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1 Introduction

The BGK (Bhatnagar-Gross-Krook) equation models one or multiple gases and got intro-
duced by P. Bhatnagar, E. Gross, and M. Krook in 1954. The state of one gas is given by
its one-particle distribution function f(t, x, v), where f(t, x, v)dxdv is equal to the number
of gas-particles in the space-element dx around x which have the velocity in the range dv
around v. The evolution of the one-particle distribution function is modeled by a kinetic
di�erential equation called the BGK equation [5].
Kinetic equations model the gas as the distribution of its particles. They di�er from
macroscopic equations which model the macroscopic quantities density ρ, mean velocity
u and temperature T independently [31][5].
The BGK equation got introduced with the motivation of mathematically simplifying the
Boltzmann equation [7], which is also a kinetic description of gas via a partial di�erential
equation. Essential attributes of the Boltzmann equations, such as the conservation laws
for mass, momentum, and energy, are preserved in the BGK equation [5].

In May 2021, Lukas Einkemmer, Jingwei Hu, and Lexing Ying published an article
on the application of the dynamical low-rank algorithm for the Boltzmann�BGK equa-
tion close to the compressible viscous �ow regime [11]. This went along with publica-
tions of the application of the dynamical low-rank algorithm to diverse kinetic equations
[23],[12],[13],[10],[14] in which the algorithm was shown to provide e�cient approxima-
tions. This article is the basis of this master thesis.

Low-rank approximations aim to approximate a matrix with another one of lower rank
than the original matrix while preserving the information as well as possible [22][9]. The
model reduction via low rank approximation has a wide area of application from im-
age/video processing [33][32] to quantum chemistry [26].
This matrix can be given explicitly or, in our case, as a di�erential equation. An example
would be the di�erential equation

∂tF = H(F ) with F ∈ Rm×n (1.1)

for which we want to �nd an approximate solution Y ∈ Rm×n with a smaller algebraic
rank than F . The best approximation for a given rank r and for time t satis�es

||Y (t)− F (t)|| = min ∀ Y ∈Mm×n
r

whereMm×n
r is the manifold of matrices with algebraic rank r in Rm×n [21].

The best approximation of rank r can be calculated using the singular value decomposi-
tion (SVD) [18], which takes only the r largest eigenvalues into account.
The SVD is the best approximation but is also expensive from a computational standpoint
which is why we consider the dynamical low-rank algorithm.

The dynamical low-rank approximation is a low-rank technique where we factorize the
matrix we want to approximate. In our example (1.1) we search the approximation Y (t)
of �xed rank r which satis�es

||∂tY −H(Y (t))|| = min ∀ Y ∈Mm×n
r

We perform the factorization

Y (t) = X(t)S(t)V (t)ᵀ =
r∑

i,j=1

Xi(t)Sij(t)Vj(t)
ᵀ
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with X(t) ∈ Rm×r, S(t) ∈ Rr×r and V (t) ∈ Rn×r. Hereby the matrix S(t) is invertible
but is not necessarily diagonal as opposed to the singular value decomposition.
Furthermore X(t) and V (t) are orthonormal which means X(t)ᵀX(t) = V (t)ᵀV (t) = Ir
[21]. This decomposition becomes unique by additionally imposing the gauge conditions
∂tX

ᵀX = 0 and ∂tV
ᵀV = 0 which will be shown later in section 2.3.

Using the projector-splitting algorithm introduced in [24], we transform the di�erential
equation (1.1) into three separate di�erential equations of lower dimension regarding the
matrices X, S and V .

Fitting areas of applications for the dynamical low-rank algorithm are systems where
the underlying solution is known to be low-rank.
The solution is low-rank if a reasonably small rank r exists such that

F (t) ≈
r∑

i,j=1

Xi(t)Sij(t)Vj(t)
ᵀ

Thereby the rank of the approximation can be chosen accordingly low for great results.
In the previously mentioned publications [23],[12],[13],[10] and [14] the authors applied
the algorithm to (edge-)cases where the solution was known to be low-rank.

In publication [11], the low-rank approximation is not directly applied to the BGK equa-
tion, which describes the behavior of the one-particle probability density function f [5].
The reason is that the solution of f is not low-rank. Instead, the approximation is applied
to the introduced function g, de�ned by the relation f = Mg with the Maxwellian M .
Hereby g is shown to be low-rank using the Chapman-Enskog expansion [4].

Because gases often appear as gas mixtures instead of single gases, there is a need for
�tting approximations. Applications for gas mixtures are the air or plasma (where we
deal with a mix of ions and electrons) [28]. There is a variety of models for gas mixtures
e.g the models of Klingenberg, Pirner, Puppo [19], Hamel [16], Asinari [3], Garzó, Santos,
Brey [15] and Sofena [29].
These models utilize multiple collision terms on the right side, where one accounts for
the interaction of the gas with itself and the remaining collision terms account for the
interactions with other gases of the mixture [28].
There is also another model by Andries, Aoki, and Perthame [1], which only uses one
collision term on the right-hand side, which accounts for all interactions. The model also
ful�lls the indi�erentiability principle, which says that if the properties of all gas species
are the same, then the equations get reduced to the original single species BGK equation
[1].

In this master's thesis, we want to apply the dynamical low-rank algorithm to non-reactive
gas mixtures using a BGK-type model for gas mixtures. Because the previously mentioned
models with multiple collision terms would not allow us to perform a similar transforma-
tion to f = Mg for the di�erential equations, we chose the model of Andries, Aoki, and
Perthame [1].
Applying the low-rank algorithm without this transformation would mean that the un-
derlying solution is not low-rank, as the Maxwellians are not low-rank.
Therefore we want to apply the dynamical low-rank algorithm to non-reactive gas mix-
tures using the BGK-type model of Andries, Aoki, and Perthame [1]. This algorithm will
expand on the previous work of Lukas Einkemmer, Jingwei Hu, and Lexing Ying and
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their application of the algorithm to the BGK equation [11].
Furthermore, we will observe whether we can retain similar e�ciency as for the BGK
equation studied in [11]. The model [1] has no limits to the number of gases, but for
simplicity, we will consider two-component gases.

In [11], the low-rank approximation is also derived for non-constant temperatures. Still,
the dynamical low-rank algorithm is solely applied to the isothermal case to simplify the
procedure and focus on the algorithm. The chosen model for gas mixtures introduces
interspecies velocities and temperatures as additional quantities used in the Maxwellians.
The interspecies temperatures depend on all gases' densities, velocities, and temperatures.
Therefore, we cannot restrict ourselves to an isothermal case as in [11] without restricting
the stated macroscopic quantities.
Therefore we start by deriving the dynamical low-rank algorithm for the BGK equation
according to [11] for the non-isothermal case. Based on this, we can apply the dynamical
low-rank algorithm to the model of Andries, Aoki, and Perthame for gas mixtures.
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2 The dynamical low-rank algorithm for the

Boltzmann-BGK equation

In Einkemmers', Hus', and Yings' work [11], which was publicized in 2021, the dynamical
low-rank algorithm for the BGK equation is introduced and applied to the isothermal
case with constant temperature T = 1.
In this section, we consider an extension of the algorithm to non-constant temperatures.

We start with an introduction to the BGK equation in section 2.1. Next, we perform
a Chapman-Enskog expansion [4] of the BGK equation in section 2.2. With the results of
the expansion we can �nd a low-rank structure in the BGK equation in the compressible
regime. This allows us to apply the dynamical low-rank algorithm.
In section 2.3 we consider the general scheme of the low-rank algorithm applied to BGK
equation and its derivation.
Next, we consider the dynamical low-rank algorithm in section 2.4. The dynamical low-
rank algorithm entails the calculation of the density, mean velocity, energy and tempera-
ture and shows all introduced steps and quantities in detail.
In section 2.5, we consider the time discretization of the algorithm and numerical compu-
tations which were not yet disclosed.

2.1 Introduction

We consider the BGK equation proposed by Bhatnagar, Gross, and Krook [5], which
models a one-component system. We assume that the mass equals one, whereby the
number density n and the density ρ are equal. The BGK equation de�nes the one-
particle probability density function f . f(t, x, v) describes the density of the gas at time
t, at place x with velocity v. The BGK equation reads

∂tf(t, x, v) + v · ∇xf(t, x, v) =
ν(t, x)

ε
(M(t, x, v)− f(t, x, v)) (2.1)

for all t > 0, x ∈ Ω ⊂ Rdx , v ∈ Rdv . We use the Maxwellian M given by

M(t, x, v) =
ρ(t, x)

(2πT (t,x))
dv
2

exp

(
−|v − u(t, x)|2

2T (t, x)

)
(2.2)

The macroscopic quantities density ρ, mean velocity u, and temperature T are given by
the moments of f:

ρ(t, x) =

∫
Rdv

f(t, x, v) dv

u(t, x) =
1

ρ(t, x)

∫
Rdv

vf(t, x, v) dv (2.3)

T (t, x) =
1

dvρ(t, x)

∫
Rdv

|v − u(t, x)|2f dv

The viscosity ν is given by the equation

ν(t, x) = ρ(t, x)T (t, x)1−ω, ω ∈ [0.5, 1]

with constant ω. ε is the Knudsen number and can be calculated as the mean free path
and characteristic length ratio. The mean free path is the average path of the gas particles
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between collisions [8]. The characteristic length describes the physical system in which
the gas exists. It can be calculated as the ratio of the volume to the surface or the average
distance of the vertices of the system [20].
A low Knudsen number will be essential for applying the dynamical low-rank algorithm,
which we will see in the following sections 2.2 and 2.3. The value of the Knudsen number
ε indicates the �ow regime.
For ε → 0 the compressible Euler equations [30] describe the �ow (Euler Regime). In the
case 0 < ε < 0.01 the �ow is described by the compressible Navier-Stokes (NS) equations
[6] (NS regime). The classi�cation of the �ow regimes are according to [11, p.2].

2.2 Fluid limits

In this section, we perform the Chapman- Enskog expansion [4] and derive the �uid
dynamic limits of the BGK equation [5].
The results will be needed to �nd a low-rank structure within the density function f in
the �uid limit in the next section. The main results of the section are also shown in [11],
but we additionally perform all derivations of the results. The derivations are done to
gain an understanding of the steps.
We will start with the derivation of the compressible Euler equations, which are obtained
for ε→ 0.
We can derive from (2.1)

f = M − ε

ν
(∂tf + v · ∇xf) (2.4)

therefore we can write for small ε

f = M +O(ε). (2.5)

We will capture the O(ε)-term by introducing the function f1

f = M + εf1 (2.6)

We then substitute (2.6) into the BGK equation (2.1) to obtain

ν

ε
(M − (M + εf1)) = ∂t(M + εf1) + v · ∇x(M + εf1)

⇔ −ν
ε
εf1 = ∂tM + ε∂tf1 + v · ∇xM + v · ε∇xf1

⇔ f1 = −1

ν
(∂tM + v · ∇xM + ε∂tf1 + v · ε∇xf1)

⇔ f1 = −1

ν
(∂tM + v · ∇xM) +O(ε) (2.7)

We continue with the expansion by calculating the �rst dv + 2 moments of (2.1), (mul-

tiplying (2.1) by φ(v) := (1, v, |v|
2

2
)ᵀ and integrating with respect to v). We perform the

integration of the right-hand side of (2.1) in appendix 8.2.1-8.2.3 and receive

∂t〈φf〉v +∇x · 〈vφf〉v = 0 (2.8)

with the integration notations

〈 · 〉v =

∫
Rdv

· dv, 〈 · 〉x =

∫
Ω

· dx
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We substitute (2.6) into the second instance of the distribution function f in (2.8) and
obtain

∂t〈φf〉v +∇x · 〈vφ(M + εf1)〉v = 0

⇔ ∂t〈φf〉v +∇x · 〈vφM〉v = −ε∇x · 〈vφf1〉v (2.9)

We can also write equation (2.9) as

∂t

 〈f〉v〈vf〉v
〈 |v|

2

2
f〉v

+∇x ·

 〈vM〉v
〈(v ⊗ v)M〉v
〈v |v|

2

2
M〉v

 = −ε∇x ·

 〈vf1〉v
〈(v ⊗ v)f1〉v
〈v |v|

2

2
f1〉v

 (2.10)

We de�ne

P1 := −
∫
Rdv

(v − u)⊗ (v − u)f1dv (2.11)

q1 := −1

2

∫
Rdv

(v − u)|v − u|2f1dv (2.12)

Using the de�nitions and the calculation shown in appendix 8.2, we can transform

〈φf〉v =

 〈f〉v〈vf〉v
〈 |v|

2

2
f〉v

 =

 ρρu
E

 (2.13)

Additionally we derive the following equality for 〈vφM〉v in appendix 8.3.1

〈vφM〉v =

 〈vM〉v
〈(v ⊗ v)M〉v
〈v |v|

2

2
M〉v

 =

 ρu
ρ(u⊗ u) + ρTId

(E + ρT )u

 (2.14)

In the calculations presented in the appendix 8.3.2 we furthermore derive

〈vφf1〉v =

 〈vf1〉v
〈(v ⊗ v)f1〉v
〈v |v|

2

2
f1〉v

 =

 0
−P1

−P1u− q1

 (2.15)

We insert the three previous results (2.13), (2.14) and (2.15) into (2.10) and obtain ∂tρ
∂t(ρu)
∂tE

+

 ∇x · (ρu)
∇x · (ρ(u⊗ u) + ρTId)
∇x · ((E + ρT )u)

 =

 0
ε∇x · P1

ε∇x · (P1u+ q1)

 (2.16)

which are the compressible Euler equations when the O(ε) terms are neglected.
In our next step, we want to show that we obtain the compressible NS equations when
we retain the O(ε) terms in (2.16). Therefore we have to calculate the terms P1 and q1,
which means we have to integrate the function f1. We will use the de�nition (2.7) of f1

for the mentioned integration. We start by simplifying the term 1
M

(∂tM +v ·∇xM). This
term can be used in the de�nition of f1 (2.7). In the appendix 8.3.3 we derived

1

M
(∂tM + v · ∇xM) =

1

ρ
(∂tρ+ v · ∇xρ) +

(v − u)

T
· (∂tu+ v · ∇xu)

+

(
|v − u|2

2T 2
− dv

2T

)
(∂tT + v · ∇xT ) (2.17)
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We can use (2.16) to replace the time derivatives ∂tρ, ∂tu and ∂tT in (2.17) with spatial
derivatives. Because we want to calculate the �rst order of f1, we can neglect the O(ε)
terms of (2.16) in the replacement of the time derivatives.
This process is shown in appendix 8.3.4. We then get

1

M
(∂tM + v · ∇xM) =

(
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id

)
: ∇xu

+

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T
+O(ε) (2.18)

Thereby we obtain with equation (2.7)

f1 = −M
ν

[
(
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id) : ∇xu

+

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

]
�+O(ε) (2.19)

With this result, we can calculate P1 de�ned in (2.11). With the calculations performed
in appendix 8.3.5, we obtain the result

P1 = T ω
(
∇xu+ (∇xu)ᵀ − 2

dv
(∇x · u)Id

)
+O(ε) (2.20)

In appendix 8.3.6 we additionally calculate q1 and receive the result

q1 =
dv + 2

2
T ω∇xT +O(ε) (2.21)

Furthermore, we de�ne the stress tensor

σ(u) := ∇xu+ (∇xu)ᵀ − 2

dv
(∇x · u)Id (2.22)

and the coe�cients for the viscosity

µ := T ω (2.23)

and the heat conductivity

γ :=
dv + 2

2
µ (2.24)

We now insert these results for P1 and q1 into (2.16) and receive ∂tρ
∂t(ρu)
∂tE

+

 ∇x · (ρu)
∇x · (ρ(u⊗ u) + ρTId)
∇x · ((E + ρT )u)

 =

 0
ε∇x · (T ωσ(u)) +O(ε2)

ε∇x ·
(
T ωσ(u)u+ dv+2

2
T ω∇xT

)
+O(ε2)


(2.25)

When neglecting the O(ε2) terms the equations in (2.25) are the compressible Navier-
Stokes equations.
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2.3 The low-rank approximation

By inserting (2.19) into equation (2.6) we can calculate f to the order O(ε)

f = M − εM
ν

[(
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id

)
: ∇xu

+

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

]
+O(ε2) (2.26)

for small ε. The Maxwellian M contains the term exp(− |v−u|
2

T
), which is not separable

into functions of either x or v of the form
∑
h(t, x)η(t, v). Therefore, M is not separable

as well.
Because we want to compute the solution on a low-rank manifold, we rely on the under-
lying solution to be also low-rank to apply the algorithm. Therefore we will not proceed
with approximating the density function f where the solution includes M but rather g,
which de�nes by the relation.

f = Mg (2.27)

We apply (2.27) in (2.26) and factorize M on the right side.

Mg = M(1− ε1

ν

[(
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id

)
: ∇xu

+

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

]
) +O(ε2) (2.28)

Thereby, we obtain

g = 1− ε1

ν

[(
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id

)
: ∇xu

+

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

]
+O(ε2) (2.29)

We can see the function g is low-rank and separable in x and v in O(ε). We can express
g as a sum of products of functions which depend on either x (ν, u, T,∇xu,∇xT ) or on v
(v, v2, v ⊗ v).
For dv = 2 we have v = (v1, v2)ᵀ and derive from (2.29)

g(t, x, v) = 1 · h1(t, x) + v1 · h2(t, x) + v2 · h3(t, x) + v1v2 · h4(t, x) + v2
1 · h5(t, x)

+ v2
2 · h6(t, x) + v2

1v2 · h7(t, x) + v1v
2
2 · h8(t, x) + v3

1 · h9(t, x) + v3
2 · h10(t, x) +O(ε2)

As we can see the maximal rank of g is equal to 10 at O(ε) in the case dv = 2.
This is only the maximal theoretical rank. In application, the actual rank of g can be
lower. A lower rank can occur when factors are zero or very small compared to others.
Another possibility that results in a reduced rank is functions of x being equal. As an
example we will assume h1(t, x) = h2(t, x) = h4(t, x), then g becomes

g(t, x, v) = (1 + v1 + v1v2) · h1(t, x) + v2 · h3(t, x) + v2
1 · h5(t, x) + v2

2 · h6(t, x)

+ v2
1v2 · h7(t, x) + v1v

2
2 · h8(t, x) + v3

1 · h9(t, x) + v3
2 · h10(t, x) +O(ε2)

In this case, the maximal rank of g in O(ε) is reduced to 8.
The calculation of the rank of g is shown in detail in section 4.
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As g is low-rank, we can �nd low-rank approximations of the form

g =
r∑

i,j=1

Xi(t, x)Sij(t)Vj(t, v) (2.30)

where r is the rank that we choose for our approximation. {Xi} is an orthonormal basis
in x and {Vj} is an orthonormal basis in v.
We can update the macroscopic quantities using g and equation (2.8). Equation (2.8) is
equal to

∂tU +∇x · 〈vφMg〉v = 0 (2.31)

with U := (ρ, u, E)ᵀ. We can also calculate T or ∂tT using the relation T = 2
dvρ
E − 1

dv
u2.

Next, we calculate the time derivatives of Xi, Sij and Vj. In preparation, we need to derive
∂tg, which we can achieve by inserting f = Mg into the BGK equation (2.1):

∂t(Mg) + v · ∇x(Mg) =
ν

ε
(M − (Mg))

We apply the product rule

⇔ ∂tMg +M∂tg + v · (∇xMg +M∇xg) =
ν

ε
M(1− g)

and rearrange the equation to isolate ∂tg

⇒ ∂tg = −v · ∇xg −
1

M
(∂tM + v · ∇xM)g +

ν

ε
(1− g) := h (2.32)

As performed in [13] [21] or [24] we impose the gauge conditions

〈Xi, ∂tXj〉x = 0, 〈Vi, ∂tVj〉v = 0 ∀1 ≤ i, j ≤ r (2.33)

Gauge conditions are applied to simplify calculations and reduce redundant degrees of
freedom [25].
This condition guarantees uniquely determined Xi, Vj if the matrix (Sij) is invertible,
which we will show in the following. We start by calculating the time derivative of (2.30).
Note that we already constrained g to the low-rank space created by {Xi} and {Vj} by
choosing the expression (2.30). We obtain

∂tg =
r∑

i,j=1

∂tXiSijVj +Xi∂tSijVj +XiSij∂tVj (2.34)

∂tSij is uniquely determined via the equation

〈XlVm∂tg〉x,v = ∂tSlm (2.35)

We obtain the relation (2.35) using the gauge conditions (2.33), and (2.34)

〈XlVm∂tg〉x,v =
r∑

i,j=1

〈XlVm(∂tXiSijVj +Xi∂tSijVj +XiSij∂tVj)〉x,v

=
r∑

i,j=1

〈Xl∂tXiSijVmVj〉x,v + 〈XlXi∂tSijVmVj〉x,v + 〈XlXiSijVm∂tVj〉x,v

=
r∑

i,j=1

Sij〈Xl∂tXi︸ ︷︷ ︸
= 0

〉x〈VmVj〉v + ∂tSij 〈XlXi〉x︸ ︷︷ ︸
= δl,i

〈VmVj〉v︸ ︷︷ ︸
= δm,j

+Sij〈XlXi〉x〈Vm∂tVj︸ ︷︷ ︸
= 0

〉v

= ∂tSlm (2.36)
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We proceed to show that Xl is de�ned uniquely for all (1 ≤ l ≤ r). We multiply (2.34)
with Xl, integrate with respect to x

〈Xl∂tg〉x =
r∑

i,j=1

SijVj〈Xl∂tXi︸ ︷︷ ︸
= 0

〉x + ∂tSijVj 〈XlXi〉x︸ ︷︷ ︸
= δl,i

+Sij∂tVj 〈XlXi〉x︸ ︷︷ ︸
= δl,i

and apply the gauge conditions and the orthonormality of {Xi}

〈Xl∂tg〉x =
r∑
j=1

∂tSljVj +
r∑
j=1

Slj∂tVj (2.37)

Thereby Xl is uniquely de�ned if S is invertible [13]. We can show the result for Vm
accordingly

〈Vm∂tg〉v =
r∑

i,j=1

SijXi〈Vm∂tVj︸ ︷︷ ︸
= 0

〉v + ∂tSijXi 〈VmVj〉v︸ ︷︷ ︸
= δm,j

+Sij∂tXi 〈VmVj〉v︸ ︷︷ ︸
= δm,j

=
r∑
i=1

∂tSimXi +
r∑
i=1

Sim∂tXi (2.38)

Using (2.37) and (2.38), we can replace the time derivatives in (2.34) with projections,
and we obtain

∂tg =
r∑

i,j=1

∂tXiSijVj +Xi∂tSijVj +XiSij∂tVj

=
r∑
j=1

Vj

r∑
i=1

∂tXiSij +
r∑

i,j=1

Xi∂tSijVj +
r∑
i=1

Xi

r∑
j=1

Sij∂tVj

=
r∑
j=1

Vj[〈Vjh〉v −
r∑
i=1

∂tSijXi] +
r∑

i,j=1

Xi∂tSijVj +
r∑
i=1

Xi[〈Xih〉x −
r∑
j=1

∂tSijVj]

=
r∑
j=1

Vj〈Vjh〉v −
r∑

i,j=1

Xi〈XiVjh〉x,vVj +
r∑
i=1

Xi〈Xih〉x (2.39)

With this, we use h de�ned in (2.32). We can now perform the operator splitting based
on (2.39). We begin by de�ning Kj =

∑r
i=1 XiSij, which also means

g =
r∑
j=1

r∑
i=1

XiSijVj =
r∑
j=1

KjVj (2.40)

Using the previous result (2.39), we can calculate ∂tKj

〈Vj, h〉v =
r∑
i=1

∂tSijXi +
r∑
i=1

Sij∂tXi = ∂t

r∑
i=1

SijXi

= ∂tKj (2.41)

and thereby update Kj. By performing an orthonormalization of Kj using a QR de-
composition, we generate new Xi and Sij. According to (2.36) we can update Sij by
solving

∂tSij = 〈XiVjh〉x,v (2.42)
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Finally we also introduce Li =
∑r

j=1 SijVj. We could update Li similarly to (2.41) but
we will show the calculation using g =

∑r
i=1XiLi.

