conditions at t = T . Then,
they become zero only if q|t=T = ∂q

∂t
|t=T = 0. Considering time values 0 ≤ t ≤ T , we

can think of the above conditions as final conditions [Dem16; Joh21; Ple06]. The data is
sampled at the receivers at time t = T . Therefore, we can think of the adjoint equation
[60] [60] as run backward in time from t = T to t = 0.5 Following [Dem16], we transform
the adjoint state equation [60] to the imaging condition [61]:

⟨d,Lm⟩ =
∫
Rn

∫ T

0

q(x, t)

(
m0

∂2

∂t2
−∆

)
u(x, t)dxdt

= −
∫
Rn

∫ T

0

q(x, t)m(x)
∂2u0
∂t2

dxdt.

5Recall the backward propagation in RTM.
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Since this equals ⟨m,L∗d⟩, we obtain

(L∗d)(x) = −
∫ T

0

q(x, t)
∂2u0
∂t2

dt [61]

regardless of m. In equation [61], q(x, t) is the solution to the adjoint wave field and ∂2u0

∂t2

is the upgoing wave field in the context of RTM (cf. Section 2.3). Until now we have
omitted the source term in the wave equation. When we consider the L2-norm as misfit
function J [u] = 1

2
∥Ru− d∥22, the source term of the adjoint wave equation becomes

∂J

∂u
= R∗(Ru− d).

Corollary 3.3. When considering the L2-norm as misfit function, the adjoint wave equa-
tion is of the form 

m(x)∂
2q(x,t)
∂t2

−∆q(x, t) = R∗(Ru− d),

q(x, T ) = 0,
∂qt
∂t
(x, T ) = 0.

[62]

Corollary 3.4. Due to the adjoint state method, we have found a formal representation
of ∂J

∂m
:

∂J

∂m
= −

∫ T

0

d2u(x, t)

dt2
v(x, t),

where v is the solution to the adjoint wave equation [62].

As we have seen above in the adjoint state equation [53], the derivative of the misfit
function is exactly the source term of the adjoint wave equation. When a different ob-
jective function is employed, the only aspect that changes is the source term. The source
term of the adjoint wave equation is also discussed in [FBI06].

In the context of LSRTM, it has already been shown that the initial guess is often
not very accurate in practice, even when supplemented with additional information from
borehole seismics [BM21]. Hence, the imaging condition usually does not yield a good
image. Therefore, we use the concept of full waveform inversion, where we invert for
the m(x) that fits the measurements by minimising the distance between dobs and dsyn.
To address this optimisation problem, the next step involves employing a gradient-based
method, such as gradient descent. For this purpose, it is necessary to define a misfit
function. While the L2-norm is commonly used, it has certain limitations that justify
considering alternative norms. In the following subsection, we explore the applicability of
several potential norms.

3.4 Choice of Misfit Function

The standard choice for the misfit function is the L2-norm. However, given that the L2-
norm is just one among many other well-established norms and is known for its sensitivity
to noise, the question arises as to whether it is truly the most suitable choice. In the
following, we compare the L2-norm, the L1-norm and the Huber loss, the latter being
widely used in machine learning. After discussing these norms, we introduce another
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norm derived from the field of optimal transport – the Wasserstein metric – and evaluate
its suitability as a misfit function for seismic imaging.

Before diving into a discussion on the above norms, let us first recall the definition of
the Huber loss function.

Definition 3.5 (Huber loss, [Hub64]). For δ ∈ R+

Lδ(a) =

{
1
2
r(x)2 for |r(x)| ≤ δ

δ ·
(
|r(x)| − 1

2
δ
)
, otherwise.

The factor r(x) often refers to the difference between the observed and synthetic (or pre-
dicted) values, i.e. r(x) = y − f(x).

It is widely known that the L1-norm is less sensitive to noise than the L2-norm [LLM16;
Alp10; SSBD14]. However, a significant drawback of the L1-norm is its lack of differ-
entiability (see Figure 9), which makes it challenging to use effectively in optimisation
problems. The Huber loss, on the other hand, is also less sensitive to noise compared to
the L2-norm. Yet, in order to maximise model accuracy, the parameter δ must also be
optimised, which increases computational complexity.
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Figure 9: Unit sphere for L1-norm and L2-norm in R2

This reasoning contributes to the standard use of the L2-norm as a misfit function. Next,
we will be more precise and consider the L2-norm in the context of full waveform inversion.

In FWI, we begin by estimating the velocity coefficient m(x) and solving the wave
equation based on this initial guess. Once the wave equation is solved, we obtain the
synthetic data dsyn. We then compare dsyn to the observed data dobs. When solving
the wave equation for any m(x) that does not fit the true data accurately, three scenarios
can (probably simultaneously) occur to dsyn: time shifts relative to dobs, partial amplitude
changes, and dilations or contractions (see Figures 19, 20, 22) [Yan+17b]. These scenarios
will be addressed in detail in Section 4.5.

A metric which deals with these issues should incorporate horizontal shifts rather than
focusing solely on amplitude differences, as the L2-norm does. One distance that fulfils our
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wish for incorporating the horizontal shift between the signals, is the Wasserstein distance
[EF14]. In Figures 10 and 11 the difference in the behaviour between Wasserstein distance
W 2 and L2 are illustrated.
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Figure 10: Two horizontally shifted, overlapping Gaussian probability density functions
and L2(P,Q) and W 2(P,Q) distances.
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Figure 11: Two horizontally shifted but not overlapping Gaussian probability density
functions and W 2(P,Q) distance; L2(P,Q) can not measure any distance there.

The Wasserstein distance function originates from the field of optimal transport. In
optimal transport, signals are treated as probability density functions, and the objective is
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to determine the minimal cost required to transform one into the other [EF14][Vil03]. In
Section 4 we give all necessary prerequisites from optimal transport theory and rigorously
define the Wasserstein distance. As we will see, the Wasserstein metric is a natural way to
compare the probability distributions of two random variables X and Y . At this point, we
only illustrate the difference between common loss functions and the Wasserstein distance
to show the reader the perspective of using the Wasserstein distance as a misfit function.
Therefore, consider two probability density functions P and Q (see Figure 12).
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Figure 12: One signal shifted past the other (dotted red curves) and their overlapping
points (dashed black lines).

We shift P towards and past Q (illustrated by the dotted red curves). The behaviour
of the above norms with respect to shift values is shown in Figure 13. While L1, L2 and
Huber loss in Figure 13 begin measuring the distance once the non zero values of the two
densities start overlapping, the Wasserstein metric measures a distance greater than zero
for the whole interval of shift values, even though P and Q are not overlapping. This
illustrates the ability of the Wasserstein distance to measure horizontal shifts. In Section
4.2 we will formally consider the behaviour of the Wasserstein distance.
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Furthermore, in the context of full waveform inversion, the L2-norm faces a significant
challenge known as cycle-skipping. The periodic propagation of seismic waves may cause
this issue: if the observed and synthetic data are more than half a wavelength apart
(see Figure 16), there is a phase mismatch between the observed an the synthetic data.
Then, the gradient of the misfit function might go into the wrong direction, leading to
convergence towards a local minimum [SJV22; Tar05; Yan18]. But even for smaller time
shifts between the observed and synthetic data, the L2-norm possibly produces local
minima (see Figure 15).

Figure 14: Two time-shifted Ricker waves
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Figure 15: L2-norm between two shifted Ricker waves from Figure 14 leading to local
minima

The problem of cycle skipping is less pronounced at lower frequencies, where phase
mismatches are less likely, as the wavelength increases inversely with frequency:

λ =
c

f
.

In the above equation, λ is the wavelength, c is the wave propagation velocity, and f
is the frequency. Unfortunately, seismic FWI often involves high-frequency waveforms
due to the nature of seismic data, increasing the risk of cycle-skipping [EF14; Yan+17b].
A practical approach to addressing this issue is to start with low-frequency waves in
the initial velocity model. By progressively inverting from lower to higher frequencies,
the risk of phase mismatches can be mitigated, thereby improving the robustness of the
inversion process [EF14; Yan+17b]. Therefore, using the Wasserstein metric appears to
be an effective tool for overcoming cycle-skipping
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4 Optimal Transport

Figure 17: A mass transportation problem

Optimal transport dates back to the 18th century and was first described by Gaspard
Monge, who found a solution to a mass transportation problem. To illustrate this problem,
assume we have a pile of sand and wish to use the entire amount to fill a hole with the
same volume (cf. Figure 15). In optimal transport, we model the pile and the hole by
probability measures µ and ν defined on (not yet specified) measure spaces X and Y
respectively. Let A be a measurable subset of X and B be a measurable subset of Y .
Then, µ(A) measures the amount of sand is located in A. Analogously, ν(B) measures
the amount of sand in B. Moving the sand can be quite costly in effort, and we wish to
fill the hole at minimal cost. To this end, we define a cost function c(x, y) defined on X
and Y , which gives the effort of moving one unit of mass from a location x in the pile to a
location y in the hole. In the sequel, we formally define the relevant terms from optimal
transport and give main results.

4.1 Monge’s and Kantorovich’s formulation

Definition 4.1. (Transport mapping) Consider two measurable spaces X and Y with
non-negative Borel measures µ and ν respectively. Further, let

T : X → Y

be a measurable bijective mapping, which we call the transport mapping.

For rearranging one distribution into the other, we require two conditions: mass preser-
vation and volume equality.

Definition 4.2. (Mass preservation, [Vil03]) We want T to be a measure preserving map,
thus

µ(T−1(A)) = ν(A). [63]

In shorter notation, it is common to write T#µ = ν, when equation [63] holds.

Definition 4.3. (Volume equality, [Vil03]) It holds µ(Rn) = ν(Rn).

Definition 4.4. (Cost function) We denote by

c : X × Y → R
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the cost for the transport of mass between x and y.

Example 4.5. The most common choice for the cost function c(x, y) is the euclidean
norm between x and y, thus ∥x− y∥2 as defined in definition 1.8.

Remark 4.6. The L1-norm has also been used in literature, especially in the context of
machine learning, see [ACB17; PC19] for instance. We will revisit the choice of the cost
function in Section 4.3.

Definition 4.7 (Monge’s formulation (1781), [Vil03]). Solve the optimisation problem

inf
Tµ,ν∈M

M := inf
Tµ,ν∈M

{∫
Rn

c(x, T (x)) dµ(x)

}
in compliance with volume equality and mass preservation.

Note that by definition of the transport mapping, each element of X is mapped to exactly
one element in Y . Therefore, mass splitting is not possible in Monge’s formulation.

Example 4.8. (Monge problem and mass splitting, [Tho18])
Consider two discrete dirac measures

µ = δ(x1),

ν =
1

2
δ(y1) +

1

2
δ(y2),

where y1 ̸= y2. Then ν(y1) =
1
2
, but µ(T−1(y1)) ∈ {0, 1} depending on whether

x1 ∈ T−1(y1).

Corollary 4.9. The Monge problem does not always have a solution, since mass splitting
is not possible.

To allow mass splitting and therefore achieve solvability of the optimisation problem,
Kantorovich formulated a relaxed version of the Monge problem. Instead of searching
for a bijective transportation mapping, Kantorovich aimed for a transportation plan. In
this transportation plan, we capture the transported mass in a probability measure π,
which is measure-supported on the product space X ×Y . There, x can be transported to
multiple points yi, while in the Monge problem this was not possible. To match up with
the requirements of the Monge problem, we want∫

X
dπ(x, y) = dµ(x) [64]

and ∫
Y
dπ(x, y) = dν(x). [65]

In other words, we want for A ⊂ X , that

π(A,Y) = µ(A), [66]

and for B ⊂ Y , that
π(Y , B) = ν(B). [67]
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Definition 4.10. (Marginals) We say that the measures π that satisfy [66] and [67] have
marginals µ and ν respectively.

Definition 4.11. (Admissible transportation plans, [Vil03]) We denote the set of all ad-
missible transportation plans π by

Π(µ, ν) = {π ∈ P (X × Y ) | [66] and [67] hold for all A and B} .

Definition 4.12 (Kantorovich’s formulation (1939),[Vil03; Kan06]). Solve the optimisa-
tion problem

inf
π∈Π(µ,ν)

K := inf
π∈Π(µ,ν)

{∫
X×Y

c(x, T (x))dπ(x, y)

}
. [68]

Corollary 4.13. Since every transport mapping determines a transportation plan of the
same cost, the Kantorovich problem is weaker than the Monge problem. Therefore, it holds

inf
π∈Π(µ,ν)

{∫
X×Y

c(x, T (x))dπ(x, y)

}
≤ inf

{∫
Rn

c(x, T (x)) dµ(x)

}
.

