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1 Introduction

The BGK (Bhatnagar-Gross-Krook) equation models one or multiple gases and got intro-
duced by P. Bhatnagar, E. Gross, and M. Krook in 1954. The state of one gas is given by
its one-particle distribution function f(t,x,v), where f(t, z,v)dzdv is equal to the number
of gas-particles in the space-element dx around x which have the velocity in the range dv
around v. The evolution of the one-particle distribution function is modeled by a kinetic
differential equation called the BGK equation [5].

Kinetic equations model the gas as the distribution of its particles. They differ from
macroscopic equations which model the macroscopic quantities density p, mean velocity
u and temperature 7" independently [31][5].

The BGK equation got introduced with the motivation of mathematically simplifying the
Boltzmann equation [7], which is also a kinetic description of gas via a partial differential
equation. Essential attributes of the Boltzmann equations, such as the conservation laws
for mass, momentum, and energy, are preserved in the BGK equation [5].

In May 2021, Lukas Einkemmer, Jingwei Hu, and Lexing Ying published an article
on the application of the dynamical low-rank algorithm for the Boltzmann-BGK equa-
tion close to the compressible viscous flow regime [I1]. This went along with publica-
tions of the application of the dynamical low-rank algorithm to diverse kinetic equations
[23],[12],]13],]10],]14] in which the algorithm was shown to provide efficient approxima-
tions. This article is the basis of this master thesis.

Low-rank approximations aim to approximate a matrix with another one of lower rank
than the original matrix while preserving the information as well as possible [22][9]. The
model reduction via low rank approximation has a wide area of application from im-
age/video processing [33][32] to quantum chemistry [26].

This matrix can be given explicitly or, in our case, as a differential equation. An example
would be the differential equation

OF = H(F) with F € R™*" (1.1)

for which we want to find an approximate solution ¥ € R™*™ with a smaller algebraic
rank than F. The best approximation for a given rank r and for time ¢ satisfies

Y (t) = F(t)|| =min VY € M™"

where M™*™ is the manifold of matrices with algebraic rank r in R”*" [21].

The best approximation of rank r can be calculated using the singular value decomposi-
tion (SVD) [18|, which takes only the r largest eigenvalues into account.

The SVD is the best approximation but is also expensive from a computational standpoint
which is why we consider the dynamical low-rank algorithm.

The dynamical low-rank approximation is a low-rank technique where we factorize the
matrix we want to approximate. In our example (1.1)) we search the approximation Y (¢)
of fixed rank r which satisfies

10,Y — HY(t))|| =min VY e M™"
We perform the factorization

Y(t) = XSOV = Y Xi(t)Sy(0)V;(1)

ij=1



with X (t) € R™*" S(t) € R™" and V(t) € R™™". Hereby the matrix S(t) is invertible
but is not necessarily diagonal as opposed to the singular value decomposition.
Furthermore X (¢) and V (¢) are orthonormal which means X (¢)7X(t) = V(¢t)"V (¢) = I,
[21]. This decomposition becomes unique by additionally imposing the gauge conditions
0, XTX =0 and 0;VTV = 0 which will be shown later in section [2.3]

Using the projector-splitting algorithm introduced in [24], we transform the differential
equation ([1.1]) into three separate differential equations of lower dimension regarding the
matrices X, S and V.

Fitting areas of applications for the dynamical low-rank algorithm are systems where
the underlying solution is known to be low-rank.
The solution is low-rank if a reasonably small rank r exists such that

F(t) = ) Xi(t)S;(t)Vi(t)T

ij=1

Thereby the rank of the approximation can be chosen accordingly low for great results.
In the previously mentioned publications [23],[12],[13],[10] and [I4] the authors applied
the algorithm to (edge-)cases where the solution was known to be low-rank.

In publication [I1], the low-rank approximation is not directly applied to the BGK equa-
tion, which describes the behavior of the one-particle probability density function f [5].
The reason is that the solution of f is not low-rank. Instead, the approximation is applied
to the introduced function g, defined by the relation f = Mg with the Maxwellian M.
Hereby ¢ is shown to be low-rank using the Chapman-Enskog expansion [4].

Because gases often appear as gas mixtures instead of single gases, there is a need for
fitting approximations. Applications for gas mixtures are the air or plasma (where we
deal with a mix of ions and electrons) [28]. There is a variety of models for gas mixtures
e.g the models of Klingenberg, Pirner, Puppo [19], Hamel [16], Asinari [3], Garzo, Santos,
Brey [15] and Sofena [29].

These models utilize multiple collision terms on the right side, where one accounts for
the interaction of the gas with itself and the remaining collision terms account for the
interactions with other gases of the mixture [28§].

There is also another model by Andries; Aoki, and Perthame [I], which only uses one
collision term on the right-hand side, which accounts for all interactions. The model also
fulfills the indifferentiability principle, which says that if the properties of all gas species
are the same, then the equations get reduced to the original single species BGK equation

.

In this master’s thesis, we want to apply the dynamical low-rank algorithm to non-reactive
gas mixtures using a BGK-type model for gas mixtures. Because the previously mentioned
models with multiple collision terms would not allow us to perform a similar transforma-
tion to f = Mg for the differential equations, we chose the model of Andries, Aoki, and
Perthame [I].

Applying the low-rank algorithm without this transformation would mean that the un-
derlying solution is not low-rank, as the Maxwellians are not low-rank.

Therefore we want to apply the dynamical low-rank algorithm to non-reactive gas mix-
tures using the BGK-type model of Andries, Aoki, and Perthame [I]. This algorithm will
expand on the previous work of Lukas Einkemmer, Jingwei Hu, and Lexing Ying and
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their application of the algorithm to the BGK equation [11].

Furthermore, we will observe whether we can retain similar efficiency as for the BGK
equation studied in [II]. The model [I] has no limits to the number of gases, but for
simplicity, we will consider two-component gases.

In [IT], the low-rank approximation is also derived for non-constant temperatures. Still,
the dynamical low-rank algorithm is solely applied to the isothermal case to simplify the
procedure and focus on the algorithm. The chosen model for gas mixtures introduces
interspecies velocities and temperatures as additional quantities used in the Maxwellians.
The interspecies temperatures depend on all gases’ densities, velocities, and temperatures.
Therefore, we cannot restrict ourselves to an isothermal case as in [11] without restricting
the stated macroscopic quantities.

Therefore we start by deriving the dynamical low-rank algorithm for the BGK equation
according to [I1] for the non-isothermal case. Based on this, we can apply the dynamical
low-rank algorithm to the model of Andries, Aoki, and Perthame for gas mixtures.



2 The dynamical low-rank algorithm for the
Boltzmann-BGK equation

In Einkemmers’, Hus’, and Yings’ work [I1], which was publicized in 2021, the dynamical
low-rank algorithm for the BGK equation is introduced and applied to the isothermal
case with constant temperature 7" = 1.

In this section, we consider an extension of the algorithm to non-constant temperatures.

We start with an introduction to the BGK equation in section Next, we perform
a Chapman-Enskog expansion [4] of the BGK equation in section With the results of
the expansion we can find a low-rank structure in the BGK equation in the compressible
regime. This allows us to apply the dynamical low-rank algorithm.

In section we consider the general scheme of the low-rank algorithm applied to BGK
equation and its derivation.

Next, we consider the dynamical low-rank algorithm in section The dynamical low-
rank algorithm entails the calculation of the density, mean velocity, energy and tempera-
ture and shows all introduced steps and quantities in detail.

In section [2.5] we consider the time discretization of the algorithm and numerical compu-
tations which were not yet disclosed.

2.1 Introduction

We consider the BGK equation proposed by Bhatnagar, Gross, and Krook [5], which
models a one-component system. We assume that the mass equals one, whereby the
number density n and the density p are equal. The BGK equation defines the one-
particle probability density function f. f(¢,z,v) describes the density of the gas at time
t, at place x with velocity v. The BGK equation reads

v(t, )

Of(t,x,v) +v-Vuf(t,z,v) = (M(t,z,v) — f(t,x,v)) (2.1)

forallt > 0,2 € Q C R% v € R%. We use the Maxwellian M given by

o) (- ufho)f
S s (M) 22

The macroscopic quantities density p, mean velocity u, and temperature 7" are given by
the moments of f:

p(t,z) = g flt,z,v) dv
1
u(t,z) = m/mdv vf(t,z,v) dv (2.3)
1
T(t,x) = W/Rdv lv —u(t,z)*f dv

The viscosity v is given by the equation
v(t,r) = p(t,x)T(t,z)"™, we0.51]

with constant w. ¢ is the Knudsen number and can be calculated as the mean free path
and characteristic length ratio. The mean free path is the average path of the gas particles
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between collisions [§]. The characteristic length describes the physical system in which
the gas exists. It can be calculated as the ratio of the volume to the surface or the average
distance of the vertices of the system [20].

A low Knudsen number will be essential for applying the dynamical low-rank algorithm,
which we will see in the following sections [2.2] and The value of the Knudsen number
¢ indicates the flow regime.

For ¢ — 0 the compressible Euler equations [30] describe the flow (Euler Regime). In the
case 0 < ¢ < 0.01 the flow is described by the compressible Navier-Stokes (NS) equations
[6] (NS regime). The classification of the flow regimes are according to |11 p.2|.

2.2 Fluid limits

In this section, we perform the Chapman- Enskog expansion [4] and derive the fluid
dynamic limits of the BGK equation [5].

The results will be needed to find a low-rank structure within the density function f in
the fluid limit in the next section. The main results of the section are also shown in [11],
but we additionally perform all derivations of the results. The derivations are done to
gain an understanding of the steps.

We will start with the derivation of the compressible Euler equations, which are obtained
for e — 0.

We can derive from ((2.1)

f=M=—(@f +v-V.f) (24)
therefore we can write for small ¢

f=M+0O(e). (2.5)
We will capture the O(e)-term by introducing the function f;

f=M+¢ef (2.6)
We then substitute (2.6 into the BGK equation to obtain

g(M — (M +ef) = (M +efy) +v-Vo(M+ef)

o —gsfl = OM + €0, fi +v- VoM +v-eV,fy

&S fi= —%(&M +v-V,M+e0,fi +v-eV.fi)

o f = —%(@M +o- VM) + O(e) (2.7)

We continue with the expansion by calculating the first d, + 2 moments of ({2.1)), (mul-

tiplying (2.1)) by ¢(v) := (1, v, %)T and integrating with respect to v). We perform the

integration of the right-hand side of (£2.1)) in appendix and receive

with the integration notations



We substitute (2.6) into the second instance of the distribution function f in (2.8) and
obtain

at<¢f>v + Vm : <U¢(M + 5f1)>” =0

~ 8t<¢f>v + v:c ’ <U¢M>v = _5vx ’ <U¢f1>v (29)
We can also write equation (22.9)) as
(fo (vM), (vfi)o
O | (vflo | + Vo [(W@V)M)y| =—eV, - (V@ V) fi)u (2.10)
<%f>v <U%M>v <U%f1>v
We define
P, = —/ (v—u)® (v—u)fidv (2.11)
Relv
1
G = ——/ (v —u)|v — u* frdv (2.12)
2 Rdv
Using the definitions and the calculation shown in appendix we can transform
{(f)v p
(@f)o=| (Wflo | = |pu (2.13)
(Sl LE
Additionally we derive the following equality for (v¢M), in appendix [8.3.1]
(vM), pu
(vpM), = |((v ®21))M>v = [plu®@u)+ pTI, (2.14)
<U%M>v (E+pT)u

In the calculations presented in the appendix we furthermore derive

<Uf1>v 0
(o fi), = | ((v ®2U)f1>v = - (2.15)
<U%f1>v —Piu—q
We insert the three previous results (2.13)), (2.14) and (2.15)) into (2.10)) and obtain
Ap V- (pu) 0
O(pu)| + |V (plu®@u) + pTly) | = eV, - Py (2.16)

which are the compressible Euler equations when the O(e) terms are neglected.
In our next step, we want to show that we obtain the compressible NS equations when
we retain the O(e) terms in (2.16]). Therefore we have to calculate the terms Py and ¢y,
which means we have to integrate the function f;. We will use the definition of f1
for the mentioned integration. We start by simplifying the term %(8,5M +v-V,M). This
term can be used in the definition of f; . In the appendix we derived

1 1 —
M(ﬁtMnL%VxM) :;(8tp+v~va)+ (UTU) (Opu+ v - V,u)
—_ ]2 d,
+ (‘U2T3| - ﬁ) (O +v-V,T) (2.17)



We can use to replace the time derivatives 0;p, d;u and 0,T in with spatial
derivatives. Because we want to calculate the first order of f;, we can neglect the O(¢)
terms of in the replacement of the time derivatives.

This process is shown in appendix [8.3.41 We then get

1 (v uw)@@w—u) |v—ul*2 .
v—ul? dy+2\ (v—u)-V,T
+ <| 5T i 5 ) ( % + O(e) (2.18)

Thereby we obtain with equation (2.7)

£ = _% {((v—u)?(v—u) B |112—Tu] d%fd) Vou
+ (’v Q_T“’ - d”;?‘) Gl u% VIT] L+ 0(e) (2.19)

With this result, we can calculate P; defined in (2.11]). With the calculations performed
in appendix [8.3.5] we obtain the result

P, =T (qu + (Vu)T — di(vx : u)ld) + O(e) (2.20)

v

In appendix we additionally calculate ¢; and receive the result

dy, + 2
q1 =

TV, T + O(e) (2.21)
Furthermore, we define the stress tensor

o(0) = Vyu + (Vou)T — di(vx ), (2.22)

and the coefficients for the viscosity
=T (2.23)
and the heat conductivity

dy+2
2

v L (2.24)

We now insert these results for P; and ¢; into (2.16]) and receive

Ap V.- (pu) 0
O(pu) | + |Va- (plu®@u) + pT'ly) | = eV, - (T¥0(u) + O(?)
O,E V. (E+ pT)u) eV, - (T@o(w)u+ E2TV,T) 4+ O(e?)

(2.25)

When neglecting the O(g?) terms the equations in ([2.25) are the compressible Navier-
Stokes equations.



2.3 The low-rank approximation
By inserting (2.19) into equation (2.6 we can calculate f to the order O(e)

B M[((v—u)®@v—-u) |v—ul®2 ‘
v —ul*  d,+2\ (v—u)-V,T 9
(et ) T g v

for small e. The Maxwellian M contains the term exp(—M), which is not separable

into functions of either z or v of the form > h(t, x)n(t,v). Therefore, M is not separable
as well.

Because we want to compute the solution on a low-rank manifold, we rely on the under-
lying solution to be also low-rank to apply the algorithm. Therefore we will not proceed
with approximating the density function f where the solution includes M but rather g,
which defines by the relation.

f=Mg (2.27)

We apply (2.27) in (2.26)) and factorize M on the right side.

MQ_M(l_SlK(U—u)@(v—u)_|U—u|231d> -

v T 2T d,
lv—ul* d,+2\ (v—u)-V,T 9
— 2.2
(Bt -2 )Vl | o) (2.28)
Thereby, we obtain
B 1[/(v—u)®@w—u) |v—ul*2 '
g_1_€; |:( T - oT d_vjd qu
lv—ul*  d,+2\ (v—u) -V, T 5
+ < 5T 5 T + O(e?) (2.29)

We can see the function g¢ is low-rank and separable in x and v in O(g). We can express
g as a sum of products of functions which depend on either = (v,u, T, V,u, V,T) or on v
(v,v%,v @ ).

For d, = 2 we have v = (v1,v92)T and derive from ({2.29)

g(t,z,v) = 1-hi(t,z) +v1 - ho(t, z) + vy - h3(t, ) + vivy - hy(t, ¥) + 0] - hs(t, 7)
+ 02 - hg(t, ) + v?vy - he(t, x) + vyv3 - hs(t, z) + V3 ho(t, ) + 3 - hyo(t, z) + (9(52)

As we can see the maximal rank of g is equal to 10 at O(¢) in the case d, = 2.

This is only the maximal theoretical rank. In application, the actual rank of g can be
lower. A lower rank can occur when factors are zero or very small compared to others.
Another possibility that results in a reduced rank is functions of x being equal. As an
example we will assume hy(t,x) = ho(t,z) = hy(t, z), then g becomes

g(t,z,v) = (1 + vy +vyve) - hy(t,x) + vy - hy(t,z) + 0] - hs(t, z) + v - he(t, )
+ vivy - he(t, ) + 0105 - hs(t, ) + 03 - ho(t, ) + v3 - hig(t, z) + O(e?)

In this case, the maximal rank of g in O(¢) is reduced to 8.
The calculation of the rank of g is shown in detail in section
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As g is low-rank, we can find low-rank approximations of the form

g=">_ Xi(t,2)S;()V;(t,v) (2.30)
ij=1
where r is the rank that we choose for our approximation. {X;} is an orthonormal basis
in x and {V;} is an orthonormal basis in v.

We can update the macroscopic quantities using g and equation (2.8)). Equation (2.8)) is
equal to

U+ V- (vopMg), =0 (2.31)

with U = (p,u, E)T. We can also calculate T or 9,T using the relation 7' = 22 L - d_v .
Next, we calculate the time derivatives of X;, S;; and V;. In preparation, we need to derive
0;g, which we can achieve by inserting f = Mg into the BGK equation ({2.1)):

v
0(Mg) +v-Vo(Mg) = —(M — (Mg))

We apply the product rule

& QMg+ Mg +v- (VMg +MV,g) = ZM(1—g)

and rearrange the equation to isolate 0;¢

= O0g=—-v- Vg—M(atM—l—v V.M)g+ — (1—g):h (2.32)
As performed in [13] [21] or [24] we impose the gauge conditions
(X0 X,)e =0, (Vi,0iVi)y=0 V1<ij<r (2.33)

Gauge conditions are applied to simplify calculations and reduce redundant degrees of
freedom [25].

This condition guarantees uniquely determined X;,V; if the matrix (S;;) is invertible,
which we will show in the following. We start by calculating the time derivative of ([2.30).
Note that we already constrained g to the low-rank space created by {X;} and {V;} by
choosing the expression (2.30). We obtain

09 =Y 0:XiSyV; + Xi0,S;V; + XiSi;0,V; (2.34)

ij=1
0,5;; is uniquely determined via the equation

<lematg>x,v - atSlm (235)
We obtain the relation (2.35) using the gauge conditions (2.33), and (12.34)

(XiVin0i9)ew = Z (XiVin(0,X;: 855V + Xi0uSi; Vi + XiSi0,V})) ww

ij=1

= Z <XlatXiSijvm‘/j>x,v + <XlXiatSiijV}>m,v + <XlXiSijvmat‘/j>:v,v

ij*l
= Z Sij Xz@s mVi)o + 015y (XiXi)o (Vi Vi)o +5i5 (XiXi)e (VinOi Vi)
i1 I i S —
= 0:Sim (2.36)



We proceed to show that X is defined uniquely for all (1 <1 < r). We multiply (2.34)
with X, integrate with respect to x

X0, SZV X;0, —0—0SZVX z +5i;0/V;
(X10:9) 2 wzlyalt0> ty<16> ]t<6>
= =01 =01

and apply the gauge conditions and the orthonormality of {X;}

(X10,9) Z 8,5, V; + Z S0,V (2.37)

Thereby X is uniquely defined if S is invertible [I3]. We can show the result for V,,
accordingly

(Vinh9)o ZSZJX (Vind Vo + 0185 X5 (Vi Vo 485500 X (Vi Vi)

=1 ‘70-’ Y Y
= Z OpSimXi + Z SimXi (2.38)
i=1 i=1

Using (2.37) and (2.38), we can replace the time derivatives in (2.34]) with projections,
and we obtain

8159 = Z 8,5XZSZ]‘/J + Xzatsz]v; + Xlsljatv;

2,7=1
_Zv ZatXSUJrZX&SUV +ZX stat
1= i,7=1
_Zv [(V;h). Zatswx +Zxatswv +ZX [(X:h)s Zatsmvj
2,j=1
—ZV (Vih), ZX XVhIUV+ZX Xih)q (2.39)
i,7=1 =1

With this, we use h defined in (2.32). We can now perform the operator splitting based
on (2.39). We begin by defining K; = 3., X;S;;, which also means

§= Y Y XS,V - ZKV (2.40)

7j=1 =1

Using the previous result (2.39)), we can calculate 0, K

h>v == Z 8tSZ]Xl + Z SljﬁtXZ == at Z S’Lsz
i=1 i=1 i=1
= 0K (2.41)

and thereby update K;. By performing an orthonormalization of K; using a QR de-
composition, we generate new X; and S;;. According to (2.36) we can update S;; by
solving

0:Si; = (XiVih)zw (2.42)
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Finally we also introduce L; = Z;Zl Si;V;. We could update L; similarly to (2.41]) but
we will show the calculation using g = >, X;L;.

(X, h)o = (X3, 0 Lu X, + LX)
=1
= Z 0Ly (X, X1)o +Li (Xi, 0:.X0)
e .
e A

By performing an orthonormalization on L; we can generate new S;; and V.

2.4 The dynamical low-rank algorithm

In this chapter, we consider the dynamical low-rank algorithm. Hereby we advance U to
the next time step via the moment equation and calculate h.

With the function A we can then apply the low-rank algorithm which was shown in the
previous section and thereby update (S;;), {X;} and {V;} for all (4,5) € {1,...,r}.

In contrast to [11] we will continue with variable temperature. We discretize the time but
leave the space continuous in this section. As mentioned we will start by updating the
moments using the moment equation and g = ij XiSi; V.

1,J

O(pu) = -V, - (Z XiSi((v® v)VJM>U> =1 (2.44)

i,J
Kl
(9,5E = —VI . ZXZSU<’UTV;M>U = [3
i,j

By using the definition F = %”pT + %pu2 for the third equation we obtain the time
derivatives 0;p, O;u, 0,T;.

1 1
2 1 0
ol = OE — =0,pu® — pudyu | — LpT
dyp 2 P
2 1 1 I
= Iy — —Lu? — pu=(I, — I — =T
dop ( 375 1u ﬂup( 2 1U)> P
2 1 1
= ([3— —Ilu2—u-[2—|-11u2) A7
dyp 2 P
2 1 I
= (13 + 5]1u2 —u- 12> - iT (2.47)

In appendix we simplify the term %@tM + v - V,M) which is part of h defined in
(2.32). Thereby we obtain

h= —U~V$g—./\/lg+g(1—g) (2.48)
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with
M=M;+v- Mo+ [vPM3 + (v@0) : My + |v|*v - Ms (2.49)
and the terms M-Ms, which are only dependent on time ¢ and space .