〈Xi, h〉v = 〈Xi,
r∑
l=1

∂tLlXl + Ll∂tXl〉x

=
r∑

m=1

∂tLl 〈Xi, Xl〉x︸ ︷︷ ︸
= δi,l

+Ll 〈Xi, ∂tXl〉x︸ ︷︷ ︸
= 0

= ∂tLi (2.43)

By performing an orthonormalization on Li we can generate new Sij and Vj.

2.4 The dynamical low-rank algorithm

In this chapter, we consider the dynamical low-rank algorithm. Hereby we advance U to
the next time step via the moment equation (2.31) and calculate h.
With the function h we can then apply the low-rank algorithm which was shown in the
previous section and thereby update (Sij), {Xi} and {Vj} for all (i, j) ∈ {1, . . . , r}.
In contrast to [11] we will continue with variable temperature. We discretize the time but
leave the space continuous in this section. As mentioned we will start by updating the
moments using the moment equation and g =

∑r
i,j XiSijVj.

∂tρ = −∇x ·

(∑
i,j

XiSij〈vVjM〉v

)
= I1

∂t(ρu) = −∇x ·

(∑
i,j

XiSij〈(v ⊗ v)VjM〉v

)
= I2 (2.44)

∂tE = −∇x ·

(∑
i,j

XiSij〈v
|v|2

2
VjM〉v

)
= I3

By using the de�nition E = dv
2
ρT + 1

2
ρu2 for the third equation we obtain the time

derivatives ∂tρ, ∂tu, ∂tTt.

∂tρ = I1 (2.45)

∂tu =
1

ρ
(I2 − ∂tρu) =

1

ρ
(I2 − I1u) (2.46)

∂tT =
2

dvρ

(
∂tE −

1

2
∂tρu

2 − ρu∂tu
)
− ∂tρ

ρ
T

=
2

dvρ

(
I3 −

1

2
I1u

2 − ρu1

ρ
(I2 − I1u)

)
− I1

ρ
T

=
2

dvρ

(
I3 −

1

2
I1u

2 − u · I2 + I1u
2

)
− I1

ρ
T

=
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T (2.47)

In appendix 8.4 we simplify the term 1
M

(∂tM + v · ∇xM) which is part of h de�ned in
(2.32). Thereby we obtain

h = −v · ∇xg −Mg +
ν

ε
(1− g) (2.48)

11



with

M =M1 + v · M2 + |v|2M3 + (v ⊗ v) :M4 + |v|2v · M5 (2.49)

and the termsM1-M5, which are only dependent on time t and space x.

M1 =
∂tρ

ρ
− dv∂tT

2T
− u · ∂tu

T
+
u2∂tT

2T 2

M2 =
∇xρ

ρ
− dv∇xT

2T
+
∂tu

T
− u∂tT

T 2
− u · ∇xu

T
+
u2∇xT

2T 2

M3 =
∂tT

2T 2
− u∇xT

T 2
(2.50)

M4 =
∇xu

T

M5 =
∇xT

2T 2

In publication [11] only three terms occur as the derivatives ∂tT and ∇xT equal zero in
the isothermal case. In the case ∂tT = ∇xT = 0 the calculated terms are equal.
We replace the time derivatives of ρ,u and T by equations (2.45) - (2.47). The full
calculation can be seen in appendix 8.4.

M1 = I1

[
1

ρ
+

u4

2dvρT 2
+
dv
2ρ

]
− I2 ·

u3

dvρT 2
+ I3

(
u2

2T 2
− dv

2T

)
M2 =

∇xρ

ρ
− dv∇xT

2T
+

1

ρT
(I2 − I1u)− u

T

[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T

]
− u · ∇xu

T
+
u2∇xT

2T 2
(2.51)

M3 =
1

2T 2

[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T − 2u∇xT

]
M4 =

∇xu

T

M5 =
∇xT

2T 2

Now that we have calculated h, we can continue with the low-rank algorithm, as shown
in the previous section. Therefore we start by calculating (2.41) using the term h de�ned
in (2.48).

∂tKj = 〈Vj, h〉v
= 〈−v · Vj∇xg −MVjg +

ν

ε
Vj(1− g)〉v

=
r∑

l,m=1

− (∇xXl)Slm︸ ︷︷ ︸
= ∇xKm

〈vVjVm〉v −XlSlm︸ ︷︷ ︸
= Km

〈VjVmM〉v −
ν

ε
XlSlm︸ ︷︷ ︸
= Km

〈VjVm〉v︸ ︷︷ ︸
= δjm

+
ν

ε
〈Vj〉v

=
r∑

m=1

[−(∇xKm)〈vVjVm〉v −Km〈VjVmM〉v] +
ν

ε
(〈Vj〉v −Kj) (2.52)

Therefore we have to calculate 〈VjVmM〉v
〈VjVmM〉v = δjmM1 + 〈vVjVm〉v · M2 + 〈|v|2VjVm〉vM3 + 〈v ⊗ vVjVm〉v :M4

+ 〈v3VjVm〉v · M5
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We continue by calculating (2.42)

∂tSij = −〈XiVj, h〉xv
=
〈
v ·XiVj∇xg +MXiVjg −

ν

ε
XiVj(1− g)

〉
xv

=
r∑

l,m=1

[Slm〈Xi∇xXl〉x · 〈vVjVm〉v + Slm〈XlXiVjVmM〉x,v

+ Slm

〈ν
ε
XiXl

〉
x
〈VjVm〉v

]
−
〈ν
ε
Xi

〉
x
〈Vj〉v

=
r∑

l,m=1

[Slm〈Xi∇xXl〉x · 〈vVjVm〉v + Slm〈XlXiVjVmM〉x,v]

+
∑
l=1

Slj

〈ν
ε
XiXl

〉
x
−
〈ν
ε
Xi

〉
x
〈Vj〉v

Therefore we have to calculate 〈XiXlVjVmM〉x,v. Because M1(t, x)-M5(t, x) are not
dependent on v we can conveniently split the integrals

〈XiXlVjVmM〉xv = 〈XiXl〈VjVmM〉v〉x
= δjm〈XiXlM1〉x + 〈vVjVm〉v · 〈XiXlM2〉x + 〈|v|2VjVm〉v〈XiXlM3〉x
+ 〈v ⊗ vVjVm〉v : 〈XiXlM4〉x + 〈v3VjVm〉v · 〈XiXlM5〉x

At last we plug (2.48) into (2.43)

∂tLi = 〈Xi, h〉x
=
〈
−v ·Xi∇xg −MXig +

ν

ε
Xi(1− g)

〉
x

=
r∑

l,m=1

[
−〈Xi∇xXl〉x · vSlmVm − 〈XlXiM〉xSlmVm −

〈ν
ε
XiXl

〉
x
SlmVm

]
+
〈ν
ε
Xi

〉
x

=
r∑
l=1

[
−〈Xi∇xXl〉x · vLl − 〈XlXiM〉xLl −

〈ν
ε
XiXl

〉
x
Ll

]
+
〈ν
ε
Xi

〉
x

Therefore we have to calculate 〈XiXlM〉x

〈XiXlM〉x = 〈XiXlM1〉x + v · 〈XiXlM2〉x + |v|2〈XiXlM3〉x
+ (v ⊗ v) : 〈XiXlM4〉x + v3 · 〈XiXlM5〉x

2.5 Time discretization

This section shows the dynamical low-rank integrator according to Einkemmer, Hu, and
Ying [11] expanded to varying temperatures. In publication [11], the temperature was
set constant at T = 1. We consider time step tn and assume ρn, un, T n, En, Xn

i , V
n
j , S

n
ij

are given. By the end of the time step we will have calculated the solution consisting of
ρn+1, un+1, T n+1, En+1, Xn+1

i , V n+1
j and Sn+1

ij . We will use the variables Nx and Nv where
Nx is the number of grid points in each spatial direction, and Nv is the number of grid
points in each velocity direction.
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Update ρn, un and T n

To obtain the time derivative of the macroscopic quantities, we need to compute〈
vV n

j M
n

〉
v

=
ρn(x)

(2πT n(x))
dv
2

〈vV n
j (v) exp

(
−|v − u

n(x)|2

2T n(x)

)
〉v〈

(v ⊗ v)V n
j M

n

〉
v

=
ρn(x)

(2πT n(x))
dv
2

〈(v ⊗ v)V n
j (v) exp

(
−|v − u

n(x)|2

2T n(x)

)
〉v (2.53)〈

v
|v|2

2
V n
j M

n

〉
v

=
ρn(x)

(2πT n(x))
dv
2

〈v |v|
2

2
V n
j (v) exp

(
−|v − u

n(x)|2

2T n(x)

)
〉v

The integrals in the terms can be expressed as convolutions and thereby calculated ac-
cordingly. Hence for our next step, we compute the convolutions

g1
j =

(
v 7→ vV n

j

)
∗ (v 7→ exp

(
− v2

2T n(x)

)
)

g2
j =

(
v 7→ (v ⊗ v)V n

j

)
∗ (v 7→ exp

(
− v2

2T n(x)

)
) (2.54)

g3
j =

(
v 7→ v

|v|2

2
V n
j

)
∗ (v 7→ exp

(
− v2

2T n(x)

)
) Cost: O(rNdx

x N
dv
v log(Ndv

v ))

for each of the unique values of T n(x) using a fast Fourier transform (FFT). The compu-
tational cost is increased at most by a factor of Ndx

x compared to the case of a constant
T = 1. In our next step, we evaluate the convolutions at un(x) using cubic splines. We
also multiply with the factors shown in (2.53)〈
vV n

j M
n

〉
v

=
ρn(x)

(2πT n(x))
dv
2

g1
j (u

n(x))〈
(v ⊗ v)V n

j M
n

〉
v

=
ρn(x)

(2πT n(x))
dv
2

g2
j (u

n(x)) (2.55)〈
v
|v|2

2
V n
j M

n

〉
v

=
ρn(x)

(2πT n(x))
dv
2

g3
j (u

n(x)) Cost: O(rNdx
x )

Using these results, we can continue computing the time derivatives of (ρn, ρnun, En)ᵀ

In1 = −∇x ·

(∑
i,j

Xn
i S

n
i,j〈vV n

j M
n〉v

)

In2 = −∇x ·

(∑
i,j

Xn
i S

n
i,j〈(v ⊗ v)V n

j M
n〉v

)

In3 = −∇x ·

(∑
i,j

Xn
i S

n
i,j

〈
v
|v|2

2
V n
j M

n

〉
v

)
Cost: O(r2Ndx

x )

and update (ρn, un, T n, En)ᵀ accordingly by performing a forward Euler step.

ρn+1 = ρn + τIn1

un+1 = un + τ
1

ρn
(In2 − In1 un) (2.56)

En+1 = En + τIn3

T n+1 =
2

dvρn+1
En+1 − 1

dv
(un+1)2 Cost: O(Ndx

x )
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We calculate T n+1 using the equation for the total energy E = dv
2
ρT + 1

2
ρu2.

Update Xn+1
i , V n+1

j , and Sn+1
ij

K Step

With the use of a basic quadrature without weights, we calculate

c1
jl = 〈vV n

j V
n
l 〉v

c2
jl = 〈v2V n

j V
n
l 〉v

c3
jl = 〈v ⊗ vV n

j V
n
l 〉v (2.57)

c4
jl = 〈v3V n

j V
n
l 〉v

V j = 〈V n
j 〉v Cost: O(r2Ndv

v )

and continue by computingM1-M5 de�ned in (2.51) using ρn, un, T n, In1 , I
n
2 , I

n
3 .

Cost:O(Ndx
x )

This enables us to compute

ĉjl = 〈V n
j V

n
mM〉v = δjlM1 + c1

jl · M2 + c2
jlM3 + c3

jl :M4 + c4
jl · M5 Cost: O(r2Ndx

x )

(2.58)

We perform a �rst order implicit-explicit (IMEX) step as shown in appendix 8.5.2 and
obtain the result

Kn+1
j =

1

1 + τνn/ε
Kn
j −

τ

1 + τνn/ε

[
r∑
l=1

c1
jl · (∇xK

n
l ) +

r∑
l

ĉjlK
n
l

]
+

τνn

ε+ τνn
V j

with

Kn
j =

∑
i

Xn
i S

n
ij Cost: O(r2Ndx

x )

We perform a QR decomposition of Kn+1
j and obtain Xn+1

i and S1
ij

Kn+1
j =

∑
i

Xn+1
i S1

ij Cost: O(r2Ndx
x )

S Step

In preparation for updating S1
ij to S

2
ij, we have to calculate

d0
ik = 〈Xn+1

i ∇xX
n+1
k 〉x

dmik = 〈Xn+1
i Xn+1

k Mm〉x, m ∈ {1, 2, 3, 4, 5} (2.59)

X i = 〈νnXn+1
i 〉x

Rik = 〈νnXn+1
i Xn+1

k 〉x Cost: O(r2Ndx
x )

and

d̂ik;jl = δjld
1
ik + c1

jl · d2
ik + c2

jld
3
ik + c3

jl : d4
ik + c4

jl · d5
ik Cost: O(r4) (2.60)

We perform another �rst-order IMEX step in appendix 8.5.3. We obtain the following
equation, which we can solve to obtain S2

ij for all i, j ∈ {1, . . . , r}∑
k

(
I − τ

ε
R
)
ik
S2
kj = S1

ij + τ

[∑
kl

(d0
ik · c1

jl)S
1
kl +

∑
kl

d̂ik;jlS
1
kl

]
− τ

ε
X iV j Cost: O(r4)
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L Step

In order to obtain V n+1
i and Sn+1

ij we �rst perform another IMEX step in appendix 8.5.4

r∑
l

(
I − τ

ε
R
)
il
Ln+1
l = Lni +

τ

ε
X i

− τ
r∑
l=1

[
d0
il · vLnl + (d1

il + v · d2
il + |v|2d3

il + (v ⊗ v) : d4
il + |v|2v · d5

il)L
n
l

]
Cost: O(r2Ndv

v )

and continue by performing a QR decomposition of Ln+1
i to obtain V n+1

i and Sn+1
ij

Ln+1
i =

∑
i

Sn+1
ij V n+1

i Cost: O(r2Ndv
v )

Thereby we have successfully calculated Xn+1
j , Sn+1

ij and V n+1
i for all 1 ≤ i, j ≤ r and we

can start the next iteration.
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3 The dynamical low-rank algorithm for a BGK-type

model for gas mixtures

In this section, we consider a robust dynamical low-rank integrator for a BGK-type model
for gas mixtures in the compressible case. More speci�cally, we consider the model of
Andries, Aoki, and Perthame, which was introduced in [1]. We will limit ourselves to a
two-species mixture.

3.1 Introduction

Before we consider the model, we will introduce the macroscopic quantities. The individ-
ual macroscopic quantities of gas k are the number density nk, the density ρk, the average
velocity uk, the temperature Tk and the energy Ek.

nk =

∫
Rdv

fk dv, ρk = mknk, uk =
mk

ρk

∫
Rdv

vfk dv, Tk =
mk

dvnk

∫
Rdv

|v − uk|2fk dv

Ek = mk

∫
Rdv

|v|2

2
fk dv, Ek =

dv
2
nkTk +

1

2
ρku

2 (3.1)

Furthermore, we use some global quantities which account for all gases. We have the total
number density n, the total density ρ, the mean velocity u, the mean temperature T , and
the total energy E

n =
∑
k

nk, ρ =
∑
k

ρk, u =
1

ρ

∑
k

ρkuk, E =
∑
k

Ek, T =
1

ρ

∑
k

ρkTk (3.2)

The multi-component system proposed by Andries, Aoki, and Perthame consists of mul-
tiple di�erential equations where each equation describes the evolution of one gas's one-
particle probability density function.
As we consider a two-component mixture we have the probability functions fk where
k ∈ 1, 2. fk(t, x, v) describes the density of the gas k at time t, at place x with velocity v.
The di�erential equation for gas k is de�ned by

∂tfk + v · ∇xfk = (νkknk + νkjnj)(M
(k) − fk) for (k, j) ∈ {1, 2}2, k 6= j (3.3)

With this, we use the Maxwell distributions,

M (k) =
nk(t, x)(

2π T
(k)(t,x)
mk

) dv
2

exp

(
−mk|v − u(k)(t, x)|2

2T (k)(t, x)

)
for k ∈ {1, 2} (3.4)

the interspecies velocities

u(k) = uk + 2
mj

mk +mj

χkj
νkknk + νkjnj

nj(uj − uk) for (k, j) ∈ {(1, 2), (2, 1)} (3.5)

and the interspecies temperatures

T (k) = Tk −
mk

dv

∣∣u(k) − uk
∣∣2 +

2

dv

mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

nj

(
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

)
(3.6)
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Furthermore we use the constant interaction coe�cients χkj = χjk = χ as well as the
collision frequencies νkj. In future applications, we will also use the notation

νk := νkknk + νkjnj

In Andries, Aoki's, and Perthames model, the interaction coe�cients and collision fre-
quencies are de�ned by

νkj =

∫
B+

Bik(ω)dω, χkj =

∫
B+

cos(ω)Bik(ω)dω

where Bik is related to the interaction potential between species k and j, and B+ is de�ned
as the semi-sphere, which is normal to the relative velocity.
Furthermore, the authors state that "Especially for non cut-o� models, νkj might be
in�nite while χkj remains �nite" [1, p.997]. For this thesis, we will observe the case in
which the collision frequencies are signi�cantly larger than the interaction coe�cients.
This is essential for the underlying solution (after a similar transformation as in the single
species case) being low-rank in the �rst order of O( 1

ν11
).

3.2 Fluid limits

The aim of this section is to �nd a low-rank function gk, in the �uid limit, such that
fk = M (k)gk similar to the procedure for the BGK equation in section 2.2. Therefore
we will perform a Chapman-Enskog expansion [4] of the �rst order and derive the �uid
dynamic limits of the BGK-type equation for mixtures.
We assume that 1

ν11
is small and that the parameters α12, α21, α22 ∈ O(1) satisfy ν11 =

α12ν12 = α21ν21 = α22ν22. For notation purposes we will also introduce α11 = 1. We start
the derivation with the di�erential equation of gas k ∈ {1, 2} and solve the equation for
fk.

∂tfk + v · ∇xfk = (νkknk + νkjnj)(M
(k) − fk)

⇔fk = M (k) − 1

νkknk + νkjnj
(∂tfk + v · ∇xfk)

= M (k) − 1

ν11

1

αkknk + αkjnj
(∂tfk + v · ∇xfk) = M (k) +O(

1

ν11

)

Based on this we will introduce f 1
k ∈ O(1) such that

fk = M (k) +
1

ν11

f 1
k . (3.7)

Next we will substitute this de�nition of fk into (3.3) and obtain

∂tfk + v · ∇xfk = (νkknk + νkjnj)(M
(k) − fk)

⇔ ∂tM
(k) +

1

ν11

∂tf
1
k + v · ∇xM

(k) +
1

ν11

v · ∇xf
1
k

= (νkknk + νkjnj)

(
M (k) −

(
M (k) +

1

ν11

f 1
k

))
⇔ ∂tM

(k) + v · ∇xM
(k) +O(

1

ν11

) = −(αkknk + αkjnj)f
1
k

⇒ f 1
k = − 1

αkknk + αkjnj
(∂tM

(k) + v · ∇xM
(k)) +O(

1

νkk
) (3.8)
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According to our procedure for the single species gas in section 2.2 we want to observe
whether gk de�ned by fk = M (k)gk is low-rank. Hereby we will similarly use the introduced
function f 1

k , which we will calculate through equation (3.8).
In order to be able to replace the time derivatives occurring in (3.8) we continue by taking

the �rst dv +2 moments of (3.3), (multiplying (3.3) by φ(v) := (1, v, |v|
2

2
)ᵀ and integrating

with respect to v) and multiplying with mass mk which yields the two (number of gases)
equation-systems of dimension dv + 2. The �rst and third equations are one-dimensional.
The second equation is of dimension dv. ∂t〈mkfk〉v

∂t〈mkvfk〉v
∂t

〈
mk
|v|2
2
fk

〉
v

+∇x ·

 〈mkvfk〉v
〈mk(v ⊗ v)fk〉v〈
mkv

|v|2
2
fk

〉
v

 = νk

 〈mk(M
(k) − fk)〉v

〈mkv(M (k) − fk)〉v〈
mk
|v|2
2

(M (k) − fk)
〉
v

 (3.9)

We proceed by calculating the integrals. For the �rst vector, we can use the de�nitions
(3.1). The calculations for the second and third vectors are shown in appendix 9.2.1 and
9.1.1-9.1.3. We obtain the system ∂tρk
∂t(ρkuk)
∂tEk

+∇x ·

ρkukΨ1
k

Ψ2
k

 =

 0
Ξ1
k

Ξ2
k

 (3.10)

with the exchange terms

Ξ1
k =

2ρkρjχkj
mk +mj

(uj − uk) (3.11)

Ξ2
k =

2ρkρjχkj
(mk +mj)2

[uk · uj(mk −mj)− u2
kmk + u2

jmj + dv(Tj − Tk)] (3.12)

and the help terms

Ψ1
k = mk〈((v − u(k))⊗ (v − u(k)))fk〉v + ρk(uk ⊗ u(k)) + ρ(u(k) ⊗ uk)− ρ(u(k) ⊗ u(k))

Ψ2
k =

mk

2
〈(v − u(k))|v − u(k)|2fk〉v +mk〈(v − u(k))⊗ (v − u(k))fk〉v

+
1

2
ρkuk|u(k)|2 − 1

2
ρku

(k)|u(k)|2 + u(k)Ek (3.13)

We can also obtain the Navier-Stokes system from (3.9) for the same result as derived in
[1]. We calculate 〈(v⊗ v)fk〉v and 〈v|v|2fk〉v according to 9.2.1 where we use u de�ned in
(3.2) instead of u(k) and add the second and third line for all gases. The full calculation
for our two-species mixture is performed in appendix 9.2.4. This results in the system ∂tρk
∂t(ρu)
∂tE

+∇x ·

 ρkuk
P + ρu · u

Eu+ P · u+ q

 =

0
0
0

 (3.14)

Note that the equations (3.14) use the total macroscopic quantities de�ned in (3.2). The
used terms P and q are de�ned by

P :=
∑
k

∫
Rdv

mk(v − u)⊗ (v − u)fkdv

q :=
∑
k

∫
Rdv

mk(v − u)
|v − u|2

2
fkdv (3.15)
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These are also calculated to the �rst order of λ in [1]. Hereby λ is de�ned to the same
e�ect as our assumption with O(λ) = 1

vk
for k ∈ {1, 2}. The result is also shown in

appendix 9.2.4.

The system (3.14) will, however, not be su�cient for our needs.
This is because we want to replace the time derivatives of nk,ρk,Tk and Ek in the term

1
M(k) (∂tM

(k) + v · ∇xM
(k)) according to our procedure for the single species model shown

in 2.2.
Therefore we need the time derivative of the singular macroscopic quantities and not the
total macroscopic quantities, which are used in the second and third equation of (3.14).
This procedure is possible since we are in the compressible regime where the collision
frequencies are signi�cantly larger than the interaction coe�cients. We continue with
system (3.10).