While for the Monge problem it is not guaranteed to find an optimal mapping, the Kan-
torovich problem is solvable for any continuous cost function with lower bound [Vil03]. In
particular, the problem is solvable for cost functions of the form |x−y|p, when µ and ν are
absolutely continuous with respect to the Lebesgue measure. We specify this statement
in the following theorem, which is a corollary of Brenier’s Theorem [Bre91].

Theorem 4.14. (Relation between the solvability of the Kantorovich and the Monge
problem, [Kan06; Vil03]) Consider compactly supported probability measures µ and ν
on Rn, which are continuous with respect to the Lebesgue measure. Further consider
x(x, y) = ∥x− y∥2 as cost function. Due to the strict convexity of the Lp-norm for p > 1,
there exists a unique solution to the Kantorovich problem, which is then also a solution
to the Monge problem.

Proof. See proof of theorem 2.12 (iii) in [Vil03].6

We assume that the cost function c(x, y) has lower bound and X, Y are bounded.
Therefore the infimum in equation [68] is finite. Hence, to establish the existence of a
minimum, we use a compactness argument. To this end, recall the well known Bolzano-
Weierstrass theorem.

Theorem 4.15 (Bolzano-Weierstrass theorem, [Ste23]). Let f : U → R be continuous
and let U be a compact set. Then, f achieves a minimum on U [Ste23] .

Theorem 4.16 (Existence of a minimiser for the Kantorovich problem, [Vil03; Kan06]).
Assume c(x, y) is bounded below and continuous. Then the Kantorovich problem admits
a minimiser.

Proof. Since the cost function c(x, y) lives in Rn, we can think of compact spaces in the
sense of sequentially compact spaces and thus need to define a notion of convergence. Fix

6We give a proof for the case where µ, ν ∈ R in Section 4.3.
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U = Π(µ, ν). A sequence of measures γn converges to γ, i.e. γn → γ, if∫
X×Y

g(x, y)dγn(x, y) →
∫
X×Y

g(x, y)dγ ∀g ∈ C0(X × Y ).

To make use of the Bolzano-Weierstrass theorem, we need to verify these two conditions:

1. Π(µ, ν) is compact,

2. c(x, y) is convergent.

To check the first assumption, choose πn ∈ Π(µ, ν) and find a convergent subsequence πnk
,

which converges to π ∈ Π(µ, ν). We need to check the marginals (cf. definition [4.10]).
Choose g(x) ∈ C0(x).∫

X×Y

g(x)dπ(x, y) = lim
κ→∞

∫
X×Y

g(x)dπnk
(x, y)

=

∫
X

g(x)dµ(x),

since Πnµ ∈ Π(µ, ν) and therefore the marginal over X is µ. Analogously, the marginal of
Π over Y is ν. Thus, Π(µ, ν) is compact. For the second assumption, we need to check if

f(π) =

∫
X×Y

c(x, y)dπ(x, y) for π ∈ U.

Again, choose πn ∈ Π(µ, ν) such that πn → Π(µ, ν). To prove continuity, we need to show

f(πn) → f(π).

f(πn) =

∫
X×Y

c(x, y)dπn(x, y) →
∫
X×Y

c(x, y)dπ(x, y) = f(π),

since πn → π by assumption and further we assumed c(x, y) to be continuous. Hence, f
is continuous. By the Bolzano-Weierstrass theorem, the Kantorovich formulation admits
a minimiser for a real-valued, continuous cost function over a compact set.

Remark 4.17. The minimiser is not necessarily unique.

Remark 4.18. We did not need to specify a metric for the cost function, as it is sufficient
for the space to be metrisable. Furthermore, the solvability of the Kantorovich problem
can be proven not only for continuous cost functions but also for lower semi-continuous
cost functions, provided certain conditions are met. Specifically, when considering Polish
spaces X and Y, compactness follows from the Prokhorov theorem, ensuring the existence
of optimal transportation plans. Since the conditions from Theorem [4.16] are sufficient
for the purpose of this thesis, we stick to the results thereof. The reader is pointed to
[Tho18] and [Kan06] for further reading on the solvability of the Kantorovich problem for
lower semi-continuous cost functions and the relevant theory behind.
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4.2 The Wasserstein Distance

With the relaxed formulation by Kantorovich, a new distance function between probability
densities on a given metric space was invented: the Wasserstein distance.

Definition 4.19 (Wasserstein distance (1969), [Kan06; Vil03]).

Wp(µ, ν) =

(
inf

Tµ,ν∈M

∫
Rn

c(x, Tµ,ν(x))
pdµ(x)

)1/p

for all p ∈ [1,∞) and where M is the set of all maps that rearrange the distribution µ
into ν.

Definition 4.20. (Wasserstein distance with cost function of Lp type)

Wp(µ, ν) =

(
inf

Tµ,ν∈M

∫
Rn

∥x− Tµ,ν(x)∥pdµ(x)
)1/p

for all p ∈ [1,∞). In analogy to p−norms we refer to these kind of Wasserstein distance
as Wasserstein p−distance.

Remark 4.21. In the sequel, we will often use the quadratic Wasserstein 2−distance. It
is defined with the L2-norm as cost function:

W 2
2 (µ, ν) =

(
inf

Tµ,ν∈M

∫
Rn

∥x− Tµ,ν(x)∥2dµ(x)
)
.

Also note the added upper index.

Theorem 4.22. (Wasserstein distance is a metric, [Vil03]) For a symmetric and (non-
strictly) positive cost function, the Wasserstein distance satisfies the definition of a metric.
That is,

• Symmetry: Wp(µ, ν) = Wp(ν, µ),

• Positivity: Wp(µ, ν) ≥ 0 and Wp(µ, ν) = 0 ⇔ f = g,

• Triangle inequality: Wp(µ, ν) ≤ Wp(µ, σ) +Wp(σ, g).

Remark 4.23. Note that the Wasserstein metric depends on the definition of Tµ,ν(x).
While Tµ,ν(x) is a transport mapping in Monge’s formulation, it is a transportation plan
in Kantorovich’s formulation. Theorem 4.22 can be proven in general when viewing Tµ,ν
as a transportation plan. As we will see, the Wasserstein distance also fulfils the properties
of a metric in the Monge’s case, when considering the p-norms as cost functions.

To prove the triangle inequality in the Kantorovich case, we apply the well-known gluing
lemma to probability spaces.

Lemma 4.24 (Gluing lemma, [Ste23]). Let µ, ν, σ be three probability measures, supported
on measure spaces X ,Y ,Z respectively. Further define two transportation plans π12 ∈
Π(µ, ν) and π23 ∈ Π(ν,σ). Then there exists a probability measure π ∈ P (X ×Y ×Z) with
marginals π12 on X × Y and π23 on Y × Z.

45



Another lemma we will use in the proof, is on the Minkowski inequality.

Lemma 4.25. (Minkowski Inequality, [Ste23]) For µ ∈ Lp and ν ∈ Lp holds for all
p ∈ [1,∞):

∥µ+ ν∥Lp ≤ ∥µ∥Lp + ∥ν∥Lp .

Proof of Theorem 4.22 for Kantorovich’s formulation. For the proof we need to check the
above three properties of a metric. We start by proving symmetry. Since the cost function
is symmetric, the Wasserstein metric is as well. Positivity incorporates three conditions:

1. Wp(µ, ν) ≥ 0,

2. µ = ν ⇒ Wp(µ, ν) = 0,

3. Wp(µ, ν) = 0 ⇒ µ = ν.

The first property follows by positivity of the cost function c(x, y), the second one by the
symmetry condition. For the third one, assume Wp(µ, ν) = 0.
Then, there exists a transportation plan π ∈ Π(µ, ν), such that∫

X×Y
|x− y|pdπ(x, y) = 0.

This means, π is supported on {(x, y) ∈ X × Y | x = y}. Choose A ⊆ X .

µ(A) =

∫
A
dµ(x) =

∫
A×Y

dπ(x, y)

=

∫
A×A

dπ(x, y) =

∫
X×A

dπ(x, y)

= ν(A)

Hence, µ = ν and (3) holds.
Finally, we show the triangle inequality. To this end, assume µ, ν, σ ∈ P (X ) and let

π12 and π23 as in Lemma [4.24] be optimal transportation plans. We choose X to be the
support of µ, Y to be the support of ν and Z to be the support of σ. Analogously, let
π13 be the marginal of π on X × Z and π13 ∈ Π(µ,σ).

W2(µ, σ) ≤
(∫

X×Z
d(x, z)pdπ13(x, z)

)1/p

[69]

=

(∫
X×Y×Z

d(x, z)pdπ(x, y, z)

)1/p

[70]

≤
(∫

X×Y×Z
(d(x, y) + d(y, z))pdπ(x, y, z)

)1/p

, [71]

whereat [69] we used the fact that W 2
2 (µ, ν) is not necessarily optimal. Since Y is inde-

pendent of the above distance, we can rewrite [69] to [70]. In [71], we used the triangle
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inequality. Next we obtain [73] by the Minkowski inequality:(∫
X×Y×Z

(d(x, y) + d(y, z))pdπ(x, y, z)

)1/p

[72]

≤
(∫

X×Y×Z
d(x, y, z)pdπ(x, y, z)

)1/p

+

(∫
X×Y×Z

d(y, z)pdπ(x, y, z)

)1/p

[73]

=

(∫
X×Y

d(x, y)pdπ(x, y)

)1/p

+

(∫
Y×Z

d(y, z)pdπ23(y, z)

)1/p

[74]

= Wp(µ, ν) +Wp(ν, σ), [75]

which proves the claim.

Corollary 4.26. This holds in particular for cost functions of Lp type.

Next, we prove that the Wasserstein p−distance defines a metric, when T is a transport
mapping as in Monge’s formulation and the cost function is of Lp type.

Theorem 4.27. For an Lp type cost function, the Wasserstein distance fulfils the prop-
erties of a metric.

Proof of Theorem 4.27. We start by proving symmetry. Since the cost function is sym-
metric, the Wasserstein metric is as well. Positivity incorporates three conditions:

1. WP (µ, ν) ≥ 0,

2. µ = ν ⇒ Wp(µ, ν) = 0,

3. Wp(µ, ν) = 0 ⇒ µ = ν.

The first property follows by positivity of the cost function c(x, y), the second one by the
symmetry condition. For the third one, assume Wp(µ, ν) = 0.
Then, there exists a transportation plan π ∈ Π(f, g), such that∫

X×Y
|x− y|pdπ(x, y) = 0.

This means, π is supported on {(x, y) ∈ X × Y | x = y}. Choose A ⊆ X .

µ(A) =

∫
A
dµ(x) =

∫
A×Y

dπ(x, y)

=

∫
A×A

dπ(x, y) =

∫
X×A

dπ(x, y)

= g(A)

Hence, µ = ν and (3) holds.
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To proof the triangle inequality, define three mappings

T1 : µ→ σ

T2 : σ → ν

T : µ→ ν,

where T = T2 ◦ T1. Further, define Id(x) = x for all x ∈ X . Since T : f → g may not be
optimal, we obtain

Wp(µ, ν) ≤
(∫

|x− T (x)|pdµ
)1/p

= ∥Id(x)− T (x)∥Lp(µ)

⇔ Wp(µ, ν) ≤ ∥Id(x)− T1(x)∥Lp(µ) + ∥T1(x)− T (x)∥Lp(µ)

⇔ Wp(µ, ν) ≤
(∫

|x− T1(x)|pdµ(x)
)1/p

+

(∫
|T1(x)− T2(T1(x))|pdµ

)1/p

⇔ Wp(µ, ν)¸ ≤
(∫

|x− T1(x)|pdµ(x)
)1/p

+

(∫
|T1(x)− T2(T1(x))|pdµ

)1/p

⇔ Wp(µ, ν) ≤ Wp(µ, σ) +

(∫
|y − T2(y)|pdσ

)1/p

⇔ Wp(µ, ν) ≤ Wp(µ, σ) +Wp(σ, ν)

Finally, we have shown the triangle inequality.