_Op  dOT u-Owu N u?0,T

M P 2T T 272

My = V;p B dv;cT n % B U?;T _u ;xu n uQZZj;T

My = I VL (2:50)
M, = V;u

Mo = e

In publication [IT] only three terms occur as the derivatives 0,7 and V,T equal zero in
the isothermal case. In the case 0,7 = V,T = 0 the calculated terms are equal.

We replace the time derivatives of p,u and T by equations - (2.47). The full
calculation can be seen in appendix

1 ut d, u? u? d,
=1 |- 2L ——t Iy | = — 2
Mi=1 L) g T 2,0} 2 e 1 (2T2 QT)

d T 1 2 1 I
MQ - vxp - vvac + _(_[2 - Ilu) — E |: P (Ig -+ 5[1112 —Uu- IQ) — —lT:|

p 2T pT T |d, p
u ¥$u n uzzzT (2.51)
M3z = % {%p <13 + %Iluz —u- 12> - %T — zuva}
M, = V;iu
M= e

Now that we have calculated h, we can continue with the low-rank algorithm, as shown
in the previous section. Therefore we start by calculating (2.41]) using the term & defined
in (2.48]).

K = (Vi h)o
v
= (=0 ViVog = MVjg + ZVi(1 = g))u

- Z - (Vach)Slm<U‘/]Vm>v - XlSlm<V}VmM>U - z XlSlm <V]Vm>1} + z(‘/]>v
\ , N—— E N~ e — €

Il,m=1 =V.Km =Km =Knm = 6jm

= 3 [ (VaKn)0V;Vin)y = K ViV M) + Z(V;), = K) (2.52)

m=1

Therefore we have to calculate (V;V;, M),

(ViViuM)y = 8 My + (0V;Vin )y - Mo + <|U|2V}Vm>vM3 + (v @vV;Vin)y : My
+ (v3\/ij>v . M5

12



We continue by calculating ([2.42)

0Sij; = — (XiVj, h),,
= (0 XiV;¥ag+ MXVg - 2XVi(1 - g))

= Z [Slm<X'Lvach>m . <U‘/]Vm>v + Slm<XlX2‘/]VmM>x,v
I,m=1
14

{200 03] - (),

r

- Z [Slm<X7,V:EXl>J: : <U‘/}Vm>v + Slm<XlXi‘/ijM>x,v]

I,m=1

+ ; Sij <gXin>m - <ng‘>x (Vido

Therefore we have to calculate (X;X;V;V,,M),,. Because M(t,z)-M5(t,z) are not
dependent on v we can conveniently split the integrals

= 5jm<XinM1>w + <U‘/}Vm>v ’ <XinM2>J: + <|U|2V}Vm>v<XinM3>w
+ <U ® U‘/jvm>v . <XZXIM4>3U + <U3‘/jvm>v : <XZXIM5>3U

At last we plug (2.48)) into (2.43))

atLi — <X27 h)m
— (v X\ Vg — MX,q+ gxiu _ g)>

r

xT

= 3 [ VX, SV — XXM Sin Vi — (2XX0) SiVin] + (20).

9
I,m=1

i [~ (X9 X0)e - oLy — (XX M), Ly - <§Xixl>xLl} + <§X>x

=1

Therefore we have to calculate (X; X;M),

(X; XMy = (X; XMy e + 0 - (X XM + [0]2(X XIM ),
+ (v @) (XiXiMy), +0° - (X XIMs),

2.5 Time discretization

This section shows the dynamical low-rank integrator according to Einkemmer, Hu, and
Ying [11] expanded to varying temperatures. In publication [II], the temperature was
set constant at 7' = 1. We consider time step ¢, and assume p",u",T", E", X[, V", SI\
are given. By the end of the time step we will have calculated the solution consisting of

pr L Tt et X Vit and S We will use the variables N, and N, where
N, is the number of grid points in each spatial direction, and N, is the number of grid
points in each velocity direction.

13



Update p",u™ and T"

To obtain the time derivative of the macroscopic quantities, we need to compute

<“Vf”M”>v - %wmv) exp (—%)

o @ i)
(weompar) = L0 wonyro e (1200 ), (259

The integrals in the terms can be expressed as convolutions and thereby calculated ac-
cordingly. Hence for our next step, we compute the convolutions

g = (v — va) * (v > exp (— QTZQ(:U)))

g = <v = (v ® v)vj”) * (v exp (—%)) (2.54)
g5 = <v > vgvjn) % (v = exp <—%2<$>>) Cost: O(rN%N%log(N™))

for each of the unique values of 7" (z) using a fast Fourier transform (FFT). The compu-
tational cost is increased at most by a factor of N9 compared to the case of a constant
T = 1. In our next step, we evaluate the convolutions at u"(x) using cubic splines. We
also multiply with the factors shown in ([2.53])

<Wj"M">v - %g}(u”(m))

2T (x))
<(U®v)vj"Mn> = %gﬁ(u”(@) (2.55)
vw M :—p”(x) HOWE : O(rN2=
(S5 ) Cost: O(rN:)

Using these results, we can continue computing the time derivatives of (p™, p"u™, E™)T

n=-v,- ZX{lS&@VfM%)

i?j

(2]

I ==V, [ > Xrsi{ve v)Vj”M”>U>
) Cost: O(r’N%)

n nQn |U § njn
I3 = _V:c . ZXZ Siyj <UT‘/J M
1,5 v

and update (p™,u",T", E™)T accordingly by performing a forward Euler step.
P =p" Tl

1
=t Sl - L) (2:56)
EMt = E" 4 71
2 1
m+l _ % gpwmtl ) nt1)2 . dx
" = P T (u"™) Cost: O(N;")
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We calculate 7" using the equation for the total energy E = %”pT + %qu.

Update X', V/"*! and S;iH

K Step
With the use of a basic quadrature without weights, we calculate
]l = <vV”V”)
cj, = (V*V'V"),
¢ = (v@oVI'V"), (2.57)
C?l = <US‘/}nV1n>v
Vi=(V") Cost: O(r*N™)

and continue by computing M;-M; defined in (2.51)) using p", u", 7", I, I}, I}
Cost:O(Nd=)
This enables us to compute
e = V'V M)y = 65 Mi + ¢y - Mo+ My + ¢ s My+ ¢ - M5 Cost: O(r*N-)
(2.58)

We perform a first order implicit-explicit (IMEX) step as shown in appendix and
obtain the result

1 T d d TV —
Kt = — K — ———— i (VoK ca KT V;
J lL+7vnjfe 7 14 7107/e ;Cﬂ ( l>+zljcﬂ ! +€+TV” !

with
K!= ZXZLSZ Cost: O(r’N%)

We perform a QR decomposition of KI*! and obtain X" and S},

Kt = ZX@."“S}]. Cost: O(r’N%)

S Step

In preparation for updating Sj; to S;, we have to calculate

ij7
d@k — <Xn+1v Xn+1>

d;*,; (XXMM, moe {1,2,3,4,5} (2.59)
<ann+1>
= (U XTTLXTHL Cost: O(r*N)
and
CZZk,jl — 5]ld}k + C}l * d7,2k + C?ld?k + C?l . d?k + C?l * d7,5k COSt: O(TA) (260)
We perform another first-order IMEX step in appendix [8.5.3] We obtain the following
equation, which we can solve to obtain Sfj forall 4,5 € {1,...,r}
> (1 — —R) St =SE+T D (dh - DSk + > diiSh| — ngj Cost: O(r)
k kl kl
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L Step

In order to obtain V;"™" and S];*' we first perform another IMEX step in appendix m

3 ([ - IR) L=+ X,
] g il £

— 7Y [dy oLy + (diy + v df + Pd + (v@ ) dy + oo - di) L} Cost: O(r*Ny)
=1

and continue by performing a QR decomposition of LI+ to obtain V""" and S+

n+1 __ n+1y,n+1

)

Cost: O(r*N™)

Thereby we have successfully calculated X7+, S and V"' for all 1 <i,j < r and we
can start the next iteration.
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3 The dynamical low-rank algorithm for a BGK-type
model for gas mixtures

In this section, we consider a robust dynamical low-rank integrator for a BGK-type model
for gas mixtures in the compressible case. More specifically, we consider the model of
Andries, Aoki, and Perthame, which was introduced in [I]. We will limit ourselves to a
two-species mixture.

3.1 Introduction

Before we consider the model, we will introduce the macroscopic quantities. The individ-
ual macroscopic quantities of gas k are the number density ny, the density py, the average
velocity ug, the temperature T and the energy FEj.

Ny = frdv,  pr =mgng, up = %/ vfp dv, Tp = i / v — w|?fi, dv
Rdv Pk JRdv dyng Rdv
2 d 1
Ek = mk/ ﬂ k d?}, Ek = —Unka + —pku2 (31)
Rdv 2 2 2

Furthermore, we use some global quantities which account for all gases. We have the total
number density n, the total density p, the mean velocity u, the mean temperature 7', and
the total energy F

n:an, p:Zpk, u:%Zpkuk, E:ZEk, T:%Zkak (3.2)
k k k k

k

The multi-component system proposed by Andries, Aoki, and Perthame consists of mul-
tiple differential equations where each equation describes the evolution of one gas’s one-
particle probability density function.

As we consider a two-component mixture we have the probability functions f, where
ke 1,2. fi(t,x,v) describes the density of the gas k at time ¢, at place x with velocity v.
The differential equation for gas k is defined by

Ocfr + v Vafe = Wirng + vigng) (M — fi) for (k,j) € {1,2}*,k #j (3.3)

With this, we use the Maxwell distributions,

t,x) my|v — u® (¢, x)|?
(QW_TWt,x))d;eXp 2TH (1, 7) or ke {1,2} (3.4)
mg

the interspecies velocities

(k) _ m; Xkj .
u" = uy + 2 ni(u; —u for (k,7) € {(1,2),(2,1 3.5
g my, + mj Vg + Viin; 31 ¢) (k,) €1(1,2), (2, 1)} (35)

and the interspecies temperatures

2 MM AX ki d | — Uk’2
T L P ) B L J j (G 1 % T Ukl
F dv Y Uk| + dv (mk + mj)2 VipNg + Vg " 2 ( J k> + M 2

(3.6)
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Furthermore we use the constant interaction coefficients x; = xjx = x as well as the
collision frequencies v;. In future applications, we will also use the notation

Vg ‘= VMg + Vi1

In Andries, Aoki’s, and Perthames model, the interaction coefficients and collision fre-
quencies are defined by

v = / Ba@)dw,  yu = / cos(w) By () de
B+ B+

where By, is related to the interaction potential between species k and j, and B, is defined
as the semi-sphere, which is normal to the relative velocity.

Furthermore, the authors state that "Especially for non cut-off models, v,; might be
infinite while yj; remains finite" [I, p.997]. For this thesis, we will observe the case in
which the collision frequencies are significantly larger than the interaction coefficients.
This is essential for the underlying solution (after a similar transformation as in the single
species case) being low-rank in the first order of O(i)

3.2 Fluid limits

The aim of this section is to find a low-rank function ¢, in the fluid limit, such that
fr = M®g, similar to the procedure for the BGK equation in section Therefore
we will perform a Chapman-Enskog expansion [4] of the first order and derive the fluid
dynamic limits of the BGK-type equation for mixtures.

We assume that ;11 is small and that the parameters aqs, asy, age € O(1) satisfy v, =
(a2 = Qig 91 = Qipalee. For notation purposes we will also introduce aq; = 1. We start
the derivation with the differential equation of gas k € {1,2} and solve the equation for

fr-
Oufu +v - Vafi = Wiwng + ving) (M — f)

1
<:>fk = M(k) - —<8tfk +v- v:cfk)
Vi + l/kjnj
1 1 1
—MY - = (O f v Vofi) = M® 4 O(—)
V11 Qg + Qginy i

Based on this we will introduce f} € O(1) such that
1
fr=M® 4 —fl (3.7)
Y1

Next we will substitute this definition of f; into (3.3) and obtain
Ocfu +v - Vafi = (wng + vigng)(M® — f)

1 1
e OM® + —o,ft +v- -V, M® 4+ —p .V, f}
V11 V11

1
= (Vkkn + vigny) (M(k) - (M(k) + —ﬁ))

V11
1

& MW + vV, M® 4 O(—) = —(awxm + ;) fi
11

= (O:M™ vV, MW O(L

1
=>fH=—-——
k QN + Q105 I/kk

) (3.8)
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According to our procedure for the single species gas in section we want to observe
whether g;, defined by fi, = M® g, is low-rank. Hereby we will similarly use the introduced
function f}, which we will calculate through equation (3.8)).

In order to be able to replace the time derivatives occurring in we continue by taking
the first d, + 2 moments of (3.3)), (multiplying by ¢(v) == (1, v, |”| 5)T and integrating
with respect to v) and multiplying with mass m; which yields the tvvo (number of gases)
equation-systems of dimension d, + 2. The first and third equations are one-dimensional.
The second equation is of dimension d,,.

O (M fr)v (M0 fie)o {(my (M k) — fk))
lmissihy | 4. |0 | Zy | Gmo(M® =), 59)
o (mil fe). (mioth) (malsf (M~ f0))

We proceed by calculating the integrals. For the first vector, we can use the definitions
(3.1). The calculations for the second and third vectors are shown in appendix and

We obtain the system

O PrUE 0
O, Es, \I/i E%

with the exchange terms

=1 _ 2PKPjXKj
1 Xk
=, = ———(u; — 3.11
my + m; (1 = ) (3.11)
= 20k0j X kj
2 i Xkj 2 2
oy = ——————=|ug - U, —m;) — m,; + d,(T; — T, 3.12
£ Tng + my ) [ur, - wi(my — my) — upmy + uymy + dy(T; — Tj)] (3.12)

and the help terms

Uy, = mi(((0 = u®) @ (v = u®)) fi)o + pi(ur © ™) + p(u® @ uy.) — pu® @ u™)

my,
¥ = P — )~ u i)y + il — ) (0~ u®) i,

1 1
+ Epkuk|u(k)|2 - §pku(l‘;)|u(’€)|2 +u By, (3.13)

We can also obtain the Navier-Stokes system from for the same result as derived in
[T]. We calculate {(v ®v) fi), and (v|v|? fi), according to where we use u defined in
instead of u*) and add the second and third line for all gases. The full calculation
for our two-species mixture is performed in appendix [9.2.4 This results in the system

Oi Pk Pr Uk 0
O(pu)| +Ve-| PH+pu-u | = |0 (3.14)
o F EFu+P-u+q 0

Note that the equations (3.14) use the total macroscopic quantities defined in (3.2)). The
used terms P and ¢ are defined by

P = Z mg(v —u) ® (v —u) frdv

Rdv

Q—Z/ my(v — u) v—u]ka (3.15)
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These are also calculated to the first order of A in [I]. Hereby A is defined to the same
effect as our assumption with O(\) = i for k € {1,2}. The result is also shown in

appendix [9.2.4]

The system (3.14) will, however, not be sufficient for our needs.

This is because we want to replace the time derivatives of ng,px, T and Ej in the term
M(k> (O M K vV, M k)) according to our procedure for the single species model shown
in 2.2

Therefore we need the time derivative of the singular macroscopic quantities and not the
total macroscopic quantities, which are used in the second and third equation of .
This procedure is possible since we are in the compressible regime where the collision
frequencies are significantly larger than the interaction coefficients. We continue with
system (13.10]).

In appendix we calculate (3.10) further by performing a substitution for f; using
the equation (3.7) applied to the terms ¥} and W%. This gives us the result

8t(pkuk) + Vx . \Ijk = E,lc (316)
O Ey, 0, =i
with
_ 1
T, = mk,,—<((v —u™) @ (0 — u®)) e + pr(ur @ u®) + p(u® @ uy) — p(u® @ u®)
11
+n, TR,
_ 1 1
Ty = 25— (0= u®) o = u®P L, + mp— (v — u®) @ (0 — u®) f1),u®
2 v V11
1
+ §pk(uk — ’U,(k))‘u(k)’Q + (Ek + nkT(k))u(k) (317)

This is equal to the compressible Euler equations with the addition of the exchange
terms when we ignore terms of order O(L) Note that we have u®) = u;, + (’)(L) and
T® = T,+0(- 1) due to their definitions and our assumption vy; > x for all k, j € {1,2}.
Thereby the order O(1) of system (3.16) becomes

Ovpr; PrUk 0
&g(pkuk) + Vx . pk(uk (29 uk) =+ nka]dv = Ek (318)

As we want to calculate the right-hand side of (3.8)), we will use the following equation,
which we derive in appendix

1 oy, d,0,T™® V.n d,V T
(k) . (k)y — Dtk Dot L YeElk o Tv Ve
pOMT 40 Vo M) = == = =+ nk 0
my(v — uFNou®  my(v? — 20u® + u®)’ )0, T my (v — u®) vy k)
T + T2 . T
2 _ opu® 4 0y T®)
RN Cott Uit il (3.19)
27T (k)
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Since we are performing a first order Chapman-Enskog expansion of fj and the result will

be multiplied with VLM in (3.7)), it is sufficient to consider the zeroth order of (3.19)). With
the results of appendix [0.2.3] we obtain

1 8 N d (9tTk \V4 Ny d,V Tk mk(v — uk)atuk
O, M® V ME)y = 2T R I
my(v? — 2vug + up?) 0Ty, N mg(v — ug) Vg, N my(v? — 2vug + up?) V. T},
v - V-
27,2 Ty, 27,2

1

+O(—) (3.20)
40

With the system (3.18]), we can replace the time derivatives in (3.20)) with the spatial
derivatives and the exchange terms. We perform the calculations in appendix [9.2.3] and
receive

1 me(v —up) @ (v —uyg)  my|v — ug|?
_— (k) ) (k) — k k k) My k )
ViG (OMY™ +v -V M"™) < - i : Vaug

N (mklv—ukP _d, +2) (v —uy) - V Ty N (v—u) =}

2Tk2 2Tk Tk Tk N
mylv —ui|®*  d, ug o, =i 1
R ] O Y = O(—
" ( i 1) Tam S aw) TN

We have now successfully calculated f} to the zeroth order of V—il by inserting the result
into (3.8).

1 M®) 1
fi = gy, + agng M®) OM® +v- VM) + O(V_n)
-~ M®) {(mk(v—uk)@J(v—uk) _mk\v—ukP) Vo
N QRN + Q15 Tk dev Yelk
N (mk|v—uk\2 B dv+2> (v —ug) - V. Ty N (v—w) Ej
2Tk2 QTk Tk Tk N
2 =2

3.3 The low-rank approximation

With the results of the previous section we can calculate f; to the order (’)(;11) We insert
(3.21)) into (3.7)) and obtain
fo=M® — M Kmk(v—uk)@)(v—uk) - mk|v—uk|2> : Vo uy,
VigNg + Vi1 Ty Tyd,
N mk\v—uk|2_dv+2 (v—uk)-Vka+(v—uk) :_,i
melv —upl?  d, ug g, =2 1,
—— =) | - e O((— 3.22
" ( T;? Tk dyny o dyng, I+ ((Vn) ) ( )
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We are now able to perform the splitting f, = M®*g,
M® g, = M) _ M® my(v— ) @ (0 —u) o — ™Y V.,
Vi + Viin; Tk dev
N mk]v—uk|2_dv—|—2 (v—uk)~Vka+(v—uk) E_,lﬁ
2T}, 2T},

Ty Ty N
melv —upl®  d, (7 =2 1,
—_—_— — —— — . : O —

i ( 2 1) Ty S de ) TOG)
We divide by M® and receive the function g in the order (’)(%)
1 [(mk(v—uk)®(v—uk) mk\v—uklz)
— . quk
VMg + Viggn Ty Tyd,
N mklv—ukP_dv—l—2 (U—uk)‘VmTk+(v—uk) E_,lC

+ (—m’“’“_“’“’g d”)( u gy S )} +o((—)) (3.23)

g =1—

5 _ _
Tk Tk d'u ng d’v ng V11

gr is a low-rank function in z and v even at O(i) as the terms in this category can be
written as a sum of products of functions that depend only on x and functions that only
depend on v. Note that =} and = depend only on .

The occurring functions which are dependent on v are 1, v;, v;v;, viv;u, with 1 <4, 7,1 < d,,.
Hereby v; is the i-th component of v. For d, = 2 g has a maximal rank of 10 as the
function can be expressed as

gr(t,x,v) =1 hpa(t,x) +v1 - hgo(t, z) + v - hes(t, ) + v1vg - hya(t, ) + v? - his(t, x)
+ U% : hk}ﬁ(t, I) + ’vag : hkj(t, [)3) + vlvg . hk’g(t, 1’) + U? . hk79(t, I) + Ug : hk,lo(t; J])

The rank of gi equals the rank of g, which was defined in section [2.3] We analyze the
rank of g in more detail in the section

Finally, we seek the approximation of f, as the multiplication of M®*) and the low-rank
approximated function g;. We will restrict the function g, to lie on the low-rank manifold
created by the orthonormal bases {X[} and {V}} in  and v.