In appendix 9.2.1 we calculate (3.10) further by performing a substitution for fk using
the equation (3.7) applied to the terms Ψ1

k and Ψ2
k. This gives us the result ∂tρk

∂t(ρkuk)
∂tEk

+∇x ·

ρkukΨ
1

k

Ψ
2

k

 =

 0
Ξ1
k

Ξ2
k

 (3.16)

with

Ψ
1

k = mk
1

ν11

〈((v − u(k))⊗ (v − u(k)))f 1
k 〉v + ρk(uk ⊗ u(k)) + ρ(u(k) ⊗ uk)− ρ(u(k) ⊗ u(k))

+ nkT
(k)Idv

Ψ
2

k =
mk

2

1

ν11

〈(v − u(k))|v − u(k)|2f 1
k 〉v +mk

1

ν11

〈(v − u(k))⊗ (v − u(k))f 1
k 〉vu(k)

+
1

2
ρk(uk − u(k))|u(k)|2 + (Ek + nkT

(k))u(k) (3.17)

This is equal to the compressible Euler equations with the addition of the exchange
terms when we ignore terms of order O( 1

ν11
). Note that we have u(k) = uk +O( 1

ν11
) and

T (k) = Tk+O( 1
ν11

) due to their de�nitions and our assumption vkj � χ for all k, j ∈ {1, 2}.
Thereby the order O(1) of system (3.16) becomes ∂tρk
∂t(ρkuk)
∂tEk

+∇x ·

 ρkuk
ρk(uk ⊗ uk) + nkTkIdv

(Ek + nkTk)uk

 =

 0
Ξ1
k

Ξ2
k

 (3.18)

As we want to calculate the right-hand side of (3.8), we will use the following equation,
which we derive in appendix 9.2.2

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

∂tnk
nk
− dv∂tT

(k)

2T (k)
+ v · ∇xnk

nk
− v · dv∇xT

(k)

2T (k)

+
mk(v − u(k))∂tu

(k)

T (k)
+
mk(v

2 − 2vu(k) + u(k)2
)∂tT

(k)

2T (k)2 + v · mk(v − u(k))∇u(k)

T (k)

+ v · mk(v
2 − 2vu(k) + u(k)2

)∇xT
(k)

2T (k)2 (3.19)
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Since we are performing a �rst order Chapman-Enskog expansion of fk and the result will
be multiplied with 1

ν11
in (3.7), it is su�cient to consider the zeroth order of (3.19). With

the results of appendix 9.2.3, we obtain

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

∂tnk
nk
− dv∂tTk

2Tk
+ v · ∇xnk

nk
− v · dv∇xTk

2Tk
+
mk(v − uk)∂tuk

Tk

+
mk(v

2 − 2vuk + uk
2)∂tTk

2Tk
2 + v · mk(v − uk)∇uk

Tk
+ v · mk(v

2 − 2vuk + uk
2)∇xTk

2Tk
2

+O(
1

ν11

) (3.20)

With the system (3.18), we can replace the time derivatives in (3.20) with the spatial
derivatives and the exchange terms. We perform the calculations in appendix 9.2.3 and
receive

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

(
mk(v − uk)⊗ (v − uk)

Tk
− mk|v − uk|2

Tkdv

)
: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk

+

(
mk|v − uk|2

Tk
2 − dv

Tk

)(
− uk
dvnk

· Ξ1
k +

Ξ2
k

dvnk

)
+O(

1

ν11

)

We have now successfully calculated f 1
k to the zeroth order of 1

ν11
by inserting the result

into (3.8).

f 1
k = − 1

αkknk + αkjnj

M (k)

M (k)
(∂tM

(k) + v · ∇xM
(k)) +O(

1

ν11

)

= − M (k)

αkknk + αkjnj

[(
mk(v − uk)⊗ (v − uk)

Tk
− mk|v − uk|2

Tkdv

)
: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk

+

(
mk|v − uk|2

Tk
2 − dv

Tk

)
(− uk
dvnk

· Ξ1
k +

Ξ2
k

dvnk
)

]
+O(

1

ν11

) (3.21)

3.3 The low-rank approximation

With the results of the previous section we can calculate fk to the order O( 1
ν11

). We insert
(3.21) into (3.7) and obtain

fk = M (k) − M (k)

νkknk + νkjnj

[(
mk(v − uk)⊗ (v − uk)

Tk
− mk|v − uk|2

Tkdv

)
: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk

+

(
mk|v − uk|2

Tk
2 − dv

Tk

)(
− uk
dvnk

· Ξ1
k +

Ξ2
k

dvnk

)
] +O((

1

ν11

)2) (3.22)
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We are now able to perform the splitting fk = M (k)gk

M (k)gk = M (k) − M (k)

νkknk + νkjnj

[(
mk(v − uk)⊗ (v − uk)

Tk
− mk|v − uk|2

Tkdv

)
: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk

+

(
mk|v − uk|2

Tk
2 − dv

Tk

)(
− uk
dvnk

· Ξ1
k +

Ξ2
k

dvnk

)
] +O((

1

ν11

)2)

We divide by M (k) and receive the function gk in the order O( 1
ν11

)

gk = 1− 1

νkknk + νkjnj

[(
mk(v − uk)⊗ (v − uk)

Tk
− mk|v − uk|2

Tkdv

)
: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk

+

(
mk|v − uk|2

Tk
2 − dv

Tk

)(
− uk
dvnk

· Ξ1
k +

Ξ2
k

dvnk

)]
+O((

1

ν11

)2) (3.23)

gk is a low-rank function in x and v even at O( 1
ν11

) as the terms in this category can be
written as a sum of products of functions that depend only on x and functions that only
depend on v. Note that Ξ1

k and Ξ2
k depend only on x.

The occurring functions which are dependent on v are 1, vi, vivj, vivjvl with 1 ≤ i, j, l ≤ dv.
Hereby vi is the i-th component of v. For dv = 2 gk has a maximal rank of 10 as the
function can be expressed as

gk(t, x, v) = 1 · hk,1(t, x) + v1 · hk,2(t, x) + v2 · hk,3(t, x) + v1v2 · hk,4(t, x) + v2
1 · hk,5(t, x)

+ v2
2 · hk,6(t, x) + v2

1v2 · hk,7(t, x) + v1v
2
2 · hk,8(t, x) + v3

1 · hk,9(t, x) + v3
2 · hk,10(t, x)

The rank of gk equals the rank of g, which was de�ned in section 2.3. We analyze the
rank of gk in more detail in the section 4.

Finally, we seek the approximation of fk as the multiplication of M (k) and the low-rank
approximated function gk. We will restrict the function gk to lie on the low-rank manifold
created by the orthonormal bases {Xk

i } and {V k
j } in x and v.

gk =
r∑

i,j=1

Xk
i (t, x)Skij(t)V

k
j (t, v) (3.24)

Using the moment equation, we can track the evolution of the gases' densities, mean
velocities, and energies. We calculate the number, density, and temperature of a gas
using the former quantities. We can derive the moment equation by multiplying (3.3)

with mk(1, v,
|v|2
2

)ᵀ and integration with respect to v. The full derivation can be seen in
appendix 9.1.

∂tnk = −∇x · 〈vfk〉v (3.25)

∂tρk = −∇x · 〈mkvfk〉v (3.26)

∂t(ρkuk) = −∇x · 〈mk(v ⊗ v)fk〉v + 2nknj
mkmjχkj
mk +mj

(uj − uk) (3.27)

∂tEk = −∇x ·
〈
mkv
|v|2

2
fk

〉
v

+
2nknjmkmjχkj

(mk +mj)2

[
uk · uj(mk −mj)− u2

kmk + u2
jmj + dv(Tj − Tk)

]
(3.28)
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In our next step, we want to track the evolution of gk, or equivalently of Xk
i , S

k
ij and V

k
j .

To gain the time derivative of gk we substitute fk = M (k)gk into (3.3)

∂t(M
(k)gk) + v · ∇x(M

(k)gk) = (νkknk + νkjnj)(M
(k) −M (k)gk)

apply the product rule to the derivatives

⇔ ∂tM
(k)gk +M (k)∂tgk + v · (∇xM

(k)gk +M (k)∇xgk) = (νkknk + νkjnj)M
(k)(1− gk)

and isolate ∂tgk

⇔ M (k)∂tgk = −∂tM (k)gk − v · (∇xM
(k)gk +M (k)∇xgk) + (νkknk + νkjnj)M

(k)(1− gk)

⇔ ∂tgk = −v · ∇xgk −
1

M (k)
(∂tM

(k)gk + v · ∇xM
(k)gk) + (νkknk + νkjnj)(1− gk) =: hk

(3.29)

We can now project gk onto the low-rank manifold using the projector-splitting-based
dynamical low-rank algorithm for each of the two gases, as already seen in 2.3.
Again we impose the gauge conditions 〈Xk

i , ∂tX
k
j 〉x = 0 and 〈V k

i , ∂tV
k
j 〉v = 0 additionally

to the orthonormality of the bases which guarantees uniquely determined Xk
i , V

k
j if the

matrix (Skij) is invertible as already seen in 2.3.
We de�ne Kk

j :=
∑r

i=1X
k
i S

k
ij, which also means gk =

∑r
j=1 K

k
j V

k
j and calculate ∂tK

k
j as

shown in (2.41)

∂tK
k
j = 〈V k

j , hk〉x (3.30)

and thereby update Kk
j . By performing an orthonormalization of Kk

j using a QR de-
composition, we generate new Xk

i and Skij. According to (2.36), we can update Skij by
solving

∂tS
k
ij = 〈Xk

i V
k
j hk〉x,v (3.31)

Finally we introduce Lki =
∑r

j=1 S
k
ijV

k
j , which implies gk =

∑r
i=1X

k
i L

k
i . We can update

Lki as shown in (2.43).

∂tL
k
i = 〈Xk

i , hk〉v (3.32)

By performing an orthonormalization on Lki we can generate new Skij and V
k
j .

3.4 The dynamical low-rank algorithm

In this chapter, we apply the dynamical low-rank algorithm to our gas mixture model.
Hereby we advance Uk to the next time step via the moment equation (3.27) and calculate
hk.
With the updated function hk we can then apply the low-rank algorithm which was shown
in the previous section and thereby update Skij, X

k
i and V k

j for all (k, j) ∈ {(1, 2), (2, 1)}.
We discretize the time but leave the space continuous in this section.
We will start by updating the moments using the moment equation. Hereby we also apply
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the de�nition (3.24) for gk.

∂tρk = −∇x ·

(∑
i,j

Xk
i S

k
ij〈mkvV

k
j M

(k)〉v

)
= I1,k (3.33)

∂t(ρkuk) = −∇x ·

(∑
i,j

Xk
i S

k
ij〈mk(v ⊗ v)V k

j M
(k)〉v

)
+ 2nknj

mkmjχkj
mk +mj

(uj − uk) = I2,k

(3.34)

∂tEk = −∇x ·

(∑
i,j

Xk
i S

k
ij〈mkv

|v|2

2
V k
j M

(k)〉v

)

+
2nknjmkmjχkj

(mk +mj)2

[
uk · uj(mk −mj)− u2

kmk + u2
jmj + dv(Tj − Tk)

]
= I3,k (3.35)

We use the calculated time derivatives to update nk, ρk, uk, Ek, Tk for k ∈ {1, 2} and
afterwards the interspecies quantities u(k) and T (k). Using these results, hk from (3.29)
can be expressed as

hk = −v · ∇xgk −Mkgk + (νkknk + νkjnj)(1− gk) (3.36)

where we use

Mk =
1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =Mk

1 + v · Mk
2 + |v|2Mk

3 + (v ⊗ v) :Mk
4 + |v|2v · Mk

5

with the terms

Mk
1 =

∂tnk
nk
− dv∂tT

(k)

2T (k)
− mku

(k)∂tu
(k)

T (k)
+
mku

(k)2
∂tT

(k)

2T (k)2

Mk
2 =
∇xnk
nk
− dv∇xT

(k)

2T (k)
+
mk∂tu

(k)

T (k)
− mku

(k)∂tT
(k)

T (k)2 − mku
(k)∇u(k)

T (k)
+
mku

(k)2∇xT
(k)

2T (k)2

Mk
3 =

mk∂tT
(k)

2T (k)2 − mku
(k)∇xT

(k)

T (k)2 (3.37)

Mk
4 =

mk∇u(k)

T (k)

Mk
5 =

mk∇xT
(k)

2T (k)2

We then can plug (3.36) into (3.30) , (3.31) and (3.32)

∂tK
k
j = 〈V k

j hk〉v
= 〈−v · V k

j ∇xgk −MkV k
j gk + (νkknk + νkjnj)V

k
j (1− gk)〉v

=
r∑

l,m=1

[
−∇xX

k
l S

k
lm〈vV k

j V
k
m〉v −Xk

l S
k
lm〈V k

j V
k
mMk〉v

− (νkknk + νkjnj)X
k
l S

k
lm︸ ︷︷ ︸

= Kk
m

〈V k
j V

k
m〉v︸ ︷︷ ︸

= δjm

] + (νkknk + νkjnj)〈V k
j 〉v

=
r∑

m=1

[−(∇xK
k
m)〈vV k

j V
k
m〉v −Kk

m〈V k
j V

k
mMk〉v] + (νkknk + νkjnj)(〈V k

j 〉v −Kk
j )

(3.38)

24



Therefore we have to calculate 〈V k
j V

k
mMk〉v

〈V k
j V

k
mMk〉v = δjmMk

1 + 〈vV k
j V

k
m〉v · Mk

2 + 〈|v|2V k
j V

k
m〉vMk

3 + 〈v ⊗ vV k
j V

k
m〉v :Mk

4

+ 〈v3V k
j V

k
m〉v · Mk

5

For (3.31) we have

∂tS
k
ij = −〈Xk

i V
k
j , hk〉xv

= 〈v ·Xk
i V

k
j ∇xgk +MkXk

i V
k
j gk − (νkknk + νkjnj)X

k
i V

k
j (1− gk)〉xv

=
r∑

l,m=1

[
Sklm〈Xk

i ∇xX
k
l 〉x · 〈vV k

j V
k
m〉v + Sklm〈Xk

l X
k
i V

k
j V

k
mMk〉x,v

+ Sklm〈(νkknk + νkjnj)X
k
i X

k
l 〉x〈V k

j V
k
m〉v ]− 〈(νkknk + νkjnj)X

k
i 〉x〈V k

j 〉v

Due to the orthonormality of {V k
j }, this is equal to

=
r∑

l,m=1

[
Sklm〈Xk

i ∇xX
k
l 〉x · 〈vV k

j V
k
m〉v + Sklm〈Xk

l X
k
i V

k
j V

k
mMk〉x,v

]
+
∑
l=1

Sklj〈(νkknk + νkjnj)X
k
i X

k
l 〉x − 〈(νkknk + νkjnj)X

k
i 〉x〈V k

j 〉v

Therefore we have to calculate 〈Xk
i X

k
l V

k
j V

k
mMk〉x,v

〈Xk
i X

k
l V

k
j V

k
mMk〉xv = 〈Xk

i X
k
l 〈V k

j V
k
mMk〉v〉x

= δjm〈Xk
i X

k
lMk

1〉x + 〈vV k
j V

k
m〉v · 〈Xk

i X
k
lMk

2〉x + 〈|v|2V k
j V

k
m〉v〈Xk

i X
k
lMk

3〉x
+ 〈v ⊗ vV k

j V
k
m〉v : 〈Xk

i X
k
lMk

4〉x + 〈v3V k
j V

k
m〉v · 〈Xk

i X
k
lMk

5〉x

At last we plug (3.36) into (3.32)

∂tL
k
i = 〈Xk

i , hk〉x
= 〈−v ·Xk

i ∇xgk −MkXk
i gk + (νkknk + νkjnj)X

k
i (1− gk)〉x

=
r∑

l,m=1

[
−〈Xk

i ∇xX
k
l 〉x · vSklmV k

m − 〈Xk
l X

k
iMk〉xSklmV k

m

− 〈(νkknk + νkjnj)X
k
i X

k
l 〉xSklmV k

m ] + 〈(νkknk + νkjnj)X
k
i 〉x

=
r∑

l,m=1

[
−〈Xk

i ∇xX
k
l 〉x · vLkl − 〈Xk

l X
k
iMk〉xLkl

− 〈(νkknk + νkjnj)X
k
i X

k
l 〉xLkl ] + 〈(νkknk + νkjnj)X

k
i 〉x

Therefore we have to calculate 〈Xk
i X

k
lMk〉x

〈Xk
i X

k
lMk〉x = 〈Xk

i X
k
lMk

1〉x + v · 〈Xk
i X

k
lMk

2〉x + |v|2〈Xk
i X

k
lMk

3〉x
+ (v ⊗ v) : 〈Xk

i X
k
lMk

4〉x + v3 · 〈Xk
i X

k
lMk

5〉x
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3.5 Time discretization

In this section, we show the dynamical low-rank integrator applied to the model of Andries,
Aoki, and Perthame based on the algorithm shown in 2.5. We consider time step tn and as-
sume ρnk , u

n
k , u

(k),n, T nk , T
(k),n, En

k , X
k,n
i , V k,n

j , Sk,nij are given. By the end of the time-step we

will have calculated the solution consisting of ρn+1
k ,un+1

k ,u(k),n+1,T n+1
k ,T (k),n+1,En+1

k ,Xk,n+1
i ,

V k,n+1
j and Sk,n+1

ij . We will again use the variables Nx and Nv where Nx is the number of
grid points in each spatial direction, and Nv is the number of grid points in each velocity
direction. These are the same for both gas species. Each step is done for k, j ∈ {1, 2}
with k 6= j. This factor of 2 will not be re�ected in the cost.

Update the macroscopic and interspecies quantities

To obtain the time derivative of the macroscopic quantities, we need to compute〈
vV n

k,jM
n
k

〉
v

=
nnk(

2π T
(k),n

mk

) dv
2

〈
vV n

k,j exp

(
−mk|v − u(k),n|2

2T (k),n

)〉
v〈

(v ⊗ v)V n
k,jM

n
k

〉
v

=
nnk(

2π T
(k),n

mk

) dv
2

〈
(v ⊗ v)V n

k,j exp

(
−mk|v − u(k),n|2

2T (k),n

)〉
v

(3.39)

〈
v
|v|2

2
V n
k,jM

n
k

〉
v

=
nnk(

2π T
(k),n

mk

) dv
2

〈
v
|v|2

2
V n
k,j exp

(
−mk|v − u(k),n|2

2T (k),n

)〉
v

The integrals in the terms can be expressed as convolutions evaluated at u(k),n and thereby
calculated accordingly. Hence our next step is to compute the convolutions

g1
k,j =

(
v 7→ vV n

j

)
∗
(
v 7→ exp

(
− mkv

2

2T (k),n

))
g2
k,j =

(
v 7→ (v ⊗ v)V n

j

)
∗
(
v 7→ exp

(
− mkv

2

2T (k),n

))
(3.40)

g3
k,j =

(
v 7→ v

|v|2

2
V n
j

)
∗
(
v 7→ exp

(
− mkv

2

2T (k),n

))
Cost:O(rNdx

x N
dv
v log(Ndv

v ))

for each of the unique values of T n(x) using an FFT. We evaluate the convolutions at
u(k),n for k ∈ {1, 2} using cubic splines in our next step. We also multiply the factors
from (3.39)〈
vV n

k,jM
n
k

〉
v

(x) =
nnk(x)(

2π T
(k)(x)

mk

) dv
2

g1
k,j

(
u(k),n(x)

)
〈

(v ⊗ v)V n
k,jM

n
k

〉
v

(x) =
nnk(x)(

2π T
(k)(x)

mk

) dv
2

g2
k,j

(
u(k),n(x)

)
(3.41)

〈
v
|v|2

2
V n
k,jM

n
k

〉
v

(x) =
nnk(x)(

2π T
(k)(x)

mk

) dv
2

g3
k,j

(
u(k),n(x)

)
Cost:O(rNdx

x )
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With the usage of the calculated integrals in (3.41) we can compute In1,k-I
n
3,k for k ∈ {1, 2}

In1,k = −∇x ·

(∑
i,j

mkX
k,n
i Sk,ni,j 〈vV

k,n
j M (k),n〉v

)

In2,k = −∇x ·

(∑
i,j

mkX
k,n
i Sk,ni,j 〈(v ⊗ v)V k,n

j M (k),n〉v

)
+ 2nnkn

n
j

mkmjχkj
mk +mj

(unj − unk)

(3.42)

In3,k = −∇x ·

(∑
i,j

mkX
k,n
i Sk,ni,j 〈v

|v|2

2
V k,n
j M (k),n〉v

)

+
2nnkn

n
jmkmjχkj

(mk +mj)2

[
unk · unj (mk −mj)−mk(u

n
k)2 +mj(u

n
j )2 + dv(T

n
j − T nk )

]
Cost:O(r2Ndx)

which enable us to compute the time derivatives of nkt , ρ
k
t , u

k
t , T

k
t and Ek

t for both gases.

∂tn
n
k =

I1,k

mk

∂tρ
n
k = I1,k

∂tu
n
k =

1

ρk
(I2,k − ∂tρnkunk) =

1

ρnk
(I2,k − I1,ku

n
k) (3.43)

∂tE
n
k = I3,k

∂tT
n
k =

2

dvnnk
(I3,k +

1

2
I1,k(u

n
k)2 − unk · I2,k)−

I1,k

ρnk
T nk Cost:O(Ndx

x )

Thereby we can also compute the derivatives of the interspecies quantities ∂tu
(k)

∂tu
(k) = ∂tuk + 2

mjχkj
mk +mj

[
nj(∂tuj − ∂tuk)
νkknk + νkjnj

+
νkk(uj − uk)(∂tnjnk − ∂tnknj)

(νkknk + νkjnj)2

]
(3.44)

Cost:O(Ndx
x )

and ∂tT
(k) for k ∈ {1, 2} which we derived in appendix 9.3.1 and 9.3.2.

∂tT
(k) = ∂tTk

+
4νkkχkj(∂tρjρk − ρj∂tρk)

(mk +mj)2(νkknk + νkjnj)2

[
− 2χkjρj(uj − uk)2

dv(νkknk + νkjnj)
+ (Tj − Tk) +

mj

dv
(uj − uk)2

]
+

8mkχkjρj(uj − uk) · (∂tuj − ∂tuk)
dv(mk +mj)2(νkknk + νkjnj)

[
− χkjρj

(νkknk + νkjnj)
+mj

]
(3.45)

+
4mkχkj

(mk +mj)2

ρj(∂tTj − ∂tTk)
νkknk + νkjnj

Cost:O(Ndx
x )

We update the macroscopic quantities with a forward Euler step for k ∈ {1, 2}

ρn+1
k = ρnk + τI1,k

un+1
k = unk + τ

1

ρnk
(I2,k − I1,ku

n
k)

En+1
k = En

k + τI3,k Cost:O(Ndx
x )
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which we can use to calculate nn+1
k , T n+1

k for k ∈ {1, 2} using the relations

nn+1
k =

ρn+1
k

mk

(3.46)

T n+1
k =

2

dvn
n+1
k

En+1
k − mk

dv
(un+1

k )2 (3.47)

Cost:O(Ndx)

Furthermore we update u(k),n+1

u(k),n+1 = un+1
k + 2

mj

mk +mj

χkj

νkkn
n+1
k + νkjn

n+1
j

nn+1
j (un+1

j − un+1
k ) Cost:O(Ndx

x )

and the interspecies temperatures for k ∈ {1, 2}

T (k),n+1 = T n+1
k − mk

dv

∣∣u(k),n+1 − un+1
k

∣∣2
+

2

dv

mkmj

(mk +mj)2

4χkj

νkkn
n+1
k + νkjn

n+1
j

nn+1
j

(
dv
2

(T n+1
j − T n+1

k ) +mj

|un+1
j − un+1

k |2

2

)

Cost:O(Ndx
x )

In our next step we compute Mk
1-Mk

5, which are de�ned in (3.37). In the calculation
we use the macroscopic quantities and interspecies quantities of time step n.
Furthermore, we use the time derivatives (3.43), (3.44) and (3.45). Cost: O(Ndx)

Update Xk,n+1
i , V k,n+1

j , and Sk,n+1
ij

We will perform the following K step, S step, and L step for k ∈ {1, 2}.