In Section 3.4, we already illustrated the behaviour of Wasserstein distance in compar-
ison to other commonly used misfit functions. In Figure 13, the behaviour of Wasserstein
distance and other commonly used misfit functions as L2-norm were plotted with respect
to horizontal shifts. While the L2-norm measures the vertical differences between the red
and the blue curve, it is illustrated that the Wasserstein distance additionally captures
the horizontal distance between the two curves. When the curves do not overlap, the
L2-norm is not able to compare the curves horizontally, while the Wasserstein distance
indeed is. This idea was also summarised schematically in Figures 10 and 11.

The formal definition of the Wasserstein metric at hand, we are now able to prove our
earlier observations. We formally capture the results in the following lemma.

Lemma 4.28. (Behaviour of Wasserstein and L2-distance) Let f and g be probability
density functions and s their horizontal shift, such that f(x) = g(x − s) as illustrated in
Figures 10 and 11 from Section 3.4. For overlapping f and g, both L2 and W 2 are of
complexity O(s), while for non overlapping f and g, L2 ∈ O(1) but W 2 ∈ O(s).

Proof. We first consider the case, when the two density functions overlap as in Figure 10.

L2(f, g) = ∥f − g∥L2 =

(∫
(f − g)2dx

)1/2

=

(∫
O(s2)

)1/2

= O(s)
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Note that f and g are shifted by g(x) = f(x− s).

W2(f, g) =

(∫
[x− T (x)]2f(x)dx

)1/2

=

(∫
s2f(x)dx

)1/2

= O(s)

Hence, for overlapping density functions, both L2 and W 2 increase linearly within the
horizontal shift s.
Next, we consider the case, when f and g are not overlapping as in Figure 11.

L2(f, g) = ∥f − g∥L2

=

(∫
(f − g)2dx

)1/2

=

(∫
2f 2dx

)1/2

= O(1)

W2(f, g) =

(∫
[x− T (x)]2f(x)dx

)1/2

= O(s)

As we can see, the L2 distance is bounded, when f and g do not overlap (cf. [EF14]).

Corollary 4.29. From Lemma 4.28 we conclude, that the Wasserstein distance is a suit-
able metric for incorporating horizontal shifts.

At this point, we show another elementary result for the Wasserstein distance, which will
be useful in Section 4.5.3.

Lemma 4.30. The quadratic Wasserstein distance fulfils the convexity property:

W 2
2 (αµ1 + (1− α)µ2, αν1 + (1− α)ν2) ≤ αW 2

2 (µ1, ν1) + (1− α)W 2
2 (µ2, ν2).

Proof. We proof this lemma for Kantorovich’s formulation. Define µ = αµ1 + (1 − α)µ2

and ν = αν1+(1−α)ν2. Let π1#µ1 = ν1 and π2#µ2 = ν2 be optimal transportation plans.
Define π = απ1 + (1 − α)π2. Then we have to show that π is a feasible transportation
plan. Thus we need to check the marginals. To this end, define A ⊂ X and B ⊂ Y as in
definition 4.10.

π(A, Y ) = απ1(A, Y ) + (1− α)π2(A, Y )

= αµ1(A) + (1− α)µ2(A)

= µ(A)
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and

π(X,B) = απ1(X,B) + (1− α)π2(X,B)

= αν1(B) + (1− α)ν2(B)

= ν(B).

Therefore, we have

W 2
2 (µ, ν) ≤

∫
X×Y

(x− y)2dπ(x, y) [76]

= α

∫
X×Y

(x− y)2dπ1(x, y) + (1− α)

∫
X×Y

(x− y)2dπ2(x, y) [77]

= αW 2
2 (µ1, ν1) + (1− α)W 2

2 (u2, ν2), [78]

where equation 77 holds since π1 and π2 are optimal.

Remark 4.31. In Sections 4.5.1,4.5.2 and 4.5.3 we show the convexity of the quadratic
Wasserstein metric concerning shift, dilation, and partial amplitude changes.

With the Wasserstein metric, we have defined a way to measure the distance between
two probability densities. The Wasserstein metric utilises the transportation mapping
in Monge’s formulation and the transportation plan in Kantorovich’s. In general, it is
difficult and not always possible to find an explicit formulation for the transportation.
However, in the one-dimensional case, i.e., for x ∈ R, we can indeed derive an explicit
formulation. To this end, we focus on the one-dimensional case in Section 4.3. In Section
4.6, we apply this explicit formulation in the context of full waveform inversion.

4.3 Optimal Transport in One Dimension

To find an approach to the one-dimensional optimal transport problem, we choose the
L2-norm as cost function.

Problem 4.32. (Monge’s formulation) Solve

min

{∫
∥(x− T (x))∥2f(x)dx, [79]

such that ∫
T−1(A)

µ(x)dx =

∫
A
ν(y)dy

for all A ⊂ R.

In the one-dimensional case we only have two possible directions on the coordinate
axis, in which we can transport data. This gives rise to the idea, that the optimal transport
mapping may be monotone. We proof this for general probability density functions in the
following proposition.

Proposition 4.33 (Monotonicity of the one-dimensional optimal transport mapping,
[Vil03]). For a quadratic cost function the optimal map T (x) is monotone.
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Proof of Proposition 4.33, [Vil03]. Let x1 ∈ I1 and x2 ∈ I2, where I1 and I2 are open
intervals, and assume without loss of generality that x1 < x2. Let ε > 0 such that∫

I1

µ(x)dx = ε =

∫
I2

µ(x)dx [80]

holds. Assume x1 and x2 are mapped by T (x) to some y1 and y2, where y1 < y2. For
i ∈ {0, 1, 2, . . . } define

T (xi) = yi.

We define a second mapping T̃ (x)

T̃ (x) =


y1, if x = x2

y2, if x = x1

T (x), if x /∈ I1 ∪ I2.

Suppose T (x) is optimal. Then by definition of optimality

1

2

∫
I1∪I2

|(x− T (x))|2µ(x)dx ≤ 1

2

∫
I1∪I2

|(x− T̃ (x))|2µ(x)dx

⇔ 1

2

∫
I1

x2µ(x)dx+
1

2

∫
I1

T (x)2µ(x)dx−
∫
I1

xT (x)µ(x)dx

+
1

2

∫
I2

x2µ(x)dx+
1

2

∫
I2

T (x)2µ(x)dx−
∫
I2

xT (x)µ(x)dx

≤ 1

2

∫
I1

x2µ(x)dx+
1

2

∫
I1

T̃ (x)2µ(x)dx−
∫
I1

xT̃ (x)µ(x)dx

+
1

2

∫
I2

x2µ(x)dx+
1

2

∫
I2

T̃ (x)2µ(x)dx−
∫
I2

xT̃ (x)µ(x)dx

Using equation [80], dividing by ε and rewriting the above inequality such that the right
hand side becomes zero, we obtain

1

ε

∫
I1

x(T̃ (x)− T (x))µ(x)dx+
1

ε

∫
I2

x(T̃ (x)− T (x))µ(x)dx ≤ 0. [81]

Recall that we consider Monge’s formulation for a quadratic cost under the constraint
that ∫

T−1(A)

µ(x)dx =

∫
A
g(y)dy

for all A ⊂ R. To this end, we take ε→ 0. Assuming the limit exists, we obtain

lim
ε→0

(
1

ε

∫
I1

x(T̃ (x)− T (x))µ(x)dx+
1

ε

∫
I2

x(T̃ (x)− T (x))µ(x)dx

)
= x1(y2 − y1) + x2(y1 − y2),

which in summary means that

x1(y2 − y1) + x2(y1 − y2) ≤ 0.
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Since xi and yi are real values, we can rewrite this equation to

x1y2 − x1y1 + x2y1 − x2y2 ≤ 0

⇔ y2x1 − y1x1 + y1x2 − y2x2 ≤ 0

⇔ (y2 − y1)(x2 − x1) ≥ 0,

where both the first and the second factor is greater or equal to zero. Hence, the optimal
transportation map is monotone.

Remark 4.34. Note that the above is true for a quadratic cost and does not hold for other
cost functions in general [Vil03].

Theorem 4.35 (Explicit formulation of the one-dimensional optimal transport mapping,
[Vil03]). In the one-dimensional case we can formulate an explicit expression for the op-
timal transport mapping.

The optimal map is constructed via the cumulative distribution function of the given
densities f and g for the synthetic and observed data respectively. Before we can proof the
theorem by deriving the explicit formulation, we give some prerequisites from probability
theory first.

Definition 4.36. (Cumulative distribution function (I), [BT08]) In probability theory,
the cumulative distribution function (CDF) of a real-valued random variable X, evaluated
at x, is the probability that X will take a value less than or equal to x. Formally,

FX(x) = P (X ≤ x).

Every probability distribution supported on the real numbers is uniquely identified by
a right-continuous monotone non-decreasing function F : R → [0, 1] which satisfies

lim
x→−∞

F (x) = 0

and
lim
x→∞

F (x) = 1.

Definition 4.37. (Cumulative distribution function (II), [BT08]) For a given density
f(x), we define the corresponding cumulative distribution function as

F (x) =

∫ x

−∞
f(t)dt.

Definition 4.38 (Inverse of CDF, [BT08]). If the CDF F (x) is strictly increasing and
continuous, the inverse distribution function (also called the quantile function) is defined
as

F−1(p) = x, p ∈ [0, 1],

where x is the unique value such that F (x) = p.

Definition 4.39 (Generalised inverse of CDF, [BT08]). If a distribution does not have a
unique inverse, we define the generalised inverse as

F−1(p) = inf{x ∈ R | F (x) ≥ p}, p ∈ [0, 1].
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Figure 18: Normal distribution f(x) and its shifted version g(x), their CDFs and the
respective inverses of the CDFs

Proof of Theorem 4.35. For given strictly positive densities f(x) and g(x), we define their
respective cumulative distribution functions as

F (x) =

∫ x

−∞
f(t)dt

and
G(y) =

∫ y

−∞
f(t)dt.

Take a point x, which is mapped to T (x) = y by the optimal transport mapping. We
know by proposition 4.33 that this mapping is monotone. That is, for a fixed x we have

F (x) =

∫ x

−∞
f(t)dt = G(y) =

∫ y

−∞
f(t)dt.

In shorter notation we can write

F (x) = G(T (x)). [82]

Thanks to definitions 4.37 and 4.38 we reformulate this equation to

T (x) = G−1(F (x)). [83]
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Thus, with equation [83] we have found an explicit expression for the one-dimensional
optimal transport map.

Remark 4.40. Note that we assumed f and g to be strictly positive, since otherwise we
would not have been able to transform equation [82] into equation [83].

Theorem 4.41. (On the optimal transportation in the one-dimensional case, [San15;
Vil03]) Let µ, ν ∈ R be probability density functions with cumulative distributions F and
G respectively. Let c(x, y) = ∥x − y∥L2. Further, let π⋆ be the measure on R2 with
cumulative distribution function H(x, y) = min(F (x), G(y)). Then,

1. π⋆ ∈ Π(µ, ν) and π⋆ is optimal for the Kantorovich problem with cost function
c(x, y).

2. The Wasserstein metric is given by W 2
2 (µ, ν) =

∫ 1

0
|F−1(t)−G−1(t)|2dt.

In the proof of the above theorem, we make use of the following lemma.

Lemma 4.42. ([San15]) Assume x1 < x2 for x1, x2, y1, y2. Furthermore, define a contin-
uous and strictly convex cost function, such as |x− y|L2. When it holds

∥x1 − y1∥L2 + ∥x2 − y2∥L2 ≤ ∥x1 − y1∥L2 + ∥x2 − y1∥L2 [84]

for all tuple (x1, y1), (x2, y2), then y1 ≤ y2.

Proof of Lemma 4.42, [San15]. Assume y1 > y2. Then, equation 84 reads

∥x1 − y1∥L2 + ∥x2 − y2∥L2 ≤ ∥y2 − x1∥L2 + ∥y1 + x2∥L2 .

Moreover, y1 > y1 implies y2−x < y−x. Therefore, y2−x1 and y1+x2 live in [y2−x2, y−x].
Define δ = x2−x1

(x2−y2)−(x1−y1)
living in (0, 1), which can be seen by expanding the fraction.

Then,

y2 − x1 = (1− δ)(y2 − x2) + δ(y1 − x1), y1 + x2 = δ(y2 − x2) + (1− δ)y1 − x1.

Define a = y − x, b = y2 − x2 and d = x2 − x1. The strict convexity of the cost function
yields

c(a) + c(b) ≤ c(b+ d) + c(a− d)

< (1− δ)c(b) + δc(a) + δc(b) + (1− δ)c(a)

= c(a) + c(b),

which is a contradiction. Therefore, y1 ≤ y2.