,
g = 3 XL )SE(VE(E0) (3:24)

ij=1
Using the moment equation, we can track the evolution of the gases’ densities, mean
velocities, and energies. We calculate the number, density, and temperature of a gas
using the former quantities. We can derive the moment equation by multiplying
with mg(1, v, %)T and integration with respect to v. The full derivation can be seen in

appendix [9.1]

Oipr = =V - (M0 fi)w (3.26)
Mg Xk
b) =-V,- o+ 2 RTTIAR) (0 3.97
s (Prur) Vo - (mi(v @) fr)o + 2nm; et g (uj — uy) (3.27)
v[?
OBy = —V, - M= Jk
2N 1M X ke

mbﬂé;hhwmwwm—%m+@w+%@—ﬂ” (3.28)
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In our next step, we want to track the evolution of gy, or equivalently of X, S;; and V;k
To gain the time derivative of g, we substitute f, = M® g, into (3.3)

(MW gy) + v - Vo (MP ) = (vigni + vigny ) (MY — M® gp)

apply the product rule to the derivatives

& OMP g+ MPo,g, +v - (V.MP g, + MBIV, g0) = (vrnk + vign;) MP (1 — g)

and isolate 0,gx

& MPog = oMW g — v (VoMW g + MBIV ,g) + (vigng + vign ) MP (1 — gi)
1

M (k)

(OMP g + v -V, MP g) + (vgeny, + vigng) (1 — gr) = hay
(3.29)

& Ogr = —v - Vugi —

We can now project g; onto the low-rank manifold using the projector-splitting-based
dynamical low-rank algorithm for each of the two gases, as already seen in [2.3

Again we impose the gauge conditions (X[, ,X¥), = 0 and (V},9,V}F), = 0 additionally
to the orthonormality of the bases which guarantees uniquely determined X7, Vj’c if the
matrix (S};) is invertible as already seen in .

We define Kj := Y77 | XS}, which also means gy = »7°_ K;V} and calculate 0,K} as
shown in (2.41))

OKE = (VI hy), (3.30)

and thereby update K. By performing an orthonormalization of K} using a QR de-
composition, we generate new X* and Sfj According to (2.36)), we can update Sfj by
solving

Finally we introduce LF = Z;Zl SEVF, which implies g, = >;_; XFLF. We can update
LY as shown in (2.43)).

OLY = (XF, i)y (3.32)

By performing an orthonormalization on L¥ we can generate new S} and V.

3.4 The dynamical low-rank algorithm

In this chapter, we apply the dynamical low-rank algorithm to our gas mixture model.
Hereby we advance Uy, to the next time step via the moment equation and calculate
hy.

With the updated function hj we can then apply the low-rank algorithm which was shown
in the previous section and thereby update Sf;, X} and V}F for all (k,j) € {(1,2),(2,1)}.
We discretize the time but leave the space continuous in this section.

We will start by updating the moments using the moment equation. Hereby we also apply
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the definition (3.24]) for gy.

Oipp =~V (ZX’“S’“ (mypoVEM®), ) =1 (3.33)
ML X i
O (prug) = (Z XkSk (mg(v® U)VkM ) ) + annjﬁ(uj —ug) = Ipg
(3.34)

2
OBy ==V (Z XfS§<mkv%vfM<k>>v>
Y]

2NN Xk
(my, +m;)?

[wr - wj(my, — my) — upmy, + wim; + do(T; — Ty) | = I (3.35)

We use the calculated time derivatives to update ng, px, ug, Ex, Ty, for k € {1,2} and
afterwards the interspecies quantities ©*) and T . Using these results, h;, from ([3.29)
can be expressed as

hk = —U- Vzgk - ngk + (kank —+ I/kjnj)(l — gk) (336)

where we use

1
ME = — @M +0- T, MO) = ME v M+ [P ME + (0 ©v) : M+ oo - M

with the terms

O dy0,T®  muu®ou® mku(k)g&gT(’“)

k __ _ _
Mi= 2" or® T® T o
ME - AVR B dvva(k) mkatu(k) B mku(k)atT(k) B mku(k)vu(k) N mku(k)2vxT(k)
2 27 (k) T ) T(k)? T (k) 9T (k)?
o, T*) (k)VxT(’“)
ME = TR TR Y (3.37)
27 (%) T %)
MZ _ myVu®)
T (k)
© oTh?

We then can plug (3.36) into - and -
KL = (VFEhy).
= (=0 - V}'Vage = M*VEge + (en + vigng)VE(L = gi))o

r

= > [-VLXFSE VIVE), — XFSE (VIVEME),

I,m=1
— (ke + vigng) XESk, (VEVIYS] + (e + vigng ) (Vo
Kk 5
I N S

- Z[_(VIKfn)<U‘/jkVTIZ>U - Kfn(‘/jkvvaMk%] + (Vkxnx + ijnj)(<‘/;k>” o Kﬂk)

m=1

(3.38)
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Therefore we have to calculate (ijanij>v

(VFVEME), = ;M5 + (0VFVEY, - M5+ (0PVEVE), ME + (0 @ oVFVE), -
+ (VI V) - M5

For (3.31) we have

= (v X[V Vg, + MEXIVE g — (Vg + ving) XEVE(L = gi))ao

= Z [Slkm<vaxXlk>w ‘ <UijVn]§)v + Sfm<XfoV}er§Mk>x,v
I,m=1

+ Sh{ Wrrm + vign ) XEXE) o (VIVIY S | = ((viare + vigng) X o (Vi
Due to the orthonormality of {V}*}, this is equal to

= > [ShdXEVLXE)e - (0VIVi)y + St (XEXEVIVEME) ]

I,m=1

+ Z SE(rkne + vigng) XEXE) e — ((Vkrne + vigng) X))o (V)
=1

Therefore we have to calculate (X} XFVFVIMF),

(XFXVFVEME) oy = (XEXF(VFVEME ) )
= 0 (XFXPMY)e + (Voo - (XFXF M) + (0P VIV o( XX M)
+ (W @V - (XEXFME)e + (VI - (XFXME)

At last we plug (3.36) into (3.32])

OL; = (X[, hi)a
= (v X'Vogr — M XFgr + (vans + vign ) XF (1 — gi))a

= > [HXIVLXD)e - 0SE Vi — (XPXIME)LSE Y

I,m=1
— ((Wrrne + vigng ) XEXE) o SE Ve T+ ((Vier, + vigng) XF)a
= > [~(XIVXF), - vLf — (XFXFMF), L

I,m=1

— ((vawnn + vigng) XEXE ) LY 1+ (v, + vigng) Xz
Therefore we have to calculate (XFXFMPF),

<szXlkMk>w = <szXlkM’1§>x +U- <szXlkM]2€>x + |U|2<szXlkM§>x
+ (0@ v)  (XFXFME)e + 0 (XFXFME),
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3.5 Time discretization

In this section, we show the dynamical low-rank integrator applied to the model of Andries,
Aoki, and Perthame based on the algorithm shown in[2.5] We consider time step ¢,, and as-
sume pf, uy, uFn T TEn g X YR GET are given. By the end of the time-step we
will have calculated the solution consisting of p”“, (aERTORESIY sl AORASI an Ghln
V;k L and SE™ We will again use the variables N, and N, where N, is the number of
grid points in each spatial direction, and N, is the number of grid points in each velocity
direction. These are the same for both gas species. Each step is done for k,j € {1,2}

with k£ # j. This factor of 2 will not be reflected in the cost.

)

Update the macroscopic and interspecies quantities

To obtain the time derivative of the macroscopic quantities, we need to compute

n _ 2 (k)n|2
oo n mglv —u
<“Vk,ij> =—Fr <UV,” exp ( |2T(k)7n | )>
v (2 T(k) ) 2 v

m

n n ng n mk’U — u(k),n‘Z
<(v ® v) Vi My, > =—* <(v ® )V exp (— ST m (3.39)

v (QWT(k),n)T
my
|\2 0\ nj; ||2 my|v — w2
ﬂ'_

mg

The integrals in the terms can be expressed as convolutions evaluated at ©*)" and thereby
calculated accordingly. Hence our next step is to compute the convolutions

1 \Val mkvz
gk,j =\(\v—v j * | U= exp _—ZT(k)’”

2 n 7’I’L1€’U2
Gr; = v (v@v)V]" ) * (v exp ~ ST (3.40)

[0]*

2
n mk;/U T v v
gl?;,j = <U > UTV ) <U > exp (_QT(—k)n)> Cost:O(rN% N%log(N™))

for each of the unique values of 7"(x) using an FFT. We evaluate the convolutions at
u®™ for k € {1,2} using cubic splines in our next step. We also multiply the factors
from (3.39))

(vt (@) = %u w97 ()
v 5 T;ka
<(v ® U)Vk”]M,?> (x) = %gz (u(k)”(x)) (3.41)
Y 27TT;;: ’
<U$V,&M£>v (x) = —nZ(x) g (u e Cost:O(rN%)

TR »
(27r o )
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With the usage of the calculated integrals in (3.41) we can compute I7,-I3, for k € {1,2}

mg +m;

(3.42)

n k.n ok,n |'U|2 k.n n
]3,k =—-V,- (kaXi SZ-J <U7V] MF) >U>

2%
n,,Nn
annj M X kj

(my + m;)?

[“Z'U?(mk_mj)_mk(uk) + my(u] ")? + dy (T} — 1]

Cost:O(r?N)
which enable us to compute the time derivatives of n¥, pF u¥ T and EF for both gases.

I g
onl = )
tT _mk
3th = I
n 1 n n 1 n
Ouy = — (Lo p — Oppuy) = _,L(IM — Iy yuy) (3.43)
Pk Pk
OEy = I3y
n 2 1 n\2 n ]1 K d
vnk; 2 pk

Thereby we can also compute the derivatives of the interspecies quantities 9,u*)

(3.44)

O = By, + 9Tk [”j(atuj — Opuy,) N Vi (g — ug) (Ogmyny — &mknj)]

my + m; VipNe + Vg (l/kknk + l/kjnj)Z

Cost:O(Nd)

and 9,7™ for k € {1,2} which we derived in appendix [9.3.1/and [9.3.2

8tT(k) - atTk
4 (0 0: 01 — 0:0 v 0:(1: — 2 A
Vi X (Oeps P — £ Oupk) {_ X (1 — ) +(T; — Ty) + &(Uj - uzf}

(me +my)? (Vekny + vigng)? | do(Viene + viing) ! v
8y Xn; 05 (uy _QUk) - (O — Oyur) {_ Xkl +m; (3.45)
dy(myg + my)? (Ve + vigng) (Viknk + vijny)

dmyxr; P (0T — O0¢Tx)

(M, +m;)? vggng + vgn,

Cost:O(Nd)
We update the macroscopic quantities with a forward Euler step for k € {1,2}
P =TI
1
'LLZJrl = UZ + T_n(Ika — [17]{11,7];)
Pl
B = B 4 1y, Cost:O(N%)
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which we can use to calculate n} !, T/ for k € {1,2} using the relations

n+1

n+1 Pk
ny = —— 3.46
= (3.16)
2 m
n+l __ n+1 k. n+1y2
Cost:O(N™)
Furthermore we update u(*)n+1
(k)n+1 _ , ntl m; Xkj n+1/, n+1 n+1 . de
u =u, " +2 n o (u T —u Cost:O(N,
k my +my vgng T 4 vgn T (] e (V")
and the interspecies temperatures for k € {1,2}
T(k),n-‘,—l _ T]?—’—l . % {u(k),n—&—l . UZ_H}?
2 mgmy; 4ij 41 dv 1 1 |un+1 - u7kL+1’2
+ — nt [ 2 (T - T - m
dv (mk + mj)z kanZH + ijn?H J 2 ( J K ) ! 2

Cost:O(Nd=)

In our next step we compute M¥- ME which are defined in (3.37). In the calculation
we use the macroscopic quantities and interspecies quantities of time step n.
Furthermore, we use the time derivatives (3.43)), (3.44)) and ([3.45). Cost: O(N%*)

kn+1 k,n+1 k,n+1
Update X, Vi , and S

We will perform the following K step, S step, and L step for k£ € {1, 2}.

K Step With the use of a basic quadrature without weights, we calculate

c‘]]{:;’;lb = <Uvjk’nv7]n€’n>v

Chim = (VI VR),
cf,fb =(v® va’”VJj’”}U (3.48)
Chin = (VI VR),
Vf = <VJ’“")U Cost:O(r’N™)

This enables us to compute

E;?m = (V]k”Vfl”/\/QU = 5jmj\/llf + chlL - ME cfni/\/l'?f + cfni c MY+ c?ﬁ . M’g (3.49)
Cost:O(r?N)

We perform a first order IMEX step in appendix and obtain the result

R = = o | Ot 4 S et + T

with

K" = Z xS Cost:O(r?N)

7
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We perform a QR decomposition of Kf’"“ and obtain X*"*! and Sfj’l

k"“ ZXI”LH gkt Cost:(’)(rQN;ff)

S Step
In preparation for updating Sfj’l to SZ’Q we have to calculate

df:l,O _ <Xk,n+1v Xk,n+1>x

7

diy? = (XPPXPTIM,Y., p € {1,2,3,4,5) (3.50)
X = (v}, + vgn?) XEm,

Rl = ((vueny + vgn) XPH X, Cost:O(r2N%)
and

Al = Ojdly + Cin - di? 2N At Cost:O(r*) (3.51)

We perform another first order IMEX step in appendix We obtain the following
equation which we can solve to obtain SZFQ forall1 <i4,7<r

Z(I - TRk)zlSkz = Sk " Z [ S0 ¢ k L shLdk ]m] - TY?V’? Cost:O(r%)

Ilm il i
=1 Il,m=1
L Step

In order to obtain V"' and SZ’”H we first perform another IMEX step in appendix

9.5.4] and obtain the equation

ST (I +7RY), L = L X
l

— e oL (v d o P+ (v @) s o LT

which we can solve for LFntL, Cost:O(r?N&)
Through the application of a QR decomposition of L¥"™ we obtain V"' and S&"

Thereby we have successfully calculated Xf’"“, Sfj’"ﬂ and Vik’"Jrl forall 1 <4i,j <rand
we can start the next iteration.
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4 Analysis of the rank of g and g;

In this section, we will look at the rank of g and g, for the featured algorithms and the
dynamical low-rank algorithm presented by Einkemmer, Hu, and Ying in [11].
For the BGK equation, we calculated

gzl_%[((v—u)@(v—u)_\v—uPId) :va(\v—uy?_dﬁz) (v—u)-VxT}

T d,T 2T 2 T
+ O(e?) (4.1)
In the isothermal case we have T'=1 and V,T = 0 and can derive from (4.1)
2
€ v—u
9rso = 1 — ;((v —u)® (v—u) — | y | 1) : Vau + O(e?) (4.2)
For the BGK-type equation by Andries, Aoki, and Perthame [I] we calculated
g =1— L [(mk(v—uk)®(v—uk) _mk\v—uklz) s Vauy
VkkNg, + Vi Ty Tyd,
N mylv —w*  dy +2 (v—uk)~VmTk+(v—uk) Sk
mk]v — "U,k|2 dv U —1 Ez 1 2
DRE KL Do) (R E O((— 43
p(mlonl ) (e B o (43)

The rank of g and g can be seen by expressing the functions as a sum of products of
functions that depend on v or .

9= Z hi(z)mi(v)

The rank is then equal to the number of addends. We can see that all v-depending terms
in (4.2), (4.1) and (4.3) are polynomials. We assume the 2-dimensional case and are

therefore able to write (4.2)), (4.1) and (4.3 as polynomials of (v, v2) where vy is the first
component of v. For g;s, we have in the first order of ¢

_,_€ e (=) A (vp — up)?) | Oy
Grso =1 > K(vl Uuy) T 9,
B B Ou;  Ous v v —ul?\ Ousy
+ (Ul Ul)(vg UQ) (81‘2 + axl) + ((UQ UQ) dv 81‘2 (44)

which we can sort by the functions depending on v.

e Lo 0 Om dur  Juy o L oo o) Ows
Uy

€ 1Y\ 0 Oou;  Ous
—ud o (1) G- (5 )|
€ 1\ Ous Ou,  Ous
ST ) 1 — ) 22 _ 0 T2
UQI/ |: b ( dv> 01’2 “ (81‘2 + 81‘1):|
oS (D O
UvaV 833'2 833'1
9 € 1 (9u1 1 8u2
14 dv 8271 dv 8332
9 & 1 8U2 1 8u1
Y S I [ Py e 4.
2, [( dv) Oxy  d, 011 (45)
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We have thereby calculated gr5, as a polynomial of (v, vs) of sixth order
Grso = 1 - hy(t, ) + vy - ho(t, ) 4+ vy - ha(t,x) + vivy - hy(t, ) + v} - hs(t, ) +v3 - he(t, 7)

Thereby the maximal rank of g, equals 6 in the first order of e. We proceed similarly
with ¢ and gx, but we will not calculate the terms depending on x. Rather we will look
at the occurring functions dependent on v, which are the same for g and g,. These are
1, v, vv;, v;v;v with 1 <4,7,1 <d,. For d, = 2 g and g; have a maximal rank of 10 as
the functions can be expressed as

g(t,z,v) = 1-hi(t,z) +v1 - ho(t, ) + vy - hy(t, ) + v1vy - hy(t, ) + 0] - hs(t, ) + v3-
he(t, x) + vivy - hy(t, ) + v1v3 - he(t, ) + 03 - ho(t, ) + v3 - hio(t, )

and

ge(t,m,0) = 1 by (t,2) + v - hya(t, @) 4+ vg - his(t, ) + v10g - hya(t, 2) + 07 - hys(t, @)
+v3 - hig(t, ©) + vivy - by r(t, ) + 0103 - hyg(t, T) + 05 - hyo(t, ®) + U3 - hp1o(t, 7)

We have to remember that these are only the ranks in the compressible regime to the or-
der of O(e) for g;s, and g or to the order of (’)(%) for gi respectively. Thereby choosing
a higher rank than the ones we calculated can still improve the result.

The ranks do, however, give a good indication of which rank we could see good improve-
ments in the results before the returns in higher accuracy diminish to the increased cost
of a higher rank.

The maximum rank is also not necessarily needed as the actual rank can be lower due to
factors being zero/insignificant or equal to another factor.

An example of this is given in [II]. The authors compared the cross-section of p at y =0
of computed solutions for ranks 1, 3, and 6. The result is displayed in Figure

— p(t=0.38,:,y=0),r=1
p(t=0.8,:,y=0), r=3
— p(t=0.8,:,y=0),r=6

0.13 1

0.12 4

0.114

0.09 ~

0.08 ~

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 1: Result of the numerical experiment 7.2 shown in [I1], Source: [I1], p.19, Figure
6]

The authors showed that a small rank is sufficient for very small . The solutions are
similar, starting from rank one and visually indistinguishable for ranks greater or equal

to three. The reader is referenced to section 7.2 in [II] for the details of the simulations.
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5 Analysis of the computational cost

In this section, we will look at the order of computational cost for the featured algorithms
and the dynamical low-rank algorithm presented by Einkemmer, Hu, and Ying in [I1].
We base our analysis on the computational cost of the single steps of the algorithm,
written in 2.5 Isothermal), [3.5(Mixture), and chapter 4 in [I1](Isothermal).

Step Isothermal Extended Mixture
Convolutions O(rN%1og(N®)) | O(rNN% log(N%)) | O(rN= N2 log(NZ))
Multiply factors O(rN) O(rN) O(rN)
Integrals I; — I O(r*Nd=) - -

Integrals I; — I3 - O(r*N=) O(r*N=)
Derivatives - - O(N&)

Euler Step O(NZ=) O(N&) O(N&)
Update v and T® | - - O(Nd)
M;-Mj O(N;) - -

Mi-Ms - O(N) O(Ng-)

K Step O(r*Nd=) O(r*N=) O(r*N=)

S Step O(r*N%= + rt) O(r?N&= + r4) O(r*N%= + rt)
L Step O(r*Nov) O(r*Nov) O(r*No)

Note that all steps shown in the algorithm for mixtures are performed twice, which is not
represented in the orders. The major difference in the computational cost of the algo-
rithms is the computation of the convolutions.

This step is performed once per unique temperature. Thereby the cost is up to N% times
the cost of the computation of the convolutions in the single-species case. Not that Nd=
is equal to the number of spatial cells. This cost is lower for symmetric or other problems
where cells with identical temperatures appear.

This increase is quite significant as no other step is of order O(Nd Nd) or higher, which
is the order of a step in a full-grid computation.

Next, we will look at the efficiency of the temperature-extended and the mixture al-
gorithm. The computational cost of the steps of one gas in the two-species algorithm is
comparable to the temperature-extended algorithm.

Additional steps are the computation of the inter-species macroscopic quantities and
their time derivatives and the calculation of the exchange terms, which are both of order
O(N=).

Thereby the cost of the algorithm for mixtures (two species) is approximately twice as
expensive as the algorithm for a single gas from a computational point of view.
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6 Experiments

In this section, we will show the numerical results of the established algorithms. We will
consider the 2-dimensional case d, = d, = 2 in all simulations.

We start by comparing the results of the temperature-extended single-species algorithm
to the single-species isothermal algorithm of Einkemmer, Hu, and Ying [11].

Furthermore, we can compare the results of the algorithm for mixtures[3|to the temperature-
extended single species algorithm [2| by using the indifferentiability principle. The indiffer-
entiability principle states that the sum of the differential equations is equal to the single
species BGK equation when all masses and collision frequencies are equal (m; = my and
Vi1 = Vg = Vo1 = V22)-

We validate whether we obtain the same results as the temperature-extended single species
algorithm under these conditions.

At last, we observe whether the two-species algorithm [3| holds the conservation of mass
and energy, the exchange of momentum and energy, and whether the system converges to
an equilibrium.

6.1 Shear flow

We compute the shear flow problem in the quadratic area (z,y) € [0, 1]* with the starting
values

p(0,z,y) =1

0.2.7) Vo tanh(y ) fory <
UV, T, Y) =
vo tanh(1=)  for y >

NH

(6.1)

%\w
tﬁ

N[= N

u(0,z,y) = dsin(27x)
T00,z,y) =1
where we choose the parameters vy = 0.1, v = 1/30, § = 0.005 and the Knudsen number

= 10~* The numerical simulations in this section are performed with the step-size
7 =1.25-10"%* and the rank 4. We simulate the duration 0 < ¢ < 12.

p (density) u; (velocity x-direction)

1.10
0.8 0.8

1.05 0.05
0.6 0.6

1.00 0.00
0.4 0.4
02 0.95 02 -0.05
0.0 0.90 0.0

00 02 04 06 08 00 02 04 06 08

uy (velocity y-direction) T (temperature)

1.10
0.004
0.8 0.8
0.002 1.05
0.6 0.6
0.000 1.00
0.4 0.4
-0.002
0.2 0.2 0.95
—0.004
0.0 0.0 0.90

00 02 04 06 08 00 02 04 06 08

Figure 2: The initial values of p, v and T" shown a high resolution.
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The flow field of the modeled gas consists of three horizontal shear layers and a small
amplitude as vertical velocity [I7]. The fluid moves to the left in the bottom (y < 1) and
the top layer (y > %) and moves to the right in the horizontal layer. The starting density
and temperature are constant with a value of 1.0.