K Step With the use of a basic quadrature without weights, we calculate

ck,1jm = 〈vV k,n
j V k,n

m 〉v
ck,2jm = 〈v2V k,n

j V k,n
m 〉v

ck,3jm = 〈v ⊗ vV k,n
j V k,n

m 〉v (3.48)

ck,4jm = 〈v3V k,n
j V k,n

m 〉v
V
k

j = 〈V k,n
j 〉v Cost:O(r2Ndv

v )

This enables us to compute

ckjm = 〈V k,n
j V k,n

m M〉v = δjmMk
1 + ck,1jm · Mk

2 + ck,2jmMk
3 + ck,3jm :Mk

4 + ck,4jm · Mk
5 (3.49)

Cost:O(r2Ndx
x )

We perform a �rst order IMEX step in appendix 9.5.2 and obtain the result

Kk,n+1
j =

1

1 + τνnk
Kk,n
j −

τ

1 + τνnk

[
r∑
l=1

ck,1jp · (∇xK
k,n
l ) +

r∑
l

ckjpK
k,n
l

]
+

τνnk
1 + τνnk

V
k

j

with

Kk,n
j =

∑
i

Xk,n
i Sk,nij Cost:O(r2Ndx

x )
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We perform a QR decomposition of Kk,n+1
j and obtain Xk,n+1

i and Sk,1ij

Kk,n+1
j =

∑
i

Xk,n+1
i Sk,1ij Cost:O(r2Ndx

x )

S Step

In preparation for updating Sk,1ij to Sk,2ij we have to calculate

dk,0il = 〈Xk,n+1
i ∇xX

k,n+1
l 〉x

dk,pil = 〈Xk,n+1
i Xk,n+1

l Mp〉x, p ∈ {1, 2, 3, 4, 5} (3.50)

X
k

i = 〈(νkknnk + νkjn
n
j )Xk,n+1

i 〉x
Rk
il = 〈(νkknnk + νkjn

n
j )Xk,n+1

i Xk,n+1
l 〉x Cost:O(r2Ndx

x )

and

d̂kil;jm = δjmd
k,1
il + ck,1jm · d

k,2
il + ck,2jmd

k,3
il + ck,3jm : dk,4il + ck,4jm · d

k,5
il Cost:O(r4) (3.51)

We perform another �rst order IMEX step in appendix 9.5.3 We obtain the following
equation which we can solve to obtain Sk,2ij for all 1 ≤ i, j ≤ r

r∑
l=1

(I − τRk)ilS
k,2
lj = Sk,1ij + τ

r∑
l,m=1

[
Sk,1lm d

k,0
il · c

k,1
jm + Sk,1lm d̂

k
il;jm

]
− τXk

i V
k

j Cost:O(r4)

L Step

In order to obtain V k,n+1
i and Sk,n+1

ij we �rst perform another IMEX step in appendix
9.5.4 and obtain the equation

r∑
l

(
I + τRk

)
il
Lk,n+1
l = Lk,ni + τX

k

i

− τ
r∑
l=1

[
dk,0il · vL

k,n
l + (dk,1il + v · dk,2il + |v|2dk,3il + (v ⊗ v) : dk,4il + |v|2v · dk,5il )Lk,nl

]
which we can solve for Lk,n+1. Cost:O(r2Ndv

v )

Through the application of a QR decomposition of Lk,n+1
i we obtain V k,n+1

i and Sk,n+1
ij

Lk,n+1
i =

∑
i

Sk,n+1
ij V k,n+1

i Cost:O(r2Ndv
v )

Thereby we have successfully calculated Xk,n+1
j , Sk,n+1

ij and V k,n+1
i for all 1 ≤ i, j ≤ r and

we can start the next iteration.
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4 Analysis of the rank of g and gk

In this section, we will look at the rank of g and gk for the featured algorithms and the
dynamical low-rank algorithm presented by Einkemmer, Hu, and Ying in [11].
For the BGK equation, we calculated

g = 1− ε1

ν

[(
(v − u)⊗ (v − u)

T
− |v − u|

2

dvT
Id

)
: ∇xu+

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

]
+O(ε2) (4.1)

In the isothermal case we have T = 1 and ∇xT = 0 and can derive from (4.1)

gIso = 1− ε

ν
((v − u)⊗ (v − u)− |v − u|

2

dv
Id) : ∇xu+O(ε2) (4.2)

For the BGK-type equation by Andries, Aoki, and Perthame [1] we calculated

gk = 1− 1

νkknk + νkjnj

[(
mk(v − uk)⊗ (v − uk)

Tk
− mk|v − uk|2

Tkdv

)
: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk

+

(
mk|v − uk|2

Tk
2 − dv

Tk

)(
− uk
dvnk

· Ξ1
k +

Ξ2
k

dvnk

)]
+O((

1

ν11

)2) (4.3)

The rank of g and gk can be seen by expressing the functions as a sum of products of
functions that depend on v or x.

g =
r∑
i=1

hi(x)ηi(v)

The rank is then equal to the number of addends. We can see that all v-depending terms
in (4.2), (4.1) and (4.3) are polynomials. We assume the 2-dimensional case and are
therefore able to write (4.2), (4.1) and (4.3) as polynomials of (v1, v2) where v1 is the �rst
component of v. For gIso we have in the �rst order of ε

gIso = 1− ε

ν

[(
(v1 − u1)2 − ((v1 − u1)2 + (v2 − u2)2)

dv

)
∂u1

∂x1

+ (v1 − u1)(v2 − u2)

(
∂u1

∂x2

+
∂u2

∂x1

)
+

(
(v2 − u2)2 − |v − u|

2

dv

)
∂u2

∂x2

]
(4.4)

which we can sort by the functions depending on v.

gIso = 1− ε

ν

[(
u2

1 −
1

dv
(u2

1 + u2
2)

)
∂u1

∂x1

+ u1u2

(
∂u1

∂x2

+
∂u2

∂x1

)
+

(
u2

2 −
1

dv
(u2

1 + u2
2)

)
∂u2

∂x2

]
− v1

ε

ν

[
−2u1

(
1− 1

dv

)
∂u1

∂x1

− u2

(
∂u1

∂x2

+
∂u2

∂x1

)]
− v2

ε

ν

[
−2u2

(
1− 1

dv

)
∂u2

∂x2

− u1

(
∂u1

∂x2

+
∂u2

∂x1

)]
− v1v2

ε

ν

(
∂u1

∂x2

+
∂u2

∂x1

)
− v2

1

ε

ν

[(
1− 1

dv

)
∂u1

∂x1

− 1

dv

∂u2

∂x2

]
− v2

2

ε

ν

[(
1− 1

dv

)
∂u2

∂x2

− 1

dv

∂u1

∂x1

]
(4.5)
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We have thereby calculated gIso as a polynomial of (v1, v2) of sixth order

gIso = 1 · h1(t, x) + v1 · h2(t, x) + v2 · h3(t, x) + v1v2 · h4(t, x) + v2
1 · h5(t, x) + v2

2 · h6(t, x)

Thereby the maximal rank of gIso equals 6 in the �rst order of ε. We proceed similarly
with g and gk, but we will not calculate the terms depending on x. Rather we will look
at the occurring functions dependent on v, which are the same for g and gk. These are
1, vi, vivj, vivjvl with 1 ≤ i, j, l ≤ dv. For dv = 2 g and gk have a maximal rank of 10 as
the functions can be expressed as

g(t, x, v) = 1 · h1(t, x) + v1 · h2(t, x) + v2 · h3(t, x) + v1v2 · h4(t, x) + v2
1 · h5(t, x) + v2

2·
h6(t, x) + v2

1v2 · h7(t, x) + v1v
2
2 · h8(t, x) + v3

1 · h9(t, x) + v3
2 · h10(t, x)

and

gk(t, x, v) = 1 · hk,1(t, x) + v1 · hk,2(t, x) + v2 · hk,3(t, x) + v1v2 · hk,4(t, x) + v2
1 · hk,5(t, x)

+ v2
2 · hk,6(t, x) + v2

1v2 · hk,7(t, x) + v1v
2
2 · hk,8(t, x) + v3

1 · hk,9(t, x) + v3
2 · hk,10(t, x)

We have to remember that these are only the ranks in the compressible regime to the or-
der of O(ε) for gIso and g or to the order of O( 1

ν11
) for gk respectively. Thereby choosing

a higher rank than the ones we calculated can still improve the result.
The ranks do, however, give a good indication of which rank we could see good improve-
ments in the results before the returns in higher accuracy diminish to the increased cost
of a higher rank.
The maximum rank is also not necessarily needed as the actual rank can be lower due to
factors being zero/insigni�cant or equal to another factor.
An example of this is given in [11]. The authors compared the cross-section of ρ at y = 0
of computed solutions for ranks 1, 3, and 6. The result is displayed in Figure 1.

Figure 1: Result of the numerical experiment 7.2 shown in [11], Source: [11, p.19, Figure
6]

The authors showed that a small rank is su�cient for very small ε. The solutions are
similar, starting from rank one and visually indistinguishable for ranks greater or equal
to three. The reader is referenced to section 7.2 in [11] for the details of the simulations.
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5 Analysis of the computational cost

In this section, we will look at the order of computational cost for the featured algorithms
and the dynamical low-rank algorithm presented by Einkemmer, Hu, and Ying in [11].
We base our analysis on the computational cost of the single steps of the algorithm,
written in 2.5(Isothermal), 3.5(Mixture), and chapter 4 in [11](Isothermal).

Step Isothermal Extended Mixture
Convolutions O(rNdv

v log(Ndv
v )) O(rNdx

x N
dv
v log(Ndv

v )) O(rNdx
x N

dv
v log(Ndv

v ))
Multiply factors O(rNdx

x ) O(rNdx
x ) O(rNdx

x )
Integrals I1 − I2 O(r2Ndx

x ) - -
Integrals I1 − I3 - O(r2Ndx

x ) O(r2Ndx
x )

Derivatives - - O(Ndx
x )

Euler Step O(Ndx
x ) O(Ndx

x ) O(Ndx
x )

Update u(k) and T (k) - - O(Ndx
x )

M1-M3 O(Ndx
x ) - -

M1-M5 - O(Ndx
x ) O(Ndx

x )
K Step O(r2Ndx

x ) O(r2Ndx
x ) O(r2Ndx

x )
S Step O(r2Ndx

x + r4) O(r2Ndx
x + r4) O(r2Ndx

x + r4)
L Step O(r2Ndv

v ) O(r2Ndv
v ) O(r2Ndv

v )

Note that all steps shown in the algorithm for mixtures are performed twice, which is not
represented in the orders. The major di�erence in the computational cost of the algo-
rithms is the computation of the convolutions.
This step is performed once per unique temperature. Thereby the cost is up to Ndx

x times
the cost of the computation of the convolutions in the single-species case. Not that Ndx

x

is equal to the number of spatial cells. This cost is lower for symmetric or other problems
where cells with identical temperatures appear.
This increase is quite signi�cant as no other step is of order O(Ndx

x N
dv
v ) or higher, which

is the order of a step in a full-grid computation.

Next, we will look at the e�ciency of the temperature-extended and the mixture al-
gorithm. The computational cost of the steps of one gas in the two-species algorithm is
comparable to the temperature-extended algorithm.
Additional steps are the computation of the inter-species macroscopic quantities and
their time derivatives and the calculation of the exchange terms, which are both of order
O(Ndx

x ).
Thereby the cost of the algorithm for mixtures (two species) is approximately twice as
expensive as the algorithm for a single gas from a computational point of view.
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6 Experiments

In this section, we will show the numerical results of the established algorithms. We will
consider the 2-dimensional case dx = dv = 2 in all simulations.
We start by comparing the results of the temperature-extended single-species algorithm
2 to the single-species isothermal algorithm of Einkemmer, Hu, and Ying [11].

Furthermore, we can compare the results of the algorithm for mixtures 3 to the temperature-
extended single species algorithm 2 by using the indi�erentiability principle. The indi�er-
entiability principle states that the sum of the di�erential equations is equal to the single
species BGK equation when all masses and collision frequencies are equal (m1 = m2 and
ν11 = ν12 = ν21 = ν22).
We validate whether we obtain the same results as the temperature-extended single species
algorithm under these conditions.

At last, we observe whether the two-species algorithm 3 holds the conservation of mass
and energy, the exchange of momentum and energy, and whether the system converges to
an equilibrium.

6.1 Shear �ow

We compute the shear �ow problem in the quadratic area (x, y) ∈ [0, 1]2 with the starting
values

ρ(0, x, y) = 1

u0(0, x, y) =

{
v0 tanh(

y− 1
4

γ
) for y ≤ 1

2

v0 tanh(
3
4
−y
γ

) for y > 1
2

(6.1)

u1(0, x, y) = δ sin(2πx)

T (0, x, y) = 1

where we choose the parameters v0 = 0.1, γ = 1/30, δ = 0.005 and the Knudsen number
ε = 10−4 The numerical simulations in this section are performed with the step-size
τ = 1.25 · 10−4 and the rank 4. We simulate the duration 0 ≤ t ≤ 12.
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Figure 2: The initial values of ρ, u and T shown a high resolution.
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The �ow �eld of the modeled gas consists of three horizontal shear layers and a small
amplitude as vertical velocity [17]. The �uid moves to the left in the bottom (y ≤ 1

4
) and

the top layer (y ≥ 3
4
) and moves to the right in the horizontal layer. The starting density

and temperature are constant with a value of 1.0.
The initial values of ρ, u1, u2 and T are visualized in Figure 2 on a �ne mesh.

As step (2.54) is relatively expensive, we will use 30 grid points in each spatial direction
and 12 grid points in each velocity direction. We compare the results of the isother-
mal algorithm [11] (Isothermal) to the temperature-extended (Extended) algorithm. We
consider the numerical results for the times t = 6(s) and t = 12(s).
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Figure 3: Numerical results of the isothermal and temperature-extended algorithms at
time t = 6(s)

Figures 3 and 4 display the density, mean velocities, vorticity, temperature and energy
of the isothermal algorithm [11] and the temperature-extended algorithm at times t = 6
and t = 12 respectively.
The vorticity ω is calculated with the formula ω = ∂u1

∂x
− ∂u2

∂y
.

Visually the isothermal and extended algorithms share similar velocities, whereas their
density distributions di�er. At time t = 6(s) we have the average di�erences 2.52 · 10−4

(ρ), 1.56·10−5 (u1) and 2.15·10−5 (u2). Due to the range of values of ρ being much smaller
compared to u1 and u2, the di�erence is visually more noticeable. At time t = 12(s) we
make the same observations. The average di�erences of the macroscopic quantities in-
crease to 4.74 · 10−4 (ρ), 4.26 · 10−4 (u0) and 4.10 · 10−4 (u1). This di�erence is mainly
due to the impact of the temperature in the steps 2.54 and 2.55.
Furthermore, we notice oscillations in the temperature-extended algorithm's plots of en-
ergy, temperature, and density. The reason for the appearance of oscillations could be the
low number of grid points. As an example, we will compare the state of the temperature
after the �rst time step to the algorithm performed with Nx = 256 and Nv = 32.
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Figure 4: Numerical results of the isothermal and temperature-extended algorithms at
time t = 12(s)
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Figure 5: The temperature at time t = 0.000125 at di�erent discretizations

In Figure 5, we can see the temperature after the �rst step of the temperature-extended
dynamical low-rank algorithm at di�erent discretizations. In plot 5a the algorithm is
performed with 30 × 30 spatial grid points and 12 × 12 velocity grid points. This is
the same discretization used in Figures 3 and 4. In Figure 5b the algorithm is applied
with 256× 256 spatial grid points and 32× 32 velocity grid points. We can see that the
oscillations are not appearing when the �ner grid is applied. We will also observe where
the oscillations in Figure 5a originate.
In the �rst time step of the shear problem we have ρ = T = 1, I1 � I2, I3 and u1 � u2.
With this knowledge and the equations (2.47) and (2.56) we obtain

T1 ≈ T0 + τ(I3 − (I2)1u1) = 1 + τ(I3 − I2u1) (6.2)
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Figure 6: Origin of the oscillation

In Figure 6 we can see the quantities I3, u1(I2)1, τ(I3 − u1(I2)1) in the �rst time step
and T after the �rst time step. We can see that the term (6.2) is visually indistinguishable
from the temperature and the oscillations appear in the term.
The changes in the values of I3 and u1(I2)1 are too sharp for the chosen mesh, and
oscillations occur.
We can expect the mesh width to contribute to the oscillations in Figures 3 and 4. In
order to judge whether additional factors are involved, we would need to simulate the
problem on a �ner mesh for all time steps. This test is not performed due to the high
computational cost seen in section 5.
Next, we consider the conservation of energy in the simulation.
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Figure 7: Evolution of the total energy of the approximations of the isothermal and
temperature-extended algorithm
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In Figure 7, we can see the evolution of the total energy of the numerical results of the
isothermal and the extended algorithms. In the simulation of the extended algorithm, the
total energy is conserved. The total energy decreases in the application of the isothermal
algorithm.

Total energy Isothermal Extended
t = 0s 1.0043347575277700 1.0043347575277700
t = 6s 1.0039674985102096 1.0043347575277700
t = 12s 1.0037035232088440 1.0043347575277697

Table 1: Total energy of the approximations of the isothermal and temperature-extended
algorithm at times t ∈ {0, 6, 12}

In Table 1 the total energy of both gases is displayed for times t ∈ [0, 6, 12]. We can
see that the total energy is preserved to the order of 10−13. In the approximation by the
isothermal algorithm, the energy is preserved to the order of 10−2. As this could also be
a�ected by the low number of cells, we will also look at the evolution of the total energy
of the isothermal algorithm with the parameters used in [11] (Figure 1).
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Figure 8: Evolution of the total energy (isothermal algorithm, τ = 0.0002, Nx = 256,
Nv = 32)

In Figure 8, we can see the evolution of the total energy for the shear �ow problem simu-
lated on a �ner mesh as in [11] section 7.1. The algorithm is applied with Nx = 256 and
Nv = 32. Nx is the number of grid points in each spatial dimension. Nv is the number of
grid points in each velocity dimension.

We observe that the total energy decreases and is not preserved with the �ner grid. In
comparison to Figure 7, we can see no visual di�erence in the values of the total energies
per time.
At last, we will consider the conservation of mass. Table 2 shows the total mass of the
gases simulated by the isothermal and the extended algorithms. The total mass is calcu-
lated as the sum of the densities of the cells multiplied by the total area of one cell.
The isothermal and temperature-extended algorithm preserves the mass to the order of
10−15.
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Total mass Isothermal Extended
t = 0 1.0 1.0
t = 6 0.9999999999999999 1.0000000000000004
t = 12 0.9999999999999994 1.0000000000000007

Table 2: Total mass of the approximations of the isothermal and temperature-extended
algorithm at times t ∈ {0, 6, 12}

6.2 Indi�erentiability property

in this section, we validate whether the two-species algorithm which models the BGK-type
equation by Andries, Aoki, and Perthame ful�lls the indi�erentiability property like the
model.
The indi�erentiability principle states that the sum of the di�erential equations is equal
to the single species BGK equation when all masses and collision frequencies are equal
(m1 = m2 and ν11 = ν12 = ν21 = ν22).
For the two-species case, this results in the di�erential equations

∂tf1 = v · ∇xf1 = ν11(n1 + n2)(M (1) − f1)

∂tf2 = v · ∇xf2 = ν11(n1 + n2)(M (2) − f2) (6.3)

We consider the case f1 = f2, which gives us ρ1 = ρ2, u1 = u2 = u(1) = u(2) and
T1 = T2 = T (1) = T (2). Both equations of (6.3) are then equal to the BGK equation

∂tf = v · ∇xf = 2ν11n1(M − f)

with the Maxwellian de�ned in (2.2). This is equal to (2.1) for ω = 1 and 2ν11 = 1
ε
. We

will simulate the shear �ow problem shown in (6.1) in the quadratic area (x, y) ∈ [0, 1]2.
For the single-species gas and both gases of the mixture, we calculate the starting values
with the functions

ρ(0, x, y) = 1

u0(0, x, y) =

{
v0 tanh(

y− 1
4

γ
) for y ≤ 1

2

v0 tanh(
3
4
−y
γ

) for y > 1
2

u1(0, x, y) = δ sin(2πx)

T (0, x, y) = 1

The parameters are set to v0 = 0.1, γ = 1/30, δ = 0.005. Hereby we choose the Knudsen
number ε = 10−4. This gives us the �tting collision frequency ν11 = 1

2ε
= 5000.

We set m1 = m2 = 1 and compare the results of the single-species algorithm to one of
the gases of the two-species algorithm.
The results of both gases in the two-species simulations are identical as we choose equal
properties and starting values.
We could also compare the single-species gas to the sum of the gases in the mixture. In
that case, we need to halve the starting densities of both gases. We use 10 grid points in
each spatial direction and 12 in each velocity direction. Furthermore, we use the step size
τ = 0.001 and the interaction coe�cient χ = 1. We apply the algorithm with rank 4.
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Figure 9: Evolution of the deviation of the numerical solutions of the single-species and
the two-species algorithms

In Figure 9, we can see the total deviation of all macroscopic quantities of the solution of
the temperature-extended (E) algorithm and one gas of the two-species algorithm (M).
The deviation of the macroscopic quantities is precisely zero in each spatial cell and each
time step.
Thereby the algorithm holds the indi�erentiability property, which we wanted to ver-
ify. Furthermore, we can see that both algorithms are implemented consistently as no
deviations occur.

6.3 Variation from equilibrium

To test the low-rank algorithm for gas mixtures, we want to observe the conservation
of mass and energy, the exchange of momentum and energy, and whether the system
converges to an equilibrium. We will have to use di�erent starting values for both gases
to observe the momentum and energy exchange. We will not use constant starting values
as this results in time derivatives (as in step (3.42)) being zero. Therefore we use non-
constant starting functions which comply with the periodic boundary conditions in the
quadratic area (x, y) ∈ [0, 1]2. Note that xm = nx−1

2·nx is in the middle of the numerical grid
points (and will be used instead of 0.5 as the middle). nx is the number of grid points in
each spatial direction.

ρk(0, x, y) = k + δ(x− xm)2(y − xm)2

uk,1(0, x, y) = k − δ sin

(
2π

x

xm

)
sin

(
2π

y

xm

)
uk,2(0, x, y) = k + 256 · δ(x− xm)4(y − xm)4

Tk(0, x, y) = k + |(x− xm)(y − xm)| for k ∈ {1, 2}

Furthermore we set m1 = 1, m2 = 2, δ = 0.0005, ν11 = ν12 = ν21 = ν22 = 5000. We
compute the problem with 36 spatial and 144 velocity grid points with the step size
τ = 0.0002. Furthermore, we set the domain of the velocities to [−6, 6]2. We apply the
algorithm with the rank 3.
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6.3.1 Conservation of mass
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Figure 10: Evolution of the total mass of the approximations of the two-species algorithm

In Figure 10, we see the evolution of the mass of both gasses, simulated by the two-species
dynamical low-rank algorithm. The total mass of each gas is calculated as the sum of
the densities of all spatial cells (divided by the area 1

nx2
of a cell). The total masses are

constant to the order of 10−14, as seen in the following Table 3.

Total mass Gas 1 Gas 2
t = 0 1.0000032820001712 2.0000032820001716
t = 10 1.0000032820001696 2.0000032820001750
t = 20 1.0000032820001694 2.0000032820001765

Table 3: Total mass of the approximations of the two-species algorithm at times t ∈
{0, 6, 12}

6.3.2 Conservation of energy
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Figure 11: Evolution of the total energies of the approximations of the two-species algo-
rithm
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In Figure 11, we see the evolution of the mass of both gasses in the simulation by the
two-species dynamical low-rank algorithm. The energy of each gas is calculated as the
sum of the energy of all spatial cells (divided by the area 1

nx2
of a cell). We can see that

an exchange of energy of the gases is happening, which does not a�ect the total energy.
The total energy is constant to the order of 10−13, as seen in the following table.

Energy Gas 1 Gas 2 Total
t = 0 2.062523555403734 10.062582805859716 12.12510636126345
t = 10 4.673649433917315 7.4514569273461335 12.125106361263448
t = 20 4.673649962730812 7.451456398532636 12.125106361263448

6.3.3 Exchange of momentum and energy
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Figure 12: Evolution of u1, u2, T and E

In Figure 12 we can see the evolution of u1, u2, T and the total energies. In the plots
of u1, u2, and T , we see the minimal and maximal value of each quantity for both gases
at each time step. The macroscopic quantities' minimal values converge in the �rst three
plots. We can make the same observation for the maximal values of both gases.
The values do not increase/decrease equally. The main in�uence on this di�erence in u
originates from the di�erences of the densities with ρ1 ≈ 1 and ρ2 ≈ 2. In step (3.43) we
divide by ρ which results in a lower time derivative ∂tu2.
As we saw in the previous section, the momentum exchange happens without interfering
with energy conservation.

6.3.4 Convergence to an equilibrium

Last to observe is whether the system converges to an equilibrium. Therefore we will
monitor whether the maximal and minimal values of the macroscopic quantities are con-
verging towards each other. As this cannot be seen due to the scale for all times, we will
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look at the last 4 seconds of the results for the velocities and temperatures in Figure 13.
Also, we will observe the convergence of the densities, which we did not consider yet, as
there is no exchange happening.
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Figure 13: Evolution of u1,u2,T and ρ

We can see that the minimal and maximal values of all macroscopic quantities converge
toward each other, which means the system is converging towards an equilibrium.
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7 Summary and Conclusion

In this section, we will take a look at the presented algorithms and results, which goals
could be achieved, and which areas can be expanded on.