Proof of Theorem 4.41, [San15; Vil03]. By Theorem 4.16, there exists an optimal trans-
portation plan π ∈ Π(µ, ν). We first proof that π = π⋆. By proposition 4.33, we know
that the optimal transport mapping in one dimension is monotone. This is equivalent to

∥x1 − y1∥L2 + ∥x2 − y2∥L2 ≤ ∥x1 − y1∥L2 + ∥x2 − y1∥L2

for all tuples (x1, y1), (x2, y2) in the support of π⋆. For these x1, x2, y1, y2 we additionally
assume without loss of generality that x1 < x2.
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Define A = (−∞, x]× (y,∞) and B = (x,∞)× (−∞, y]. From Lemma 4.42 we know that
for all tuple (x1, y1), (x2, y2) in the support of π⋆ is holds y1 ≤ y2. Therefore, we have for
(x0, y0) ∈ supp(π⋆):

supp(π⋆) ⊂ {(x, y) : x ≤ x0, y ≤ y0} ∪ {(x, y) : x ≥ x0, y ≥ y0}.

Therefore, either π⋆(A) ̸= ∅ or π⋆(B) ̸= ∅. When using the definitions of A and B, we
obtain

π(−∞, x]× (−∞, y]) [85]
= min{π(−∞, x]× (−∞, y]) ∪ A, π(−∞, x]× (−∞, y]) ∪B} [86]
= min{π(−∞, x]× (−∞, y]) ∪ ((−∞, x]× (y,∞)), [87]

π(−∞, x]× (−∞, y]) ∪ (x,∞)× (−∞, y]} [88]
= min{π((−∞, x]× R), π(R× (−∞, y])} [89]
= min{F (x), G(y)}, [90]

where the last equality follows with definition 4.37. Thus, we have shown the first state-
ment in Theorem 4.41.
For the second statement, recall definition 4.2. We analogously define the short notation

G−1
# L[0,1]((−∞, x], (−∞, y]) = ν((−∞, x], (−∞, y]) [91]

for a measure ν and the Lebesgue measure L[0,1] defined on [0, 1], when we mean the mass
preservation

ν(−∞, x], (−∞, y]) = L[0,1](G
−1(−∞, x], (−∞, y])).

We want to proof that∫
R×R

∥x− y∥L2dπ⋆(x, y) =

∫ 1

0

∥F−1(t)−G−1(t)∥L2dt.

Therefore, we need to verify

π⋆ = (F−1, G−1)#L[0,1],

since then we will finally obtain∫
R×R

∥x− y∥L2dπ⋆(x, y) =

∫
R×R

∥x− y∥L2d((F−1, G−1)#L[0,1])(x, y)

=

∫ 1

0

∥F−1(t)−G−1(t)∥L2dt.
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Next, let us reformulate π⋆ = (F−1, G−1)#L[0,1]:

(F−1, G−1)#L[0,1]((−∞, x]× (−∞, y])
[91]
= L[0,1](F

−1, G−1)−1((∞, x]× (−∞, y]))

= L[0,1]({t : F−1(t) ≤ x ∧G−1(t) ≤ y})
[4.39]
= L[0,1]({t : F (t) ≥ t ∧G(y) ≥ t})
= min{F (x), G(y)}
[85]
= π⋆((−∞, x]× (−∞, y]))

Hence, we have shown that π⋆ is the optimal solution to the Kantorovich problem and
the Wasserstein metric can be rewritten as∫

R×R
∥x− y∥L2dπ⋆(x, y) =

∫
R×R

∥x− y∥L2d((F−1, G−1)#L[0,1])(x, y) [92]

(∗)
=

∫ 1

0

∥F−1(t)−G−1(t)∥L2dt, [93]

where the second equality (*) in the above equations is obtained by substituting
F (x) = G(y) = t for t ∈ R.

Corollary 4.43. The first statement of Theorem 4.41 implies that for an L2 cost function
the solution to the Kantorovich problem is unique.

Corollary 4.44 (of Theorem 4.41 and Theorem 4.35).
Let µ and ν be two positive probability densities. When we do not allow mass splitting,

then
inf

π∈Π(µ,ν)
K = inf

T#µ=ν
M .

Therefore, the optimal solution to the Kantorovich problem is also a solution to the Monge
problem.

Proof of Corollary 4.44. In Theorem 4.35, we have shown that for strictly positive densi-
ties µ and ν, the optimal transportation to the Monge problem is given by

T (x) = G−1(F (x)).

From corollary 4.13, we know that the Kantorovich problem is weaker than the Monge
problem and therefore, every solution to the Monge problem is also a solution to the
Kantorovich problem. In 4.41 (ii), we have found an expression for the Kantorovich
problem with the L2 cost function. Thus, we have for densities f, g > 0:

inf
π∈Π(µ,ν)

K (π) =

∫ 1

0

∥(F−1(t)−G−1(t))∥L2dt

=

∫
R
∥x−G−1(F (x))∥L2dµ(x)

≥ inf
Tµ,ν∈M

M .
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Since infTµ,ν∈M ≥ minπ∈Π(µ,ν)K, is holds

inf
π∈Π(µ,ν)

K = inf
Tµ,ν∈M

M .

Therefore, the optimal solution to the Kantorovich problem and to the Monge problem
coincide for an L2 cost function.

Corollary 4.45. The solution to the Monge problem for an L2 cost function is unique.

4.4 Optimal Transport in Higher Dimensions

While we were able to find an explicit expression for the transport map in the one-
dimensional case, we will see that this is not possible in higher dimensions. Similarly to
the one-dimensional case, we want to find a mapping which minimises∫

Rn

∥x− T (x)∥2f(x)dx,

such that ∫
T−1(A)

f(x)dx =

∫
A
g(y)dy. [94]

for all A ∈ Rn with n > 1.

Theorem 4.46. (Quadratic Wasserstein metric in dimensions > 1) The squared Wasser-
stein metric is given by

W 2
2 (f, g) =

∫
X

f(x)|x−∇u(x)|2dx.

For the proof, we briefly recall the change of variables formula.

Lemma 4.47. (Change of variables, [Ste23]) Let U be an open set in Rn and ϕ : U → Rn

an injective, differentiable function with continuous partial derivatives, with non vanishing
Jacobian for every x ∈ U . Then, for any real valued, compactly supported, continuous
function f , with support contained in ϕ(U), it holds∫

ϕ(U)

f(v)dv =

∫
U

f(ϕ(u))|det(Dϕ)(u)|du,

where det(Dϕ)(u) is the determinant of the Jacobian matrix of partial derivatives of ϕ at
u.

Next, we make use of the following well-known theorem by Rockafeller.

Theorem 4.48. ([Roc70], Section 24) A cyclically monotone mapping can be expressed
as the gradient of a convex function.

Proof of Theorem 4.46. By substituting y = T (x) and using Lemma 4.47, we can rewrite
equation [94] to ∫

T−1(A)

f(x)dx =

∫
A
g(T (x)) det(∇T (x)) dx ∀A.
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Because of the mass conservation property of the transport mapping, we expect

g(T (x))det(∇T (x)) = f(x). [95]

Analogously to the one-dimensional case, choose x1, . . . , xn ∈ X . Assume T (x) is optimal
and let yi = T (xi). Further, let εi be a ball around xi such that

∫
Ei
f(x)dx = ε and define

Fi = T (Ei). Therefore, we construct a new mapping T̃ (xi) which is measure-preserving
and for which holds 

T̃ (xi) = yi+1

T̃ (Ei) = Fi+1

T̃ (x) = T (x), if x /∈ ∪Ei.

Since we assume that T (x) is optimal, we know that∫
X

(x− T (x))2f(x)dx ≤
∫
X

(x− T (x))2f(x)dx.

As in the one-dimensional case (cf. equation [81]), we obtain

1

ε

N∑
i=1

∫
Ei

x(T̃ (x)− T (x))f(x)dx ≤ 0. [96]

For ε→ 0, we get

N∑
i=1

xi · (yi+1 − yi) ≤ 0.

Therefore, we have cyclical monotonicity. Since we assumed T (x) to be optimal, we can
think of it as the gradient of a convex function due to Theorem 4.48. Thus, we write

T (x) = ∇u(x), [97]

where u is convex. From equation [95] we know that

det(∇T (x)) = f(x)

g(∇u(x)) .

Hence, with equation [97] we obtain

det(D2u(x)) =
f(x)

g(T (x))
, [98]

where D2(u(x)) is the Hessian matrix of u(x). Equation [98] is the Monge-Ampere equa-
tion. To compute the Wasserstein metric, we need to compute the optimal map

T (x) = ∇u(x) [99]

via the solution of the Monge-Ampere equation together with boundary conditions. In
[EF14], the Monge-Ampere equation was equipped with non-homogenous Neumann bound-
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ary conditions. By 99, the quadratic Wasserstein metric is then given by

W 2
2 (f, g) =

∫
X

f(x)|x−∇u(x)|2dx.

This proves the claim.

For the Monge-Ampere equation, uniqueness of the optimal map is not guaranteed.
In [EF14] and [Yan18], the Monge-Ampere equation was solved by a finite difference
scheme. To obtain well-defined solutions, the data must be sufficiently regular. This can
be particularly challenging when working with real seismic data, for instance, due to noisy
measurements [Yan18]. Furthermore, seismic full waveform inversion involves large-scale
data, necessitating strong regularisation. To this end, the Monge-Ampere solver developed
in [EF14] was designed to smooth the data sufficiently. However, smoothing the data can
lead to a loss of high frequencies [Yan18], which consequently means a loss of information.
In [Yan+17b], numerical simulations showed that the Monge-Ampere solver is not very
promising in two dimensions. More results on the Monge-Ampere equation in general and
on its application in seismic geophysics can be found in [EF14] and [Yan+17b]. In this
thesis, we stick to the one-dimensional formulation described in the previous section.

4.5 The Wasserstein Metric for Seismic Signals

In Section 3.4, we illustrated the convexity of the Wasserstein metric with respect to
horizontal shifts. Moreover, we discussed Gaussian distribution functions, which have de-
sirable properties due to their positivity and normalisation to volume one. The functions
considered in that section differed only by horizontal shifts, with no changes in ampli-
tudes. Hence, from this point we can only conclude that optimal transport works well for
functions which are nice enough in a certain way. For our setting, it is sufficient if the
Wasserstein metric behaves nicely for the main effects that occur in seismic imaging.

Recall that a solution to the wave equation is represented by

u(x, t) = u0(x−mt),

where m is our model parameter, the velocity coefficient. We want to address the effects
that occur when m is varied. Most common signal distortions in seismic modelling are
time shifts and dilations in u(x, t) as well as partial amplitude changes. To demonstrate
the occurrence of dilations and shifts, we consider the following example.

Example 4.49. (One-dimensional constant velocity model [Yan+16]) A one-dimensional
constant velocity model is given by

∂2u
∂t2

= m2 ∂2u
∂x2 , x > 0, t > 0

u = 0, ∂u
∂t

= 0, x > 0, t = 0,

u = u0(t), x = 0, t > 0.

A solution to the above differential equation is given by

u(x, t;m) = u0(t− x/m).

This implies that for fixed x, variations in m result in a shift. On the other hand, if we
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assume t is fixed, variations in m cause dilations in u0 when considered as a function of
x.

Partial changes in the amplitude of a signal occur due to variations in the reflecting
layers.

Example 4.50. (Piecewise constant velocity model, [Yan+16]) Consider subsurface layers
of different materials, which will result in a piecewise constant velocity field, as shown
in Figure 21. As we know, the waves’ velocity changes when entering a different layer.
Consequently, the reflected waves will have different velocities depending on the layer from
which they are reflected. An incorrect estimation of the velocity field can lead to either
larger or smaller local amplitudes in the resulting wave field.

Additionally, real seismic data is noisy, another side effect we have do deal with.
Therefore, we wish for the Wasserstein metric to be insensitive to noise or at least less
sensitive than other norms like the L2-norm. The effect of noise is addressed in Section
4.5.4. For the time being, let us assume that we have already normalised the signals, such
that we deal with probability densities of bounded second moment.

4.5.1 Wasserstein Metric Regarding Time Shifts

Figure 19: Time-Shifted Ricker Waves

Assume f(x) is a signal, a time-shifted version of f(x) can be described as

f(x) = g(x− sv),

where the signal g is shifted s units in v direction.