The initial values of p, uy, us and T" are visualized in Figure 2l on a fine mesh.

As step is relatively expensive, we will use 30 grid points in each spatial direction
and 12 grid points in each velocity direction. We compare the results of the isother-
mal algorithm [I1] (Isothermal) to the temperature-extended (Extended) algorithm. We
consider the numerical results for the times ¢ = 6(s) and ¢ = 12(s).

densit u; (velocity x-direction density u; (velocity x-direction
o( y) 1 ( y ) 0.100 Pl y) 1 ( y ) 0.100

0.0003 ! 0.0002
0.075 0.075
- 0.0002 0.050 o8 00000 ° 0.050
. 0:0001 o 0.025 0.6 _0.0002 0.6 0.025
0.0000 0.000 0.000
- ~0.0001 %* -0.025 - 00 04 ~0.025
! ~0.0002 4, ~0.050 ! —0.0006 02 ~0.050
-0.0003 -0.075 ~0.0008 ~0.075
. 0 -0.100 . 0.0 -0.100

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 “0.0 0.2 0.4 0.6 0.8

uy (velocity y-direction) w (vorticity) uy (velocity y-direction) w (vorticity)
15 15
0.002 0.002
0 10 - o 10
0.001 0.001
o 0.5 0.5
61 X
0.000 0.0 0.000 0.0
0. .
-0.5 -0.5
. -0.001 L ~0.001
0. -1.0 . -1.0
-0.002 | -0.002
-15 -15
0. .0 X .0
00 02 04 06 08 00 02 04 06 00 02 04 06 08 00 02 04 06
T (temperature) E (energy) T (temperature) E (energy)
1.100 1.005
1.0012
1075 1.005
. 0.8 . 0.8
1050 1.004 1.0010
1.004
X 1.025 0.6 1.003 X 1.0008 0.6
1.000 1.003
1.0006
’ 005 O 1.002 - 0.4
1.002
0.050 . 1.0004 .
- - 1.001 - .
0.925 1.0002 1.001
0.0 0.900 0.0 0.0 0.0
00 02 04 06 08 00 02 04 06 08 00 02 04 06 08 00 02 04 06 08
) Isothermal ) Extended

Figure 3: Numerical results of the isothermal and temperature-extended algorithms at
time ¢ = 6(s)

Figures [3l and [4] display the density, mean velocities, vorticity, temperature and energy
of the isothermal algorithm [IT] and the temperature-extended algorithm at times ¢ = 6
and t = 12 respectively.

The vorticity w is calculated with the formula w = % — %.

Visually the isothermal and extended algorithms share similar velocities, whereas their
density distributions differ. At time ¢ = 6(s) we have the average differences 2.52 - 10~
(p), 1.56-107° (uy) and 2.15-107° (uz). Due to the range of values of p being much smaller
compared to u; and ug, the difference is visually more noticeable. At time ¢t = 12(s) we
make the same observations. The average differences of the macroscopic quantities in-
crease to 4.74 - 107 (p), 4.26 - 107 (ug) and 4.10 - 107* (u;). This difference is mainly
due to the impact of the temperature in the steps and

Furthermore, we notice oscillations in the temperature-extended algorithm’s plots of en-
ergy, temperature, and density. The reason for the appearance of oscillations could be the
low number of grid points. As an example, we will compare the state of the temperature
after the first time step to the algorithm performed with N, = 256 and N, = 32.
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Figure 4: Numerical results of the isothermal and temperature-extended algorithms at
time ¢ = 12(s)

T (temperature) T (temperature) 14_12410e-1

0.0
~0.2
08 15 osl
1.0 e — -04
~0.6
06 05 064
~0.8
0.0
-1.0
0.4 os 041
-12
-1.0 e —
02 024 ~14
-15
-16
0.0 0.0 _ _ _ .
00 02 04 06 08 00 02 04 06 08
(a) N, =30, N, =12 (b) N, = 256, N, = 32

Figure 5: The temperature at time ¢ = 0.000125 at different discretizations

In Figure [5] we can see the temperature after the first step of the temperature-extended
dynamical low-rank algorithm at different discretizations. In plot the algorithm is
performed with 30 x 30 spatial grid points and 12 x 12 velocity grid points. This is
the same discretization used in Figures [3] and [4] In Figure [pb| the algorithm is applied
with 256 x 256 spatial grid points and 32 x 32 velocity grid points. We can see that the
oscillations are not appearing when the finer grid is applied. We will also observe where
the oscillations in Figure [5a] originate.

In the first time step of the shear problem we have p =T =1, [} < I, I3 and u; < us.
With this knowledge and the equations (2.47)) and (2.56|) we obtain

T1 ~ TO -+ T(Ig — (Ig)lul) =1 + T(Ig — Igul) (62)
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Figure 6: Origin of the oscillation

In Figure |§| we can see the quantities I3, uy(l2)1, 7(I3 — u1(l2)1) in the first time step
and T after the first time step. We can see that the term (6.2) is visually indistinguishable
from the temperature and the oscillations appear in the term.

The changes in the values of I3 and wuq(/3); are too sharp for the chosen mesh, and
oscillations occur.

We can expect the mesh width to contribute to the oscillations in Figures 3l and 4 In
order to judge whether additional factors are involved, we would need to simulate the
problem on a finer mesh for all time steps. This test is not performed due to the high
computational cost seen in section

Next, we consider the conservation of energy in the simulation.

Total energy per time

1.0043 A

1.0042 -

1.0041 A

1.0040 -

Energy

1.0039 A

1.0038 -
—— |sothermal

—— Extended

1.0037 A

0 2 4 6 8 10 12
Time (s)

Figure 7: Evolution of the total energy of the approximations of the isothermal and
temperature-extended algorithm
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In Figure [7], we can see the evolution of the total energy of the numerical results of the
isothermal and the extended algorithms. In the simulation of the extended algorithm, the
total energy is conserved. The total energy decreases in the application of the isothermal
algorithm.

Total energy | Isothermal Extended

t = 0s 1.0043347575277700 | 1.0043347575277700
t = 6s 1.0039674985102096 | 1.0043347575277700
t=12s 1.0037035232088440 | 1.0043347575277697

Table 1: Total energy of the approximations of the isothermal and temperature-extended
algorithm at times ¢ € {0, 6, 12}

In Table [1| the total energy of both gases is displayed for times ¢ € [0,6,12]. We can
see that the total energy is preserved to the order of 1073, In the approximation by the
isothermal algorithm, the energy is preserved to the order of 1072, As this could also be
affected by the low number of cells, we will also look at the evolution of the total energy
of the isothermal algorithm with the parameters used in |11 (Figure 1).

Total energy per time

Isothermal
1.0043

1.0042 A

1.0041 A

Energy

1.0040 A

1.0039 -

1.0038 A

1.0037 A

0 2 4 6 8 10 12
Time (s)

Figure 8: Evolution of the total energy (isothermal algorithm, 7 = 0.0002, N, = 256,
N, = 32)

In Figure 8] we can see the evolution of the total energy for the shear flow problem simu-
lated on a finer mesh as in [I1] section 7.1. The algorithm is applied with N, = 256 and
N, = 32. N, is the number of grid points in each spatial dimension. N, is the number of
grid points in each velocity dimension.

We observe that the total energy decreases and is not preserved with the finer grid. In
comparison to Figure [7] we can see no visual difference in the values of the total energies
per time.

At last, we will consider the conservation of mass. Table [2| shows the total mass of the
gases simulated by the isothermal and the extended algorithms. The total mass is calcu-
lated as the sum of the densities of the cells multiplied by the total area of one cell.

The isothermal and temperature-extended algorithm preserves the mass to the order of
10715,
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Total mass | Isothermal Extended

t=20 1.0 1.0

t==6 0.9999999999999999 | 1.0000000000000004
t=12 0.9999999999999994 | 1.0000000000000007

Table 2: Total mass of the approximations of the isothermal and temperature-extended
algorithm at times t € {0,6, 12}

6.2 Indifferentiability property

in this section, we validate whether the two-species algorithm which models the BGK-type
equation by Andries, Aoki, and Perthame fulfills the indifferentiability property like the
model.

The indifferentiability principle states that the sum of the differential equations is equal
to the single species BGK equation when all masses and collision frequencies are equal
(ml =my and v} = Vg = Uy = V22)-

For the two-species case, this results in the differential equations

Ofi=v-Vofi= V11(n1 + nz)(M(l) - f1)
Orfr =0 Vafs = v11(ny +n2)(M® — f5) (6.3)

We consider the case f; = f5, which gives us p; = po, u; = us = u® = 4@ and
Ty =Ty, =TW =T, Both equations of (6.3) are then equal to the BGK equation

(9tf =77 fo = 2V11n1(M — f)

with the Maxwellian defined in (2.2). This is equal to for w =1 and 21y, = 1. We
will simulate the shear flow problem shown in in the quadratic area (z,y) € [0, 1]
For the single-species gas and both gases of the mixture, we calculate the starting values
with the functions

p(0,2,y) =1

uo(0,z,y) = {

b=

votanh(2=4)  for y <

o
) for y >

NI

N[= N

vo tanh(<-

u1(0,z,y) = dsin(27x)
7(0,2,y) =1

The parameters are set to vg = 0.1, v = 1/30, 6 = 0.005. Hereby we choose the Knudsen
number ¢ = 10~%. This gives us the fitting collision frequency v;; = 2% = 5000.

We set m; = my = 1 and compare the results of the single-species algorithm to one of
the gases of the two-species algorithm.

The results of both gases in the two-species simulations are identical as we choose equal
properties and starting values.

We could also compare the single-species gas to the sum of the gases in the mixture. In
that case, we need to halve the starting densities of both gases. We use 10 grid points in
each spatial direction and 12 in each velocity direction. Furthermore, we use the step size
7 = 0.001 and the interaction coefficient y = 1. We apply the algorithm with rank 4.
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Figure 9: Evolution of the deviation of the numerical solutions of the single-species and
the two-species algorithms

In Figure [9] we can see the total deviation of all macroscopic quantities of the solution of
the temperature-extended (E) algorithm and one gas of the two-species algorithm (M).
The deviation of the macroscopic quantities is precisely zero in each spatial cell and each
time step.

Thereby the algorithm holds the indifferentiability property, which we wanted to ver-
ify. Furthermore, we can see that both algorithms are implemented consistently as no
deviations occur.

6.3 Variation from equilibrium

To test the low-rank algorithm for gas mixtures, we want to observe the conservation
of mass and energy, the exchange of momentum and energy, and whether the system
converges to an equilibrium. We will have to use different starting values for both gases
to observe the momentum and energy exchange. We will not use constant starting values
as this results in time derivatives (as in step (3.42)) being zero. Therefore we use non-
constant starting functions which comply with the periodic boundary conditions in the
quadratic area (z,y) € [0,1]%. Note that z,, = 21 is in the middle of the numerical grid
points (and will be used instead of 0.5 as the middle). nz is the number of grid points in
each spatial direction.

pk(ovxa y) =k + 6(1‘ - xm>2(y - l'm)Q

uk1(0,2,y) = k — dsin (27ri) sin (27ri>
T, Tom

up2(0,7,y) =k + 256 - §(x — 2) (y — 2m)*

Tp(0,z,y) =k +|(z — ) (y — x)|  for ke {1,2}

Furthermore we set m; = 1, mgy = 2, § = 0.0005, v1; = V19 = 91 = ey = 5000. We
compute the problem with 36 spatial and 144 velocity grid points with the step size

7 = 0.0002. Furthermore, we set the domain of the velocities to [—6,6]>. We apply the
algorithm with the rank 3.
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6.3.1 Conservation of mass

Evolution of the masses
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1.8
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% Total mass, gas 1
E Total mass, gas 2
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1.0 4
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time (s)

Figure 10: Evolution of the total mass of the approximations of the two-species algorithm

In Figure[I0] we see the evolution of the mass of both gasses, simulated by the two-species
dynamical low-rank algorithm. The total mass of each gas is calculated as the sum of
the densities of all spatial cells (divided by the area ﬁ of a cell). The total masses are

constant to the order of 10714, as seen in the following Table [3|

Total mass | Gas 1 Gas 2

t=0 1.0000032820001712 | 2.0000032820001716
t=10 1.0000032820001696 | 2.0000032820001750
t=20 1.0000032820001694 | 2.0000032820001765

Table 3: Total mass of the approximations of the two-species algorithm at times t €
{0,6,12}

6.3.2 Conservation of energy

Evolution of E

450 A

400 A
350 A
300 +

W 250 4

1501 Total energy, gas 1

1004 Total energy, gas 2
—— Sum of the total energies

10.0 12,5 15.0 17.5 20.0

Time (s)

0.0 2.5 5.0 7.5

Figure 11: Evolution of the total energies of the approximations of the two-species algo-
rithm
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In Figure we see the evolution of the mass of both gasses in the simulation by the
two-species dynamical low-rank algorithm. The energy of each gas is calculated as the
sum of the energy of all spatial cells (divided by the area — of a cell). We can see that
an exchange of energy of the gases is happening, which does not affect the total energy.
The total energy is constant to the order of 10713, as seen in the following table.

Energy | Gas 1 Gas 2 Total

t=0 2.062523555403734 | 10.062582805859716 | 12.12510636126345
t =10 | 4.673649433917315 | 7.4514569273461335 | 12.125106361263448
t =20 | 4.673649962730812 | 7.451456398532636 | 12.125106361263448

6.3.3 Exchange of momentum and energy

Evolution of u;

Evolution of u;

—— Min value, gas 1 2.0
Max value, gas 1

—— Min value, gas 2

—— Min value, gas 2

Max value, gas 2 Max value, gas 2

: &

u;
ks =
®

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time (s) Time (s)

Evolution of T Evolution of E

Max value, gas 1
—— Min value, gas 2 100
Max value, gas 2

Total energy, gas 1
Total energy, gas 2

14 200
—— Min value, gas 1
—— Sum of the total energies

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time (s) Time (s)

Figure 12: Evolution of uy, us, T and F

In Figure we can see the evolution of uy, us, T and the total energies. In the plots
of uy, us, and T, we see the minimal and maximal value of each quantity for both gases
at each time step. The macroscopic quantities’ minimal values converge in the first three
plots. We can make the same observation for the maximal values of both gases.

The values do not increase/decrease equally. The main influence on this difference in u
originates from the differences of the densities with p; &~ 1 and py ~ 2. In step we
divide by p which results in a lower time derivative dyus.

As we saw in the previous section, the momentum exchange happens without interfering
with energy conservation.

6.3.4 Convergence to an equilibrium

Last to observe is whether the system converges to an equilibrium. Therefore we will
monitor whether the maximal and minimal values of the macroscopic quantities are con-
verging towards each other. As this cannot be seen due to the scale for all times, we will
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look at the last 4 seconds of the results for the velocities and temperatures in Figure [13]

Also,
there

Evolution of uy

we will observe the convergence of the densities, which we did not consider yet, as
is no exchange happening.

Evolution of uy
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Figure 13: Evolution of uq,us, T and p

We can see that the minimal and maximal values of all macroscopic quantities converge
toward each other, which means the system is converging towards an equilibrium.
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7 Summary and Conclusion

In this section, we will take a look at the presented algorithms and results, which goals
could be achieved, and which areas can be expanded on.

The goal of this master thesis was to apply the dynamical low-rank algorithm [1T][13]|21]
to non-reactive gas mixtures using a BGK-type model. Hereby we wanted to transfer the
dynamical low-rank algorithm for the BGK equation presented in [11] by Einkemmer, Hu,
and Ying.

This BGK-type model for mixtures also needed to include a low-rank solution for the
algorithm to be applicable.

We verified that the model of Andries, Aoki, and Perthame presented in publication [I]
contains such a solution under specific assumptions. We assumed that the collision fre-
quencies vy; are large and significantly larger than the interaction coefficient x for all
k,7 € {1,2}. Under these assumptions, we performed a Chapman-Enskog expansion in
the first order of the collision frequencies in section

With the results of the expansion we could verify that there exist low-rank functions g
such that we can f, = M® g, for all k € {1, 2} with the distribution function f; of gas k
and the Maxwellians M®*). This transformation is similar to the one performed in [I].
Thereby we were able to seek the application of the dynamical-low rank algorithm to the
chosen model [1] for gas mixtures.

The dynamical low-rank algorithm for the BGK equation [II] by Einkemmer, Hu and
Ying is applied to the isothermal case. The model of Andries, Aoki, and Perthame incor-
porates inter-species temperatures, which depend on the mean velocities of the gases and
are essential in transferring energy between both species. This prevented us from also
assuming the isothermal case in the application of the dynamical low-rank algorithm to
the BGK-type equation for mixtures [I].

Therefore we started by expanding the dynamical low-rank algorithm [I1] to varying
temperatures in section Finally, we were able to apply the dynamical low-rank algo-
rithm to the two-species case of the model of Andries, Aoki, and Perthame for gas mixture
in section

Both algorithms were implemented by extending the existing code of [I1], which Prof.
Einkemmer kindly shared.

In section , we calculated the ranks of the underlying solutions in the isothermal,
temperature-extended, and two-species dynamical low-rank algorithms.

The calculations were performed in the first order of the Knudsen number for the one-
species algorithms and the first order of the collision frequencies in the two-species case.
The rank of the approximated solution equals 6 in the isothermal one-species case. We
calculated the ranks for the temperature-extended and the two-species algorithm to equal
10.

Therefore the temperature-extended and the two-species algorithms have to be performed
with higher ranks than the isothermal algorithm for similar precision.

Additionally, we analyzed and compared the computational cost of the isothermal, ex-
tended, and two-species dynamical low-rank algorithms in section ol We could not retain
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the efficiency of the isothermal algorithm presented in [11] with the extended and the
two-species algorithms. We analyzed that the critical step in both algorithms is the com-
putation of the convolutions ((2.54) and (3.40))).

The computational cost is up to N9 times the cost of the same step in the single-species
case with constant temperatures because the steps are performed once for every unique
temperature. N% is the number of spatial cells.

This is the only step with a significant increase in computational cost.

We saw that the two-species algorithm is approximately twice as expensive as the extended
algorithm for a single gas from a computational point of view because the structure of
most steps is shared with the single species algorithm. Notable but inexpensive extra steps
are the computation of the inter-species macroscopic quantities and their time derivatives
and the calculation of the exchange terms.

In section [6] we performed three experiments and tested several attributes of the used
mathematical models.

We could see that the isothermal, temperature-extended, and two-species algorithms are
all able to conserve the total mass. The extended algorithm and the algorithm for mix-
tures are further able to preserve the total energies which we saw in both experiments.
The two-species algorithm fulfilled the indifferentiability property of the model [1] in the
test we performed in This also verified consistency in the implementation of the
algorithms.

In experiment [6.3] we could also observe that the algorithm for mixtures exchanges mo-
mentum and energy between the species and converges to global equilibrium.

The fulfillment of all mentioned properties is essential, but no indefinite proof of correct-
ness.

It is possible to validate the algorithm’s results with additional methods that are out of
this thesis’s scope. One possibility is to verify the numerical results with another numer-
ical solver.

The dynamical low-rank algorithm could be applied to the BGK-type model for gas
mixtures by Andries, Aoki, and Perthame [I] with promising results. Nevertheless, the
efficiency of the dynamical low-rank algorithm got diminished in the calculation of the
macroscopic quantities, which leaves room for future work.

Improving the efficiency of step or replacing it with a more efficient alternative
would significantly enhance the algorithm’s efficiency.
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8 Appendix A

Appendix A covers fundamental integration results and all calculations performed in de-
riving the temperature-extended single-species dynamical low-rank algorithm for the BGK
equation. We calculate the moment equation, derive results for the first-order Chapman-
Enskog expansion, and consider the performed IMEX steps in more detail.

8.1 Fundamental integration results

In this section we calculate the moments of exp(—az?), where a € R,. All results will be
needed and referenced in the integration of Maxwellians in the following sections.

The integral f exp(—x?)dx = /7 is called the Gaussian integral, proof of its calculation
can be found in [27]

We begin by calculating [, exp(—az?)dx and consider the case z € R'.

/_Zexp(— i = f/ Vaexp(—(vaz)?) f/ exp(— du_\/j (8.1)

Hereby we can derive the calculation for x € R”

/ oxp(—aa?)dr = f[l /_ Z exp(~ax?)dz; = (7) : (8.2)

Next, we calculate all odd moments of exp(—ax?)dz. We consider [, 2% exp(—az?)dx
with z € R™ and k € Ny. For the integration we can use that x?**! exp(—ax?) is point
symmetric (f(—z) = —f(x)).

This integral is n-dimensional. We consider the arbitrary I-th component

/xlx exp(—ax? d$—/ /:rlx exp(—ax? dledx, (8.3)

1#£l
— / . (/ 212°% exp(—ax?)dx +/ x2k exp(—aa:Q)d:El> H dx; (8.4)
R R, R_ il
= / . </ 212°% exp(—ax?)da —|—/ (—a;) exp(—aaz2)da:l) Hda:i (8.5)
R R, R, il
~0 (8.6)

Next, we calculate the second moment of exp(—az?). We start with z € R':

/ r? exp(—az?®)dr = / —0, exp(—ax?)dx = —8a/ exp(—ax?)dr = —<9a\/E
—00 —00 —00 a

= = (8.7)

and expand this to x € R”

/ nx2exp(—ax2)dx:i / n <Hexp ~aa? )dml - da, (8.8)

_Z(/ 22 exp(—aa’ dx>.<H/ exp(—az? dxj>_n\/;f —g%

J#i
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Additionally, we will calculate the fourth and the sixth moment of exp(—ax?) with z € R.
We can do this similar to the calculation of the second moment.