The goal of this master thesis was to apply the dynamical low-rank algorithm [11][13][21]
to non-reactive gas mixtures using a BGK-type model. Hereby we wanted to transfer the
dynamical low-rank algorithm for the BGK equation presented in [11] by Einkemmer, Hu,
and Ying.

This BGK-type model for mixtures also needed to include a low-rank solution for the
algorithm to be applicable.
We veri�ed that the model of Andries, Aoki, and Perthame presented in publication [1]
contains such a solution under speci�c assumptions. We assumed that the collision fre-
quencies νkj are large and signi�cantly larger than the interaction coe�cient χ for all
k, j ∈ {1, 2}. Under these assumptions, we performed a Chapman-Enskog expansion in
the �rst order of the collision frequencies in section 3.2.
With the results of the expansion we could verify that there exist low-rank functions gk
such that we can fk = M (k)gk for all k ∈ {1, 2} with the distribution function fk of gas k
and the Maxwellians M (k). This transformation is similar to the one performed in [1].
Thereby we were able to seek the application of the dynamical-low rank algorithm to the
chosen model [1] for gas mixtures.

The dynamical low-rank algorithm for the BGK equation [11] by Einkemmer, Hu and
Ying is applied to the isothermal case. The model of Andries, Aoki, and Perthame incor-
porates inter-species temperatures, which depend on the mean velocities of the gases and
are essential in transferring energy between both species. This prevented us from also
assuming the isothermal case in the application of the dynamical low-rank algorithm to
the BGK-type equation for mixtures [1].

Therefore we started by expanding the dynamical low-rank algorithm [11] to varying
temperatures in section 2. Finally, we were able to apply the dynamical low-rank algo-
rithm to the two-species case of the model of Andries, Aoki, and Perthame for gas mixture
in section 3.
Both algorithms were implemented by extending the existing code of [11], which Prof.
Einkemmer kindly shared.

In section (4), we calculated the ranks of the underlying solutions in the isothermal,
temperature-extended, and two-species dynamical low-rank algorithms.
The calculations were performed in the �rst order of the Knudsen number for the one-
species algorithms and the �rst order of the collision frequencies in the two-species case.
The rank of the approximated solution equals 6 in the isothermal one-species case. We
calculated the ranks for the temperature-extended and the two-species algorithm to equal
10.
Therefore the temperature-extended and the two-species algorithms have to be performed
with higher ranks than the isothermal algorithm for similar precision.

Additionally, we analyzed and compared the computational cost of the isothermal, ex-
tended, and two-species dynamical low-rank algorithms in section 5. We could not retain
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the e�ciency of the isothermal algorithm presented in [11] with the extended and the
two-species algorithms. We analyzed that the critical step in both algorithms is the com-
putation of the convolutions ((2.54) and (3.40)).
The computational cost is up to Ndx

x times the cost of the same step in the single-species
case with constant temperatures because the steps are performed once for every unique
temperature. Ndx

x is the number of spatial cells.
This is the only step with a signi�cant increase in computational cost.
We saw that the two-species algorithm is approximately twice as expensive as the extended
algorithm for a single gas from a computational point of view because the structure of
most steps is shared with the single species algorithm. Notable but inexpensive extra steps
are the computation of the inter-species macroscopic quantities and their time derivatives
and the calculation of the exchange terms.

In section 6, we performed three experiments and tested several attributes of the used
mathematical models.
We could see that the isothermal, temperature-extended, and two-species algorithms are
all able to conserve the total mass. The extended algorithm and the algorithm for mix-
tures are further able to preserve the total energies which we saw in both experiments.
The two-species algorithm ful�lled the indi�erentiability property of the model [1] in the
test we performed in 6.2. This also veri�ed consistency in the implementation of the
algorithms.
In experiment 6.3, we could also observe that the algorithm for mixtures exchanges mo-
mentum and energy between the species and converges to global equilibrium.
The ful�llment of all mentioned properties is essential, but no inde�nite proof of correct-
ness.
It is possible to validate the algorithm's results with additional methods that are out of
this thesis's scope. One possibility is to verify the numerical results with another numer-
ical solver.

The dynamical low-rank algorithm could be applied to the BGK-type model for gas
mixtures by Andries, Aoki, and Perthame [1] with promising results. Nevertheless, the
e�ciency of the dynamical low-rank algorithm got diminished in the calculation of the
macroscopic quantities, which leaves room for future work.
Improving the e�ciency of step (3.40) or replacing it with a more e�cient alternative
would signi�cantly enhance the algorithm's e�ciency.
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8 Appendix A

Appendix A covers fundamental integration results and all calculations performed in de-
riving the temperature-extended single-species dynamical low-rank algorithm for the BGK
equation. We calculate the moment equation, derive results for the �rst-order Chapman-
Enskog expansion, and consider the performed IMEX steps in more detail.

8.1 Fundamental integration results

In this section we calculate the moments of exp(−ax2), where a ∈ R+. All results will be
needed and referenced in the integration of Maxwellians in the following sections.
The integral

∫∞
−∞ exp(−x2)dx =

√
π is called the Gaussian integral, proof of its calculation

can be found in [27].
We begin by calculating

∫
R exp(−ax2)dx and consider the case x ∈ R1.∫ ∞

−∞
exp(−ax2)dx =

1√
a

∫ ∞
−∞

√
a exp(−(

√
ax)2)dx =

1√
a

∫ ∞
−∞

exp(−u2)du =

√
π

a
(8.1)

Hereby we can derive the calculation for x ∈ Rn∫
Rn

exp(−ax2)dx =
n∏
i=1

∫ ∞
−∞

exp(−ax2
i )dxi =

(π
a

)n
2

(8.2)

Next, we calculate all odd moments of exp(−ax2)dx. We consider
∫
Rn x

2k+1 exp(−ax2)dx
with x ∈ Rn and k ∈ N0. For the integration we can use that x2k+1 exp(−ax2) is point
symmetric (f(−x) = −f(x)).
This integral is n-dimensional. We consider the arbitrary l-th component∫

Rn

xlx
2k exp(−ax2)dx =

∫
R
· · ·
∫
R
xlx

2k exp(−ax2)dxl

n∏
i 6=l

dxi (8.3)

=

∫
R
. . .

(∫
R+

xlx
2k exp(−ax2)dxl +

∫
R−

xlx
2k exp(−ax2)dxl

) n∏
i 6=l

dxi (8.4)

=

∫
R
. . .

(∫
R+

xlx
2k exp(−ax2)dxl +

∫
R+

(−xl)x2k exp(−ax2)dxl

) n∏
i 6=l

dxi (8.5)

= 0 (8.6)

Next, we calculate the second moment of exp(−ax2). We start with x ∈ R1:∫ ∞
−∞

x2 exp(−ax2)dx =

∫ ∞
−∞
−∂a exp(−ax2)dx = −∂a

∫ ∞
−∞

exp(−ax2)dx = −∂a
√
π

a

=
1

2

√
π

a3
(8.7)

and expand this to x ∈ Rn∫
Rn

x2 exp(−ax2)dx =
n∑
i=1

∫
Rn

x2
i

(
n∏
j=1

exp(−ax2
j)

)
dx1 · ... · dxn (8.8)

=
n∑
i=1

(∫ ∞
−∞

x2
i exp(−ax2

i )dx

)
·

(
n∏
j 6=i

∫ ∞
−∞

exp(−ax2
j)dxj

)
= n

1

2

√
π

a3
·
√
π

a

n−1

=
n

2

√
π
n

√
a
n+2
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Additionally, we will calculate the fourth and the sixth moment of exp(−ax2) with x ∈ R1.
We can do this similar to the calculation of the second moment.∫ ∞
−∞

x4 exp(−ax2)dx =

∫ ∞
−∞

(∂a)
2 exp(−ax2)dx = (∂a)

2

∫ ∞
−∞

exp(−ax2)dx = (∂a)
2

√
π

a

=
3

4

√
π

a5
=

3

4

1

a2

√
π

a
(8.9)

Which also gives us∫ ∞
−∞

x6 exp(−ax2)dx =

∫ ∞
−∞
−(∂a)

3 exp(−ax2)dx = −(∂a)
3

∫ ∞
−∞

exp(−ax2)dx

= −∂a
3

4

√
π

a5
=

15

8

1

a3

√
π

a
(8.10)

8.2 Derivation of the moment equation

To obtain the time derivatives of the quantities ρ, u and T , we will use the moments of
(2.1). It is to note that this set of equations is of dimension dv + 2 as the second equation

is of dimension dv and φ(v) = (1, v, |v|
2

2
)ᵀ.

∂t〈φ(v)f〉v +∇x · 〈vφ(v)f〉v =
ν

ε
〈φ(v)(M − f)〉v

⇔ ∂t(ρ, ρu,E)ᵀ +∇x · 〈vφ(v)f〉v =
ν

ε
〈φ(v)(M − f)〉v (8.11)

We still have to show that the right-hand side of the equations (8.11) equals zero. There-
fore we have to calculate 〈φ(v)f〉v and 〈φ(v)M〉v.
By the de�nitions (2.3) we have

〈f〉v = ρ, 〈vf〉v = ρu,
1

dvρ
〈|v − u|2f〉v = T (8.12)

We will expand this by the calculation of 〈 |v|
2

2
f〉v. With the de�nition E = dv

2
ρT + 1

2
ρu2

and the de�nitions (8.12) we can calculate

dvρT = 〈|v − u|2f〉v = 〈|v|2f〉v − 2u〈vf〉v + |u|2〈f〉v
= 〈|v|2f〉v − 2ρu2 + ρu2

Thereby we have successfully calculated 〈|v|
2

2
f〉v

〈 |v|
2

2
f〉v =

dv
2
ρT +

1

2
ρu2 = E

With these de�nitions and results we can determine the moments of the Maxwellian and
calculate 〈(M − f)〉v,〈v(M − f)〉v and 〈 |v|

2

2
(M − f)〉v. We will use the notation

M(t, x, v) = ρ
(a
π

) dv
2

exp(−a|v − u|2)

where we use a(t, x) = 1
2T (t,x)

for simple presentation. We start by calculating 〈M〉v and
corresponding 〈M − f〉v.
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8.2.1 Calculation of 〈M − f〉v∫
Rdv

Mdv = ρ
(a
π

) dv
2

∫
Rdv

exp(−a|v − u|2)dv = ρ
(a
π

) dv
2

∫
Rdv−u

exp(−a|z|2)dz

= ρ
(a
π

) dv
2

dv∏
i=1

∫ ∞
−∞

exp(−az2
i )dzi = ρ

(a
π

) dv
2
(π
a

) dv
2

= ρ (8.13)

⇒ 〈(M − f)〉v = ρ− ρ = 0

Next, we calculate 〈vM〉v and the corresponding 〈v(M − f)〉v

8.2.2 Calculation of 〈v(M − f)〉v∫
Rdv

vMdv = ρ
(a
π

) dv
2

∫
Rdv

v exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2

∫
Rdv

(v − u+ u) exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2

[∫
Rdv−u

z exp(−a|z|2)dz +

∫
Rdv

u exp(−a|v − u|2)dv

]
(8.14)

= ρ
(a
π

) dv
2

[
0 + u

∫
Rdv

exp(−a|v − u|2)dv

]
(8.13)

= ρu

⇒ 〈v(M − f)〉v = ρu− ρu = 0

8.2.3 Calculation of 〈 |v|
2

2
(M − f)〉v

At last we calculate 〈 |v|
2

2
M〉v and 〈 |v|

2

2
(M − f)〉v∫

Rdv

|v|2

2
Mdv =

ρ

2

(a
π

) dv
2

∫
Rdv

v2 exp(−a|v − u|2)dv

=
ρ

2

(a
π

) dv
2

∫
Rdv

[(v − u)2 + 2vu− u2] exp(−a|v − u|2)dv

=
ρ

2

(a
π

) dv
2

[∫
Rdv

(v − u)2 exp(−a|v − u|2)dv

+ 2u

∫
Rdv

v exp(−a|v − u|2)dv − u2

∫
Rdv

exp(−a|v − u|2)dv

]
(8.15)

(8.13)+(8.14)
=

ρ

2

(a
π

) dv
2

[∫
Rdv

z2 exp(−az2)dz + 2uu
(π
a

) dv
2 − u2

(π
a

) dv
2

]
=
ρ

2

(a
π

) dv
2

[
dv
2

√
π
dv

√
a
dv+2

+ u2
(π
a

) dv
2

]
= ρ

dv
4

1

a
+

1

2
ρu2

=
dv
2
ρT +

1

2
ρu2 = E

⇒ 〈|v|
2

2
(M − f)〉v = E − E = 0

With the results (8.13), (8.14) and (8.15) we have calculated

〈φ(v)(M − f)〉v = 0
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Thereby be derived the moment equation

∂t(ρ, ρu,E)ᵀ +∇x · 〈vφ(v)f〉v = 0 (8.16)

8.3 Calculations for the Chapman-Enskog expansion

This section contains calculations that we utilize to perform the Chapman-Enskog expan-
sion in section 2.2.
We start with the calculation of the integrals 〈vφM〉v and 〈vφf1〉v. Furthermore, we cal-
culate and simplify the term 1

M
(∂tM + v · ∇xM) and show the replacement of it's time

derivatives with the compressible Euler equations. Finally, we calculate P1 and q1 which
are de�ned in (2.11) and (2.12).

8.3.1 Calculation of 〈vφM〉v

In this chapter we will calculate 〈vM〉v ,〈(v⊗ v)M〉v and 〈v |v|
2

2
M〉v which we need in the

derivation of the �uid limits of the BGK equation.

Calculation of 〈vM〉v∫
Rdv

vMdv = ρ
(a
π

) dv
2

∫
Rdv

v exp(−a|v − u|2)dv

We add −u+ u to be able to perform a substitution for z − u.

= ρ
(a
π

) dv
2

∫
Rdv

(v − u+ u) exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2

∫
Rdv

(v − u) exp(−a|v − u|2)dv

+ ρ
(a
π

) dv
2

∫
Rdv

u exp(−a|v − u|2)dv

Note that the area of integration doesn't change because Rdv − u = Rdv .

= ρ
(a
π

) dv
2

∫
Rdv

z exp(−az2)dz (8.17)

+ ρu
(a
π

) dv
2

∫
Rdv

exp(−az2)dz (8.18)

The calculation of (8.17) and (8.18) can be seen in (8.6).and (8.2)

= 0 + ρu
(a
π

) dv
2
(π
a

) dv
2

= ρu
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Calculation of 〈(v ⊗ v)M〉v The calculation of 〈(v ⊗ v)M〉v is equal to the calculation
of the integrals 〈v2

iM〉v and 〈vi · vjM〉v for 1 ≤ i, j ≤ dv.∫
Rdv

v2
iMdv = ρ

(a
π

) dv
2

∫
Rdv

v2
i exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2

∫
Rdv

[(vi − ui)2 + 2viui − u2
i ] exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2

∫
Rdv

(vi − ui)2 exp(−a|v − u|2)dv (8.19)

+ ρ
(a
π

) dv
2

∫
Rdv

2viui exp(−a|v − u|2)dv (8.20)

− ρ
(a
π

) dv
2

∫
Rdv

u2
i exp(−a|v − u|2)dv (8.21)

In order to make this calculation readable we will show the calculation of the terms (8.19)
- (8.21) one by one. We begin with the calculation of (8.19):

ρ
(a
π

) dv
2

∫
Rdv

(vi − ui)2 exp(−a|v − u|2)dv = ρ
(a
π

) dv
2

∫
Rdv−u

z2
i exp(−a|z|2)dz

= ρ
(a
π

) dv
2

(
dv∏
j 6=i

∫ ∞
−∞

exp(−az2
j )dzj

)∫ ∞
−∞

z2
i exp(−az2

i )dzi

By using (8.1) and (8.7) we can calculate the integrals and obtain

= ρ
(a
π

) dv
2
(π
a

) dv−1
2 1

2
(
π

a3
)
1
2 = ρ

(a
π

) dv
2
(π
a

) dv
2 1

2a
=

ρ

2a
= ρT (8.22)

Next, we will calculate (8.20)

ρ
(a
π

) dv
2

∫
Rdv

2viui exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2

∫
Rdv

2(vi − ui + ui)ui exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2

(∫
Rdv

2ziui exp(−az2)dz +

∫
Rdv

2u2
i exp(−a|v − u|2)dv

)
(8.23)

We use exp(−az2) =
dv∏
j=0

exp(−az2
j ) to split the �rst integral and apply (8.13) to

calculate the second integral

= ρ
(a
π

) dv
2

((
dv∏
j 6=i

∫ ∞
−∞

exp(−az2
j )dzj

)∫ ∞
−∞

2uizi exp(−az2
i )dzj + 2u2

i (
π

a
)
dv
2

)

= ρ
(a
π

) dv
2

(
dv∏
j 6=i

∫ ∞
−∞

exp(−az2
j )dzj

)[
−ui
a

exp(−az2
i )
]∞
−∞

+ 2u2
i ρ

= 0 + 2u2
i ρ = 2u2

i ρ (8.24)
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At last we will calculate (8.21) also by using (8.13)

ρ
(a
π

) dv
2

∫
Rdv

u2
i exp(−a|v − u|2)dv = ρ

(a
π

) dv
2
u2
i (
π

a
)
dv
2 = ρu2

i (8.25)

With our results (8.22) - (8.25) we have successfully calculated 〈v2
iM〉v:∫

Rdv

v2
iMdv = ρT + 2ρu2

i − ρu2
i = ρT + ρu2

i (8.26)

In order to complete the calculation of 〈(v ⊗ v)M〉v we still have to calculate 〈vivjM〉v
for i 6= j.

〈vivjM〉v = ρ
(a
π

) dv
2

∫
Rdv

vivj exp(−a|v − u|2)dv (8.27)

= ρ
(a
π

) dv
2

 dv∏
k 6=i
k 6=j

∫ ∞
−∞

exp(−a(vk − uk)2)dvk

∫ ∞
−∞

vi exp(−a(vi − ui)2)dvi

·
∫ ∞
−∞

vj exp(−a(vj − uj)2)dvj

The calculation of 〈exp(−a(vk − uk)2)〉R can be done with (8.1).

dv∏
k 6=i
k 6=j

∫ ∞
−∞

exp(−a(vk − uk)2)dvk =
dv∏
k 6=i
k 6=j

∫ ∞−uk
−∞−uk

exp(−az2
k)dzk =

dv∏
k 6=i
k 6=j

∫ ∞
−∞

exp(−az2
k)dzk

=

√
π

a

dv−2

We can calculate 〈vi exp(−a(vi − ui)
2)〉R using the same techniques which we already

applied.∫ ∞
−∞

vi exp(−a(vi − ui)2)dvi

=

∫ ∞
−∞

(vi − ui + ui) exp(−a(vi − ui)2)dvi

=

∫ ∞
−∞

(vi − ui) exp(−a(vi − ui)2)dvi +

∫ ∞
−∞

ui exp(−a(vi − ui)2)dvi

=

∫ ∞
−∞

zi exp(−az2
i )dzi +

∫ ∞
−∞

ui exp(−a(vi − ui)2)dvi

The value of the �rst integral is 0, which can be seen in (8.6). The second integral can be
calculated using the substitution zi = vi − ui and (8.1).

= 0 + ui

∫ ∞−ui
−∞−ui

exp(−az2
i )dzi = ui

∫ ∞
−∞

exp(−az2
i )dzi = ui

√
π

a

We can put these results into (8.27) to �nalize the calculation of 〈vivjM〉v

〈vi · vjM〉v = ρ
(a
π

) dv
2
(π
a

) dv−2
2
ui

√
π

a
uj

√
π

a
= ρuiuj (8.28)
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Using the results (8.26) and (8.28), we have obtained

〈vivjM〉v = ρuiuj + δi,jρT ∀i, j ∈ {1, . . . , dv}, (8.29)

which is equal to

〈(v ⊗ v)M〉v = ρ(u⊗ u) + ρTId

At last we will calculate 〈v |v|
2

2
M〉v.

Calculation of 〈v |v|
2

2
M〉v∫

Rdv

v
|v|2

2
Mdv = ρ

(a
π

) dv
2

∫
Rdv

v
|v|2

2
exp(−a|v − u|2)dv

The integral is dv-dimensional which is the dimension of v. We will show the calculation
for the l-th dimension of the integral∫

Rdv

vl
|v|2

2
Mdv = ρ

(a
π

) dv
2

∫
Rdv

vl
|v|2

2
exp(−a|v − u|2)dv

To be able to perform substitutions, we proceed by adding −u+ u

= ρ
(a
π

) dv
2 1

2

∫
Rdv

(vl − ul + ul)(v − u+ u)2 exp(−a|v − u|2)dv

= ρ
(a
π

) dv
2 1

2

∫
Rdv

((vl − ul) + ul)((v − u)2 + 2u · (v − u) + u2) exp(−a|v − u|2)dv

and splitting the terms (v − u) and u using multiplication

= ρ
(a
π

) dv
2 1

2

∫
Rdv

(vl − ul)(v − u)2 exp(−a|v − u|2)dv

+ ρ
(a
π

) dv
2 1

2

∫
Rdv

ul(v − u)2 exp(−a|v − u|2)dv

+ ρ
(a
π

) dv
2 1

2

∫
Rdv

(vl − ul)2u · (v − u) exp(−a|v − u|2)dv

+ ρ
(a
π

) dv
2 1

2

∫
Rdv

ul2u · (v − u) exp(−a|v − u|2)dv

+ ρ
(a
π

) dv
2 1

2

∫
Rdv

(vl − ul)u2 exp(−a|v − u|2)dv

+ ρ
(a
π

) dv
2 1

2

∫
Rdv

ulu
2 exp(−a|v − u|2)dv
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Following our preparation, we can perform the substitution z = v−u. Note that the area
of integration won't change as Rdv − u = Rdv .

= ρ
(a
π

) dv
2 1

2

∫
Rdv

zlz
2 exp(−az2)dz (8.30)

+ ρul

(a
π

) dv
2 1

2

∫
Rdv

z2 exp(−az2)dz (8.31)

+ ρ
(a
π

) dv
2

∫
Rdv

zlu · z exp(−az2)dz (8.32)

+ ρul

(a
π

) dv
2

∫
Rdv

z · u exp(−az2)dz (8.33)

+ ρu2
(a
π

) dv
2 1

2

∫
Rdv

zl exp(−az2)dz (8.34)

+ ρulu
2
(a
π

) dv
2 1

2

∫
Rdv

exp(−az2)dz (8.35)

The values of the integrals (8.30), (8.33) and (8.34) are zero because the functions are
point symmetric (ψ(−z) = −ψ(z)).

(−zl)(−z)2 exp(−a(−z)2) = −zlz2 exp(−az2)

(−z) exp(−a(−z)2) = −z exp(−az2)

(−zl) exp(−a(−z)2) = −zl exp(−az2)

The calculation of the integrals (8.31) and (8.35) can be seen in (8.8) and (8.2). Therefore
we only have to calculate the integral in (8.32).∫

Rdv

zlu · z exp(−az2)dz

=

∫
Rdv

zl

dv∑
i=1

uizi exp(−az2)dz

=
dv∑
i=1

ui

∫
Rdv

zlzi exp(−az2)dz

= ul

∫
Rdv

z2
l exp(−az2)dz +

dv∑
i 6=l

ui

∫
Rdv

zlzi exp(−az2)dz

The �rst term can be derived by splitting the exponential function and integrating it with
respect to z.

ul

∫
Rdv

z2
l exp(−az2)dz

= ul

dv∏
i 6=l

(

∫
R

exp(−az2
i )dzi)

∫
R
z2
l exp(−az2

l )dzl

Using the results (8.1) and (8.7) we obtain

= ul

(π
a

) dv−1
2 1

2

(π
a

) 1
2 1

a
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The second term can also be derived by splitting the exponential function and integrating
it with respect to z.

dv∑
i 6=l

ui

∫
Rdv

zlzi exp(−az2)dz

=
dv∑
i 6=l

ui

dv∏
k 6=i
k 6=l

(∫ ∞
−∞

exp(−az2
k)dzk

)∫ ∞
−∞

zi exp(−az2
i )dzi

∫ ∞
−∞

zl exp(−az2
l )dzl

The value of the second and third displayed integral are equal to zero, which can also

be seen in (8.6).