Theorem 4.51. (Convexity with respect to shift, [Yan+16]) Let f(x) = g(x − sv) for
fixed v ∈ Rn. Then, the quadratic Wasserstein metric W 2

2 (f, g) is convex with respect to
shift s.
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Proof of Theorem 4.51. By proposition 4.33, the optimal transport mapping T is a con-
stant shift. This is given by

T (x) = x− sv.

With the definition of the quadratic Wasserstein metric [4.21], we obtain

W 2
2 (f, g) = inf

Tµ,ν∈M

∫
Rn

|x− T (x)|2dx =

∫
Rn

(x− (x− sv))2f(x)dx

=

∫
Rn

(−sv)2f(x)dx =

∫
Rn

s2v2f(x)dx

=

∫
Rn

s2|v|2f(x)dx

Since we assume f(x) to be normalised to volume one, we have∫
Rn

s2|v|2f(x)dx = s2|v|2
∫
Rn

f(x)dx = s2|v|2.

Since quadratic functions are always convex, the claim follows.

Remark 4.52. Note that we assumed the signals to be positive and have volume one. In
practise, the signals have to be normalised beforehand, which can influence the convexity
property. We discuss several normalisation methods and their impact on the convexity in
Section 4.7.
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4.5.2 Wasserstein Metric Regarding Dilations and Contractions

Before deriving the optimal transportation map in the setting of this section, we briefly
recall the formal definition of dilations and contractions (see also [LLM16]).
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Figure 20: Three Ricker waves; g and h being contractions and dilations of f respectively

Dilations and contractions are special cases of a scaling of a function. Clearly, a scaling
is a linear transformation. By multiplying a quantity with a scaling factor, we refer to it
as dilation, if the scaling factor is larger than 1, while we call it contraction, if the factor
is smaller than 1.

In Rn, uniform scaling by a factor v > 0 is accomplished by scalar multiplication with
v, that is, multiplying each coordinate of each point by v. As a special case of linear
transformation, it can be achieved also by multiplying each point (viewed as a column
vector) with a diagonal matrix whose entries on the diagonal are all equal to v.

Non-uniform scaling is achieved by multiplication with any symmetric matrix. There,
the eigenvalues of the matrix are the scaling factors, and the corresponding eigenvectors
represent the axes along which each scale factor applies. In the case of diagonal matrices,
the axes of scaling are then the coordinate axes. Hence, the transformation scales along
each axis by the factor vi.

Example 4.53. The scaling of
(
x
y

)
by the factor 2 in x direction and by the factor 3

in y direction, i.e.

f

(
x
y

)
=

(
2x
3y

)
,
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can be written with help of the matrix A =

(
2 0
0 3

)
, such that

f

(
2x
3y

)
=

(
2 0
0 3

)(
x
y

)
.

Theorem 4.54. (Convexity with respect to dilation, [Yan+16]) We assume f is a dilation
of g. Thus, we can write

f(x) = g(Ax),

where A is a symmetric, positive definite matrix. Then, the quadratic Wasserstein metric
W 2

2 (f,
g
⟨g⟩) is convex with respect to the scaling factors, i.e. eigenvalues λ1, . . . , λn of the

scaling matrix A ∈ Rn×n.

Remark 4.55. Note that we want A to be positive definite, as the eigenvalues (scaling
factors) have to be positive by definition of a scaling.

To prove the convexity of the Wasserstein metric with respect to the eigenvalues, we
first need to make sure we found an optimal mapping.

Proposition 4.56. The mapping T (x) = Ax is optimal [Yan+16].

Proof of proposition [4.56]. Define y := Ax. Then we can write

g

⟨g⟩ =
f(A−1y)

⟨f(A−1y)⟩ .

To evaluate the last term’s denominator, we use definition 4.47 and obtain∫
ϕ(U)

g(x)dx =

∫
U

f(A−1y) · |det(DA−1y)| dy.

Since we assume f to be a probability density function, it has volume 1. A is a constant,
linear transformation, hence, the most suitable linear approximation of A−1 is A−1 itself.
Thus,

DA(y) = A ∀ y ∈ Rn.

In summary, we get ∫
ϕ(U)

g(x)dx = |det(A−1)|

and

g

⟨g⟩ =
f(A−1y)

det(A−1)
,

where we omitted the absolute value function, since A is a positive matrix. Further, the
map T (x) is optimal, since it is the gradient of a convex function

T (x) = ∇
(
1

2
xTAx

)
,
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where A is positive definite. Thus, T (x) is the gradient of a quadratic and thus convex
function.

Proof of Theorem 4.54. Since A is symmetric positive definite, we can find a diagonalisa-
tion of A by orthogonal matrices [Fis13]. Let O be an orthogonal matrix and Λ a diagonal
matrix which consists of the eigenvalues of A. To find the diagonalised version of A, we
decompose

A = OΛOT .

For the quadratic Wasserstein metric, we obtain

W 2
2

(
f,

g

⟨g⟩

)
=

∫
Rn

|x− Ax|2f(x)dx

=

∫
Rn

|OInOTx−OΛOTx|2f(x)dx

=

∫
Rn

|xTOOTx− 2xTOΛOTx+ xTOΛ2OTx| f(x)dx

=

∫
Rn

|xTO(In − Λ)2OTx| f(x)dx,

where In is the n× n identity matrix. Let z := OTx. Then∫
Rn

|xTO(In − Λ)2OTx| f(x)dx =

∫
Rn

zT (In − Λ)2zf(Oz)dz

=
n∑

i=j

(λj − In)
2

∫
Rn

zjf(Oz)dz,

since Λ is a diagonal matrix and does not depend on z. Thus, W 2
2

(
f, g

⟨g⟩

)
is convex in λ

for all j. Hence, convexity with respect to the scaling values holds.
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4.5.3 Wasserstein Metric Regarding Partial Amplitude Changes

Decompose Ω into two disjoint domains, such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. If we
make a wrong guess for m, we get wrong reflection values.

Figure 21: Two layered structure, true coefficient leads to correct reflection point ur (red),
while the wrong coefficient uw does not.

Without loss of generality, let β ∈ [0, 1] be the parameter for the amplitude loss. Let fβ
be the solution to the wave equation for this wrong coefficient m.
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Figure 22: g (blue) equals f (red) except for a local amplitude change
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Then,

fβ(x) =

{
βg(x), for x ∈ Ω1

g(x), for x ∈ Ω2

}
[100]

is piecewise proportional to g, but with different proportionality constants β. The main
goal of this section is to prove the following theorem.

Theorem 4.57. (Convexity with respect to partial amplitude changes, [Yan+16]) The
quadratic Wasserstein metric W 2

2

(
fβ
⟨fβ⟩

, g
)

is convex with respect to β.

For the proof of the theorem, we introduce another representation of the signal fβ(x):

hα(x) =

{
(1 + α)g(x), for x ∈ Ω1

(1− γα)g(x), for x ∈ Ω2

}
,

where

γα = α

∫
Ω1
g∫

Ω2
g
,

α =
β

β
∫
Ω1
g +

∫
Ω2
g
.

Remark 4.58. Note that hα(x) is piecewise affine in α, while fβ(x) is not. The affinity
will be a useful tool in the proof.

Remark 4.59. Since we want β to be an amplitude loss, we have to choose α ∈ [−1, 0].

As in the following lemma, we see the parameter α as a function of β and show the
concavity of α with respect to β.

Lemma 4.60 (Concavity of α(β), [Yan+16]). The function α(β) is concave with respect
to β.

Remark 4.61. For the proof, recall that a function whose second derivative is negative
is concave [Roc70].

Proof of Lemma 4.60. In order to proof concavity, we differentiate α twice with respect
to β. By the chain rule, we obtain

α′(β) =

∫
Ω1
g(

β
∫
Ω1
g +

∫
Ω2
g
)2 ,

α′′(β) =
−2
∫
Ω1
g
∫
Ω2(

β
∫
Ω1
g +

∫
Ω2
g
) .

Since the second derivative has negative sign, α(β) is concave.

Remark 4.62. The associated density functions are related by

f̂β =
fβ
⟨fβ⟩

= hα(β).
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Next, we proof the convexity of W 2
2 with respect to α, and from there we conclude the

convexity with respect to β.

Proposition 4.63. W 2
2 is convex with respect to α [Yan+16].

Proof. From Lemma 4.30, we know that the quadratic Wasserstein metric itself is convex.
We choose ordered α1, α2 ∈ [−1, 0] and scaling factors s ∈ [0, 1]. Since hα(x) is piecewise
affine in parameter α, we get

W 2
2 (shα1 + (1− s)hα2 , g) ≤ sW 2

2 (hα1 , g) + (1− s)W 2
2 (hα2 , g).

Because of the affinity, we also know that

shα1 + (1− s)hα2 = hsα1 + (1− s)α2.

This implies

W 2
2 (hsα1 + (1− s)hα2 , g) ≤ sW 2

2 (hα1 , g) + (1− s)W 2
2 (hα2 , g).

Thus, W 2
2 is convex with respect to α.

Corollary 4.64. The quadratic Wasserstein metric is decreasing in α [Yan+16].

Proof. Let −1 ≤ α1 < α2 ≤ 0. Choose s = α2

α1
to make sure s ∈ [0, 1].

W 2
2 (hα2 , g) = W 2

2 (hsα1+(1−s)·0, g)

≤ sW 2
2 (hα1 , g) + (1− s)W 2

2 (h0, g)︸ ︷︷ ︸
(⋆)

= sW 2
2 (hα1,g),

where (⋆) equals zero by symmetry of the Wasserstein metric, since h0 = g. As s ≤ 1, it
follows that

sW 2
2 (hα1,g) ≤ W 2

2 (hα1,g).

Next we translate the result of the previous lemma for α to a convexity result for β.

Theorem 4.65 (Convexity of W 2
2 with respect to β, [Yan+16]). The quadratic Wasser-

stein metric W 2
2

(
fβ
⟨fβ⟩

, g
)

is a convex function of β.

Proof of Theorem 4.65. By the previous results 4.60, 4.63, 4.64, we know that we can
relate f̂β to hα(β) for a properly chosen α:

W 2
2 (f̂sβ1+(s−1)β2 , g) = W 2

2 (hα(sβ1+(1−s)β2),g) [101]

As was shown in Lemma 4.60, α is concave with respect to β. That is,

α(sβ1 + (1− s)β2) ≥ sα(β1) + (1− s)αβ2.

From corollary 4.64 we know that the quadratic Wasserstein distance decreases in α, thus

W 2
2 (f̂sβ1+(s−1)β2 , g) ≤ W 2

2 (hsα(β1)+(1−s)α(β2), g).
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Then, the convexity of W 2
2 with respect to α implies

W 2
2 (f̂sβ1+(s−1)β2 , g) ≤ sW 2

2 (hα(β1), g) + (1− s)W 2
2 (hα(β2)), g

= sW 2
2 (f̂β1 , g + (1− s)W 2

2 (f̂β2), g),

which implies convexity with respect to β.

4.5.4 Wasserstein Metric and its Insensitivity Regarding Noise

The L2-norm is widely recognized for its high sensitivity to noise. Given that measure-
ments in practice are often noisy, insensitivity to noise is a desirable characteristic. In this
section, we will theoretically outline the Wasserstein metric and its insensitivity to noise.
Since we focus on the explicit one-dimensional formulation of the Wasserstein metric, it
suffices for this thesis to demonstrate that the Wasserstein distance is insensitive to noise
in the one-dimensional case.

Theorem 4.66. (Insensitivity to noise of the quadratic Wasserstein metric, [Yan+16])
Let g ≥ 0 be a probability density function on [0,1] and let c be a constant in (0,min(g)).
Further define

fN(x) = g(x) + rN(x),

where rN(x) is a piecewise constant additive uniform noise on the interval [−c, c]. Then
it holds

EW 2
2

(
fN
⟨fN⟩

, g

)
= O

(
1

N

)
.

Proof of Theorem 4.66, [Yan+16]. Without loss of generality, define g = 1 on [0, 1]. For
x ∈

(
i−1
N
, i
N

]
we define rN(x) ∼= ri, where each ri is drawn from the uniform distribution

U [−c, c]. As we increase N up to infinity, rN(x) approximates the noise function r(x) on
[0, 1]. Since for each i, we have ri defined to be a random variable of uniform distribution
U [−c, c], we have Eri = 0 and therefore Er = 0. We furthermore define h = 1

N
and

xi = ih for i ∈ 0, . . . , N . The noisy density function fN is then given by

fN(x) = 1 + ri, x ∈ (xi−1, xi).