/ T exp(—az?)dz = / h (00)2 exp(—az?)dz = (9,)? /_ h exp(—az?)dz = (9,)* g

—0o0 0 oo

3 /7 31 /=«
! EZZE\E (8.9)

Which also gives us

/ " 9 exp(—az?)dz — / (00 exp(—aa?)dz = —(8,)* /_ " exp(—aa?)da

3 [r 1561 [=m
:_8“1 $:§$\/§ (8.10)

8.2 Derivation of the moment equation

To obtain the time derivatives of the quantities p,u and T, we will use the moments of
(2.1). It is to note that this set of equations is of dimension d, + 2 as the second equation

is of dimension d, and ¢(v) = (1,v, %)T

O(o(v)f)o + Ve - (v(v) fo =
<~ at(pa puU, E)T + Vz ’ <U¢(U)f>v =

(0(0)(M = f))

M IRO |

We still have to show that the right-hand side of the equations (8.11)) equals zero. There-
fore we have to calculate (¢(v)f), and (p(v)M),.
By the definitions (2.3) we have

1
dyp

(Ho=p (vf)o=pu, (lo—ul*'f)o =T (8.12)

We will expand this by the calculation of (@f}v. With the definition E = % pT + 1pu?
and the definitions (8.12]) we can calculate

dopT = (v — ul )y = (W20 — 20(0f)e + [P (f),
= (W) — 200% + pu?

2
Thereby we have successfully calculated (|U2—| o
[of? dy Lo
Py =y 2= E
(5 flo= 50T+ 5pu

With these definitions and results we can ;ietermine the moments of the Maxwellian and
calculate (M — f))y,(v(M — f)), and (%(M — f))v. We will use the notation

dy
2

M(t,x,v) =p (%) exp(—alv — ul?)

D S
2T (t,x)

corresponding (M — f),.

where we use a(t,z) = for simple presentation. We start by calculating (M), and

46



8.2.1 Calculation of (M — f),

a

do do
Mdv =p (—) ’ / exp(—alv — u*)dv = p (E) ’ / exp(—alz|*)dz
Rdv (s Rdv Rdv —y

™

dy dv 00 dy dy
ay s 5 a\ s (m\7
p(ﬂ) i|:|1 /Ooexp( az)dzi = p |~ p (8.13)
= (M —=f)lo=p=p=0
Next, we calculate (vM), and the corresponding (v(M — f)),

8.2.2 Calculation of (v(M — f)),

dy
/ vMdv = p (ﬁ) ’ / vexp(—alv — ul*)dv
Rdv ﬂ- Rdv

/ (v —u + u) exp(—alv — u|*)dv
Rebv

H {/ zexp(—alz|*)dz —I—/ wexp(—alv — ul?)dv (8.14)
Rdv —y

Rdv

3 8.13
’ {O—I—u/ exp(—a\v—u|2)dv} ‘ = ) pu
Relv

Il
RS

I
o)
/N 7/ N /N

312 312 39

I
RS

At last we calculate (%M » and (%(M — o

2 dy
/ PF gy = 2 (2) ’ v? exp(—alv — ul*)dv
Rdv 2 2 m Rdv

dy

Play= 2 2 2
N _ _ —aly —

5 ( ) /dv[(v u)® + 2vu — u] exp(—alv — ul|*)dv

dy
P dy
2

(%) UR (v — u)? exp(—alv — uf?)dv

+ Zu/ vexp(—alv — ul?)dv — u2/ exp(—alv — u]g)dv] (8.15)
Rdv Rdv
£ 618 :

2(8)* [, omtcestassn (2) - (D)

a a
d d d
% | d, v 2 dy,1 1
2 \1 2\/5“r a 4a 2
d 1
=T+ -p2=E
p Pt gpt
Kl

= (- (M= )y =E-E=0

With the results (8.13), (8.14) and (8.15) we have calculated
() (M = f))» =0
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Thereby be derived the moment equation

O(p, pu, E)T + Vg - (vo(v) f)y, =0 (8.16)

8.3 Calculations for the Chapman-Enskog expansion

This section contains calculations that we utilize to perform the Chapman-Enskog expan-
sion in section 2.2

We start with the calculation of the integrals (vo M), and (vofi),. Furthermore, we cal-
culate and simplify the term %(@M + v - V,M) and show the replacement of it’s time
derivatives with the compressible Euler equations. Finally, we calculate P; and ¢; which

are defined in (2.11)) and (2.12]).

8.3.1 Calculation of (voM),

In this chapter we will calculate (vM), ,((v®v)M), and (v%M}U which we need in the
derivation of the fluid limits of the BGK equation.

Calculation of (vM),

dy
/ vMdv = p (E) ’ / vexp(—alv — ul?)dv
Rdv ™ Rdv

We add —u + u to be able to perform a substitution for z — w.

dy
= (%) ’ /Rdv (v —u + u) exp(—alv — ul*)dv
duv
a\s
"o

T

a

dy
+p <—) ’ / uexp(—alv — u|*)dv
m Rdv

Note that the area of integration doesn’t change because R% — u = R%.

/ zexp(—az?)dz (8.17)
Rév

/Rd,u (v —u) exp(—alv — ul*)dv

do
a\ %
e
T
a\ %
+ pu <—> / exp(—az®)dz (8.18)
T Rdv
The calculation of (8.17) and (8.18) can be seen in (8.6).and (8.2)
d d

v

coem(®)* ()’

:pu

48



Calculation of ((v ® v)M), The calculation of ((v ® v)M), is equal to the calculation
of the integrals (vZM), and (v; - v; M), for 1 <4,j < d,.

v? exp(—alv — u|*)dv

[(v; — w;)* + 2viu; — u?] exp(—alv — u|*)dv

~—
)

(v; — u)? exp(—alv — u|*)dv (8.19)

~—
o)

2uu; exp(—alv — ul*)dv (8.20)

N—
o)

(8.21)

Al AR 3|2 3|2

N—
o)
T
&
S
S
@]
%
=
|
RS
4
|
S
o
S~—
Y
4

In order to make this calculation readable we will show the calculation of the terms (8.19)
- (8.21) one by one. We begin with the calculation of (8.19)):

dy. dy

P (%) ’ /Rdv (’Ui - Ui)Q eXp(—a’U _ UP)CZ’U —p <%> 2
dy [ dv  poo .
=p (%) 2 (g /_Oo exp(—az?)dzj> / 22 exp(—az?)dz;

—00

/ 22 exp(—alz|*)dz
Rdv—y

By using (8.1)) and (8.7) we can calculate the integrals and obtain

dy dy—1 dy dy
B (a)7(7T> 2 1(7r) B <a>7<7T)7 1 P
—f T a 2 a3 —F T a 2a 2a
=pT (8.22)

D=

Next, we will calculate (8.20))

dy
p (2) ’ / 2uu; exp(—alv — ul?)dv
T Rdv

dy

(ﬂ) ’ / 2(v; — u; + u;)u; exp(—alv — ul?)dv
T RdU

dy
= (2) ’ (/ 2zu; exp(—az?)dz +/ 2u? exp(—alv — u\Q)dv> (8.23)
(s Rdv Rdv

s

dy
We use exp(—az?) = H exp(—azjz) to split the first integral and apply (8.13) to

J=0

calculate the second integral

a\ [ 2 > 2 2,7\ du
=p (;) ((H/ exp(—az;)dz; /_Oo 2u;z; exp(—az;)dz; +2ui(a) 2

j#i Y 0
a B " > u 00
° i
=p (;) (H/ exp(—az?)dq) [_E exp(—aziz)] N + 2%?,0
jAi YT
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At last we will calculate (8.21)) also by using (8.13))

du
a\ 2
T

With our results (8.22)) - (8.25) we have successfully calculated (vZM),:

du

[ utesp-alo—uPyio = p () ()% = pud (8.25)

Rdv T a

/ vIMdv = pT + 2pui — pui = pT + pu? (8.26)
Rdv

In order to complete the calculation of ((v ® v)M), we still have to calculate (v;v;M),
for i # j.

dy
(viv;M), = p (ﬂ) ’ / vv; exp(—alv — ul?)dv (8.27)
T Rdv
an e | de oo o0
= (-) : H/ exp(—a(vy — u)?)dvg / v; exp(—a(v; — u;)?)dv;
7r
k#i v T —00

ki

: / vj exp(—a(v; — u;)?)dv;

[e.e]

The calculation of (exp(—a(vy — ux)?))r can be done with (8.1]).

dv [e.o] dU O—UE dU [e.o]

H/ exp(—a(vy — ug)?)dvy, = H/ exp(—azj)dz, = H/ exp(—az;)dz
P Jegti ¥ OOk ki © 00

k] k#j k#j

dy—2
™
a

We can calculate (v; exp(—a(v; — u;)?))r using the same techniques which we already
applied.

/ v; exp(—a(v; — ui)2)dv,~

—00

= /OO (v; — u; + u;) exp(—a(v; — u;)?)dv;

= / (vi — u;) exp(—a(v; — Uz‘)Q)dUz‘ + / u; exp(—a(v; — ui)Q)dUi

:/ ziexp(—azf)dzi—i—/ u; exp(—a(v; — u;)?)dv;

o0 —0o0

The value of the first integral is 0, which can be seen in (8.6)). The second integral can be
calculated using the substitution z; = v; — u; and (8.1]).

=0+ u,/ exp(—az?)dzi = ul/ exp(—az?)dzi = u,\/E
—oo—u; —o0 a

We can put these results into (8.27) to finalize the calculation of (v;v;M),
dy dy—2
a\ 2 [T 2 T ™
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Using the results and , we have obtained

(vv; M), = pusu; + 6; ;0T Vi, je{l,...,d,}, (8.29)
which is equal to

(v@v)M)y = plu®@u)+pT1y

At last we will calculate (v%M}v.

Calculation of (v° 1),

|v|2 a\ % / |v|2 9
—Mdv = (—) — - - d
/Rdvv 5 Mdv = p Rdvv 5 exp(—alv — u|*)dv

The integral is d,-dimensional which is the dimension of v. We will show the calculation
for the [-th dimension of the integral

2 dy 2
/ vl’U—Mdv =p (E) ’ / vlﬂ exp(—alv — u|*)dv
2 T Rdv 2

To be able to perform substitutions, we proceed by adding —u + u

du

F 1
=p (ﬁ) 2 _/ (v — g+ w) (v — u + u)? exp(—alv — ul*)dv
T 2 Jrdo

=p (%) * % /Rdv((vl — ) +w)((v—u)? +2u- (v —u)+u?) exp(—alv — u*)dv

and splitting the terms (v — u) and u using multiplication

1
= (2) - / (v, — w) (v — u)? exp(—alv — u|*)dv
™ 2 Rdv
a\% 1 2 2
+p (—) = w (v —u) exp(—alv — u|*)dv
T 2 Jrdo
a\ % 1 2
+p <_) - (v —w)2u - (v —u) exp(—alv — u|*)dv
T 2 Jrdo
a\ %1 2
+p (—) 5 [ w2u- (v —u)exp(—alv —ul")dv
T 2 Rdv
a\% 1 2 2
+p (—) S | (u—w)u exp(—alv —ul*)dv
s 2 Rdv
a\ % 1 2 2
+p <—> = wu® exp(—alv — u|*)dv
T 2 Jrdo

o1



Following our preparation, we can perform the substitution z = v —u. Note that the area
of integration won’t change as R% — u = R%.

1
= (%) ’ 5/Rd 22” exp(—az?)dz (8.30)
T 1
+ puy <—> ’ 5/ 2? exp(—az?)dz (8.31)
m
dy
+p (%) ’ /Rd zu - zexp(—az®)dz (8.32)
dy
+ pyy (%) ’ /Rd z-uexp(—az?)dz (8.33)
,ra\% 1 )
+ pu (;) 3 | z1exp(—az?)dz (8.34)
fpunt () F L —a2*)d 8.35
puu (—) " 5 g exp(—az”)dz (8.35)

The values of the integrals (8.30)), (8.33) and (8.34) are zero because the functions are
point symmetric ((—z) = —1(2)).

(—2)(—2)? exp(—a(—2)?) = —z2* exp(—az?)
(—2) exp(—a(—2)*) = —z exp(—az?)
(—2z) exp(—a(—2)?) = —z exp(—az?)

The calculation of the integrals (8.31)) and (8.35)) can be seen in ) and (8.2)). Therefore
we only have to calculate the 1ntegra1 in 8.32.

/ 2u - zexp(—az®)dz
Rév
dy
— / 2 Z u;z; exp(—az?)dz
Rdv i=1

dy
:Zu’/ 2z exp(—az®)dz
i=1 Rt
:ul/ 2 exp(—az? dz—l—Zul/ 2z exp(—az?)dz
R R

oy dy

The first term can be derived by splitting the exponential function and integrating it with
respect to z.

eXp(—azf)dzi)/zl2 exp(—azf)dz
R

Using the results (8.1)) and (8.7) we obtain

<7r>d”21 1 (W)é 1
=u |\ — — | — —
: a 2 \a a
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The second term can also be derived by splitting the exponential function and integrating
it with respect to z.

dy

Zul/ 21z exp(—az®)dz

i#l R
d’u dv o0 o0 oo
= ZUZH (/ exp(—azz)dzk) / 2 exp(—azf)dzi/ zrexp(—az?)dz
i#l k#i - oo -
k£l

The value of the second and third displayed integral are equal to zero, which can also

be seen in (8.6).

=0

Therefore we successfully calculated (8.32]):

dy

dy—1
a\ =2

o(5)
s

a\ % T 1 /m\z 1
/ 2 - zexp(—azQ)dz =p (—) ’ U (—) - <—> °Z
Rdo m a 2\a/ a
= pwyT

We add the results of (8.31)), (8.32)) and ({8.35]) to obtain <UZ%M Vo
]

2 dy
/ vl’%Mdv =p (E) ’ / vli exp(—alv — u|*)dv
Rdv T Rdv 2

+ puT
d, 1 5
= EpulT + §pulu + pw T (8.36)

Hereby we have reached our goal of calculating <U%M Vo

2 d 1
/ |1}2| Mdy = ;puT + Epu3 +puT = (E + pT)u (8.37)
Rdv

8.3.2 Calculation of (v fi),

In this section we will calculate (vofi), with ¢(v) = (1,v, l”' )T. We need this for the
derivation of the fluid limits of the BGK equation. f; is deﬁned by the equation

f:M+€f1

= fi=2(f ~ M) (8.38)

Calculation of (vf;), In (8.14) we already obtained the result

(V(M = f))o =
Therefore we have
(vfi)o = %@(f —M)), =0 (8.39)
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Calculation of ((v®v)fi), In this chapter we first want to show that ((v ® v)f), is
equal to —IP;.

—IP’lz/RdU(v—u)@)(v—u)fldv

:/ v ®vfidv (8.40)

Rév

—/ v ® ufidv (8.41)
Riv

—/ u® v fidv (8.42)
Rilv

—i—/ u @ ufrdv (8.43)
Relv

We will show that (8.41]) - (8.43) are equal to zero and therefore —P; = ((v ® v) f1),.

/ v ® ufrdv
Rdv

zl/Rdv(U@u)(f—M)dv (8.44)

£

We proceed by calculating the i-th row and j-th column of the {((v ® v)f),
(/ (v @ u)fdv)y;
Rév

:/ viuj fdv

Relv

:uj/ v fdv = puju,
Rebv

> | (weufd=pusuy) (8.45)

In (8.23) we already calculated (2v;u;M), = 2pu?. We can use this to conclude that
(v; M), = pu; and therefore

(/ (v ®u)Mdv),;
Rdv
= / UinMdU
R
= uj/ viMdv = puju,
Rdv

= | (v@u)Mdv = p(u® u) (8.46)

Putting (8.45) and (8.46) into (8.44) leaves us with the result

1
= [ e - ana
= (W - puou) =0
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(8.42) can be calculated in the same way. At last, we have to show that (8.43) equals

Zero.

/ (u®u)frdv
Relv

= (u®u) fidv
Rdv

:(u®u)1/Rdv(f—M)dv

€
This integral equates zero as calculated in (8.13])

1
=(®u)-(p—p)=0
In conclusion we have shown that the terms (8.41)) - (8.43)) are equal to zero and therefore
(v@v)fi)e = {((v=u) @ (v =u)) fi)e = =P (8.47)

Calculation of (v%fl)v In this chapter, we first want to show that

’U2 .
<U%f1>u = —Pyu — ¢, with

P, = —/ (v—u)® (v—u)fidv (8.48)
R
1
Q= —= / (v —u)|v — ul?®frdv (8.49)
2 Rdv
We will start the derivation with ¢;. This means we have to show ¢, = —(v%fﬁv — Pyu.
1 2
n=-3 (v —u)|v — ul|” frdv
R
1
_ _/ (v = w)(Jo]? = 20Tu + [uf?) fidv
2 Jau
1
=— —/ v|v|? frdv (8.50)
2 Rdv
+/ v(vTu) frdv (8.51)
R
1
— —/ v|ul? fidv (8.52)
2 Rdv
1
+ —/ ulv|? frdv (8.53)
2 Rdv
- / u(vTu) frdv (8.54)
Rv
1
+ —/ ulul? frdv (8.55)
2 Rdv

Line (8.50) is already equal to —(vwfl)v. Furthermore (8.51)) is equal to —Pyu which we

can show using (8.47)). ’
/ v(vTu) fidv = / (v ®@v)ufidv = / (v—u)® (v—u))fidvu
Rdv Rdv

Rdv
= —Plu

35



Thereby we have to show that the lines (8.52)) - (8.55)) add up to zero.
In equation (8.39) we have already seen that (8.52]) equals zero.

In chapter [8.2.3| we furthermore calculated (%(M — f))» = 0 which covers (8.53)):

1 11
-/ o2 frdv = u——/ W(f = M)dv = 0 (8.56)
2 Jras 2¢ Jrao

We can calculate (8.54)) using the steps presented in using v7 instead of v which

results in

—/ u(vTu) frdv
Rév

= —u v fidou
R

1 T Vi
= —U— — d
u/Rdvv(f )dv u

£

1
= —u—(pu” — puNu =0
€

Line (8.55) also equates zero which is shown in (8.13). Therefore we have successfully
concluded

1
n==3 [ =0l (8:57)
2
= —/ v% 1dv — Pru (8.58)
Rév

U2
or (v%fl)v = —Pyu— q;.

8.3.3 Calculation of & (O,M + v -V, M)

In this chapter, we will show the calculation of - (9,M + v -V, M) which we will need for
the dynamical low-rank algorithm as well as the derivation of the fluid limits of the BGK
equation. The Maxwellian M is defined by

Mtz,0) = —2ED o @M)

2rT(t, )% 2T°(t, x)

For a simpler presentation of our calculations, we will use the functions
hn(t,z) = — P00
(2nT(t,z))=2

and
v — u(t, 2)?

2T(t, )
which allows us to display M in the following way
M = hy(t,x) exp(ha(t, z,v)) (8.59)

ho(t, z,v) = —
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After these preparations we can start our calculation by substituting M using
1 1

M( hy exp(hs) |

We apply the product rule

- m[@hl exp(hs) + h1 exp(ho)Ouha + v - (Vahy exp(hs) + b1 exp(ha)Vah)]
and simplify

B 1
T

1
= h—(athl +v- Vxhl) + 6’th2 +v- thg (860)
1

M +v -V, M) = Ot(hy exp(ha)) + v - Vi (hy exp(hs))]

[8th1 + hlathg +uv- (Vxhl + hlvxhg)]

We proceed by putting the derivatives
0tp dvﬂpﬁtT

Oihy = -
T @D (2e) 3
Y h V.p B d,mpV, T
T 0% (2nT) %
(v—u)-Ou |v—ul?0,T
h p—
Oihs T T
C(v=u)-Vou v —ufV,T
Vohy = - + 7
into (8.60)) and obtain
1
7 (OM v VM)
@)% [ dp  dumpdT Vep  dympV,T
p (2rT)%  (2xT)% 1! 2rT)%  (2xT)% !

+(v—u) - Ogu N |v — ul?0,T N (v—u)-Vu N v — ul?V,T
T 277 ! T 277

which we can simplify further

_ %_ dvatT—l—v- V.p . d,UVxT_i_ (v—u)-du

P 2T p 2T T
N \v—u\28tT+v (v—u)-Vu . v — ul?V,T
277 T 2772

lv—ul* d,
277 2T

(v —u)
T

1
:;(3tp+v-vxp)+ -(@u—kv-vxu)—f—( )(@T—I—U-VxT)

(8.61)

8.3.4 Replacing the time derivatives using the compressible Euler equations
In this chapter, we want to replace the time derivatives of

1

—(OM+v- -V, M

M( t v )

(v —u)

T

lv—ul* d,
277 2T

1
:;(&p—l—v-vmp)—i- ~(8tu+v~qu)+( )(8tT+v~VxT)

(8.62)
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with spatial derivatives using the compressible Euler equations (8.63). The term (8.62))
was derived in the previous chapter and is a rewritten form of (8.61)) where we sorted
the derivatives of p,u and 7.

O(pu)| = — |V (plu®@u) + pT1y) (8.63)
O.F V.- (E + pT)u)

Before we can replace the derivatives, we will first calculate d,u using the first two equa-
tions of (8.63]). We start with the second equation and apply the product rule to the left
side.

O(pu) = =V, - (plu @ u) + pT1y) (8.64)
Sopu+ pou = =V, - (p(u @ u) + pT'1y) (8.65)

We rearrange the equation to isolate dyu

D = % (=Va - (p(u® ) + pT1Ly) — Bypu) (3.66)

and replace the time derivative d;p using (8.63)

[=Va - (plu®u) + pTla) — (Vs - (pu))u]

[~V (p(u®@u) + pT1y) + (Ve - (pu))u]

s T e R

;[—V:p/) (u®u) = pVe - (u@u) =TV, (pla) — pVe - (T1a)
+ Vap - (u®@u) + pu(V, - u)]

- % [—pVe - (u®@u) =TV, - (pla) — pVa - (T1a) + pu(V - u)]

=V, (u®u)— %Vm “(pla) = V- (T1y) +u(Vy - u) (8.67)

Next we will calculate ;T using (8.63). We start with the third equation
OE =—=V,-((E+ pT)u)

d, 1
and use the definition £ = ?pT + §pu2.

d, 1
Next, we apply the product rule on the right side

d, dy 1
<:>§8tpT + 3p8tT + éf)tpzf + pouu = =V, - ((E + pT)u)

and rearrange the formula to isolate 0;T.

d, 1

2
<:>8tT == _d

v
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We continue by replacing the time derivatives 0,p (using (8.63)) and 0,u using the previ-
ously calculated (8.67). Furthermore, we insert the definition of F on the right side.