= 0

Therefore we successfully calculated (8.32):

ρ
(a
π

) dv
2

∫
Rdv

zlu · z exp(−az2)dz = ρ
(a
π

) dv
2
ul

(π
a

) dv−1
2 1

2

(π
a

) 1
2 1

a

= ρulT

We add the results of (8.31), (8.32) and (8.35) to obtain 〈vl |v|
2

2
M〉v∫

Rdv

vl
|v|2

2
Mdv = ρ

(a
π

) dv
2

∫
Rdv

vl
|v|2

2
exp(−a|v − u|2)dv

= ρul

(a
π

) dv
2 1

2

dv
2

(
π

a
)
dv
2

1

a

+ ρulu
2
(a
π

) dv
2 1

2
(
π

a
)
dv
2

+ pulT

=
dv
2
ρulT +

1

2
ρulu

2 + pulT (8.36)

Hereby we have reached our goal of calculating 〈v |v|
2

2
M〉v∫

Rdv

v
|v|2

2
Mdv =

dv
2
ρuT +

1

2
ρu3 + puT = (E + ρT )u (8.37)

8.3.2 Calculation of 〈vφf1〉v

In this section we will calculate 〈vφf1〉v with φ(v) = (1, v, |v|
2

2
)ᵀ. We need this for the

derivation of the �uid limits of the BGK equation. f1 is de�ned by the equation

f = M + εf1

⇒f1 =
1

ε
(f −M) (8.38)

Calculation of 〈vf1〉v In (8.14) we already obtained the result

〈v(M − f)〉v = 0

Therefore we have

〈vf1〉v =
1

ε
〈v(f −M)〉v = 0 (8.39)
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Calculation of 〈(v ⊗ v)f1〉v In this chapter we �rst want to show that 〈(v ⊗ v)f1〉v is
equal to −P1.

− P1 =

∫
Rdv

(v − u)⊗ (v − u)f1dv

=

∫
Rdv

v ⊗ vf1dv (8.40)

−
∫
Rdv

v ⊗ uf1dv (8.41)

−
∫
Rdv

u⊗ vf1dv (8.42)

+

∫
Rdv

u⊗ uf1dv (8.43)

We will show that (8.41) - (8.43) are equal to zero and therefore −P1 = 〈(v ⊗ v)f1〉v.∫
Rdv

v ⊗ uf1dv

=
1

ε

∫
Rdv

(v ⊗ u)(f −M)dv (8.44)

We proceed by calculating the i-th row and j-th column of the 〈(v ⊗ v)f〉v

(

∫
Rdv

(v ⊗ u)fdv)ij

=

∫
Rdv

viujfdv

= uj

∫
Rdv

vifdv = ρujui

⇒
∫
Rdv

(v ⊗ u)fdv = ρ(u⊗ u) (8.45)

In (8.23) we already calculated 〈2viuiM〉v = 2ρu2
i . We can use this to conclude that

〈viM〉v = ρui and therefore

(

∫
Rdv

(v ⊗ u)Mdv)ij

=

∫
Rdv

viujMdv

= uj

∫
Rdv

viMdv = ρujui

⇒
∫
Rdv

(v ⊗ u)Mdv = ρ(u⊗ u) (8.46)

Putting (8.45) and (8.46) into (8.44) leaves us with the result

1

ε

∫
Rdv

(v ⊗ u)(f −M)dv

=
1

ε
(ρ(u⊗ u)− ρ(u⊗ u)) = 0
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(8.42) can be calculated in the same way. At last, we have to show that (8.43) equals
zero.∫

Rdv

(u⊗ u)f1dv

= (u⊗ u)

∫
Rdv

f1dv

= (u⊗ u)
1

ε

∫
Rdv

(f −M)dv

This integral equates zero as calculated in (8.13)

= (u⊗ u)
1

ε
(ρ− ρ) = 0

In conclusion we have shown that the terms (8.41) - (8.43) are equal to zero and therefore

〈(v ⊗ v)f1〉v = 〈((v − u)⊗ (v − u))f1〉v = −P1 (8.47)

Calculation of 〈v |v|
2

2
f1〉v In this chapter, we �rst want to show that

〈v |v|
2

2
f1〉v = −P1u− q1, with

P1 := −
∫
Rdv

(v − u)⊗ (v − u)f1dv (8.48)

q1 := −1

2

∫
Rdv

(v − u)|v − u|2f1dv (8.49)

We will start the derivation with q1. This means we have to show q1 = −〈v |v|
2

2
f1〉v −P1u.

q1 =− 1

2

∫
Rdv

(v − u)|v − u|2f1dv

=− 1

2

∫
Rdv

(v − u)(|v|2 − 2vᵀu+ |u|2)f1dv

=− 1

2

∫
Rdv

v|v|2f1dv (8.50)

+

∫
Rdv

v(vᵀu)f1dv (8.51)

− 1

2

∫
Rdv

v|u|2f1dv (8.52)

+
1

2

∫
Rdv

u|v|2f1dv (8.53)

−
∫
Rdv

u(vᵀu)f1dv (8.54)

+
1

2

∫
Rdv

u|u|2f1dv (8.55)

Line (8.50) is already equal to −〈v |v|
2

2
f1〉v. Furthermore (8.51) is equal to −P1u which we

can show using (8.47).∫
Rdv

v(vᵀu)f1dv =

∫
Rdv

(v ⊗ v)uf1dv =

∫
Rdv

((v − u)⊗ (v − u))f1dv u

= −P1u
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Thereby we have to show that the lines (8.52) - (8.55) add up to zero.
In equation (8.39) we have already seen that (8.52) equals zero.

In chapter 8.2.3 we furthermore calculated 〈 |v|
2

2
(M − f)〉v = 0 which covers (8.53):

1

2

∫
Rdv

u|v|2f1dv = u
1

2

1

ε

∫
Rdv

|v|2(f −M)dv = 0 (8.56)

We can calculate (8.54) using the steps presented in 8.14 using vᵀ instead of v which
results in

−
∫
Rdv

u(vᵀu)f1dv

= −u
∫
Rdv

vᵀf1dvu

= −u1

ε

∫
Rdv

vᵀ(f −M)dv u

= −u1

ε
(ρuᵀ − ρuᵀ)u = 0

Line (8.55) also equates zero which is shown in (8.13). Therefore we have successfully
concluded

q1 =− 1

2

∫
Rdv

(v − u)|v − u|2f1dv (8.57)

=−
∫
Rdv

v
|v|2

2
f1dv − P1u (8.58)

or 〈v |v|
2

2
f1〉v = −P1u− q1.

8.3.3 Calculation of 1
M

(∂tM + v · ∇xM)

In this chapter, we will show the calculation of 1
M

(∂tM + v ·∇xM) which we will need for
the dynamical low-rank algorithm as well as the derivation of the �uid limits of the BGK
equation. The Maxwellian M is de�ned by

M(t, x, v) :=
ρ(t, x)

(2πT (t, x))
dv
2

exp

(
−|v − u(t, x)|2

2T (t, x)

)
For a simpler presentation of our calculations, we will use the functions

h1(t, x) =
ρ(t, x)

(2πT (t, x))
dv
2

and

h2(t, x, v) = −|v − u(t, x)|2

2T (t, x)

which allows us to display M in the following way

M = h1(t, x) exp(h2(t, x, v)) (8.59)
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After these preparations we can start our calculation by substituting M using (8.59)

1

M
(∂tM + v · ∇xM) =

1

h1 exp(h2)
[∂t(h1 exp(h2)) + v · ∇x(h1 exp(h2))]

We apply the product rule

=
1

h1 exp(h2)
[∂th1 exp(h2) + h1 exp(h2)∂th2 + v · (∇xh1 exp(h2) + h1 exp(h2)∇xh2)]

and simplify

=
1

h1

[∂th1 + h1∂th2 + v · (∇xh1 + h1∇xh2)]

=
1

h1

(∂th1 + v · ∇xh1) + ∂th2 + v · ∇xh2 (8.60)

We proceed by putting the derivatives

∂th1 =
∂tρ

(2πT )
dv
2

− dvπρ∂tT

(2πT )
dv
2

+1

∇xh1 =
∇xρ

(2πT )
dv
2

− dvπρ∇xT

(2πT )
dv
2

+1

∂th2 =
(v − u) · ∂tu

T
+
|v − u|2∂tT

2T 2

∇xh2 =
(v − u) · ∇xu

T
+
|v − u|2∇xT

2T 2

into (8.60) and obtain

1

M
(∂tM + v · ∇xM)

=
(2πT )

dv
2

ρ

(
∂tρ

(2πT )
dv
2

− dvπρ∂tT

(2πT )
dv
2

+1
+ v ·

[
∇xρ

(2πT )
dv
2

− dvπρ∇xT

(2πT )
dv
2

+1

])

+
(v − u) · ∂tu

T
+
|v − u|2∂tT

2T 2
+ v ·

(
(v − u) · ∇xu

T
+
|v − u|2∇xT

2T 2

)
which we can simplify further

=
∂tρ

ρ
− dv∂tT

2T
+ v · ∇xρ

ρ
− v · dv∇xT

2T
+

(v − u) · ∂tu
T

+
|v − u|2∂tT

2T 2
+ v · (v − u) · ∇xu

T
+ v · |v − u|

2∇xT

2T 2

=
1

ρ
(∂tρ+ v · ∇xρ) +

(v − u)

T
· (∂tu+ v · ∇xu) +

(
|v − u|2

2T 2
− dv

2T

)
(∂tT + v · ∇xT )

(8.61)

8.3.4 Replacing the time derivatives using the compressible Euler equations

In this chapter, we want to replace the time derivatives of

1

M
(∂tM + v · ∇xM)

=
1

ρ
(∂tρ+ v · ∇xρ) +

(v − u)

T
· (∂tu+ v · ∇xu) +

(
|v − u|2

2T 2
− dv

2T

)
(∂tT + v · ∇xT )

(8.62)
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with spatial derivatives using the compressible Euler equations (8.63). The term (8.62)
was derived in the previous chapter 8.3.3 and is a rewritten form of (8.61) where we sorted
the derivatives of ρ,u and T . ∂tρ
∂t(ρu)
∂tE

 = −

 ∇x · (ρu)
∇x · (ρ(u⊗ u) + ρTId)
∇x · ((E + ρT )u)

 (8.63)

Before we can replace the derivatives, we will �rst calculate ∂tu using the �rst two equa-
tions of (8.63). We start with the second equation and apply the product rule to the left
side.

∂t(ρu) = −∇x · (ρ(u⊗ u) + ρTId) (8.64)

⇔∂tρu+ ρ∂tu = −∇x · (ρ(u⊗ u) + ρTId) (8.65)

We rearrange the equation to isolate ∂tu

∂tu =
1

ρ
(−∇x · (ρ(u⊗ u) + ρTId)− ∂tρu) (8.66)

and replace the time derivative ∂tρ using (8.63)

=
1

ρ
[−∇x · (ρ(u⊗ u) + ρTId)− (−∇x · (ρu))u]

=
1

ρ
[−∇x · (ρ(u⊗ u) + ρTId) + (∇x · (ρu))u]

=
1

ρ
[−∇xρ · (u⊗ u)− ρ∇x · (u⊗ u)− T∇x · (ρId)− ρ∇x · (TId)

+∇xρ · (u⊗ u) + ρu(∇x · u)]

=
1

ρ
[−ρ∇x · (u⊗ u)− T∇x · (ρId)− ρ∇x · (TId) + ρu(∇x · u)]

= −∇x · (u⊗ u)− T

ρ
∇x · (ρId)−∇x · (TId) + u(∇x · u) (8.67)

Next we will calculate ∂tT using (8.63). We start with the third equation

∂tE = −∇x · ((E + ρT )u)

and use the de�nition E =
dv
2
ρT +

1

2
ρu2.

⇔∂t
(
dv
2
ρT +

1

2
ρu2

)
= −∇x · ((E + ρT )u)

Next, we apply the product rule on the right side

⇔dv
2
∂tρT +

dv
2
ρ∂tT +

1

2
∂tρu

2 + ρ∂tuu = −∇x · ((E + ρT )u)

and rearrange the formula to isolate ∂tT .

⇔∂tT = − 2

dvρ

[
∇x · ((E + ρT )u) +

(
dv
2
T +

1

2
u2

)
∂tρ+ ρ∂tuu

]
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We continue by replacing the time derivatives ∂tρ (using (8.63)) and ∂tu using the previ-
ously calculated (8.67). Furthermore, we insert the de�nition of E on the right side.

⇔∂tT = − 2

dvρ
∇x ·

((
dv
2
ρT +

1

2
ρu2 + ρT

)
u

)
+

(
T

ρ
+

1

dvρ
u2

)
∇x · (ρu)

− 2

dv
u

(
−∇x · (u⊗ u)− T

ρ
∇x · (ρId)−∇x · (TId) + u(∇x · u)

)
We have h · ∇x · (u⊗ u) = (h⊗ u) : ∇xu+ h · u(∇x · u) ∀h ∈ Rd and thereby

∂tT = − 2

dvρ

(
dv
2
∇xρT +

dv
2
ρ∇xT +

1

2
∇xρu

2 + ρu · ∇xu+∇xρT + ρ∇xT

)
u

− 2

dvρ

(
dv
2
ρT +

1

2
ρu2 + ρT

)
(∇x · u)

+

(
T

ρ
+

1

dvρ
u2

)
(∇xρu+ ρ∇x · u)

+
2(u⊗ u)

dv
: ∇xu+

2

dv
u

(
u(∇x · u) +

T

ρ
∇xρ+∇xT − u(∇x · u)

)
We apply additional simpli�cations and mark equal terms using color for clarity.

∂tT = −Tu · ∇xρ

ρ
− u · ∇xT −

2

dvρ

(
1

2
∇xρu

2 +∇xρT

)
u− 2

dv
(u · ∇xu+∇xT )u

− T (∇x · u)− 2

dvρ

(
1

2
ρu2 + ρT

)
(∇x · u)

+

(
T

ρ
+

1

dvρ
u2

)
∇xρu+

(
T

ρ
+

1

dvρ
u2

)
ρ∇x · u

+
2(u⊗ u)

dv
: ∇xu+

2

dv
u

(
T

ρ
∇xρ+∇xT

)
As all marked terms add up to zero, we obtain our �nal result

⇒∂tT = −u∇xT −
2

dv
T (∇x · u) (8.68)

We arrange the right side of the equation based on the derivatives. The �rst term will be
simple

1

ρ
(∂tρ+ v · ∇xρ)

We replace the time derivative ∂tρ by using (8.63), apply the product rule and simplify
the result.

=
1

ρ
(−∇x · (ρu) + v · ∇xρ)

=
1

ρ
(−∇xρu− ρ∇x · u+ v · ∇xρ)

=
(v − u)

ρ
· ∇xρ−∇x · u (8.69)
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In the next term, we want to replace the time derivative ∂tu using our result (8.67)

(v − u)

T
· (∂tu+ v · ∇xu)

=
(v − u)

T
·
(
−∇x · (u⊗ u)− T

ρ
∇x · (ρId)−∇x · (TId) + u(∇x · u) + v · ∇xu

)
We have h · ∇x · (u⊗ u) = (h⊗ u) : ∇xu+ h · u(∇x · u) ∀h ∈ Rd and thereby

=
(v − u)⊗ (v − u)

T
: ∇xu

+
(v − u)

T
·
(
−u(∇x · u)− T

ρ
∇x · (ρId)−∇x · (TId) + u(∇x · u)

)
=

(v − u)⊗ (v − u)

T
: ∇xu−

(v − u)

T
·
(
T

ρ
∇xρ+∇xT

)
=

(v − u)⊗ (v − u)

T
: ∇xu− (v − u) ·

(
∇xρ

ρ
+
∇xT

T

)
(8.70)

For the last part-term, we simply substitute our result (8.68)(
|v − u|2

2T 2
− dv

2T

)
(∂tT + v · ∇xT )

=

(
|v − u|2

2T 2
− dv

2T

)(
v · ∇xT − u · ∇xT −

2

dv
T (∇x · u)

)
=

(
|v − u|2

2T
− dv

2

)[
(v − u) · ∇xT

T
− 2

dv
∇x · u

]
(8.71)

Using (8.69) - (8.71) we can �nally derive

1

M
(∂tM + v · ∇xM)

=
1

ρ
(∂tρ+ v · ∇xρ) +

(v − u)

T
· (∂tu+ v · ∇xu) +

(
|v − u|2

2T 2
− dv

2T

)
(∂tT + v · ∇xT )

=
(v − u)

ρ
· ∇xρ−∇x · u+

(v − u)⊗ (v − u)

T
: ∇xu− (v − u) ·

(
∇xρ

ρ
+
∇xT

T

)
+

(
|v − u|2

2T
− dv

2

)[
(v − u) · ∇xT

T
− 2

dv
∇x · u

]
We add the colored terms

=
(v − u)⊗ (v − u)

T
: ∇xu+ (

|v − u|2

2T
− dv + 2

2
)
(v − u) · ∇xT

T

− |v − u|
2

2T

2

dv
∇x · u

and apply ∇x · u = Id : ∇xu to obtain our �nal result

= (
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id) : ∇xu+ (

|v − u|2

2T
− dv + 2

2
)
(v − u) · ∇xT

T
(8.72)
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8.3.5 Calculation of P1

In this section, we calculate the integral

P1 := −
∫
Rdv

(v − u)⊗ (v − u)f1dv

which is equivalent to calculating

(P1)i,j := −
∫
Rdv

(vi − ui)(vj − uj)f1dv for 1 ≤ i, j ≤ d

using the de�nition

f1 = −M
ν

[
(
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id) : ∇xu

+ (
|v − u|2

2T
− dv + 2

2
)
(v − u) · ∇xT

T

]
+O(ε)

We temporarily neglect the O(ε) term and split f1 into the parts

f1(1) = −M
ν

(v − u)⊗ (v − u)

T
: ∇xu (8.73)

f1(2) = +
M

ν

|v − u|2

2T

2

dv
Id : ∇xu (8.74)

f1(3) = −M
ν

|v − u|2

2T

(v − u) · ∇xT

T
(8.75)

f1(4) = +
M

ν

dv + 2

2

(v − u) · ∇xT

T
(8.76)

Calculation of 〈(vi− ui)(vj − uj)f1(1)〉v We start with the calculation of 〈(vi− ui)(vj −
uj)f1(1)〉v and neglect all factors which are not dependent on v. We substitute z = v − u
and display the operator : as a sum.∫

Rdv

(vi − ui)(vj − uj) exp

(
−|v − u|

2

2T

)
(((v − u)⊗ (v − u)) : ∇xu)dv

=

∫
Rdv

zizj exp

(
− z

2

2T

)
((z ⊗ z) : ∇xu)dz

=

∫
Rdv

zizj exp

(
− z

2

2T

)
(

d∑
k,l=1

zkzl∂xluk)dz

We place the sum sign in front of the integral

=
d∑

k,l=1

∂xluk

∫
Rdv

exp

(
− z

2

2T

)
(zizjzkzl)dz
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and consider the case i 6= j. The integrals are zero except for the conditions
(k, l) = (i, j) or (k, l) = (j, i) as 〈zk exp(− z2

2T
)〉zk = 0 for any arbitrary 1 ≤ k ≤ dv .

d∑
k,l=1

∂xluk

∫
Rdv

exp

(
− z

2

2T

)
(zizjzkzl)dz = (∂xlui + ∂xlui)

∫
Rdv

exp

(
− z

2

2T

)
(z2
i z

2
j )dz

= (∂xjui + ∂xiuj)

(∏
k 6=i,j

∫ ∞
−∞

exp

(
− z

2
k

2T

)
dzk

)∫ ∞
−∞

z2
i exp (− z

2
i

2T
)dzi

·
∫ ∞
−∞

z2
j exp

(
−
z2
j

2T

)
dzj

We obtain the solution for the case i 6= j using (8.1) and (8.7)

d∑
k,l=1

∂xluk

∫
Rdv

exp

(
− z

2

2T

)
(zizjzkzl)dz = (∂xjui + ∂xiuj)(2πT )

dv−2
2

1

4
· 2πT · 4T 2

= (∂xjui + ∂xiuj)(2πT )
dv
2 T 2 (8.77)

Next, we consider the case i = j. The integral equals zero for l 6= k, which gives us

d∑
k,l=1

∂xluk

∫
Rdv

exp

(
− z

2

2T

)
(z2
i zkzl)dz =

d∑
k=1

∂xkuk

∫
Rdv

exp

(
− z

2

2T

)
(z2
i z

2
k)dz

= ∂xiui

∫ ∞
−∞

exp

(
− z

2

2T

)
z4
i dz +

d∑
k 6=i

∂xkuk

∫
Rdv

exp

(
− z

2

2T

)
(z2
i z

2
k)dz

We already solved the second term in the �rst case i 6= j. We transform further

d∑
k,l=1

∂xluk

∫
Rdv

exp

(
− z

2

2T

)
(z2
i zkzl)dz

= ∂xiui(
∏
k 6=i

∫ ∞
−∞

exp

(
− z

2
k

2T

)
dzk)

∫ ∞
−∞

z4
i exp (− z

2
i

2T
)dzi +

d∑
k 6=i

∂xkuk(2πT )
dv
2 T 2

and solve the integrals using (8.1) and (8.9)

d∑
k,l=1

∂xluk

∫
Rdv

exp

(
− z

2

2T

)
(z2
i zkzl)dz

= 3∂xiui(2πT )
dv
2 T 2 +

d∑
k 6=i

∂xkuk(2πT )
dv
2 T 2 = (∇x · u+ 2∂xiui)(2πT )

dv
2 T 2 (8.78)

Thereby we calculated 〈(vi − ui)(vj − uj)f1(1)〉v for both cases i = j and i 6= j.
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Calculation of 〈(vi − ui)(vj − uj)f1(2)〉v We proceed by calculating of 〈(vi − ui)(vj −
uj)f1(2)〉v and again neglecting all factors which are not dependent on v, including Id : ∇xu.∫

Rdv

(vi − ui)(vj − uj) exp

(
−|v − u|

2

2T

)
|v − u|2dv

We substitute z = v − u

=

∫
Rdv

zizj exp

(
− z

2

2T

)
z2 dz

For the case i 6= j this integral is equal to zero

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

zj

∫ ∞
−∞

zi exp

(
− z

2

2T

)
z2dzi︸ ︷︷ ︸

=0

dzj . . . dzd = 0

For the case i = j we have∫
Rdv

z2
i exp

(
− z

2

2T

)
z2dz

which we transform

=
dv∑
k

∫
Rdv

z2
i z

2
k exp

(
− z

2

2T

)
dz

=

∫
Rdv

z4
i exp

(
− z

2

2T

)
dz +

∑
k 6=i

∫
Rdv

z2
i z

2
k exp

(
− z

2

2T

)
dz

=

∫
R
z4
i exp

(
− z

2
i

2T

)
dzi ·

(∏
j 6=i

∫
R

exp

(
−
z2
j

2T

)
dzj

)

+
∑
k 6=i

∫
R
z2
i exp

(
− z

2
i

2T

)
dzi

∫
R
z2
k exp

(
− z

2
k

2T

)
dzk

(∏
j 6=i,k

∫
R

exp

(
−
z2
j

2T

)
dzj

)
We apply (8.1), (8.7) and (8.9) and obtain the result

= 3(2πT )
dv
2 T 2 + (dv − 1)(2πT )

dv
2 T 2

= (dv + 2)(2πT )
dv
2 T 2 (8.79)

Calculation of 〈(vi−ui)(vj−uj)f1(3)〉v Next up we will calculate 〈(vi−ui)(vj−uj)f1(3)〉v
where we again neglect factors which are independent of v for simplicity.∫

Rdv

(vi − ui)(vj − uj) exp

(
−|v − u|

2

2T

)
|v − u|2(v − u) · ∇xTdv

We substitute z = v − u

=

∫
Rdv

zizj exp

(
− z

2

2T

)
z2z · ∇xT dz

=
d∑

k=1

∂xkT

∫
Rdv

zizjzk exp

(
− z

2

2T

)
z2 dz
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Which is zero for both cases i 6= j and i = j. Because the function is point symmetric
regarding either zi, zj or zk. We show the possible cases:

i 6= j 6= k :