Next, we calculate the Wasserstein distance between fN and gN = 1+ rN to estimate the
effect of the uniform noise. Note that fN and gN have equal volume and gN is constant.
To this end, we use the explicit formula of the Wasserstein metric we found in equation
83, namely

T (x) = G−1(F (x)).

As first step, we derive the cumulative distribution function FN of fN . The density
fN(x) is piecewise constant in the intervals (xi−1, xi], and each interval contributes to
the total area described by the cumulative distribution function FN(x). To calculate the
cumulative distribution function at a specific point x, we need to sum the area of all
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preceding intervals and then add the contribution of the current interval (xi−1, xi].

FN(x) =
i−1∑
j=1

∫ xj

xj−1

fN(s)ds+

∫ x

xi−1

fN(x)ds

Since fN(s) is piecewise constant (i.e. constant on each interval), we obtain∫ xj

xj−1

fN(s)ds = (1 + rj)(xj − xj−1) = (1 + rj)h.

Thus

FN(x) =
i−1∑
j=1

(s+ rj)h+

∫ x

xi−1

fN(s)ds

⇔ =
i−1∑
j=1

(s+ rj)h+ ((1 + ri)(x− xi−1)) .

Since gN(x) is constant, we obtain the cumulative distribution function by calculating

GN(x) =

∫ x

0

gN(s)ds.

Recall that gN(x) = 1 + rN is constant. Therefore, we obtain

GN(x) =

∫ x

0

(x+ rN)

∫ x

0

1dt = (1 + rN)x

for x ∈ [0, 1]. The inverses of the cumulative distribution functions are given by

F−1
N (x) =

(x+ ((i− 1)ri)−
∑i−1

j=1)h

1 + ri

for x ∈
(∑i−1

j=1(1 + rj)h,
∑i

j=1(1 + rj)h
]

and

G−1
N (x) =

x

1 + rN

for x ∈ [0, 1 + rN ].

In [Yan+16], an upper bound for the Wasserstein metric was presented:

W 2
2 (fN , gN) =

∣∣F−1
N (t)−G−1

N (t)
∣∣2 dt ≤ 2h3

(1− c)2

N∑
i=1

(
i∑

l=1

rl − ih
N∑
k=1

rk

)2

.

Since the noise {ri}Ni=1 is independent and identically distributed, the following upper
bound for the expectation of the Wasserstein metric can be found:

E[W 2
2 (fN , gN)] ≤ C · h3 ·

N∑
i=1

Er21 ≤
C2

N
.
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A lower bound was established by

C1 ≤ E[W 2
2 (fN , gN)] ≤

C2

N
,

where C1 and C2 depend on c only [Yan+16].
As last step in this proof, we need to scale the densities to volume one. Following

[Vil03], we obtain

W 2
2

(
fN
⟨fN⟩

, g

)
=

(
1

1 + rN

)2

W 2
2 (fN , gN),

where (
1

1 + c

)2

≤
(

1

1 + rN

)2

≤
(

1

1− c

)2

.

From there, we obtain

EW 2
2

(
fN
⟨fN⟩

, g

)
= O

(
1

N

)
.

Remark 4.67. For the L2-norm it holds [Vil03; Yan18]

EW 2
2

(
fN
⟨fN⟩

, g

)
= O(1).

Therefore, the Wasserstein distance is much lesser sensitive to noise than the L2-norm.

4.6 Optimal Transport for Full Waveform Inversion

In Section 4.3, we found an explicit formulation for the optimal transport mapping in
the one-dimensional case, while we have seen in Section 4.4 that this is not possible for
higher dimensions. Since we focus on the one-dimensional case in this thesis, we stick to
the explicit formulation of the transport mapping. Recall that it is given by

T (x) = G−1(F (x))

as in equation [83]. Also recall that the FWI scheme consists of three main steps (cf.
Section 3.1):

1. Solve the forward problem.

2. Compare the solutions of forward modelling and observed data.

3. Update the velocity coefficient and go back to the first step.

We have already explained the first step in Sections 2.1 and 2.2. Clearly, for the second
step, we chose the quadratic Wasserstein metric, which is given by

W 2
2 (f, g) =

∫ 1

0

|t−G−1(F (t))|2f(t)dt. [102]
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For updating the velocity coefficient in the third step, we choose standard gradient descent
as optimisation method. As we have seen in equation 48, the corresponding scheme is
given by

mk+1 = mk − α
∂J

∂m
[mk], [103]

where J(m) is the distance between the synthetic and the observed data. Due to the
adjoint state method (see Section 3.3), we have found a formal representation of ∂J

∂m
:

∂J

∂m
= −

∫ T

0

d2u(x, t)

dt2
v(x, t),

where v is the solution to the adjoint wave equation. In equation [62], we stated the
adjoint wave equation when using the L2-norm as misfit function:

m(x)∂
2q(x,t)
∂t2

−∆q(x, t) = ∂J
∂u
,

q(x, T ) = 0,
∂qt
∂t
(x, T ) = 0.

When one changes the misfit function, the adjoint wave equation remains the same except
for the source term ∂J

∂u
(cf. Section 3.3 and [FBI06]). Thus, to apply the Wasserstein metric

to the FWI scheme, we need to calculate ∂J
∂u

for

J(m) := W 2
2 (f, g) =

∫ 1

0

|t−G−1(F (t))|2f(t)dt.

The dependency on u is implicitly given via f .
We assume that f(t) and g(t) are normalised to volume one and scaled to be positive,

continuous density functions on the time interval [0, T1], where T1 is the last time point
at the first receiver. To calculate the derivative of J with respect to u, we vary f by a
small amount δf [Yan+17b]:

W 2
2 (f, g) + δW (f, g) =

∫ T1

0

|t−G−1(F (t) + δF (t))|2 (f(t) + δf(t)) dt [104]

=

∫ T1

0

|t−G−1(F (t) + δF (t))|2f(t)dt [105]

+

∫ T1

0

|t−G−1(F (t))|2δf(t)dt+O((δf)2). [106]

Next, we approximate G−1(F (t) + δF (t)) by Taylor expansion:

G−1(F (t) + δF (t)) = G−1(F (t) +
dG−1(y)

dy
)
∣∣∣
y=F (t)

δF (t) +O((δf)2). [107]
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To obtain the first variation δW (f, g), we put [107] back into [105]:

δW (f, g) =

∫ T1

0

∫ T1

t

−2
(
s−G−1(F (s)

) dG−1(y)

dy

∣∣∣∣∣
y=F (s)

f(s)ds

 δf(t)dt [108]

+

∫ T0

0

|t−G−1(F (t))2δf(t)dt, [109]

where t ∈ [0, T1] and s ∈ [t, T1]. In term [108], we have plugged [107] in [105] and therefore
applied the derivative of the squared norm [105]. In summary, we obtain

δW (f, g) =

∫ T1

t

−2
(
s−G−1(F (s)

) dG−1(y)

dy

∣∣∣∣∣
y=F (s)

f(s)ds

+

∫ T0

0

|t−G−1(F (t))2dt

[110]

and thus have found the corresponding source term for the adjoint wave equation.

4.6.1 Trace–By–Trace Technique

So far we have developed a scheme for a one-dimensional reconstruction algorithm. To
achieve results in two dimensions with the one-dimensional formulation, we divide the
domain into its traces. Recall from Section 1.2, that a seismic trace is the time history
measured at one single receiver. Thus, we divide the domain into one-dimensional sections
defined by the receiver’s measurements over time [Yan+16]. In these sections, we consider
one receiver for a single source at a given time. In other words, we iterate through all
receivers for each source. When comparing the data trace by trace, we solve a bunch of
one-dimensional optimal transportation problems and eventually compute the sum over
all traces r. Therefore the final misfit becomes

K(m) :=
R∑

r=1

W 2
2 (f(xr, t;m), g(xr, t)). [111]

We summarise our steps for FWI with the trace-by-trace technique in the following corol-
lary.

Corollary 4.68. (Full waveform inversion with trace–by–trace technique)

1. Solve the forward problem by using finite differences (see Section 2.2)

2. Compare solutions of forward modelling and observed data with the Wasserstein
distance [102] for each receiver.

3. Add up the results as in equation [111].

4. Update the velocity coefficient by gradient descent 103 and go back to the first step.
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4.7 Data Normalisation

To apply optimal transport to seismic signals within the framework of full waveform
inversion, it is essential that both the synthetic and observed data meet specific criteria:
they must be positive and have a total volume of one each. Consequently, we need to
implement appropriate normalisation techniques to transform the signals accordingly. In
the following subsections, we present various data normalisation methods and evaluate
their suitability for use in FWI.

We wish for a proper scaling method to be suitable for both the adjoint state method
and the gradient update in FWI. This means that the normalisation techniques should not
only ensure the required properties of the data (positivity and volume of one) but also
maintain consistency and stability in both procedures. In summary, the normalisation
should be designed to fulfil:

1. Positivity and volume preservation: The transformed data must be positive and the
volume of the normalised values must be equal to one to ensure optimal transport
can be applied.

2. Differentiability: The normalisation functions should be differentiable to enable
the calculation of gradients within the FWI framework. This is crucial for the
application of the adjoint state method.

3. Stability: The methods should be numerically stable to avoid unwanted artifacts
during computations. This is important when applied to large datasets, where
small errors can propagate and lead to inaccurate inversion results.

4. Efficiency: The normalisation should be efficiently implementable to minimise com-
putation time during inversion. This is important since FWI is an iterative proce-
dure, which implies multiple passes over the data.

In the following subsections, we summarise normalisation methods discussed in literature
[EF14; Yan+17a; Yan+17b; Yan+19]. We define ⟨f⟩ :=

∫∞
−∞ f(t) dt.
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4.7.1 Linear Scaling

Definition 4.69. (Linear Scaling, [Yan+19]) We scale f and g by adding constant c,

f̃ =
f(t) + c

⟨f + c⟩ , g̃ =
g(t) + c

⟨g + c⟩ ,

such that c = min
t
(f(t), g(t)).

The linear scaling provides a bijection between the original and the normalised data,
such that no phase information is lost. However, it does not necessarily guarantee con-
vexity as will be discussed in Section 4.8. Nevertheless, in the numerical examples in
Section 5, the linear scaling tends to have at least fewer local minima compared to the
L2-norm.
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(a) Two Ricker waves
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(b) Ricker waves from Figure 23a nor-
malised by the linear scaling

Figure 23: Two Ricker waves: non normalised (left), normalised (right)

4.7.2 Partial Scaling

Definition 4.70. (Partial Scaling, [EF14; Yan18]) We divide f and g by their positive
and negative parts, such that f+ = max f, 0 and f− = max−f, 0. Therefore, the scaled
partial signals are given by

f̃ =
f+

⟨f+⟩ , g̃ =
g+

⟨g+⟩

and analogously for the negative sign:

f̃ =
f−

⟨f−⟩ , g̃ =
g−

⟨g−⟩ .
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(a) A Ricker wave
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(b) Positive parts of the Ricker wave in Fig-
ure 24a normalised (red), negative parts of
24a normalised (black)
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(c) Sum of positive and negative normalised
parts

Figure 24: A Ricker wave normalised by partial scaling

With partial scaling, the quadratic Wasserstein metric is given by the sum of both the
scaling of the positive and negative parts:

W 2
2

(
f+

⟨f+⟩ ,
g+

⟨g+⟩

)
+W 2

2

(
f−

⟨f−⟩ ,
g−

⟨g−⟩

)
.

In [EF13] and [Yan+16], the concept of positive part scaling was further studied. While
this approach successfully preserved convexity with respect to shifts, its application to
FWI with realistic datasets such as the Marmousi model was outlined to be challenging.

4.7.3 Absolute Value Scaling

Definition 4.71. (Absolute Value Scaling, [Yan+19]) We scale f and g by composition
with the absolute value function:

f̃ =
|f(t)|

⟨max(g(t))⟩ , g̃ =
|g(t)|

⟨max(g(t))⟩ .

Due to the non–differentiability of the absolute value function at zero, it is not suitable
for the adjoint state method, which relies on the computation of the gradient ∂J

∂f
.
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While we could add a very small ε > 0 to make the function differentiable, this would
distort the data any further. Additionally, like the squared scaling, absolute value scaling
does not preserve a bijection to the non-normalised data points.
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(a) A Ricker wave
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(b) Normalisation of 25a by the absolute
value scaling

Figure 25: Two Ricker waves: non normalised (left), normalised by the absolute value
scaling (right)

4.7.4 Squared Scaling

Different to the absolute value scaling, the squared scaling works well with the adjoint
state method due to its differentiability.