2 d 1
T=—"V, | Z2pT+ =pu*+ pT
<0, dvpVx <<20 toputp )U>

T 1 2)
+(—+ u” | Vg - (pu
(p dyp (o)

2 T
-2 (—vx (WS ) = SV, (ohy) = V- (TLy) + (Y, - u))

We have h -V, - (u®@u) = (h®@u): Vou+h-u(Vy-u) Vh € R?and thereby

2 [(d, d, 1
o = — <§V$pT + E,OVQCT + §V$pu2 +pu-Vyou+ VpT + szT) u
vf

2 (d 1
— 2oT + —pu + pT ) (V-
dvp(Qp +2pu+p>(mU)

T 1
+ (— + u2) (Vepu + pVy - )
p o dyp

2 2 T
+ w :Vau+ d—u (u(Vm ) + ;pr + V. T —u(V, - u))

We apply additional simplifications and mark equal terms using color for clarity.

V.p 2 (1 2
ol = —Tu- /’)/ —u-V,T — i (QprUQ + V;EPT) U — d_v( + Ju
T(V, - u) 2 (Lt (Vg -u)
— et W) — —pu” z U
S EY p
T 1 T r
+ |+ u? ) Vepu+ | — + w | pVy - u
p o dyp p dyp
2 T
+ + —u (pr + >
d, P
As all marked terms add up to zero, we obtain our final result
2
=0, = —uV,T — d—T(Vx - u) (8.68)

v

We arrange the right side of the equation based on the derivatives. The first term will be
simple

1

We replace the time derivative d;p by using (8.63), apply the product rule and simplify
the result.
1
= ;(_vm - (pu) + v+ Vap)
1
= —(=Vupu—pV,-u+v-Vyp)
p

_ W ; Y -V (8.69)
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In the next term, we want to replace the time derivative dyu using our result (8.67))

(v—u)
e (Ou+ v - Vu)

(v —u)

_ . <—vx (@) — %vx pLy) = Vo (TI)) + (Vs - 1) + v - qu)

T
We have h -V, - (u®@u) = (h®@u): Vou+h-u(V,-u) VheR?and thereby

(v—u)® (v—u)

= T s Vau
— T
+ % : (—u(Vm W)= Ve pla) = Vo (Ta) + u(V, - u))
(v—u)® (v—u) (v—u) (T
= Vgl — | 7 V=z zT
T V.u T ; Vep+V
(v u)®(v—u) o V. VT
= T :Veu — (v —u) p + = (8.70)
For the last part-term, we simply substitute our result (8.68)
v —ul*> d,
lv—ul*> d, 2
- _ v : —u- G T v
( 5T 5T v-V,T —u-V,T ) (V- u)
o —ul*  d,\ [(v—u)-V,T 2
( T T a, Ve (8.71)

Using (8.69) - (8.71]) we can finally derive

1
—(OM +v- V. M)

1 (v —u) v —ul?* d,
:;(@p%—v-vxp)%— T -(Gtu+v-qu)+( 572 T T (0T 4+ v-V,T)
:u.vxp—vx.ujt(v_u)@(v_u):qu—(v—u)-<va+ )

p T P

v —u*> d, 2
—i—( 5T 5 dvvx u
We add the colored terms
C(v—uw)®(v—u) v —ul*>  dy+2 (v—u) VT
- T Vaut (o7 > )T

v —ul? 2

o7 4,
and apply V, -u = I; : V,u to obtain our final result
(v w)@w—u) |Jo—uf2 v—ul* d,+2 (v—u) -V, T
= T ~op g ) Vet (g 5 ) T

(8.72)
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8.3.5 Calculation of P,

In this section, we calculate the integral

P, ::—/Rdv(v—u)@)(v—u)fldv

which is equivalent to calculating

(Pl)i,j = —/ (Ui — UZ')(’Uj — uj)fldv fOI‘ 1 S Z,] S d
Rdv

using the definition

M (v-u)@w—u) |Jv—u?2

Y] TSR E P
v—ul* dy+2 (v-u)-V,T

+ ( 5T 5 ) T + O(e)

We temporarily neglect the O(¢) term and split f; into the parts

M@w—u)® (v—u)

fiy = - T :Veu (8.73)
Jie) = +¥ v Q_TUP d%fd : Vau (8.74)
Fis) = _% lv 2—Tu]2 (v — u% v, T (8.75)
iy = +¥ dv;— 2 (v— u% Vv.,T (8.76)

Calculation of ((v; —u;)(v; — ;) fiq))s We start with the calculation of ((v; — u;)(v; —
u;) fi1))v and neglect all factors which are not dependent on v. We substitute z = v — u
and display the operator : as a sum.

/Rdv (01 — i) (v — ;) exp (— i ;T“|2> (v =) ® (v —u)) : Vou)do
_ /R sizyexp (—%) (2 ® 2) : Vou)de
_ /R e (—%) (zd: h 10 up)dz

k=1
We place the sum sign in front of the integral

2

d
z
= Z O, U, /Rdv exp (_ﬁ) (zizjzi2)dz

k=1
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and consider the case i # j. The integrals are zero except for the conditions
(k, 1) = (i,7) or (k,1) = (j,1) as (z exp(—%))zk = 0 for any arbitrary 1 < k <d, .

d 2 2
g 3xluk/ exp _Z (zizjzK2)dz = (Oyu; + axluz)/ exp : (z222)dz
& l:l Rdv 2T Rdv 2T

00 2
= (O, ui + O u;) (H/ exp (——)dzk>/ zfexp(—;—%)dzi
k#i,g Y o
oo ) 22
. . % eXp | — o7 dz;

We obtain the solution for the case i # j using (8.1) and ({8.7)

d
Z (‘Lluk/

k=1 R

— (O i + Ouyuy) (27 T) 17

2 w21
exp <—2Z—T> (zizjanz)dz = (Op,ui + 3Iiuj)(27rT)d =1 2rT - 4T?
v

(8.77)

Next, we consider the case i = j. The integral equals zero for [ # k, which gives us

d 9 )
i z
g::l O Ui /Rdv exp ( 2T>(2 2pz)dz = Z@xkuk /Rdv exp (_ﬁ) (2222)dz
= Onit /Oo P ; sidz + ZGI “k/ eXp = (27z7)dz
QR 2T £ Jgan AL

We already solved the second term in the first case ¢ # j. We transform further

d 2
Z c%luk/ exp <—Z—> (22 221)dz
Rdv 2T
k=1
= O, ui( H/ exp (——)dzk) /OO zexp (— 2T dzl +Z@zkuk 27TT) 2 T?

k#i

K
and solve the integrals using (8.1)) and

d .2

Z c%luk/ exp <——>(zi22kzl)dz

Rdv 2T
k=1
dv 19 dv 9 dy o

= 30,,ui(27T) T T? + >~ 0y ux(27T) 3 T? = (Vy -t + 20,,u;) (20T) 3T (8.78)

ki

Thereby we calculated ((v; — u;)(v; — ;) fiq))v for both cases i = j and i # j.
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Calculation of ((v; — u;)(v; — u;)fi2))» We proceed by calculating of ((v;

— u)(vj —

;) f1(2))» and again neglecting all factors which are not dependent on v, including I, : V u.

U_U/Z
/d (05 — s) (05 — ;) exp (-' 2T| )\U—u\%
Rav

We substitute z = v — u

/ )
= zizjexp | —=— | 2% dz
TP o

For the case ¢ # j this integral is equal to zero
o0 ) 00 2
= /_w---/_mzj/_ooziexp (—;—T)fdzidzj...dzd =0
=

For the case i = j we have

/ 2 22 2
ziexp | —— | 2°dz
Rd"/ v p 2T

which we transform

2 2
_ 4 _c 2,2 _Z
= /Rdv 2; exp ( QT)dz—l—Z;/Rdv 2; 2y, €xXp < 2T>dz
2 2
_ 4 “i %
= /Rzi exp <—ﬁ>dzi- (H/Rexp <—ﬁ)dzj>
JFi
—l—Z/z exp( )dzl/z,fexp( )dzk <H /exp( )dzg)
R

#i,k
We apply -, and and obtain the result
= 3(27T) 3 T2 + (d - 1)(27TT) B
= (d, +2)(27T) % T?

Calculation of ((v;—u;)(v;—u; ) fi))v  Next up we will calculate ((v; —u;)(v;

where we again neglect factors which are independent of v for simplicity.

_ 2
[ = - wess (<L Yo - o - ) 0.1
Rav

We substitute z = v — u

22
= i%j V., Td
/d;,zzjexp( 5 )Z Z: z

d 2
= E Oy, T 2% 2 €XP _Z 2% dz
do 2T
k=1 R
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Which is zero for both cases ¢ # j and ¢ = j. Because the function is point symmetric
regarding either z;, z; or z;,. We show the possible cases:

[e’e] [e’e] [e’e] [e’e] 2
i#j;ék:/ / zk/ zj/ ziexp(—;—T)szzidzjdzk...dzd:O

g

=0

[e’e) [e’s) o0 2
i:j#ki/ / 222/ Zkexp(—;—T)Zdekdzi...dzd:(J (8.80)
N ;6 P
[es) [e%) 22
iZJZkI/OO---/OOzfeXp(—ﬁ)Zdei...dzd:O
0

Therefore we obtained the result

[0 — uf?

[ =ty = wexn (<2 Yo o ) v.rd0 =0, vi<i<a,
(8.81)

Calculation of ((v; —u;)(v;—u;) fi))» Next up we will calculate ((v; —u;)(v; —u;) fia))v
where we again neglect factors which are independent of v for simplicity.

/Rdv (v; — w)(v; — u;) exp (_ v Q_TU|2> (v ). V. Tdo

We substitute z = v — u

52
= /Rdv 2% eXp (—ﬁ)z -V, T dz

and display the dot product via sum notation
d .2
= E Q%T/ 2i %%} €XP (——) dz
1 Rdv 2T

This is equal to zero with the same argument as in equation (8.80)).

/R (v — ) (v; — ;) exp (_ [v Q—TuP) (v—u)- V., Tdv = 0 5.52)

Calculation of P;  With the application of our results (8.77)-(8.82) we can calculate P;.
We start with the case ¢ # j

(P1)ij = — /Rdv (vi — ui)(v; — uy) frdv
= —/ (vi — wi)(v; — uy)(fi) + fre) + fis) + fige)dv

= = (O i + 0wy 2T) F T+ 04 0+ 0)
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and continue with the case 1 = j

(P1)iy = — /Rdv (vi — ui)(vj — uy ) frdv

= — /Rdv (Ui - Ui)(Uj — Uj)(fl(l) + f1(2) + f1(3) + f1(4))dv

_% (_(Vx U+ 2amiul-)(27rT)d7“T2
vT'(2nT) =

1 :
+E{dv+2N27TYgT%Q2Vﬂk+0+0)

T 2
= (Vgc cu~420,,u; — 1y Vou— —1; Vggu)
v d,
Because of I;: V,u =V, - u we have

T
= (28%%- - Evm : u)
v d,

This leaves us with the result (also adding the O(e) term we temporarily neglected)

T 2

Which we can rewrite using v = pT" ™%

P, =T (Vmu + (Veu)T — di(vx : u)ld) + O(e)

8.3.6 Calculation of ¢;

In this section, we calculate the integral

1
G = —5/ (v —u)|v — ul?® frdv
R
which is equivalent to calculating the k-th entry for all k£ € {1,. ..
1
(@hi= = [ (o= wlo =P fudo
Rdv
using the definition
M ((v-—uw)@@w—u) |v—ul*2 ‘
f1 — —7 |:( T - oT d_,UId : qu
o —ul*  d,+2\ (v—u)-V,T
+ ( 5T 5 T +O(e)

We temporarily neglect the O(e) term and split f; into the parts

M —u)® (v—u)

Ji) = — 2T : Vau
fie) = +¥ v 2Tu] d%ld : Vau

. Mp—uf(v—u)-V,T
he = =757 T

. Md,+2(w—u)-V,T
f1(4) = —0—7 5 T

65

(8.83)

(8.84)

(8.85)

(8.86)

(8.87)

(8.88)
(8.89)

(8.90)

(8.91)



Calculation of ((vy —ug)lv —ul*fiq))» ~ We start with the calculation of ((vy — ug)|v —
u|2f1(1))v and neglect all factors of f;;) which are not dependent on v

/Rdv (v = el = uf exp (_ - 2_Tu‘2) (v —u) @ (v —u)) : Vou)dv

We substitute z = v — u

2
_ 2 _c .
= /Rdv 2k2° exp ( QT) (z®2): Vyu)dz

and display the operator : as a sum.

22 d
= /Rdv 2,27 exp (_ﬁ> (Z 22m Oz, uy | dz

I,m=1

We place the sum sign in front of the integral

d
= Z a:cmul/

I,m=1

2
exp <_2Z_T> 2(pazm)dz = 0 (8.92)

This is equal to zero because the integrated function is centrally symmetric with respect

2 . . . .
§—T>z2 is mirror symmetric in respect to z,z; and z,, and

one of z,z and z, must have an odd exponent.

to 2,z or z, because exp (—

Calculation of (v, — ug)|v — ul*fiz))e  We proceed by calculating of ((vy — ug)|v —
u|2f1(2))v and again neglecting all factors of f; ) which are not dependent on v, including
[d . un

v — ul?
[t = wole = ey (=50 Yo - e
Rdav

We substitute z = v — u

/ 2 2 2 g
= zrziexp | —— ) z° dz
Rdv k p 2T

This integral is also equal to zero.
00 00 2
:/_m--~/_oozkz4exp <—2Z—T>dzk...dzd20 (8.93)
=0

Again we use that the integrated function is centrally symmetric regarding z, and that
the integration area is R.

Calculation of ((vy —ug)|v —u*fi3))s  Next, we will calculate (v, — ug)lv — ul?fi(3))w
where we again neglect factors of f(3) which are independent of v for simplicity.

2
/ (00 — w)lv — uf? exp (— sl ) o — uP(v — u) -V, Tdv
Rdv

We substitute z = v — u

52
= /Rdv 2622 exp (_ﬁ> 222V, T dz

d 2
= E &CIT/ 2p222 exp <—Z—>22 dz
=1 ) Rdv 2T
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The integral is equal to zero for the case k # [ using the same argument as in the previous
chapters. Therefore we have

2
= 8ka/Rdv 222 exp (— ;T)ZQ dz

52
= 8kaZZ /Rdv 222722 exp (——) dz
l m

2T

We have 3(d — 1) times the combination k =1 # mor k =m # [, 1 or k # | = m, one

time the combination k£ = = m and (d —1)(d — 2) times the combination k # | # m # k.
For k # 1 # m # k we have

52
/Rdv 222722 exp <_ﬁ> dz
= ( H /00 exp <—Z—]2)dz->
gk lm Y = 21)

9 22
H /_ Zj2» exp (—ﬁ) dz;

je{k,lm}

With the application of (8.1]) and (8.7)) we obtain the result
w3 1

= (27T (5(27TT)%2T)3

— (27T) % T3

For k =1 # m we have

/ 222 ex —2—2 dz
Rdv km p 2T
00 2 e 2 00 2
= < H / exp (—%) dzj> (/ Z exp (—%) dzk) (/ 22 exp( Z’”)dzm)
]#kam - - N

We make us of (8.1), (8.7) and and receive the result

= (27T G(QWT)MT?) (%(2#T)52T)
= (2T) % 3T%

At last we calculate the combination k£ = | = m we have

We can apply (8.1) and ({8.10)
p—1 15 1

= (27T)™ (§(27TT)2(2T)3)

= 15(2xT) % T*
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This leaves us with the final result

_ 2 _ v —uf? o2

(Vg — ug)|v — ul”exp v —u|*(v —u) -V, Tdv
Rdv 2T

= (27T) %9, T(1 - 15T% +3(d — 1) - 373 + (d* — 3d + 2)T?)

= (27T) 3 T30, T(d> + 6d + 8) (8.94)

Calculation of ((vy —uy)|v —u*fi))s  Next, we will calculate ((vgy —ug)|v — ul? fiia))o
where we again neglect factors of fi4) which are independent of v for simplicity.

12
/ (vr — up) v — ul* exp (— v QTU‘ ) (v—u)-V,Tdv
Rev

We substitute z = v — u

2
= /Rdv 2e22 exp (_ZZ_T)Z -V, T dz

and display the dot product via sum notation

d 2

z
= § 0y, T 2 S
m=1 " /Rdv ShEm= P ( 2T) :

This is equal to zero for m # k. Therefore we have

52
= asz/Rdv 222 exp (_ﬁ) dz

0o 22- 0 22
ZakaZ (H/ exp <—ﬁ>dzj> H / zjzexp <—ﬁ>dzj

I#£k \j#klY ~ JERIT T T
% 2 o0 .2
=40, T (g /OO exp (—ﬁ) dzj> /OO 2} exp <—ﬁ) dzy)
With the application of (8.1)), and we obtain the result
= (dy— 1) -0, T(27T) "2 (%(QWT)éQT)z + 0, T(2rT) ™ Z(%T)é(zT)?
= (dy + 2)(2xT) T T%(0,,T) (8.95)

8.3.7 Calculation of ¢,

With the application of our results (8.92)) - (8.95) we can calculate ¢;. We start with the
k-th entry of ¢

1
(@h=—; [ (o= ulo = ulfido
2 Jra
1
) /d (or = wn)[v = u*(fir) + fr2) + fa) + frwy)dv
Rav
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We insert our previous results and multiply them by the neglected factors that were not
relevant to the calculations of the integrals

Y !
2 2wT?
dv+2 dv o
L p(anT)E (d, + 2) 2 T) £ T2(0,,T))
and simplify
1 1

2<2

1
= P (0:,7)(2d, +4)

_ld,+2
Tv2

we use v = pT'™¥
dy+2

(2xT) s (27T) 2 T3(0,, T)(d2 + 6, + 8)

pT(9,,T)(d* + 6d + 8) — QLpT(aka)(dz + 4d, +4))

pT(0,,T)

7%(0,,T)

Therefore we have calculated (by also adding the O(e) term we temporarily neglected)

dy,+ 2
2

8.4 Calculation of M

In this section, we replace the time derivatives of the term

Q= V. T+ O(e) (8.96)

M = %(&M Lo VM) (8.97)

We will integrate (8.97)) in the application of the low-rank algorithm with respect to v
and x. Therefore it will be practical to separate and sort the terms as a sum of
products of functions that depend either on v or on x. Thereby, we can integrate the
single functions and reuse the results in several calculations.

Furthermore, we will replace the time derivatives of with the terms I,l5, and I3,

defined in ([2.44).

In Appendix (8.3.3) we calculated

v —u*  d,
212 2T

1 _
MZ;(@/)+U-V$P)+ vy -(3tU+v'VxU)+(

- )(@T+v V. T)

(8.98)

Because we want to factorize M using functions depending on either x or v, we expend
the |v — u|? terms and sort the terms based on functions depending on v.

1 _
M:;(ﬁtp—l—v'vxp)—i- (v u)~(8tu+v-vmu)

T
(v =2vu+w?)  d,
Op d0,T w0 u?0,T Vep  d,)V.T O wo T  uw-Vyu
= | = - - + +u- - b — 2 —
P 2T T 272 p 2T T 272 T
u?v,T | |2 o, 2uVmT L e )Vmu V. T
J— v U - —_—
2772 272 277 T 272
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Thereby we can express M as the following sum of products
M=M;+v- Mo+ [vPM3+ (v@0) : My + |v|*v - Ms
with the terms M; — M5, which depend only on time ¢ and space x.

Mt z) = Op(t,x)  dyOiT(t,x)  u(t,z) - dhu(t,x) W2(t, 2)0,T(t, )

p(t, x) 27 (t, x) T(t,x) 2T2(t, x)
Vep(t,z)  d,V.T(t,z)  Ow(t,x) u(t,z)0T(t, x)
Mz(t, SC) = — —
ota) | 2M(e) | Te) | Tk
Cult,@) - Vault,x) | ui(t2)VLT(t o)
T(t,x) 272(t, x)
_OT(t,x) u(t,x)V,T(t x)
Ms(t z) = 2T2%(t, ) T2(t, x)
~ Veu(t, )
M) =00,)
B V. T(t, x)
M2 = om0
In our next step, we replace the time derivatives of M;-M;5 with
Op =1
1 1
8tu = —(IQ — 8tpu) = —<[2 — [1U)
p p
1 1
T = ([3 +-hu? —u- [2) - =T
dyp 2 p

whereby we obtain

I 2 g\ 2 1 I 1
M1:—1+<“——d—){ (Ig+—11u2—u-12>——1T}—E-;(Ig—llu)

p 27% 2T ) |dyp 2 p T

My = V;p B dv2V7fT + piT(IQ — Liu) — % [dip ([3 + %IWQ - 1-2> _ %T}
- 'gmu UZ;T (8.99)
e 3 ar) ] 5
M, = szu
Mo= 5

By simplifying M,

1 u? d, 2 1 1 U
Ml:_1+<ﬁ_ﬁ)|: ([3—{--]111,2—U'[2>——1T:|——'(]2—[1U)

p dyp 2 P pT
1 N ut u? u? N d, N u? N u? u u
“p T 2dypT? 20T 20T ' 2p  pT| P | dupT? ' pT pT

n u? d,
S\or2  or

g n ut +dv I u? ny u? d,
T T 2dpT? T 2p] T dpT? T P\212 2T
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we receive the final result

1 ut d, ud u? d,
. A Gl I R IR A e
Mi=1 {p T og et Qp} 2 g (2T2 2T)

My = V;p - dvzv;T + piT(IQ — L) — % {dip ([3 + %[1U2 —u- [2) - %T}
_u -jvfu N “Z’;T (8.100)
M; = % Llip <13 + %mﬂ —u- 12> — %T — 2uva}
M, = V;u
M= 5

8.5 IMEX Steps
8.5.1 First order IMEX Schemes

IMEX schemes can be applied to ordinary differential equations to compute approximate
solutions [2]. The IMEX scheme enables us to split the differential equation into a stiff part
which we treat implicitly, and a non-stiff part which we solve explicitly. More specifically,
we will implicitly treat terms that contain the factor % because we consider problems with
small e.