∫ ∞
−∞
· · ·
∫ ∞
−∞

zk

∫ ∞
−∞

zj

∫ ∞
−∞

zi exp

(
− z

2

2T

)
z2dzi︸ ︷︷ ︸

=0

dzjdzk . . . dzd = 0

i = j 6= k :

∫ ∞
−∞
· · ·
∫ ∞
−∞

z2
i

∫ ∞
−∞

zk exp

(
− z

2

2T

)
z2dzk︸ ︷︷ ︸

=0

dzi . . . dzd = 0 (8.80)

i = j = k :

∫ ∞
−∞
· · ·
∫ ∞
−∞

z3
i exp

(
− z

2

2T

)
z2dzi︸ ︷︷ ︸

=0

. . . dzd = 0

Therefore we obtained the result∫
Rdv

(vi − ui)(vj − uj) exp

(
−|v − u|

2

2T

)
|v − u|2(v − u) · ∇xTdv = 0, ∀1 ≤ i, j ≤ dv

(8.81)

Calculation of 〈(vi−ui)(vj−uj)f1(4)〉v Next up we will calculate 〈(vi−ui)(vj−uj)f1(4)〉v
where we again neglect factors which are independent of v for simplicity.∫

Rdv

(vi − ui)(vj − uj) exp

(
−|v − u|

2

2T

)
(v − u) · ∇xTdv

We substitute z = v − u

=

∫
Rdv

zizj exp

(
− z

2

2T

)
z · ∇xT dz

and display the dot product via sum notation

=
d∑

k=1

∂xkT

∫
Rdv

zizjzk exp

(
− z

2

2T

)
dz

This is equal to zero with the same argument as in equation (8.80).∫
Rdv

(vi − ui)(vj − uj) exp

(
−|v − u|

2

2T

)
(v − u) · ∇xTdv = 0 (8.82)

Calculation of P1 With the application of our results (8.77)-(8.82) we can calculate P1.
We start with the case i 6= j

(P1)i,j = −
∫
Rdv

(vi − ui)(vj − uj)f1dv

= −
∫
Rdv

(vi − ui)(vj − uj)(f1(1) + f1(2) + f1(3) + f1(4))dv

= − ρ

νT (2πT )
dv
2

(−(∂xjui + ∂xiuj)(2πT )
dv
2 T 2 + 0 + 0 + 0)

=
ρT

ν
(∂xjui + ∂xiuj)
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and continue with the case i = j

(P1)i,j = −
∫
Rdv

(vi − ui)(vj − uj)f1dv

= −
∫
Rdv

(vi − ui)(vj − uj)(f1(1) + f1(2) + f1(3) + f1(4))dv

= − ρ

νT (2πT )
dv
2

(
−(∇x · u+ 2∂xiui)(2πT )

dv
2 T 2

+
1

dv
(dv + 2)(2πT )

dv
2 T 2Id : ∇xu+ 0 + 0

)
=
ρT

ν

(
∇x · u+ 2∂xiui − Id : ∇xu−

2

dv
Id : ∇xu

)
Because of Id : ∇xu = ∇x · u we have

=
ρT

ν

(
2∂xiui −

2

dv
∇x · u

)
This leaves us with the result (also adding the O(ε) term we temporarily neglected)

P1 =
ρT

ν

(
∇xu+ (∇xu)ᵀ − 2

dv
(∇x · u)Id

)
+O(ε) (8.83)

Which we can rewrite using ν = ρT 1−ω

P1 = T ω
(
∇xu+ (∇xu)ᵀ − 2

dv
(∇x · u)Id

)
+O(ε) (8.84)

8.3.6 Calculation of q1

In this section, we calculate the integral

q1 := −1

2

∫
Rdv

(v − u)|v − u|2f1dv (8.85)

which is equivalent to calculating the k-th entry for all k ∈ {1, . . . , dv}

(q1)k := −1

2

∫
Rdv

(vk − uk)|v − u|2f1dv (8.86)

using the de�nition

f1 = −M
ν

[(
(v − u)⊗ (v − u)

T
− |v − u|

2

2T

2

dv
Id

)
: ∇xu

+

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

]
+O(ε) (8.87)

We temporarily neglect the O(ε) term and split f1 into the parts

f1(1) = −M
ν

(v − u)⊗ (v − u)

T
: ∇xu (8.88)

f1(2) = +
M

ν

|v − u|2

2T

2

dv
Id : ∇xu (8.89)

f1(3) = −M
ν

|v − u|2

2T

(v − u) · ∇xT

T
(8.90)

f1(4) = +
M

ν

dv + 2

2

(v − u) · ∇xT

T
(8.91)
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Calculation of 〈(vk − uk)|v− u|2f1(1)〉v We start with the calculation of 〈(vk − uk)|v−
u|2f1(1)〉v and neglect all factors of f1(1) which are not dependent on v∫

Rdv

(vk − uk)|v − u|2 exp

(
−|v − u|

2

2T

)
(((v − u)⊗ (v − u)) : ∇xu)dv

We substitute z = v − u

=

∫
Rdv

zkz
2 exp

(
− z

2

2T

)
((z ⊗ z) : ∇xu)dz

and display the operator : as a sum.

=

∫
Rdv

zkz
2 exp

(
− z

2

2T

)( d∑
l,m=1

zlzm∂xmul

)
dz

We place the sum sign in front of the integral

=
d∑

l,m=1

∂xmul

∫
Rdv

exp

(
− z

2

2T

)
z2(zkzlzm)dz = 0 (8.92)

This is equal to zero because the integrated function is centrally symmetric with respect

to zk,zl or zm because exp
(
− z2

2T

)
z2 is mirror symmetric in respect to zk,zl and zm and

one of zk,zl and zm must have an odd exponent.

Calculation of 〈(vk − uk)|v − u|2f1(2)〉v We proceed by calculating of 〈(vk − uk)|v −
u|2f1(2)〉v and again neglecting all factors of f1(2) which are not dependent on v, including
Id : ∇xu.∫

Rdv

(vk − uk)|v − u|2 exp

(
−|v − u|

2

2T

)
|v − u|2dv

We substitute z = v − u

=

∫
Rdv

zkz
2 exp

(
− z

2

2T

)
z2 dz

This integral is also equal to zero.

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

zkz
4 exp

(
− z

2

2T

)
dzk︸ ︷︷ ︸

=0

. . . dzd = 0 (8.93)

Again we use that the integrated function is centrally symmetric regarding zk and that
the integration area is R.

Calculation of 〈(vk − uk)|v− u|2f1(3)〉v Next, we will calculate 〈(vk − uk)|v− u|2f1(3)〉v
where we again neglect factors of f1(3) which are independent of v for simplicity.∫

Rdv

(vk − uk)|v − u|2 exp

(
−|v − u|

2

2T

)
|v − u|2(v − u) · ∇xTdv

We substitute z = v − u

=

∫
Rdv

zkz
2 exp

(
− z

2

2T

)
z2z · ∇xT dz

=
d∑
l=1

∂xlT

∫
Rdv

zkz
2zl exp

(
− z

2

2T

)
z2 dz
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The integral is equal to zero for the case k 6= l using the same argument as in the previous
chapters. Therefore we have

= ∂xkT

∫
Rdv

z2
kz

2 exp

(
− z

2

2T

)
z2 dz

= ∂xkT
∑
l

∑
m

∫
Rdv

z2
kz

2
l z

2
m exp

(
− z

2

2T

)
dz

We have 3(d − 1) times the combination k = l 6= m or k = m 6= l, 1 or k 6= l = m, one
time the combination k = l = m and (d−1)(d−2) times the combination k 6= l 6= m 6= k.
For k 6= l 6= m 6= k we have∫

Rdv

z2
kz

2
l z

2
m exp

(
− z

2

2T

)
dz

=

( ∏
j 6=k,l,m

∫ ∞
−∞

exp

(
−
z2
j

2T

)
dzj

) ∏
j∈{k,l,m}

∫ ∞
−∞

z2
j exp

(
−
z2
j

2T

)
dzj


With the application of (8.1) and (8.7) we obtain the result

= (2πT )
dv−3

2 (
1

2
(2πT )

1
2 2T )3

= (2πT )
dv
2 T 3

For k = l 6= m we have∫
Rdv

z4
kz

2
m exp

(
− z

2

2T

)
dz

=

( ∏
j 6=k,m

∫ ∞
−∞

exp

(
−
z2
j

2T

)
dzj

)(∫ ∞
−∞

z4
k exp

(
− z

2
k

2T

)
dzk

)(∫ ∞
−∞

z2
m exp

(
− z

2
m

2T

)
dzm

)
We make us of (8.1), (8.7) and (8.9) and receive the result

= (2πT )
dv−2

2

(
3

4
(2πT )

1
2 4T 2

)(
1

2
(2πT )

1
2 2T

)
= (2πT )

dv
2 3T 3

At last we calculate the combination k = l = m we have∫
Rdv

z6
k exp

(
− z

2

2T

)
dz

=

(∏
j 6=k

∫ ∞
−∞

exp

(
−
z2
j

2T

)
dzj

)(∫ ∞
−∞

z6
k exp

(
− z

2
k

2T

)
dzk

)
We can apply (8.1) and (8.10)

= (2πT )
dv−1

2

(
15

8
(2πT )

1
2 (2T )3

)
= 15(2πT )

dv
2 T 3
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This leaves us with the �nal result∫
Rdv

(vk − uk)|v − u|2 exp

(
−|v − u|

2

2T

)
|v − u|2(v − u) · ∇xTdv

= (2πT )
dv
2 ∂xkT (1 · 15T 3 + 3(d− 1) · 3T 3 + (d2 − 3d+ 2)Ṫ 3)

= (2πT )
dv
2 T 3∂xkT (d2 + 6d+ 8) (8.94)

Calculation of 〈(vk − uk)|v− u|2f1(4)〉v Next, we will calculate 〈(vk − uk)|v− u|2f1(4)〉v
where we again neglect factors of f1(4) which are independent of v for simplicity.∫

Rdv

(vk − uk)|v − u|2 exp

(
−|v − u|

2

2T

)
(v − u) · ∇xTdv

We substitute z = v − u

=

∫
Rdv

zkz
2 exp

(
− z

2

2T

)
z · ∇xT dz

and display the dot product via sum notation

=
d∑

m=1

∂xmT

∫
Rdv

zkzmz
2 exp

(
− z

2

2T

)
dz

This is equal to zero for m 6= k. Therefore we have

= ∂xkT

∫
Rdv

z2
kz

2 exp

(
− z

2

2T

)
dz

= ∂xkT
d∑
l=1

∫
Rdv

z2
kz

2
l exp

(
− z

2

2T

)
dz

= ∂xkT
∑
l 6=k

(∏
j 6=k,l

∫ ∞
−∞

exp

(
−
z2
j

2T

)
dzj

) ∏
j∈{k,l}

∫ ∞
−∞

z2
j exp

(
−
z2
j

2T

)
dzj


= +∂xkT

(∏
j 6=k

∫ ∞
−∞

exp

(
−
z2
j

2T

)
dzj

)∫ ∞
−∞

z4
k exp

(
− z

2
k

2T

)
dzk)

With the application of (8.1), (8.7) and (8.9) we obtain the result

= (dv − 1) · ∂xkT (2πT )
dv−2

2 (
1

2
(2πT )

1
2 2T )2 + ∂xkT (2πT )

dv−1
2

3

4
(2πT )

1
2 (2T )2

= (dv + 2)(2πT )
dv
2 T 2(∂xkT ) (8.95)

8.3.7 Calculation of q1

With the application of our results (8.92) - (8.95) we can calculate q1. We start with the
k-th entry of q1

(q1)k = −1

2

∫
Rdv

(vk − uk)|v − u|2f1dv

= −1

2

∫
Rdv

(vk − uk)|v − u|2(f1(1) + f1(2) + f1(3) + f1(4))dv
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We insert our previous results and multiply them by the neglected factors that were not
relevant to the calculations of the integrals

= −1

2
(0 + 0− 1

2νT 2
ρ(2πT )

2
dv (2πT )

dv
2 T 3(∂xkT )(d2

v + 6dv + 8)

+
dv + 2

2νT
ρ(2πT )

2
dv (dv + 2)(2πT )

dv
2 T 2(∂xkT ))

and simplify

=
1

2
(

1

2ν
ρT (∂xkT )(d2 + 6d+ 8)− 1

2ν
ρT (∂xkT )(d2

v + 4dv + 4))

=
1

4ν
ρT (∂xkT )(2dv + 4)

=
1

ν

dv + 2

2
ρT (∂xkT )

we use ν = ρT 1−ω

=
dv + 2

2
T ω(∂xkT )

Therefore we have calculated (by also adding the O(ε) term we temporarily neglected)

q1 =
dv + 2

2
T ω∇xT +O(ε) (8.96)

8.4 Calculation of M
In this section, we replace the time derivatives of the term

M =
1

M
(∂tM + v · ∇xM) (8.97)

We will integrate (8.97) in the application of the low-rank algorithm with respect to v
and x. Therefore it will be practical to separate and sort the terms (8.97) as a sum of
products of functions that depend either on v or on x. Thereby, we can integrate the
single functions and reuse the results in several calculations.
Furthermore, we will replace the time derivatives of (8.97) with the terms I1,I2, and I3,
de�ned in (2.44).
In Appendix (8.3.3) we calculated

M =
1

ρ
(∂tρ+ v · ∇xρ) +

(v − u)

T
· (∂tu+ v · ∇xu) +

(
|v − u|2

2T 2
− dv

2T

)
(∂tT + v · ∇xT )

(8.98)

Because we want to factorizeM using functions depending on either x or v, we expend
the |v − u|2 terms and sort the terms based on functions depending on v.

M =
1

ρ
(∂tρ+ v · ∇xρ) +

(v − u)

T
· (∂tu+ v · ∇xu)

+

(
(v2 − 2vu+ u2)

2T 2
− dv

2T

)
(∂tT + v · ∇xT )

=

[
∂tρ

ρ
− dv∂tT

2T
− u · ∂tu

T
+
u2∂tT

2T 2

]
+ v ·

[
∇xρ

ρ
− dv∇xT

2T
+
∂tu

T
− 2

u∂tT

2T 2
− u · ∇xu

T

+
u2∇xT

2T 2

]
+ |v|2

[
∂tT

2T 2
− 2

u∇xT

2T 2

]
+ (v ⊗ v)

∇xu

T
+ |v|2v · ∇xT

2T 2
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Thereby we can expressM as the following sum of products

M =M1 + v · M2 + |v|2M3 + (v ⊗ v) :M4 + |v|2v · M5

with the termsM1 −M5, which depend only on time t and space x.

M1(t, x) =
∂tρ(t, x)

ρ(t, x)
− dv∂tT (t, x)

2T (t, x)
− u(t, x) · ∂tu(t, x)

T (t, x)
+
u2(t, x)∂tT (t, x)

2T 2(t, x)

M2(t, x) =
∇xρ(t, x)

ρ(t, x)
− dv∇xT (t, x)

2T (t, x)
+
∂tu(t, x)

T (t, x)
− u(t, x)∂tT (t, x)

T 2(t, x)

− u(t, x) · ∇xu(t, x)

T (t, x)
+
u2(t, x)∇xT (t, x)

2T 2(t, x)

M3(t, x) =
∂tT (t, x)

2T 2(t, x)
− u(t, x)∇xT (t, x)

T 2(t, x)

M4(t, x) =
∇xu(t, x)

T (t, x)

M5(t, x) =
∇xT (t, x)

2T 2(t, x)

In our next step, we replace the time derivatives ofM1-M5 with

∂tρ = I1

∂tu =
1

ρ
(I2 − ∂tρu) =

1

ρ
(I2 − I1u)

∂tT =
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T

whereby we obtain

M1 =
I1

ρ
+

(
u2

2T 2
− dv

2T

)[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T

]
− u

T
· 1

ρ
(I2 − I1u)

M2 =
∇xρ

ρ
− dv∇xT

2T
+

1

ρT
(I2 − I1u)− u

T 2

[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T

]
− u · ∇xu

T
+
u2∇xT

2T 2
(8.99)

M3 =
1

2T 2

[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T

]
− u∇xT

T 2

M4 =
∇xu

T

M5 =
∇xT

2T 2

By simplifyingM1

M1 =
I1

ρ
+

(
u2

2T 2
− dv

2T

)[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T

]
− u

ρT
· (I2 − I1u)

= I1

[
1

ρ
+

u4

2dvρT 2
− u2

2ρT
− u2

2ρT
+
dv
2ρ

+
u2

ρT

]
+ I2 ·

[
− u3

dvρT 2
+

u

ρT
− u

ρT

]
+ I3

(
u2

2T 2
− dv

2T

)
= I1

[
1

ρ
+

u4

2dvρT 2
+
dv
2ρ

]
− I2 ·

u3

dvρT 2
+ I3

(
u2

2T 2
− dv

2T

)
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we receive the �nal result

M1 = I1

[
1

ρ
+

u4

2dvρT 2
+
dv
2ρ

]
− I2 ·

u3

dvρT 2
+ I3

(
u2

2T 2
− dv

2T

)
M2 =

∇xρ

ρ
− dv∇xT

2T
+

1

ρT
(I2 − I1u)− u

T

[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T

]
− u · ∇xu

T
+
u2∇xT

2T 2
(8.100)

M3 =
1

2T 2

[
2

dvρ

(
I3 +

1

2
I1u

2 − u · I2

)
− I1

ρ
T − 2u∇xT

]
M4 =

∇xu

T

M5 =
∇xT

2T 2

8.5 IMEX Steps

8.5.1 First order IMEX Schemes

IMEX schemes can be applied to ordinary di�erential equations to compute approximate
solutions [2]. The IMEX scheme enables us to split the di�erential equation into a sti� part
which we treat implicitly, and a non-sti� part which we solve explicitly. More speci�cally,
we will implicitly treat terms that contain the factor 1

ε
because we consider problems with

small ε.

8.5.2 IMEX Step Kn
j

We have the time derivative of Kj

∂tKj =
r∑

m=1

[−(∇xKm)〈vVjVm〉v −Km〈VjVmM〉v] +
ν

ε
(〈Vj〉v −Kj) (8.101)

We implicitly treat the term ν
ε
Kj on the right side as we need to account for sti�ness due

to small ε. We perform an IMEX step

Kn+1
j = Kn

j + τ

(
r∑

m=1

[−(∇xK
n
m)〈vV n

j V
n
m〉v −Kn

m〈V n
j V

n
mM〉v] +

νn

ε
〈V n

j 〉v

)
− τ ν

n

ε
·Kn+1

j

and solve the equation for Kn+1
j

⇔ Kn+1
j

(
1 +

τνn

ε

)
= Kn

j + τ

(
r∑

m=1

[−(∇xK
n
m)〈vV n

j V
n
m〉v −Kn

m〈V n
j V

n
mM〉v] +

νn

ε
〈Vj〉v

)

⇔ Kn+1
j =

1

1 + τνn/ε
Kn
j +

τ

1 + τνn/ε

r∑
m=1

[−(∇xK
n
m)〈vVjVm〉v −Kn

m〈V n
j V

n
mM〉v]

+
τνn

ε+ τνn
〈V n

j 〉v

With the notations in (2.57) and (2.58) this becomes

Kn+1
j =

1

1 + τνn/ε
Kn
j −

τ

1 + τνn/ε

[
r∑
l=1

c1
jl · (∇xK

n
l ) +

r∑
l

ĉjlK
n
l

]
+

τνn

ε+ τνn
V j
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8.5.3 IMEX Step Snij

We have the time derivative of Snij

∂tSij =
r∑

l,m=1

[Slm〈Xi∇xXl〉x · 〈vVjVm〉v + Slm〈XlXiVjVmM〉x,v]

− 〈ν
ε
Xi〉x〈Vj〉v +

r∑
l=1

Slj〈
ν

ε
XiXl〉x

In order to adjust for sti�ness induced by small ε we will approach the term
∑r

l=1 Slj〈
ν
ε
XiXl〉x

implicitly while we treat the remaining terms explicitly. We obtain the equation

S2
ij = S1

ij + τ
r∑

l,m=1

[
S1
lm〈Xn+1

i ∇xX
n+1
l 〉x · 〈vV n

j V
n
m〉v + S1

lm〈Xn+1
l Xn+1

i V n
j V

n
mM〉x,v

]
− τ〈ν

n

ε
Xn+1
i 〉x〈V n

j 〉v + τ

r∑
l=1

S2
lj〈
νn

ε
Xn+1
i Xn+1

l 〉x

With the notations de�ned in (2.57), (2.59) and (2.60) this becomes

S2
ij = S1

ij + τ
r∑

l,m=1

[
S1
lmd

0
il · c1

jm + S1
lmd̂il;jm

]
− τ

ε
X iV j +

τ

ε

r∑
l=1

S2
ljRil

which is equal to

r∑
l=1

(I − τ

ε
R)ilS

2
lj = S1

ij + τ
r∑

l,m=1

[
S1
lmd

0
il · c1

jm + S1
lmd̂il;jm

]
− τ

ε
X iV j

8.5.4 IMEX Step Lni

We have the time derivative of Lni

∂tLi =
r∑
l=1

[−〈Xi∇xXl〉x · vLl − 〈XlXiM〉xLl − 〈
ν

ε
XiXl〉xLl ] + 〈ν

ε
Xi〉x

In order to adjust for sti�ness induced by small ε in the term 〈ν
ε
XiXl〉xLl we will treat

this term implicitly. We treat the remaining terms explicitly. The �rst order IMEX step
leaves us thereby with the equation

Ln+1
i = Lni − τ

r∑
l=1

[
〈Xn+1

i ∇xX
n+1
l 〉x · vLnl + 〈Xn+1

i Xn+1
l M〉xLnl

]
− τ

ε

r∑
l=1

〈νnXn+1
i Xn+1

l 〉xLn+1
l +

τ

ε
〈νnXn+1

i 〉x

With the notations de�ned in (2.59), this becomes

Ln+1
i = Lni − τ

r∑
l=1

[
d0
il · vLnl + (d1

il + v · d2
il + |v|2d3

il + (v ⊗ v) : d4
il + |v|2v · d5

il)L
n
l

]
− τ

ε

r∑
l=1

RilL
n+1
l +

τ

ε
X i
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which is equal to the equation

r∑
l

(
I − τ

ε
R
)
il
Ln+1
l = Lni +

τ

ε
X i

− τ
r∑
l=1

[
d0
il · vLnl + (d1

il + v · d2
il + |v|2d3

il + (v ⊗ v) : d4
il + |v|2v · d5

il)L
n
l

]

9 Appendix B

Appendix B covers calculations we use in deriving the two-species dynamical low-rank
algorithm and the Chapman-Enskog expansion for the BGK-type model for mixtures [1].
First, we calculate the moment equation and derive results for the �rst-order Chapman-
Enskog expansion. Furthermore, we calculate the derivatives of the interspecies quantities
and consider the performed IMEX steps in more detail.

9.1 Derivation of the moment equation (mixtures)

In order to obtain the time derivatives of the quantities nk, uk, Tk and Ek for k ∈ {1, 2},
we will calculate the moments of (3.3) multiplied by weight mk. It is to note that this
set of equations is of dimension dv + 2 as the second equation is of dimension dv. With

φ(v) = (1, v, |v|
2

2
)ᵀ and the de�nitions in(3.1) we have

∂t〈mkφ(v)fk〉v +∇x · 〈mkvφ(v)fk〉v = (νkknk + νkjnj)〈mkφ(v)(M (k) − fk)〉v
⇔ ∂t(ρk, ρkuk, Ek)

ᵀ +∇x · 〈vφ(v)fk〉v = (νkknk + νkjnj)〈mkφ(v)(M (k) − fk)〉v (9.1)

Thereby we want to calculate the integrals 〈(M (k) − fk)〉v,〈v(M (k) − fk)〉v and
〈v2(M (k) − fk)〉v. But by de�nition, we already know

〈mkfk〉v = ρk, 〈mkvfk〉v = ρkuk, 〈mk
|v|2

2
fk〉v = Ek

which means we only have to calculate 〈M (k)〉v, 〈vM (k)〉v and 〈mk
|v|2
2
M (k)〉v.