Definition 4.72. (Squared Scaling, [Yan18]) We scale f and g by squaring and afterwards
normalising them to ensure volume balance:

f̃ =
f 2

⟨g2⟩ , g̃ =
g2

⟨g2⟩ .

Unfortunately, this method can introduce high frequencies and therefore phase infor-
mation my be lost. This can be problematic especially for large-scale inversions. Un-
like the linear scaling, the quadratic scaling does not maintain a bijection to the non-
normalised data points.
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(a) A Ricker wave
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(b) Normalised by the squaring scaling

Figure 26: Two Ricker waves: non-normalised (left), normalised by the squaring scaling
(right)

4.7.5 Exponential Scaling

Definition 4.73. (Exponential scaling, [Yan18; EF13])

f̃(t) =


f(t)+ 1

c

⟨f(t)+ 1
c
⟩ , f(t) ≥ 0,

1
c
exp(cf(t))

⟨ 1
c
exp(cf(t))⟩ , f(t) < 0

for c ∈ R>0. The choice of parameter c depends on the data set [Yan18]. For the numerical
simulations in Section 5, we will define the parameter c as

c = min(f, g) · τ,

where τ ∈ (0, 1] and f, g are the synthetic and observed data respectively. In Figure 27b
the parameter is c is chosen as above for different values of τ .
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Figure 27: Two Ricker waves: non-normalised (left), normalised by the exponential scaling
(right)
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We can relate exponential scaling in relation to linear scaling and partial scaling. This
can be seen by a Taylor expansion of the exponential part in definition [4.73]. Define
h := 1

c
exp(cf(t)). Since for all x ∈ R it holds d

dx
exp(x) = exp(x), the Taylor expansion

T of h is given by

Th(x; 0) =
∞∑
n=0

(cf(t))n

n!
≈ 1

c
·
[
1 +

cf(t)

1!
+

(cf(t))2

2!
+

(cf(t))3

3!
+ . . .

]
=

1

c
+ f(t) +

cf(t)2

2
+
c2f(t)3

3!
+ . . . .

Corollary 4.74. For small values of c, especially for 0 < c < 1, the scaling does not
affect the shape of the signal except for a shift of 1

c
. Therefore it is similar to the linear

scaling.

Corollary 4.75. For large values of c, h and therefore also f̃ , converges to f+ = max{f, 0}.
The exponential scaling method can be seen as a compromise between the positive part

scaling – which maintains convexity – and the linear scaling, which, despite not preserving
convexity, was found yielding satisfactory results with realistic datasets in [Yan18]. With
the exponential scaling, f̃ is suitable for optimisation problems, which follows directly by
the next lemma.

Lemma 4.76. Assuming f(t) is a smooth signal, then f̃ is a C1 function.

Proof of Lemma 4.76. To prove that f̃ is a C1 function, we need to show smoothness of f̃
and its once smooth differentiability at the transition point, which is f(t) = 0. First, note
that the normalisation factor ⟨·⟩ in both cases of f̃ equals 1

c
at f(t) = 0. The condition

for smoothness is

lim
f(t)→0+

f̃(t) = lim
f(t)→0−

f̃(t).

For f(t) ≥ 0 it holds

lim
f(t)→0+

f̃(t) =
1
c

⟨·⟩

and for f(t) < 0 it holds

lim
f(t)→0−

f̃(t) =
1
c
exp(cf(t))

⟨·⟩ =
1
c
exp(0)

⟨·⟩ =
1
c

⟨·⟩ .

Therefore, f̃ is smooth. Next we show differentiability. For f(t) ≥ 0 it holds

lim
f(t)→0+

df̃(t)

dt
=

df(t)
dt

⟨·⟩ .

For f(t) < 0 it holds

lim
f(t)→0−

df̃(t)

dt
=

1
c
cdf(t)

dt
exp(cf(t))

⟨·⟩ =
df(t)
dt

⟨·⟩ .

Therefore, f̃ is continuously differentiable.
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4.8 The Influence of Data Normalisation on the Behaviour of the
Wasserstein Metric

In this section we discuss the influence of the data normalisation process on the behaviour
of the Wasserstein metric. When applied to two Ricker waves that are identical except for
a horizontal shift, all normalisation methods proposed in the prior Subsections 4.7.2 - 4.73
(absolute value scaling, partial scaling, squared scaling, exponential scaling) except for
the linear scaling lead to a strictly convex Wasserstein metric with respect to horizontal
shifts.

Figure 28: Two time-shifted Ricker waves
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Figure 29: Wasserstein metric between shifted Ricker waves from Figure 28, which were
normalised by the methods proposed in 4.7.2 - 4.7.5.
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In case of linear scaling, the Wasserstein metric is not convex as can be seen in Figure
30. Nevertheless, it yields slightly better results than the L2-norm (see Figure 15 in
Section 3.4), since the result is void of local minima.
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Figure 30: Wasserstein distance with respect to the shift values between the linearly scaled
Ricker waves from Figure 23b.

The lack of convexity as seen in the numerical results does not contradict Theorem 4.51.
This is because the divisor of the linear scaling

f̃ =
f(t) + c

⟨f + c⟩

causes the weights of the integrals not to be equal. In Theorem 4.51, the second signal
fs is defined as a shifted version of the first signal f . However, in the context of FWI,
we compare synthetic and observed data, which are independent of each other. To this
end, assume that dobs is identical to dsyn except for a time shift, meaning the signals exist
in different domains. Consequently, when integrating each signal separately, their values
will differ. As a result, the scaled signals are no longer shifts of each other and Theorem
4.51 does not apply.

Moreover, following the findings in [Yan18], linear scaling can mitigate the absence of
zero frequencies in dsyn and dobs. This can cause the transport to be local instead of global
[Yan18]. Global transport is a transportation process in which mass is shifted within the
same phase (i.e., positive values are transported to positive values and negative values
to negative values). For an illustration of local and global transport, see Figure 31. In
essence, these results in [Yan18] can be explained as follows:

1. Signals without zero frequencies exhibit Fourier transforms that lack oscillations.

2. In the absence of oscillations, phase differences cannot be distinguished.

3. Consequently, the transport may appear to be local rather than global.
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Figure 31: Global transport (black arrows) and local transport (orange and purple arrows)

To explain the first point, recall the definition of a Fourier transform [AW08]:

f̂(ω) =

∫ ∞

−∞
f(t)e−iωt dt, [112]

where f(t) is the time-domain signal and f̂(ω) is its Fourier transform in the frequency
domain. Now, consider the case where the frequency ω = 0. Substituting ω = 0 into the
definition, we get

f̂(0) =

∫ ∞

−∞
f(t)e0 dt =

∫ ∞

−∞
f(t) dt. [113]

Here, the exponential term becomes 1, resulting in a constant value that corresponds
to the integral of f(t). This shows that when zero frequencies are present, the Fourier
transform represents the overall amplitude of the signal without oscillations. As a result,
signals lacking zero frequencies fail to produce this constant term, which contributes
to the absence of oscillations and impairs the ability to distinguish phase differences.
Consequently, mass from the same phase of one signal is not transported back into the
corresponding phase of the other signal. Instead, the transport may occur locally. Thus,
W 2

2 (d
syn, dobs) is not convex [Yan18].
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4.9 Pseudocode for FWI

Now that we have discussed all the steps necessary for the FWI process, we summarise
the algorithm in the following pseudocode.
Algorithm 1: Full Waveform Inversion (FWI)
Input: num_receivers, num_shots, fwi_iterations, true_model m,

initial_model m0, source_coordinates, receiver_coordinates, observed
data g

Output: misfit values and gradient
1 Initialize parameters;
2 Compute synthetic data f with forward operator using Finite differences;
3 for k = 0 to num_shots - 1 do
4 Compute forward wave field with Finite differences;
5 Initialize Wasserstein sum to 0;
6 for rec = 0 to num_receivers - 1 do
7 Normalise f and g;
8 Compute Wasserstein distance W 2

2 (f, g);
9 Update misfit function:

∑num_receivers
r=1 W 2

2 (f, g);
10 Update adjoint source term ∂W 2

2 (f, g);

11 Define step length α for gradient descent;
12 Run gradient descent with adjoint source term ∂W 2

2 (f, g):
mk+1 = mk − α

∂W 2
2

∂m
[mk];

13 Initialize history array for misfit values;
14 for iteration = 0 to fwi_iterations - 1 do
15 Compute misfit and adjoint source term;
16 Update model estimate using gradient descent;
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5 Numerical Simulations
To discretise the scheme we employ Finite Differences as explained in Section 2.2. The
source term of the adjoint wave equation can be discretised using the following approach:

δW [f, g] =

(
U · diag

( −2f [t]dt

g(G−1 ◦ F [t])

))
· (t−G−1 ◦ F [t])∆t+ |t−G−1 ◦ F [t]|2∆t,

[114]

where ∆t is the time domain spacing.
In the following subsections, we describe the experimental design we chose for the

simulations. Of course, the results of the experiments depend not only on the choice of the
misfit function and the gradient based optimisation method we discussed in the previous
sections. The results also depend on the parameters chosen during the experimental
design, as there are many possibilities for the sources and receivers to be placed. To
further optimise the latter parameters was not part of this thesis and the results serve
more as a proof of concept for using the Wasserstein metric in FWI.
The following simulations were done using Python with Devito (see [Lou+19; Lup+20]).
The corresponding code can be found in the appendix.

5.0.1 Camembert model I

The Camembert model is a synthetic velocity model. This model is a circular inclusion
in a homogeneous medium and was proposed in [GVT86]. The experiment is designed
as follows: We set the circle with radius 0.1 km located in the center of the rectangular
velocity model. The velocity is 3 km/s inside the circle and 2.5 km/s outside the circle
in the homogenous medium (see Figure 32a). For the initial velocity model we choose a
smooth velocity of 2.5 km/s (see Figure 32b).
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Figure 32: True and initial velocities of the Camembert model

Nine equally spaced sources are placed along a vertical line extending from the surface
to a depth of 1 km. In addition, 101 receivers are placed at a horizontal distance of 1 km
from the origin, aligned vertically. The nine sources are represented by the dots on the
left of Figure 33a, while the receivers on the right are illustrated by a vertical line due to
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their larger quantity. The linear scaling is applied for normalising the seismic data when
using the Wasserstein metric as misfit function.

The FWI algorithm starts with the initial velocity. After 15 iterations of FWI with
the Wasserstein metric, the algorithm is able to roughly reconstruct the circular structure
with a radius of 0.1 km, see Figure 33a.
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Figure 33: After 15 iterations of FWI with 9 shots and 101 receivers

In the upper and lower third of this circular structure, a velocity of 2.90 km/s was
reconstructed. In the middle third, a speed of 2.85 km/s was calculated. In comparison,
the algorithm which uses the L2 distance as misfit function determined a more oval-
shaped structure after 15 iterations. The maximum velocity in the L2 based algorithm
was reconstructed to be 2.67 km/s after 15 iterations, see Figure 33b.

5.0.2 Camembert model II

The experiment is designed as described in Section 5.0.1, except for the true velocity,
which is set to 6 km/s.
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Figure 34: True and initial velocities of Camembert model
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In this section, we present the results obtained with the FWI algorithm when applying
linear and exponential scaling. We specifically compare the effect of different parameter
values for the exponential scaling.

As described in Section 4.73, the exponential scaling is defined as

f̃(t) =


f(t)+ 1

c

⟨f(t)+ 1
c
⟩ , f(t) ≥ 0,

1
c
exp(cf(t))

⟨ 1
c
exp(cf(t))⟩ , f(t) < 0

for c ∈ R>0. Following [Yan18], the parameter must be selected based on the specific
seismic data set. In this thesis, the parameter c was chosen similarly to the parameter
used in linear scaling but with a damping factor τ ∈ (0, 1]:

c = min(dobs, dsyn) · τ.

As seen in Section 4.73, exponential scaling is similar to linear scaling for small values
0 < c << 1.

We run the FWI algorithm for c = 0.1, c = 0.01 and c = 1 and compare the results.
Additionally, we evaluate the algorithm using the L2-norm as misfit function.

With linear scaling (see Figure 5.0.2), a maximum velocity of 4.04 km/s was recon-
structed after 30 iterations of FWI. After 100 iterations, the maximum velocity reached
6.0 km/s and the reconstructed shape was quite circular.