8.5.2 IMEX Step K

We have the time derivative of K

O K; = i[—(vme)<ijVm>v — K (V;Viu M),] + g(<Vj>v - Kj) (8.101)

m=1

We implicitly treat the term ZK; on the right side as we need to account for stiffness due
to small e. We perform an IMEX step

€

m=1

n n - n n n n n n Vn n l/n mn
Kj +1 _ K+ (Z[—(Vsz)@Vj Ve — Km<VJ VEM),] + ?<VJ >v> - Kj +1
and solve the equation for K7+

e rpt (1470 ) =Ky (Z[—(vxmwj"vm ~ KAVIVEM)) + ”;(Vm)

m=1
1 T !
Kt = ———— K+ ———— % [(VoK}) 0V Vi) — KL (V'Vi M),
& KT = T S Ty (TR Vi), — KV M).
Tv"
V",
5—1—7'1/"<]>

With the notations in (2.57)) and (2.58)) this becomes

T s

1 T
Kt = K} — i (VoK K
e T [k (V) + Y

TV —

J

+

e+ T
=1 l +

71



8.5.3 IMEX Step S,

We have the time derivative of Sfj

r

8tSij - Z [Slm<X7,va:Xl>J: : <U‘/}Vm>v + Slm<XlXi‘/}VmM>x,v]

I,m=1
! 1%
= (X2 {Vi)o + > S (- XiXi)a
=1

In order to adjust for stiffness induced by small € we will approach the term > ,_, Si; (2XiX0)a
implicitly while we treat the remaining terms explicitly. We obtain the equation

_'_7_ Z XnJrlv Xn+1> . <UV}”V£>U + Sllm<X;l+1X;l+l‘/}nVrZM>z,v}

I,m=1

I/n n n - I/n n n
_ T<?X¢ Y (VM + 7 Z Sfj(?Xi Ly
=1

With the notations defined in (2.57)), (2.59) and (2.60)) this becomes

7_

: 7 T
S’L2] = Sllj _'_ T Z |:Sl1’rnd'?l . C}m _'_ Sll,rndzl7]mi| - E g Z Slj il
I,m=1

which is equal to

r

. r R 7—_ —

=1 I,m=1

8.5.4 IMEX Step L"

We have the time derivative of L}

OLi =Y [=(XiVaXi)o - oL = (XXM Ly = (ZXX)aLi ] + (ZX),

=1

In order to adjust for stiffness induced by small € in the term (2X;X;),L; we will treat
this term implicitly. We treat the remaining terms explicitly. The first order IMEX step
leaves us thereby with the equation

Ly = L =y (XX, oL+ (XX M), L

=1

_ g Z<VnXin+1Xln+1>xL?+l 4 £<VnXin+1>m

With the notations defined in (2.59), this becomes

L= - TZd WL+ (df + v d + oPdy + (0@ v) - dh + [oPu - d) L]

- - Z RaLi+ + X,
g g

=1
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which is equal to the equation

> <[ - —R> L=+ IX,
il £
l

—TZ [y - L] + (djy + v - df + |v]Pdd + (v @)« dyy + |v]*v - d))L]]

9 Appendix B

Appendix B covers calculations we use in deriving the two-species dynamical low-rank
algorithm and the Chapman-Enskog expansion for the BGK-type model for mixtures [1].
First, we calculate the moment equation and derive results for the first-order Chapman-
Enskog expansion. Furthermore, we calculate the derivatives of the interspecies quantities

and consider the performed IMEX steps in more detail.

9.1 Derivation of the moment equation (mixtures)

In order to obtain the time derivatives of the quantities ng, uy, T, and Ej for k € {1,2},
we will calculate the moments of (3.3)) multiplied by weight my. It is to note that this
set of equatlons is of dimension d, + 2 as the second equation is of dimension d,. With

d(v) = (1,0, ‘”‘ )T and the definitions in(3.1) we have

O (mid() fr)o + Vi - (mpvd(v) fr)o = Warnn + vijng) (mpg()(M® — £)),
& 0y prs P, Be)T + Vo - (06(0) fido = (Wire + vigng ) (mpp () (MP — i),

Thereby we want to calculate the integrals ((M® — f)),,(v(M® — f)), and

(V2 (M® — f.)),. But by definition, we already know

2
v
<mkfk>v = Pk, <mkak>u = PrUk, <mk% k>v = Ej

which means we only have to calculate (M®),, (vM®), and (my 9 ey V0N

dy
Hereby we use the notation M®) (¢, 2,v) = ny (“m) *exp(—a® v — u®)?)

with a®(t, ) = ; for simple presentation.

2T(k)

9.1.1 Calculation of (M®),

a®)
(mpM W), / mpM® dv = myny, ( ) / exp(—a®™ v — u® [*)dv
s Ra,

We perform the substitution z = v — u®

dy

(9.1)

NONE2 N
(MM ®), = p, (—) [ en-ablPi: = p (—) | em-a®zpas
™ Rdv—u(k> m Rdv
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and apply the result of (8.2

dy
(K)\ 2 dy
a ™ 2
(M), = (_) (i) " =

™

Thereby we obtained the result
(m(M™ = fi))y = pr = pp =0 (9.2)

9.1.2 Calculation of (vM®),

)\ 2
(mpoM®)y, = mrvMP® dv = myny (a_) / vexp(—a® v — u® P dv
Rdv T Rdv
We add and subtract u®
BONES
<mkUM(k)>U = D (_) / (U — u® 4 u(k)) eXp(—a(k)|v _ U(k)|2)dv
T Ry,

and perform the substitution z = v — u® after splitting the integral

(k)\ 2
(meyvM®)), = p, (a_) [/ zexp(—a®|z]?*)dz +/ u® exp(—a®|v — u®?)dv
]Rdvfu(k)

T Ry,
The first integral is equal to zero as shown in and the second integral was calculated
in the prior section or (8.2

du

oy
(mpo MWy, = py, (ﬂ) 2

™

Rg,

and with the definition of u® in (3.5) we obtain the result
mgm; Xkj

= (myv(M® — o = MM u® — ) = 2n
(myo( fi)) k7 ( k) K s 03 DR + Pt

nj(u; — ug)

9.1.3 Calculation of (A7),

dy
2 2 B\ T
(mkMM(k))v = mkMM(k)dv = mk@ e v? exp(—a®™|v — u®?)dv
2 2 2 T

Ry, Ry,

We prepare another substitution by adding and subtracting 2vu® — u®)?

dy
ONES
<mk’U—M"“))v _ T <a_> / (0 — u®)2 + 20u® — 4® exp(—a® ] — u® |2)dv
™ R,

and splitting the integral
§ :

N
(mk|v—M(k))v _ g (a® / (v — u™)2 exp(—a® v — u®2)dy
2 2 s Ra,
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+ 2ulk) / vexp(—a®|v — u®?)dv — u(k)2/ exp(—a®|v — u(k)\Q)dU]
Ra, Ra,

We perform the substitution and apply (8.2)) and to the remaining integrals

v

dy
v by TG a2 ) K00 (T @
(ka >v = T 7 ., z exp( )dZ + 2U <m>

dy
(k)2 (L)7
u o)

thereby we can also apply ({8.8))

di d’U U
(mkﬁM%))U _ T (@) 2 [@L +u®? (%) d?]
a

2 2 7r 2 Ja®™T?
. dv 1 mrpng (k)2
= mknkzm + TU
and we obtain the result

o] d, 1 2 d, 1 2

Loty Iy o ()N (&)= _ 2o k) 4 — ) 4, R)

{(my 5 Yo = my, o N + 2mknku 5 Ny + 2pku
with the definition

v]? d, 1
<mk% e = By = Enka + 501&2

we can proceed by calculating

v]? dy 1 2
(m k%( — fi))o = gnk(T(k) —Tk) + §Pk(u(k) —uj)

We insert the definition for 7

|v[ . d, [ My 2 mgpm; Adxk;
M® — o= —ng | Tp — —|u® — u > + = J ?
(mi 5 —( fr)) Rl Ky k| 0 T+ m03)? Ve + Vs
d, w: — ugl? 1 2
K (E(Tj —Tj) + mj%) - Tk} + §pk(u(k) — uj)
and simplify
v|? 2
om0 — gy, = ) 4 P )
MM Axkj dy |uj — Uk:|2>
+n n; | — (15 —Tk) + mj——————
F (my, +mj)? vgrng + vigng ( 2 (75 k) / 2
2
_ 2 (k) mgm; AXkj dy |uj — ua|
= —pruy, + pru’ - ug + =T, =T, e
pk k pk U Nk (mk + mj>2 o _|_ ijnjn] 2 ( Vi k) + m] 2
2
e (u®) Mgy Ay (b _p vy —we®
Prttk (u uk) T (mk + mj)2 VMg + VMg " 2 ( J k) + i 2
With the usage of the definition (3.5) with obtain
|v]? (k) < Mg, Xkj )
myp—— (MY — =npug - | 2 ni(u; —u
(= fi))o = ruuy, T Dee + U i (uj — u)
' mEm; AXkj d, bp _ )+ |uj — uy|?
(my + m;)? vy + vign; AN 2
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Which we can combine to

v 2
<mk%(M(k) — fi))o

2NN MG X k5

= [(mk + mj)uy - (v —uy) + mj(u? — 2ujuy, + uy)

(Vernk + vignyg )2 (my +my)
+d,(T; — 1)
2N MM X k5

= [wr - wj(my, — my) — upmy, + wim; + do(T; — Ty,)|

(Vgrng + ijnj)(mk + mj)2

9.1.4 Derivation of the moment equation

We insert the results of the previous sections into (9.1)) and obtain

atpk: + vaz : <mkvfk>v =0
mEm; Xkj

Ot (prug) + Vg - (mp(v @ v) fr)o = (Vepns + Viin;)2n
(i) (ma( ) fi)o = (Wrkne + viing) T

2
v

by +V, - <mkv‘7 )

2NN MG Xk

(Ve + Vigng ) (my, + my)?

= (Vkknk + Vin;j)
which we can simplify to our final result

atpk + vx : <mkvfk>v =0

mEn; Xk
8 v;(; X Yy = 2 J J
L (prue) + (mi(v @) fi) nEn; M +m; (uj — ug)
|v]?
8tEk + Vx . <mkv—2 fk:)v
_ 2NN M Xk

(e + 11,)? [uk cuj(my —my) — upmy, + u?mj +d (T; — Tk)]
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9.2 Calculations for the Chapman-Enskog expansion (mixtures)

This appendix contains calculations and derivations, which we utilize in the Chapman-
Enskog expansion of the BGK-type model for mixtures [IJ.

We calculate and simplify the integral (v¢fi), and the term — (OM®*) v -V, M®),

Furthermore we replace the time derivatives of ﬁ(@tM(k) + v - V,M®) with the com-
pressible Euler equations and additional exchange terms. Next, we show the derivation

of the Navier-Stokes equations to the same result as in [I]. This is to verify our prior
calculations.

9.2.1 Calculation of (v¢fx),

[v]?

In this section we will calculate (vofi), with ¢(v) = (1,v, 5=
the fluid limits of the model of Andries, Aoki, and Perthame.

)T. We need this to derive

Calculation of (vfy), This result is already given by definition ({3.1)).
(Vfr)o = naup,
Calculation of ((v®v)f;), In this chapter we want to transform ((v ® v) fx), utilizing

{((v—u®™)@(v—u®)) fi.), which will be needed for following calculations in the derivation
of the fluid limit. We have

(v ® V) fi)o

= (v =u™) @ (v = u)) fi), (9.4)
+ (v @u®) fi), (9.5)
+ (@™ ®@v) fi)o (9.6)
— (@™ @ u®) fr), (9.7)

We approach the integration of the matrix (9.5) by calculating the i-th row and j-th
column

(/ (0@ u®) fydv);;
Rv
:/ v fdv
Rdv
= ugk) / v; frdv = ug.k)nkui
Rv
= (v @ u®) frdv = ng(uy, @ u®) (9.8)

Rdv

can be calculated accordingly with the result

/ (u® @ v) fedv = (U™ ® uy,) (9.9)
Rdv

At last we will consider (9.7)

/ (W® @ u®) frdo = (@ @u®) [ frdv = ny(u® @ u) (9.10)
Rdv Rdv
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Putting these results in the original equation gives us

(v @) fr)o
= (v =u®) @ (v = uM)) fie)
+ g (g, ® u®) + g (u® @ ug) — g (u® @ u®)

In a second step we will perform the substitution f, = M® 4 L fl

ri1

(v @v)fi)o

— (v = u") @ (0= u O+ ),

+ g (ug, @ u®) 4 g (u® @ ug) — np(u® @ u®)

which means we have to calculate (((v — u®™) @ (v — u®))M*)),

/ (v —u™) @ (v —u®)MPdy
Rév

dy

()
—= nk‘ _—
™

MONE
= ny <—) / 2 ® zexp(—a®™2?)dz
T Rdv

We consider the i-th row and j-th column for i # j

NONES
Nk (—) / zizjexp(—a®2?)dz = 0
Rdv

(e

/ (v —u®) ® (v —u®) exp(—a® v — u®?)dv
Rév

<8

which is equal to zero because the integrated function is centrally symmetric with respect
to z; and z;, and our area of integration is R%. Left is the case i = j

dy
k)\
Nk (a_) / 22 exp(—a®2?)dz = | | exp(—a(k)zﬁ)dzk/zi2 exp(—a® 22)dz;
Rév

T

We can apply (§1) and (57)
dy
(k)N 2 w1 1 1
a m dy—1 n 1
_ o e Ui_ L _ (k)
= ng < - ) <a(k)) 2 2(a(k)>2a(k) mknkT (9.11)

Thereby we calculated

(v @v)fi)o

= () @ (o~ u ) ),

1
+ —mTW I,
my
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Calculation of (v%f@v In this chapter we want to transform (v@fk)v utilizing
v —u™) o — u® 2 £), which will be needed for following calculations in the derivation
g
of the fluid limit. We have

/d (v — u®) v — u®|? frdv
Rdv

_ / (v = u®)(Jo]? = 207a® + [u® ) frdo
Rdv

:/ v|v|? frdv (9.12)
Rév
—2/ v(vTu™) frdv (9.13)
Rév
+/ v|u® 2 frdv (9.14)
Rév
—/ u® |v|? frdv (9.15)
Ré
+2/ u® (vTu®)) frdv (9.16)
Rév
—/ u®|u® 2 fr.dv (9.17)
Rév

Line (9.12)) is already equal to —<v% fr)v. Furthermore, (9.13) is calculated in the pre-

vious section
— 2/ v(vTu®) frdv = —2/ (v @ v)u® frdv
Rdv Rdv

= —2/ (v —u®) @ (v — u®) frdv W™ — 20y, [(up @ u™) + (W®) @ wy)
Relv
— (u(k) ® u(k)>]u(k) (9.18)
We can calculate (9.14) - (9.17) using the definitions (3.1):
/ o[ul? frdv = \U(k)|2/ v frdv = ngugu®™|?
Relv

Rdv

20 (F)
- / u® ol fudo = —a® / o2 fdv = — 2,
Rdv

Rdv mk

Z/d u(k)(vTu(k))fkdv = 2u® /d o7 fedou®) = 2u(k)nku2u(k)
Rav Rav

_ / d BB fedy = —u® @2 [ fudv = —ngu® u®)?
Rev Rv

Putting our results back in our original equation gives us

/d (v — u™) o — u®|? frdv = / v[v|? fedv
Rav

Rév
5 / (0= u®) @ (v — u®) fudv u® — 2npfus - ()7 + ENCIMCIMMC
Rév

) 20k

+ npug|u®)? — ! Ey + — npu® u®)?
mg
k k k k k)|, (k 2u)

= (v[v fi)o = 2((v = ) @ (v = u) fi)yu™ — nyug ™ ? + ngu® [u® P — K
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which is equivalent to

WP fi)e = (v =)o = PP fi), +2((0 = ) @ (v = u) fi)u®
2uF)

— nk(u(k) — uk)]u(k)|2 + Ek
k

In a second step we will perform the substitution f, = M®*) 4 L £}

ri1

Ol fdo = {(0 = a)fo = uPPQIO ),

151

1 2u k)
+2((v — u®) @ (v — u®)(M® + — ) u® + ngug|u®)? — nu® |u®? 4 "B,
V11 k

In the previous chapter we already calculated (((v — u®) ® (v — u®))M®),. We will
continue with the calculation of ((v — u®)|v — u®|2M®)),

/ (v —u) v — u®PM P dy
Rdv

dy
o)

52
= ny <—> / (v — u®) v — u®)? exp(—a®|v — u® ) dv
m Rdv

BONES
= ny (—) / 2|2 exp(—a® 2% dz = 0
T Rdv

This is equal to the zero vector of d,-th dimension due to the integrated function being
centrally symmetric in each dimension. Thereby we obtained

1

1
(Wo fi)o = —((v = u)o = u® [}y + 2—((v = ) @ (v = u?) fi),ul®
Vi V1
2uk) 2
+ ngug|u® * — ngu®|u® 2 LB+ T0y®
m M
or
Jv[? 11 (k) (k)2 1
(mva k>v=V—H§<mk(U—U )Mo = u " fi)o
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9.2.2 Calculation of i (d,M® + v -V, M®)

In this chapter we will show the calculation of 5 (0,M® + v - V,M®) which we will
need for the dynamical low-rank algorithm as well as the derivation of the fluid limits of
the BGK-type equation for gas mixtures. To simplify the presentation and calculation,
we express the Maxwellian M*) by

ng(t, ) my|v — u) (t,z)|?
M® = 2 T (¢ g;))dl € <_ 2T(k)(t ) = hi(t, z) exp(hog(t, 7, v)) (9.19)
T—2%)2 9
my,

with the usage of the two functions

o om(t )
hix(t,z) = W
mg
hog(t,z,v) = v — u™(t, )]

2T (¢, x)

After these preparations, we can start our calculation

We substltute M™ using 9 -
:m[aﬁ(hl,k exp(har)) + v - Va(hgexp(hog))]
apply the product rule
o 1
v+ (Vzhygexp(haog) + higexp(hog)Vihay)]

[0¢h i exp(ha ) + ha g exp(ho ) Orho i

and simplify by eliminating the terms exp(hay)

=7 [athl i+ h1kOho g +v - (Viohyg + b1k Vihay)]
1k

Thereby we obtain the result

h (8th1k+v Vv h1k>+ath2k+v V. hgk (920)
1,k

Using the derivatives

O — oy, B dv - ngmd, T®)
Lk (%T(k))% mk(i—zT(’“)%“
Vo Vang dv - nwV ,T*)
itk — o0 k)| & o 21 (k) L +1
(m—kT( )) 2 mk(m_kT( )) 2
Db — my(v —u®) - u®  mylv — u®|20,T®
N2k =
7 T 2T (k)
Y B my(v — u®) - Vu®) N my|v — w2V, T"
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we can calculate (9.20) further

3 (8th1k+v Vhlk)—i-athzk—i-v Vth
1,k
T(k) \ dv k
(27Tm_k) 2 ( 3tnk dv - ngmd, T®) N Van dv - npmV,T* >
= — v —
2r dv 27 (k)R +1 21 (k)R 27 (k) )R +1

my(v —u®) - 8tu(k my|v — u®|20,T%)
T*) 2T (k)?
my(v —u®) - Vu®  my o — u® )2V, 1%
+uv- +
T () 2T (#)*

By making some simplifications, we obtain

5, d,0, ™" AV 4,V ,T®)
5 OM® 4y v MRy = D QTt(@ Ly = S
ng nk
my(v — u®)Ou®  my(v? — 20u® + u®’ O, T my(v — u®)Vu k)
+ T + ST —|— v - o
2 _ opy®) 4 0y, T®)
Ly TlV” = 200+ u) (9.21)

o7 (k)?

9.2.3 Replacement of the time derivatives in (OM® + vV, M)

M(k>

In this section, we want to replace the time derivatives of M¥* in the zeroth order of VL

using the compressible Euler equations with additional exchange terms. In appendix
we calculated

oy, d,0,T™® V.n d,V,T®
(k) . (k)y — 2tk Dot L YeElk o Tv Ve
v OME + v Vo M) i TR nk Y0
my(v — uou®  my(v? — 20u®) + u®)’ )0, T my (v — u® )V k)
+ T + T2 + V- ®
2 _ opy®) 4 0y, T®)
L Gl i D) (9.22)

2T (k)?

we adJust the terms to the zeroth order of —- Note that we have u® = u;, + O(
and TW =Ty, + (’)( -) by the definitions and . We receive

Vll)

1 my (v — uy)
M®*) VoMK = v kAT T TR
M(k) —— (O M™ + v -V MW" . (Owpr. + v - Vapr) + T,

meplv —ul?  d, 1
— T, -V, 1, — 2
9T} 2Tk.)(at r+ vV Ty) + O(VH) (9.23)

(Opug, + v - Vyuyg)

+

We replace the time derivatives of (9.23)) with the system

O px PrUk 0
8t(pkuk) +V, - pk(uk & Uk) + nkaIdv = Ek, , (924)
O E} (Ex + ny Ty )uy, =
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where we use the exchange terms

_ D D105 s
gy = %(u] — ug) (9.25)
J
o dy (k) 1 (k)2 2
Sk = E"k(T = Ty) + §Pk(u — )
20605 Xkj
= m[uk cuj(my, —my) — uimy, + u?mj +d,(T; — Ty)] (9.26)

Preceding the replacement of the time derivatives, we have to calculate 0;u, and 0,71y,
which are not given directly by (9.24).

Calculation of J;u;;, We start with the second equation of (9.24)

3t(pkuk) =—-V,- (pk(uk & uk) + nkaIdU) + E,lC (927)

and rearrange the equation to isolate O;uy

1
k

Our = — (=Vo - (pe(ur @ wp) + niTida) — Dyprur + Ey) (9.28)

We continue by replacing the time derivative 9, py, using (9.24]) and simplifying the equation

1 —
= a (—Vz (e (ug @ ug) + e Tela) + (Vi - (prug))ug + :]1?)
1

+ Vzpk . (Uk X uk) + pkuk(Vx . uk) + E,lg)

1 _
N E<—pkvx (up @ uy) — TeVay - (nla) — neVa - (Tela) + pru(Vaug) + Z)
T 1 =
=-V,- (uk & Uk) ——V,- (nkfd) — —V,- (Tkld) + uk(Vz . Uk> + — (929)
Pk mg Pk

Calculation of 0,7, Next we will calculate 0,7 using (9.24). We start with the third

equation

d, 1
and use the definition E; = ?nka + §Pk“i
d, 1 —
S0 (=T + prui) = Zf — Vo o (B + T )ug)

2 2
Next, we apply the product rule on the left side

d, d, 1 _
<:>5(9tnka -+ En;ﬁtTk + §8tpku% + pkatukuk = :i — Vm . ((Ek + nka)uk)

and rearrange the formula to isolate 0,T}.

2 dy
- ((F T
o Vo - ((Ex +ny, k)uk)+(2mk

1 -
<01, = 3 T + Eui)atpk + prOsupuy, — =i
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We continue by replacing the time derivatives of the density and number density (us-
ing (9.24)) and J,u using the previously calculated (9.29). Furthermore, we insert the
definition of Fj on the right side.

2 d, 1

ngmy d,ny

1 1

2mk Tk 1 Ellg
— d. ug | —Vyg - (uk & uk) — EVI . (nkld) — m—kvm . (Tk]d) + uk(Vm . uk) + E
2 2
—= 9.30
+ dvnk k ( )

We have h -V, - (up @ ug) = (h @ ug) : Voug + h - up(Vy - up)  Vh € R and thereby

2 d, d, 1
oy, = — — 4+ 1 )T Vong + | —+1 | eV, 1) + —Vmpkui + U,
dvnk 2 2 2
2 d 1
— 1) m Ty + =ppis ) (Vg -
dvnk((z i )”‘“ ’“+2’)’“”’“)( “
+ (E + ui) (Vaprug + ppVe - up)
Pk dvnk
2 T 1 =l
mk( + ug - |:71k(vr : 'U,k) + —kvxnk + —Vka — ’Il,k;(vgg : Uk) — —k:|
d, Pk My Pk
2
—= 9.31
+ dynk k ( )
We add the marked terms and sort the remaining terms by the spatial derivatives
T 2uy Ty, J T, J 2u T
0T = Vony, - (_Uk; ko sUply Uy U L i Uy, i Up Lk
ny dynp dyn ny, dynp, dyny,
2 m;.uf m;.z[f,
e o) (=T — =T — T -
(V- we)( d, b d, d, )
2up  2uy
VT (—uy —
Vel =24+ )
2uk —1 2 —2
- .= —= 9.32
R (9.32)
which obtains us the result
2 2uy, 2
0Ty = ——Ti(Vy - up) — up VT — - Zx =2 9.33
tlk dv k( T uk‘) U Vgl dvnk: k dvnk k ( )

Replacement of the time derivatives In the previous sections, we obtained the equa-
tions

O = —Va(pruk)

T 1 =1
Oru, = =V - (ug ® ug) — v, (nily) — — Vi - (Tidy) + up(Va - ug) + =%
pk’ mk pk’
2 Qi 2
0Ty = ——T.(Vy - up) — up Vi Tp — N A R 9.34
i 15, 4 k( Ug) — U k dny F + dony " ( )



We continue by replacing the time derivatives in the terms on the right side of equation

(9.23) one by one using (9.34]).

The first term will be simple. We replace the time derivation 0;p; by using (9.34)), apply
the product rule and simplify the result.

1
—(Oupr + v - Vaipr)
Pk

1
= —(=Va - (prur) +v - Vapr)
Pk
1
v — uy)

I ChuiC /IS VEPRNER S (9.35)
Pk

In the next term, we want to replace the time derivative d;uy in the corresponding term

of @23

M) Oy 40 V)
k
mir(v —u T 1
) (G e @ w) — LV, - (nala) — —— V- (Tol) + (Vs - 1)
Tk Pk my
—1
+1k + - Vluk) (9.36)
Pk

We have h -V, - (up @ ug) = (h @ ug) : Voup + h - up(Vy - up)  Vh € R and thereby

my(v — ug) (Oup + v Vo) = my(v — ug) @ (v — ug) Vo
Ty, Ty,
me(v —u T, 1 =1
% . |:—U,k(vx . 'Uk) — p—:Vz . (nk[d) — m—kvx . (TkId) -+ uk(Vr . ’U/k) + p_:}
— — _ T El
T}, Ty, Pk ng
This leaves us with the replacement of the time derivative of Tj,. We use ((9.33)
melv —ui?*  d,
— oT, -V, 1,
( 2T} o7, ) Ot v-Valk)
melv —uil?*  d, 2 Qup 2 _,
= — -V, 1, — —T,(V, - —up VT — -2 =
( QTk2 2Tk v F dv k( Uk) b F dvnk k * dvnk b
(9.38)
We insert (9.35)), (9.37) and (9.38]) into (9.23]) and obtain
1 (v — ug)
O 4o ) = o) g,
v = ) @ (v = w) : Vauy + o), (__kva:pk - V. Tx + _k)
Tk Tk Pk Ny
mylv — ug? d, 2u, 2 _,
—_— 1 PR— . . VZ‘T’ —_— —_— . : \:
* ( 2T, o7, ) \ (0w - Ve T done F T dom
1
+O(—
( 1/11)
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we add the colored terms

1 — —
W(@M(’“) +u-V,M®Y) = my (v — ug) ® (v — uy)

Tk : quk
melv —up|?>  dy +2\ (v —uy) - VT v—u = omglv —ul? 2
L[l 2k:| 3 (v — uyg) by o) By mulv — 2 (¥ )
my|v — ugl? d, 2up 2 _, 1
- - S+ —=Z2 O(—
" ( 2T5” 2T, dyny, " * dyny, " * (Vn)

and apply V, -u = I; : V,u along further simplifications. We obtain the final result

1 _ _ _ 2
- OM® 4.V, M) = (mk(v up) @ (0 — ) mg|v — ) Yo

T T.d,
N mglv —ug* dy 42 (v—uk)-VgCTk_'_(v—uk)‘E_,,lf
2Tk2 2Tk Tk Tk N
T VA u o, Zi 1
—_—_— — — — . : O —
- ( T” Ty, dyng " * dyny, * (Vll)

9.2.4 Derivation of the Navier-Stokes system for the model of Andries, Aoki,
and Perthame

In this section, we derive the Navier-Stokes system from (3.9), which was also derived in

[T]. We begin by calculating ((v ® v) fi), and (v|v|?fi), according to where we use
u defined in (3.2)) instead of u®). For {(v ® v)f)), we obtain

(v @v)fi)o
= (v =u) @ (v =w) fi)o + (V@ u) fi)o + (1 © V) fi)v — ((u @ u) fi)o
=(((v-vw e

(v = w)) fr)o + 1k (ur @ w) +np(u @ ug) — ng(u @ u)

and for (v|v|?fi), we obtain
/ v[v|? frdv
Rév
= / (v—u)|v—u|2fkdv—|—2/
Rdv Rdv
+/ ulv]? frdv — 2/
Rév

Rdv

v(vTu)fkdv—/ v|ul? frdv

R

u(vTu)fkdv—i—/ ulul? frdv

Rdo
2u
= {((v—u)|v— u|2fk>v +2{((v —u) ® (v —u) fr)ou + nkuk|u|2 — nku|u|2 + —FE,

Thereby we obtain the alternative help terms

Wy = mu (v — u) @ (v — W) fi)o + pi(u ® ) + pr(u ® wr) — pr(u @)
v = O

5 (=)o = ulfi)y +mil(v = u) @ (v =) fi)o

1 1
+ §Pkuk|u|2 - §l)l~cu|u|2 + ub

(9.39)
for
O pre Pr U 0
O, Ey, \I/i E%
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with the exchange terms

—1 20kPi Xk

1 3 Xkj

S o U 9.41

T my, A+ m (1 = ) (9.41)

= 20105 Xkj

2 i Xkj 2 2

=2 _ _SPROIXKS (g — my) — T+ ulm; +dy(T: — T 9.42
(mk+m]~)2[uk uj(my — my) — ugmy + uymy (T; — Ty)] (9.42)

in a final step to obtain the Navier-Stokes system, we add the second and third line for

(k,7) € {(1,2),(2,1)}.

—k | —1 _ 2pkij [(
my + m;

—2 =2 _ _ 2PkpiX

T (my, 4+ my)?

+ uy, - uj(my —my) + upmy, — wim; + dy (T, — T;)] = 0

uj — uk) + (ue — ;)] =0

[ug, - uj(my —m;) — uimk + u?mj +d,(T; —Ty)

The energy-exchange terms add up to zero, as expected. With the definitions uv =

kalrp]- (pru + pju;) from (3.1) we have

Ui+ 0= > my(((v—u) ® (v —u)fi)e
lefk,5}
+ (prur ® u) + (pju; ® u) + (u ® prug) + (u @ pju;) — (pr + p;)(u @ u)

= N (0 — ) ® (0 — W) fi)o + plu® )

le{k,j}

and

V4= Y T - wlo - ulf)
k i 9 l/v

le{k,j}

+ > (v —u) ® (v —u) fi)
lefk,i}

+ uk

Thereby we have calculated the Navier-Stokes system

Orpr PrUk 0
O(pu)| +Ve-| PH+pu-u | = |0 (9.43)
o F EFu+P-u+q 0

with the terms

P:Z me(v —u) ® (v —u) frdv

Rdv

—Z m(v—u)’v_upfdv (9.44)
q9= - k 5 k .
k

In [I] the quantities P and ¢ are furthermore calculated to the first order of A with the
results

2
P =nTly, —n(Veu+ (Vou)T — d—(vx cu)ly,) + O(\?)

v

dy+2 pr(ug — u) 5
7= Tzk: — KV, T + O(N\?) (9.45)
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where we use the additional terms

k
dy + 2 ng
= kgT E 9.46
& 2 B A mkyk ( )

9.3 Calculation of 9,u® and 9,7%*)

In this section, we calculate the time derivatives of the interspecies velocities and tem-
peratures based on their definitions and (3.6). Furthermore, we seek to express the
derivatives with the terms I y,/5 and I3 which are defined in (3.42)) and represent the
numeric approximations of the time derivatives 0,px, O (prur) and Ej.

9.3.1 Calculation of 9,u®

In this section, we calculate the time derivative of the interspecies velocity of gas k and
its expression using the quantities Iy y,/o; and I3, which we will need for the dynamical
low-rank algorithm. We start with the definition of u(*)

k) m; Xkj

u( = U + 2
mg + mg; Vg + Vg

nj(u; —ue) (K j) €{(1,2),(2,1)}

and obtain the derivative

Ou®) = Dy, + 23Xk [3t"j(“j — wx) +n;(Oyu; — Dyux)

mp + m; VepNg + Viin,
ny (u; — wg) (Ve Opnuy, + I/kjatnj)}
(kank + ijnj)Q

We can simplify this equation by using

Onj(uj — uk) +n;(Ouy — ur) — ny(uy — up) Windeni + Vi Oinj)

Vil + VijTj (Ve + vign;)?
1 (Opuy — Oyug) | O (Vern + vigng) (uy — uy) B nj(uw; — ug) (VO + vi;0imy;)
 Ueeng + ViiNj (Verng + viging)? (Verng + vigin, )?
~ n;(Opuj — Oyug) N (uj — ug) [V (nkOen; — n;Omy) + vi(njOm; — n;jon;)]
Uy + Ukny (Vkkne + vigng)?
_ nj(Opu; — Opuy) N (uj — ug)[Vkk(ngOen; — njomy)] (9.47)
VN + Ugjnyj (Ve + vgjn;)? '

and we obtain the result

miXkj | nj(Owu; — Opuy) N Uik (w5 — ug) (Ognyny — Oyngn;)

3tu(k) = atUk +2 5
My +mj | Ve + Vkin, (Vgrng + ving)

(9.48)

9.3.2 Calculation of 9,7%*)

In this section, we calculate the time derivation of the inter-species temperature of gas
k and its expression using the quantities [ y,/ox and I3, which we will need for the
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dynamical low-rank algorithm. We start with the definition of T®*)

2 mpm; Ak d, |y — ug)?
70— TR R 2 2 J J 22T =T A7y TRD
", v wl” by (m, + 1) Vi, + ijnjn] 2 5 = 1)+, 2
and insert the definition of u®
2
TR g T Xkj (s —
F dv mg + My Vig g + Vi " (uJ Uk)
2 mgmy Ax; d, | — k|
il =T —T B Al B
dv (mk -+ mj)2 (kank + l/kjnj> J 2 ( I k) + " 2

and simplify the equation
2
T — T, — Amy X, pi(u; — uy)
dv(mk + mj)2 VMg + Vi
Amy X {d Pl =T el = wl’ ]
dv (mk + mj)2 Y (kank + ijnj) J (l/kknk + I/kjnj)

We calculate the derivative

oW _ o1, 8mixi;  piluy; — ) {@tpj (u;j — ur) + p; (Oru; — Oyur)
dy (M + mj)? vgeng + vgin, VkkNg + Vgin
pi(u; — k) (VienOyrus + ijat”j)}
(Vkrnu + vign; )2
Amg X [@pj(Tj —Ti) + p;(0T; — 0Ty)  pi(Ty — Tho) (e Opny, + v Oy
(mp 4+ m;)? VikNg + Vkinj (Ve + vgjn; )2
dmumxe; [ Opj(wy — we)® + 2p5(uj — ug) - (Opu; — Oyug)
dy(my, +m;)? { VekNg + ViiNj
il = ug)? (VO + ijatnj)]
(Ve + vgjn )2

Furthermore, we will fuse the two terms for the derivative of the density 0;p; in each
square bracket. We will show this for the first bracket

Owpj(uj — ug) Py (uj — ug) (VEkOpny + Vi;Oenj)

VikNg + Vs (Vkenx + vign;)?

Oupj Wi, + viinj) — pj (ViwOym + v ;)

(Viemue + ukjnj)Q

= (u; — u)m; Opn (v, + vigny) — ng (ViOpru, + Vi Opn;)
(Vkrnu + vign; )2

— (u; — we)m, Uik (Opmng, — njoyny) + v, (Oimgng — njon,;)
(Vg + vign;)?

‘ka(atnjnk — n;0gny,)

(Vkeng + vigng)?

= (uj — ug)

= (uj — ux)m
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and apply this to the two following brackets. Thereby we obtain

= 8tT(k) - atTk

B 81k X pi(u; —ug) {pj(atuj — Owug)  mvge(u; — ug)(Omng — njamk)}
dy(my + m;)? vgeng + vigin, VT + Vi (Ve + vgjng )?
Amg Xk {pj(atTj — O/T}) N m;v (T — T) (Opnymy, — nj(?tnk)]
(my +m;)? | veeng + Viin, (Vgrng + vijng)?
AM M X g {2pj(uj — ug) - (Opuj — Opug) N mve(u; — ug)(Oymjng — nj(?tnk)]
dy(my + m;)? Vi + Vi (Verng + vigjn,)?

In the last step, we simplify the equation and sort it by the derivations of density, flux,
and temperature.

= 0,T® = ,T)

A X (Oupj ok — p;Oipr) {_ 2xkspj () — ug)
(g, + )2 (i, + vigng)? [ do(vrrng + vign;)
8muXijpi(uy — ug) - (puy — Oyuy) {_ XkjPj

dy(my +m;)2(Veen + vigng) (Vewny + vijn;)

4kakj Pj (atTj - atTk>
(Mg +m;)? vigng + vggn;

2

.
+ (T = T) + d—](uj — Uk)z]

9.4 Calculation of M*

In this section, we replace the time derivatives of the term

1

ko
M= M (k)

(OMW® vV, M®) (9.50)
We will integrate in the application of the low-rank algorithm with respect to v
and/or x for k € {1,2}. Therefore it will be practical to separate and sort the terms
as a sum of products of functions that depend either on v or x. This allows us to
integrate the single functions and use the results in several calculations.

Furthermore, we will replace the time derivatives of with the terms I[; ,/5 ) and
I3 ;. which are defined in (3.43).

In Appendix (9.2.2) we calculated

O d,0,TW Vany d,V,T®

k —_— —_— - —_—
M= N ST e 2T®
my(v — u)ou®  my(v? — 20u®) + u(’“)Q)atT(k) my (v — u®) vk
+ T T2 T T
2 _ opu® 4 0y T®)
. my(v vu'™ 4+ 4" (9.51)

2T (k)2
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Because we want to factorize M using functions depending on either x or v, we sort the
terms based on the functions depending on v

N 27 (k) T(k) 9T (k)?

) d,0,T™® ®) . 50" (k)2 g, (k)
MFE = [ tTk t mru tU X mgu t

Vone  dyVoT®  mpou®™  mpu®o,T®  mau®V uk) mku(k)vaT(k)
U T T T r® TR w2 T(®) T rwe
o [0, T®  myu®v, T® meV U U AVAD
] R p—vvy + (v®0) G + |v|*v - o

Thereby we can use the following presentation
MF = M v ME+ PME + (v @ v) s M+ oo - ME
where we use the terms M%-M?. which are only dependent on time ¢ and space .

kO, dy 0, T myu®9,u®) mku(k)QatT(k)

Mi=— "= T 1w T o
ME— Ving d, Vo T®  myou® B myu® 9, T*) B myu® V) N mpu®’ v, T®)
2T 2T (k) T (k) T(k)? T k) 2T (k)?
ME = mpo, T®  mu® v, 7%
5 o(k)? T (k)2
MIZ _ my Vu®
T(k)
P oT?

In the dynamical low-rank algorithm, we replace the time derivatives of M-Mj5 with

O = 11
1 1
Ovu, = — (Lo — Orprug) = — (Lo — 11 pug)
Pk Pk
2 1 I
0Ty, = I —L g —uy - Iy) — —T,
i g dvnk( 3,k T 5 LeUy — Uk - Iog) o k

whereby we obtain

1 mpu®)’ d, 2 1 1
M]f = Lk + ( 2,;(“2 o 27T (k) { (Igﬁ + —]Lkuz — U * _[27k) — ﬁTk}

DOk dyng, 2 Pk
- % : %(IQ,k - [1,kuk)

M = V;:k a dv;g(g(k) * p:;’lzk) (Io — L1 pu) — mkU(k;ék)va(k) + mku;lz)FQ(Z;T(k)
- ﬂ;f(z)(j) [ﬁ <]3,k + %Il,k‘uz — Ug - ]2,k> — %Tk]

Mg = % {dink (Is,k + %[Lkui U IQ’k) - %T’“] - %
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ko me VU
My = T
v VW)
5= T amm?
27 (k)

9.5 IMEX Steps
9.5.1 First order IMEX Schemes

IMEX schemes can be applied to ordinary differential equations to compute approximate
solutions [2]. The IMEX scheme enables us to split the differential equation into a stiff part
which we treat implicitly, and a non-stiff part which we solve explicitly. More specifically,
we will implicitly treat terms that contain the factor v, = vpnig + vgn; because we
consider problems with large collision frequencies.

9.5.2 IMEX Step K"
We have the time derivative of K ]’“

O = 3 [~ (VoKE) WVFVE, — KE(VEVEME),] + (V) — KF)

m=1

We implicitly treat the term v, K Jk on the right side as we need to account for stiffness
due to large v,. We perform an IMEX step

Kj" = K" 4 (Z[—<vxK,%"><vvj’““v,Z’">u — KV VRt MO + uz:<v;“">v>
m=1

kot
— TV - Kj’"+

and solve the equation for KJI.“’"+1

T

& K7 () = K3 4 (Z[—<VIK§;"><WJ“’"V£’“>IJ — KV M)

m=1
)
1 T -
& KM= K" — (Vo KEM VEVEY, — KREn(yEmyEn ),
j HW},;JJrHTVg;[( m ) (OViVo) m (Vi V"M
TVI? k.n
—k v,
1+7’V’?< J )

With the notations in (3.48)) and (3.49) this becomes

(g —
C . Kk n —k Kk n k V ’
; )+ Z 1 + Ty

i + TV ] 14+ TV}
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9.5.3 IMEX Step S};"

We have the time derivative of Sfj

8tSzkj = Z [Slkm<szVzXlk>w : <U‘/jkVT]:L>U + S&(XfoijVn]iMk%’v]

I,m=1
+ Z Sfj<VkXilek>m - <Vszk>x<V;k>v
=1

In order to adjust for stiffness induced by large v, we will approach the term
>y SE( X XF), implicitly while we treat the remaining terms explicitly. This leaves
us with the equation

s
Si* =Syt = TAXT VI T Y SN,
=1

7 30 (SR, - VB, 4 S P,

Il,m=1

With the notations defined in (3.48)), (3.50) and (3.51)) this becomes

T I8

k2 okl k1 k0 k1 k1 5k k77K k2 pk

S =S5 +T E |:Slm dif” * Cimm + Sim dil;jm:| —TX;V,+7 E Sy Ry
I,m=1 =1

which is equal to

r

Z(I - TRk)ilekj’Q = Sfj’l +7 Z [Sk’ldk’o : cfni + Sﬁ’r}dﬁ;jm] — TYfV’?

Ilm il i
=1 Il,m=1

9.5.4 IMEX Step L"

We have the time derivative of L¥

OLE =Y [—(XIVLX[)a - oL — (XFXEMO)V LY — (nXFXF)L LT ]+ (i XE)s

=1

In order to adjust for stiffness induced by large vy in the term (v, XFXF), L, we will treat
this term implicitly. We treat the remaining terms explicitly. The first order IMEX step
leaves us thereby with the equation

r

kn+1 _ 1kn kn+1 kn+1 k.n kn+1 v kn+1 k k,n

LI L = 3T XL XE, oL (XX MY, 1
=1

.
=YX L 4 X,
=1
With the notations defined in (3.50]), this becomes

\

1 1 ~F

L™ = L — 1y RELP™ +7X,
=1

=L (v P P+ (@) s o )L
=1
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which is equal to the equation

ST (I +7RY), L = L X
l

-7y [dﬁ?o oL 4 (d8 o dEP 4 PR 4 (v ) s dlt oo - dEPY L
=1
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