When applying exponential scaling, the results for c = 0.01 and c = 0.1 are similar
to those obtained with linear scaling. However, for c = 1, the structure becomes more
oval-shaped, and the velocity in the inner region is 5.85 km/s. Furthermore, the misfit
values decrease consistently when using exponential scaling (see Figures 37a - 37c).

Using the L2-norm, a maximum velocity of 3.96 km/s was reconstructed after 100
iterations of FWI. However, the inner structure is quite circular. Comparing the results
obtained with the L2-norm and the Wasserstein metric, we find that the Wasserstein
distance provides a promising misfit function. Specifically, the misfit value using the L2-
norm did not lead to significant improvements in the reconstruction results, developing
from maximum velocity of 3.35 km/s after 30 iterations (see Figure 35e) to 3.96 km/s
after 100 iterations (see Figure 36e).
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Figure 35: After 30 iterations of FWI with 9 shots and 101 receivers
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Figure 36: After 100 iterations of FWI with 9 shots and 101 receivers
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Figure 37: After 100 iterations of FWI with 9 shots and 101 receivers
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6 Conclusion
The results of the numerical simulations in Section 5.0.1 align well with the theoretical con-
siderations outlined earlier. The full waveform inversion process utilising the Wasserstein
distance as the misfit function demonstrated a more accurate model update compared to
the L2-based approach. This was also evident in Section 5.0.2, where the initial model
was further away from the true model. However, additional enhancements are necessary
to improve the algorithm’s efficiency.

A critical aspect to consider is the choice of the optimisation method. In this thesis,
we used the gradient descent method with which we were able to show the expected
difference between the Wasserstein metric and the L2-norm as misfit functions respectively.
Using alternative gradient-based techniques, such as Gauss-Newton iterations or quasi-
Newton methods like LM-BFGS, could yield more accurate results more quickly. In
[Yan18], conjugated gradient descent was successfully used in context of seismic FWI.
Additionally, global optimisation methods, such as swarm-based optimisation, have seen
recent advancements [LTZ24a] and may also be beneficial, especially to avoid getting
stuck in local minima. This leads to the second key point, data normalisation.

While the Wasserstein metric exhibits strict convexity with respect to horizontal shifts
for various normalisation methods applied to Ricker waves, this property does not gen-
erally hold for real seismic data. Achieving (strict) convexity with respect to horizontal
shifts is desirable, as horizontal shifts are a primary characteristic of seismic waves’ be-
haviour. Although the linear scaling does not guarantee convexity, it has shown promising
results, as was also demonstrated in [Yan18]. To enhance the efficiency of the FWI pro-
cess, it is essential to minimise the occurrence of local minima and optimise the gradient
update step accordingly.

Moreover, the wave equation as a model for the propagation of seismic waves is quite
approximative. For a more realistic modelling operator, the elastic wave equation would
be a more suitable choice. Linear elasticity was recently studied in the context of FWI
in [NMR24]. It would be interesting to apply the elastic wave equation together with the
Wasserstein metric in the FWI framework. For that, it would be necessary to revisit the
calculation of the adjoint equation and the derivative of the source term of the adjoint
equation (compare to Sections 3.2 and 3.3) regarding the new model equation.
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A Python code for FWI algorithm

import math
import multiprocessing
import matplotlib.pyplot as plt
import numpy as np
from devito import configuration, Eq, Operator, Function, Min, Max, mmax
from examples.seismic import AcquisitionGeometry, Receiver, demo_model, plot_velocity
from examples.seismic.acoustic import AcousticWaveSolver
from scipy.integrate import trapezoid, cumulative_trapezoid
from scipy.ndimage import gaussian_filter

# Setting options for logging
configuration['log-level'] = 'WARNING'
np.set_printoptions(linewidth=200)

# Number of receivers
num_receivers = 101
# Number of source positions
num_shots = 9

shape = (101, 101) # Number of grid point (nx, nz)
spacing = (10., 10.) # Grid spacing in m. The domain size is now 1km by 1km
origin = (0., 0.) # Need origin to define relative source and receiver locations

# Setting model options for Marmousi and Camembert model respectively

# Marmousi model
# Synthetic data
# model = demo_model('marmousi2d-isotropic', data_path='data-master/', origin =

origin, shape=shape,↪→

# spacing=spacing, nbl=20)
# Observed data (obtained by a Gaussian filter, determined by sigma)
# model0 = demo_model('marmousi2d-isotropic', data_path='data-master/',

origin=origin, shape=shape, spacing=spacing,↪→

# grid=model.grid, nbl=20)
# sigma = 30
# model0.vp.data[:] = gaussian_filter(model0.vp.data, sigma=sigma)
# Set time interval for measurements
# t0 = 0
# tn = 3500
# Frequency for model equation's source (Ricker wavelet)
# f0 = 0.025

# Camembert model
# Synthetic data
model = demo_model('circle-isotropic', vp_circle=6, vp_background=2.5, nbl=40)
# Observed data
model0 = demo_model('circle-isotropic', vp_circle=2.5, vp_background=2.5, nbl=40,

grid=model.grid)↪→

# Set time interval for measurements
t0 = 0
tn = 1000
# Frequency for model equation's source (Ricker wavelet)
f0 = 0.01
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# The source is placed horizontally in the center, vertically on the left, in 20m
depth↪→

src_coordinates = np.empty((1, 2))
src_coordinates[0, :] = np.array(model.domain_size) * .5
src_coordinates[0, 0] = 20.

# The receivers are equidistantly positioned in depth at 980m distance to the origin
rec_coordinates = np.empty((num_receivers, 2))
rec_coordinates[:, 1] = np.linspace(0, model.domain_size[1], num_receivers)
rec_coordinates[:, 0] = 980.

# Geometric setting to obtain observed data
geometry = AcquisitionGeometry(model, rec_coordinates, src_coordinates, t0, tn,

f0=f0, src_type='Ricker')↪→

# Compute synthetic data with forward operator with finite differences
solver = AcousticWaveSolver(model, geometry)
solver.forward(vp=model.vp)
# Compute initial synthetic data with forward operator
solver.forward(vp=model0.vp)

# Prepare the varying source locations' sources
source_locations = np.empty((num_shots, 2))
source_locations[:, 0] = 30.
source_locations[:, 1] = np.linspace(0., 1000, num_shots)

# Plot the observed and initial synthetic data
# plot_velocity(model, source=source_locations)
# plot_velocity(model0, source=source_locations)

# Computations to obtain the quadratic Wasserstein metric between synthetic and
observed data↪→

# with the explicit formula in 1D
def wasserstein_distance(f: np.ndarray, g: np.ndarray, t: np.ndarray):

s = f.size
dt = t[1] - t[0]

# Cumulative distribution functions for synthetic data f and observed data g
with values taken exactly inbetween the↪→

# measurement times of f and g respectively
F_tmp = cumulative_trapezoid(f, t) # type: np.ndarray
G_tmp = cumulative_trapezoid(g, t) # type: np.ndarray

# Corrected cumulative distribution functions with same time points as f and
g↪→

F = np.array([0] + [F_tmp[i]/2 + F_tmp[i+1]/2 for i in range(F_tmp.size - 1)]
+ [F_tmp[-1]])↪→

G = np.array([0] + [G_tmp[i]/2 + G_tmp[i+1]/2 for i in range(G_tmp.size - 1)]
+ [G_tmp[-1]])↪→

# G^{-1}(F(t)) – assigns the time b to each time a, for which G(b) = F(a)
holds↪→

G_i = np.ones(s) * t[-1]
# fill G_i for every time point
for i in range(F.size):

# search for the fitting value in G
for j in range(G_i.size - 1):
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if F[i] < G[j+1]:
#Time point lies between j and j + 1, therefore

interpolate↪→

G_i[i] = t[j] + (F[i] - G[j]) / (G[j + 1] - G[j]) *
dt↪→

break

tGF = (t - G_i)
w = trapezoid(tGF ** 2 * f, t)

#Computation of adjoint source term corresponding to the Wasserstein distance
g_G_i = np.zeros(s) + g[-1]
# Assigns to each time value from G^{-1} (for each time point of t) the value

from g↪→

for k in range(s):
index = int(math.floor(G_i[k] / dt))
frac = G_i[k] / dt - index
if index < s - 1:

g_G_i[k] = g[index] + frac * (g[index + 1] - g[index])

a = -2 * tGF / g_G_i * f
adj = [float((trapezoid(a[timepoint:], t[timepoint:]) + tGF[timepoint] ** 2)

* dt) for timepoint in range(f.size)]↪→

return float(w), list(adj)

def linear_norm(f: np.ndarray, g: np.ndarray, t: np.ndarray):
c = np.min(np.concat((f, g))) * -1.1
f_norm = f + c
g_norm = g + c
f_norm /= trapezoid(g_norm, t)
g_norm /= trapezoid(g_norm, t)

return f_norm, g_norm, t

def exp_norm(f: np.ndarray, g: np.ndarray, t: np.ndarray):
c = np.min(f + g) * -0.1
exp_norm = np.vectorize(lambda f_x: f_x + 1 / c if f_x >= 0 else 1 / c *

np.exp(c * f_x))↪→

f_norm = exp_norm(f)
g_norm = exp_norm(g)
f_norm /= trapezoid(g_norm, t)
g_norm /= trapezoid(g_norm, t)

return f_norm, g_norm, t

# Template for L²-norm
def l2norm(f: np.ndarray, g: np.ndarray, residual):

l2 = 0.5 * (f - g) ** 2
residual.data[:] = f.data[:] - g.data[:]
return l2, residual

def calc_receiver(args):
return wasserstein_distance(*linear_norm(*args))
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# Create gradient function for FWI
def fwi_gradient(vp_in):

# Create symbols to hold the gradient
grad = Function(name="grad", grid=model.grid)

# Create placeholders for the data and the data residual
residual = Receiver(name='residual', grid=model.grid,

time_range=geometry.time_axis,↪→

coordinates=geometry.rec_positions)
d_obs = Receiver(name='d_obs', grid=model.grid,

time_range=geometry.time_axis, coordinates=geometry.rec_positions)↪→

d_syn = Receiver(name='d_syn', grid=model.grid,
time_range=geometry.time_axis, coordinates=geometry.rec_positions)↪→

t = residual.time_values[:]
objective = 0.

for k in range(num_shots):
# Update source location
geometry.src_positions[0, :] = source_locations[k, :]

# Generate synthetic data from true model
solver.forward(vp=model.vp, rec=d_obs)

# Compute smooth data and full forward wave field u0
_, u0, _ = solver.forward(vp=vp_in, save=True, rec=d_syn)

# Create pool for parallelisation
pool = multiprocessing.Pool()
results = pool.map(calc_receiver, [(list(d_syn.data[:, rec]),

list(d_obs.data[:, rec]), t) for rec in range(num_receivers)])↪→

# Captures the results, sums the distances and saves the residual
objective += sum([r[0] for r in results])
residual.data[:] = np.array([r[1] for r in results]).transpose()

solver.gradient(rec=residual, u=u0, vp=vp_in, grad=grad)

objective /= num_shots * num_receivers

return objective, grad

# Run FWI with gradient descent
fwi_iterations = 30
history = np.zeros(fwi_iterations)
for iteration in range(fwi_iterations):

# Compute the functional value and gradient for the current model estimate
obj, direction = fwi_gradient(model0.vp)

# Plot the FWI gradient
# plot_image(-direction.data, vmin=-1000, vmax=1000, cmap="jet")

# Plot the difference between the true and initial model.
# plot_image(model0.vp.data - model.vp.data, vmin=-0.1, vmax=0.1, cmap="jet")

93



# Store the history of the functional values
history[iteration] = obj

# Artificial step length for gradient descent; for smaller step size for
smaller objective values choose first alpha↪→

# alpha = .5 / mmax(direction) * obj**2 / 4
alpha = .05 / mmax(direction)
# Update the model estimate and enforce minimum/maximum values
update = model0.vp + alpha * direction
update_eq = Eq(model0.vp, Max(Min(update, 6), 2.5))
Operator(update_eq)()
# plot_velocity(model0)
# plot_velocity(model0)
# Log the progress made
print('Objective value is %f at iteration %d' % (obj, iteration + 1))

plot_velocity(model0)
# Plot values of Wasserstein distance in the different iterations (before the update

step)↪→

plt.figure()
plt.scatter(range(fwi_iterations), history)
plt.xlabel('Iteration')
plt.ylabel('Misfit value')
plt.title('Convergence')
plt.show()
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