Hereby we use the notation M (k)(t, x, v) = nk

(
a(k)

π

) dv
2

exp(−a(k)|v − u(k)|2)

with a(k)(t, x) = mk

2T (k)(t,x)
for simple presentation.

9.1.1 Calculation of 〈M (k)〉v

〈mkM
(k)〉v =

∫ ∞
−∞

mkM
(k)dv = mknk

(
a(k)

π

) dv
2
∫
Rdv

exp(−a(k)|v − u(k)|2)dv

We perform the substitution z = v − u(k)

〈mkM
(k)〉v = ρk

(
a(k)

π

) dv
2
∫
Rdv−u(k)

exp(−a(k)|z|2)dz = ρk

(
a(k)

π

) dv
2
∫
Rdv

exp(−a(k)|z|2)dz
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and apply the result of (8.2)

〈mkM
(k)〉v = ρk

(
a(k)

π

) dv
2 ( π

a(k)

) dv
2

= ρk

Thereby we obtained the result

〈mk(M
(k) − fk)〉v = ρk − ρk = 0 (9.2)

9.1.2 Calculation of 〈vM (k)〉v

〈mkvM
(k)〉v =

∫
Rdv

mkvM
(k)dv = mknk

(
a(k)

π

) dv
2
∫
Rdv

v exp(−a(k)|v − u(k)|2)dv

We add and subtract u(k)

〈mkvM
(k)〉v = ρk

(
a(k)

π

) dv
2
∫
Rdv

(v − u(k) + u(k)) exp(−a(k)|v − u(k)|2)dv

and perform the substitution z = v − u(k) after splitting the integral

〈mkvM
(k)〉v = ρk

(
a(k)

π

) dv
2

[∫
Rdv−u(k)

z exp(−a(k)|z|2)dz +

∫
Rdv

u(k) exp(−a(k)|v − u(k)|2)dv

]

The �rst integral is equal to zero as shown in (8.6) and the second integral was calculated
in the prior section or (8.2)

〈mkvM
(k)〉v = ρk

(
a(k)

π

) dv
2

[
0 + u(k)

∫
Rdv

exp(−a(k)|v − u(k)|2)dv

]
= ρku

(k)

and with the de�nition of u(k) in (3.5) we obtain the result

⇒ 〈mkv(M (k) − fk)〉v = mknk(u
(k) − uk) = 2nk

mkmj

mk +mj

χkj
νkknk + νkjnj

nj(uj − uk)

9.1.3 Calculation of 〈 |v|
2

2
M (k)〉v

〈mk
|v|2

2
M (k)〉v =

∫
Rdv

mk
|v|2

2
M (k)dv = mk

nk
2

(
a(k)

π

) dv
2
∫
Rdv

v2 exp(−a(k)|v − u(k)|2)dv

We prepare another substitution by adding and subtracting 2vu(k) − u(k)2

〈mk
|v|2

2
M (k)〉v =

mknk
2

(
a(k)

π

) dv
2
∫
Rdv

[(v − u(k))2 + 2vu(k) − u(k)2
] exp(−a(k)|v − u(k)|2)dv

and splitting the integral

〈mk
|v|2

2
M (k)〉v =

mknk
2

(
a(k)

π

) dv
2

[∫
Rdv

(v − u(k))2 exp(−a(k)|v − u(k)|2)dv
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+ 2u(k)

∫
Rdv

v exp(−a(k)|v − u(k)|2)dv − u(k)2
∫
Rdv

exp(−a(k)|v − u(k)|2)dv

]
We perform the substitution and apply (8.2) and (8.6) to the remaining integrals

〈mk
|v|2

2
M (k)〉v =

mknk
2

(
a(k)

π

) dv
2

[∫
Rdv

z2 exp(−a(k)z2)dz + 2u(k)u(k)
( π

a(k)

) dv
2

−u(k)2
( π

a(k)

) dv
2

]
thereby we can also apply (8.8)

〈mk
|v|2

2
M (k)〉v =

mknk
2

(
a(k)

π

) dv
2

[
dv
2

√
π
dv

√
a(k)

dv+2
+ u(k)2

( π

a(k)

) dv
2

]
= mknk

dv
4

1

a(k)
+
mknk

2
u(k)2

and we obtain the result

〈mk
|v|2

2
M (k)〉v = mk

dv
2mk

nkT
(k) +

1

2
mknku

(k)2
=
dv
2
nkT

(k) +
1

2
ρku

(k)2

with the de�nition

〈mk
|v|2

2
fk〉v = Ek =

dv
2
nkTk +

1

2
ρku

2
k

we can proceed by calculating

〈mk
|v|2

2
(M (k) − fk)〉v =

dv
2
nk(T

(k) − Tk) +
1

2
ρk(u

(k)2 − u2
k)

We insert the de�nition for T (k)

〈mk
|v|2

2
(M (k) − fk)〉v =

dv
2
nk

[
Tk −

mk

dv
|u(k) − uk|2 +

2

dv

mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

·nj
(
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

)
− Tk

]
+

1

2
ρk(u

(k)2 − u2
k)

and simplify

〈mk
|v|2

2
(M (k) − fk)〉v = −ρk

2
|u(k) − uk|2 +

ρk
2

(u(k)2 − u2
k)

+ nk
mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

nj

(
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

)
= −ρku2

k + ρku
(k) · uk + nk

mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

nj

(
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

)
= ρkuk · (u(k) − uk) + nk

mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

nj

(
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

)
With the usage of the de�nition (3.5) with obtain

〈mk
|v|2

2
(M (k) − fk)〉v = nkuk ·

(
2
mkmj

mk +mj

χkj
νkknk + νkjnj

nj(uj − uk)
)

+ nk
mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

nj

(
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

)
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Which we can combine to

〈mk
|v|2

2
(M (k) − fk)〉v

=
2nknjmkmjχkj

(νkknk + νkjnj)2(mk +mj)

[
(mk +mj)uk · (uj − uk) +mj(u

2
j − 2ujuk + u2

k)

+dv(Tj − Tk)]

=
2nknjmkmjχkj

(νkknk + νkjnj)(mk +mj)2

[
uk · uj(mk −mj)− u2

kmk + u2
jmj + dv(Tj − Tk)

]

9.1.4 Derivation of the moment equation

We insert the results of the previous sections into (9.1) and obtain

∂tρk +∇x · 〈mkvfk〉v = 0

∂t(ρkuk) +∇x · 〈mk(v ⊗ v)fk〉v = (νkknk + νkjnj)2nk
mkmj

mk +mj

χkj
νkknk + νkjnj

nj(uj − uk)

∂tEk +∇x · 〈mkv
|v|2

2
fk〉v

= (νkknk + νkjnj)
2nknjmkmjχkj

(νkknk + νkjnj)(mk +mj)2

[
uk · uj(mk −mj)− u2

kmk + u2
jmj

+dv(Tj − Tk)]

which we can simplify to our �nal result

∂tρk +∇x · 〈mkvfk〉v = 0

∂t(ρkuk) +∇x · 〈mk(v ⊗ v)fk〉v = 2nknj
mkmjχkj
mk +mj

(uj − uk)

∂tEk +∇x · 〈mkv
|v|2

2
fk〉v (9.3)

=
2nknjmkmjχkj

(mk +mj)2

[
uk · uj(mk −mj)− u2

kmk + u2
jmj + dv(Tj − Tk)

]
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9.2 Calculations for the Chapman-Enskog expansion (mixtures)

This appendix contains calculations and derivations, which we utilize in the Chapman-
Enskog expansion of the BGK-type model for mixtures [1].
We calculate and simplify the integral 〈vφfk〉v and the term 1

M(k) (∂tM
(k) + v · ∇xM

(k)).

Furthermore we replace the time derivatives of 1
M(k) (∂tM

(k) + v · ∇xM
(k)) with the com-

pressible Euler equations and additional exchange terms. Next, we show the derivation
of the Navier-Stokes equations to the same result as in [1]. This is to verify our prior
calculations.

9.2.1 Calculation of 〈vφfk〉v

In this section we will calculate 〈vφfk〉v with φ(v) = (1, v, |v|
2

2
)ᵀ. We need this to derive

the �uid limits of the model of Andries, Aoki, and Perthame.

Calculation of 〈vfk〉v This result is already given by de�nition (3.1).

〈vfk〉v = nkuk

Calculation of 〈(v⊗ v)fk〉v In this chapter we want to transform 〈(v⊗ v)fk〉v utilizing
〈((v−u(k))⊗(v−u(k)))fk〉v which will be needed for following calculations in the derivation
of the �uid limit. We have

〈(v ⊗ v)fk〉v
= 〈((v − u(k))⊗ (v − u(k)))fk〉v (9.4)

+ 〈(v ⊗ u(k))fk〉v (9.5)

+ 〈(u(k) ⊗ v)fk〉v (9.6)

− 〈(u(k) ⊗ u(k))fk〉v (9.7)

We approach the integration of the matrix (9.5) by calculating the i-th row and j-th
column

(

∫
Rdv

(v ⊗ u(k))fkdv)ij

=

∫
Rdv

viu
(k)
j fkdv

= u
(k)
j

∫
Rdv

vifkdv = u
(k)
j nkui

⇒
∫
Rdv

(v ⊗ u(k))fkdv = nk(uk ⊗ u(k)) (9.8)

(9.6) can be calculated accordingly with the result∫
Rdv

(u(k) ⊗ v)fkdv = nk(u
(k) ⊗ uk) (9.9)

At last we will consider (9.7)∫
Rdv

(u(k) ⊗ u(k))fkdv = (u(k) ⊗ u(k))

∫
Rdv

fkdv = nk(u
(k) ⊗ u(k)) (9.10)
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Putting these results in the original equation (9.6) gives us

〈(v ⊗ v)fk〉v
= 〈((v − u(k))⊗ (v − u(k)))fk〉v
+ nk(uk ⊗ u(k)) + nk(u

(k) ⊗ uk)− nk(u(k) ⊗ u(k))

In a second step we will perform the substitution fk = M (k) + 1
ν11
f 1
k

〈(v ⊗ v)fk〉v

= 〈((v − u(k))⊗ (v − u(k)))(M (k) +
1

ν11

f 1
k )〉v

+ nk(uk ⊗ u(k)) + nk(u
(k) ⊗ uk)− nk(u(k) ⊗ u(k))

which means we have to calculate 〈((v − u(k))⊗ (v − u(k)))M (k)〉v∫
Rdv

(v − u(k))⊗ (v − u(k))M (k)dv

= nk

(
a(k)

π

) dv
2
∫
Rdv

(v − u(k))⊗ (v − u(k)) exp(−a(k)|v − u(k)|2)dv

= nk

(
a(k)

π

) dv
2
∫
Rdv

z ⊗ z exp(−a(k)z2)dz

We consider the i-th row and j-th column for i 6= j

nk

(
a(k)

π

) dv
2
∫
Rdv

zizj exp(−a(k)z2)dz = 0

which is equal to zero because the integrated function is centrally symmetric with respect
to zi and zj, and our area of integration is Rdv . Left is the case i = j

nk

(
a(k)

π

) dv
2
∫
Rdv

z2
i exp(−a(k)z2)dz =

∏
k 6=i

∫
R

exp(−a(k)z2
k)dzk

∫
R
z2
i exp(−a(k)z2

i )dzi

We can apply (8.1) and (8.7)

= nk

(
a(k)

π

) dv
2

(
π

a(k)
)
dv−1

2
1

2
(
π

a(k)
)
1
2

1

a(k)
=

1

mk

nkT
(k) (9.11)

Thereby we calculated

〈(v ⊗ v)fk〉v

=
1

ν11

〈((v − u(k))⊗ (v − u(k)))f 1
k 〉v

+ nk(uk · u(k)ᵀ + u(k) · uᵀk − u
(k) · u(k)ᵀ)

+
1

mk

nkT
(k)Idv
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Calculation of 〈v |v|
2

2
f 1
k 〉v In this chapter we want to transform 〈v |v|

2

2
fk〉v utilizing

〈(v − u(k))|v − u(k)|2fk〉v which will be needed for following calculations in the derivation
of the �uid limit. We have∫

Rdv

(v − u(k))|v − u(k)|2fkdv

=

∫
Rdv

(v − u(k))(|v|2 − 2vᵀu(k) + |u(k)|2)fkdv

=

∫
Rdv

v|v|2fkdv (9.12)

− 2

∫
Rdv

v(vᵀu(k))fkdv (9.13)

+

∫
Rdv

v|u(k)|2fkdv (9.14)

−
∫
Rdv

u(k)|v|2fkdv (9.15)

+ 2

∫
Rdv

u(k)(vᵀu(k))fkdv (9.16)

−
∫
Rdv

u(k)|u(k)|2fkdv (9.17)

Line (9.12) is already equal to −〈v |v|
2

2
fk〉v. Furthermore, (9.13) is calculated in the pre-

vious section

− 2

∫
Rdv

v(vᵀu(k))fkdv = −2

∫
Rdv

(v ⊗ v)u(k)fkdv

= −2

∫
Rdv

((v − u(k))⊗ (v − u(k)))fkdv u
(k) − 2nk

[
(uk ⊗ u(k)) + (u(k) ⊗ uk)

− (u(k) ⊗ u(k))
]
u(k) (9.18)

We can calculate (9.14) - (9.17) using the de�nitions (3.1):∫
Rdv

v|u(k)|2fkdv = |u(k)|2
∫
Rdv

vfkdv = nkuk|u(k)|2

−
∫
Rdv

u(k)|v|2fkdv = −u(k)

∫
Rdv

|v|2fkdv = −2u(k)

mk

Ek

2

∫
Rdv

u(k)(vᵀu(k))fkdv = 2u(k)

∫
Rdv

vᵀfkdvu
(k) = 2u(k)nku

ᵀ
ku

(k)

−
∫
Rdv

u(k)|u(k)|2fkdv = −u(k)|u(k)|2
∫
Rdv

fkdv = −nku(k)|u(k)|2

Putting our results back in our original equation gives us∫
Rdv

(v − u(k))|v − u(k)|2fkdv =

∫
Rdv

v|v|2fkdv

− 2

∫
Rdv

((v − u(k))⊗ (v − u(k)))fkdv u
(k) − 2nk[uk · (u(k))ᵀ + u(k) · uᵀk − u

(k) · (u(k))ᵀ]u(k)

+ nkuk|u(k)|2 − 2u(k)

mk

Ek + 2nku
(k)uᵀku

(k) − nku(k)|u(k)|2

= 〈v|v|2fk〉v − 2〈(v − u(k))⊗ (v − u(k))fk〉vu(k) − nkuk|u(k)|2 + nku
(k)|u(k)|2 − 2u(k)

mk

Ek
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which is equivalent to

〈v|v|2fk〉v = 〈(v − u(k))|v − u(k)|2fk〉v + 2〈(v − u(k))⊗ (v − u(k))fk〉vu(k)

− nk(u
(k) − uk)|u(k)|2 +

2u(k)

mk

Ek

In a second step we will perform the substitution fk = M (k) + 1
ν11
f 1
k

〈v|v|2fk〉v = 〈(v − u(k))|v − u(k)|2(M (k) +
1

ν11

f 1
k )〉v

+ 2〈(v − u(k))⊗ (v − u(k))(M (k) +
1

ν11

f 1
k )〉vu(k) + nkuk|u(k)|2 − nku(k)|u(k)|2 +

2u(k)

mk

Ek

In the previous chapter we already calculated 〈((v − u(k)) ⊗ (v − u(k)))M (k)〉v. We will
continue with the calculation of 〈(v − u(k))|v − u(k)|2M (k)〉v∫

Rdv

(v − u(k))|v − u(k)|2M (k)dv

= nk

(
a(k)

π

) dv
2
∫
Rdv

(v − u(k))|v − u(k)|2 exp(−a(k)|v − u(k)|2)dv

= nk

(
a(k)

π

) dv
2
∫
Rdv

z|z|2 exp(−a(k)z2)dz = 0

This is equal to the zero vector of dv-th dimension due to the integrated function being
centrally symmetric in each dimension. Thereby we obtained

〈v|v|2fk〉v =
1

ν11

〈(v − u(k))|v − u(k)|2f 1
k 〉v + 2

1

ν11

〈(v − u(k))⊗ (v − u(k))f 1
k 〉vu(k)

+ nkuk|u(k)|2 − nku(k)|u(k)|2 +
2u(k)

mk

Ek +
2

mk

nkT
(k)u(k)

or

〈mkv
|v|2

2
fk〉v =

1

ν11

1

2
〈mk(v − u(k))|v − u(k)|2f 1

k 〉v

+
1

ν11

〈mk(v − u(k))⊗ (v − u(k))f 1
k 〉vu(k) +

1

2
ρk(uk − u(k))|u(k)|2 + (Ek + nkT

(k))u(k)
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9.2.2 Calculation of 1
M(k) (∂tM

(k) + v · ∇xM
(k))

In this chapter we will show the calculation of 1
M(k) (∂tM

(k) + v · ∇xM
(k)) which we will

need for the dynamical low-rank algorithm as well as the derivation of the �uid limits of
the BGK-type equation for gas mixtures. To simplify the presentation and calculation,
we express the Maxwellian M (k) by

M (k) =
nk(t, x)

(2π T
(k)(t,x)
mk

)
dv
2

exp

(
−mk|v − u(k)(t, x)|2

2T (k)(t, x)

)
= h1,k(t, x) exp(h2,k(t, x, v)) (9.19)

with the usage of the two functions

h1,k(t, x) =
nk(t, x)

(2π T
(k)(t,x)
mk

)
dv
2

h2,k(t, x, v) = −mk|v − u(k)(t, x)|2

2T (k)(t, x)

After these preparations, we can start our calculation

1

M (k)
(∂tM

(k) + v · ∇xM
(k))

We substitute M (k) using 9.19

=
1

h1,k exp(h2,k)
[∂t(h1,k exp(h2,k)) + v · ∇x(h1,k exp(h2,k))]

apply the product rule

=
1

h1,k exp(h2,k)
[∂th1,k exp(h2,k) + h1,k exp(h2,k)∂th2,k

+ v · (∇xh1,k exp(h2,k) + h1,k exp(h2,k)∇xh2,k)]

and simplify by eliminating the terms exp(h2,k)

=
1

h1,k

[∂th1,k + h1,k∂th2,k + v · (∇xh1,k + h1,k∇xh2,k)]

Thereby we obtain the result

=
1

h1,k

(∂th1,k + v · ∇xh1,k) + ∂th2,k + v · ∇xh2,k (9.20)

Using the derivatives

∂th1,k =
∂tnk

( 2π
mk
T (k))

dv
2

− dv · nkπ∂tT (k)

mk(
2π
mk
T (k))

dv
2

+1

∇xh1,k =
∇xnk

( 2π
mk
T (k))

dv
2

− dv · nkπ∇xT
(k)

mk(
2π
mk
T (k))

dv
2

+1

∂th2,k =
mk(v − u(k)) · ∂tu(k)

T (k)
+
mk|v − u(k)|2∂tT (k)

2T (k)2

∇xh2,k =
mk(v − u(k)) · ∇xu

(k)

T (k)
+
mk|v − u(k)|2∇xT

(k)

2T (k)2
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we can calculate (9.20) further

1

h1,k

(∂th1,k + v · ∇xh1,k) + ∂th2,k + v · ∇xh2,k

=
(2π T

(k)

mk
)
dv
2

nk

(
∂tnk

( 2π
mk
T (k))

dv
2

− dv · nkπ∂tT (k)

mk(
2π
mk
T (k))

dv
2

+1
+ v ·

[
∇xnk

( 2π
mk
T (k))

dv
2

− dv · nkπ∇xT
(k)

mK( 2π
mk
T (k))

dv
2

+1

])

+
mk(v − u(k)) · ∂tu(k)

T (k)
+
mk|v − u(k)|2∂tT (k)

2T (k)2

+ v ·
(
mk(v − u(k)) · ∇xu

(k)

T (k)
+
mk|v − u(k)|2∇xT

(k)

2T (k)2

)
By making some simpli�cations, we obtain

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

∂tnk
nk
− dv∂tT

(k)

2T (k)
+ v · ∇xnk

nk
− v · dv∇xT

(k)

2T (k)

+
mk(v − u(k))∂tu

(k)

T (k)
+
mk(v

2 − 2vu(k) + u(k)2
)∂tT

(k)

2T (k)2 + v · mk(v − u(k))∇u(k)

T (k)

+ v · mk(v
2 − 2vu(k) + u(k)2

)∇xT
(k)

2T (k)2 (9.21)

9.2.3 Replacement of the time derivatives in 1
M(k) (∂tM

(k) + v · ∇xM
(k))

In this section, we want to replace the time derivatives ofMk in the zeroth order of 1
ν11

using the compressible Euler equations with additional exchange terms. In appendix 9.2.2
we calculated

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

∂tnk
nk
− dv∂tT

(k)

2T (k)
+ v · ∇xnk

nk
− v · dv∇xT

(k)

2T (k)

+
mk(v − u(k))∂tu

(k)

T (k)
+
mk(v

2 − 2vu(k) + u(k)2
)∂tT

(k)

2T (k)2 + v · mk(v − u(k))∇u(k)

T (k)

+ v · mk(v
2 − 2vu(k) + u(k)2

)∇xT
(k)

2T (k)2 (9.22)

we adjust the terms to the zeroth order of 1
ν11

. Note that we have u(k) = uk + O( 1
ν11

)

and T (k) = Tk +O( 1
ν11

) by the de�nitions (3.5) and (3.6). We receive

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

1

ρk
(∂tρk + v · ∇xρk) +

mk(v − uk)
Tk

· (∂tuk + v · ∇xuk)

+ (
mk|v − u|2

2Tk
2 − dv

2Tk
)(∂tTk + v · ∇xTk) +O(

1

ν11

) (9.23)

We replace the time derivatives of (9.23) with the system ∂tρk
∂t(ρkuk)
∂tEk

+∇x ·

 ρkuk
ρk(uk ⊗ uk) + nkTkIdv

(Ek + nkTk)uk

 =

 0
Ξ1
k

Ξ2
k

 , (9.24)
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where we use the exchange terms

Ξ1
k =

2ρkρjχkj
mk +mj

(uj − uk) (9.25)

Ξ2
k =

dv
2
nk(T

(k) − Tk) +
1

2
ρk(u

(k)2 − u2
k)

=
2ρkρjχkj

(mk +mj)2
[uk · uj(mk −mj)− u2

kmk + u2
jmj + dv(Tj − Tk)] (9.26)

Preceding the replacement of the time derivatives, we have to calculate ∂tuk and ∂tTk,
which are not given directly by (9.24).

Calculation of ∂tuk We start with the second equation of (9.24)

∂t(ρkuk) = −∇x · (ρk(uk ⊗ uk) + nkTkIdv) + Ξ1
k (9.27)

and rearrange the equation to isolate ∂tuk

∂tuk =
1

ρk

(
−∇x · (ρk(uk ⊗ uk) + nkTkId)− ∂tρkuk + Ξ1

k

)
(9.28)

We continue by replacing the time derivative ∂tρk using (9.24) and simplifying the equation

=
1

ρk

(
−∇x · (ρk(uk ⊗ uk) + nkTkId) + (∇x · (ρkuk))uk + Ξ1

k

)
=

1

ρk
(−∇xρk · (uk ⊗ uk)− ρk∇x · (uk ⊗ uk)− Tk∇x · (nkId)− nk∇x · (TkId)

+∇xρk · (uk ⊗ uk) + ρkuk(∇x · uk) + Ξ1
k)

=
1

ρk
(−ρk∇x · (uk ⊗ uk)− Tk∇x · (nkId)− nk∇x · (TkId) + ρkuk(∇xuk) + Ξ1

k)

= −∇x · (uk ⊗ uk)−
Tk
ρk
∇x · (nkId)−

1

mk

∇x · (TkId) + uk(∇x · uk) +
Ξ1
k

ρk
(9.29)

Calculation of ∂tTk Next we will calculate ∂tT using (9.24). We start with the third
equation

∂tEk = Ξ2
k −∇x · ((Ek + nkTk)uk)

and use the de�nition Ek =
dv
2
nkTk +

1

2
ρku

2
k.

⇔∂t(
dv
2
nkTk +

1

2
ρku

2
k) = Ξ2

k −∇x · ((Ek + nkTk)uk)

Next, we apply the product rule on the left side

⇔dv
2
∂tnkTk +

dv
2
nk∂tTk +

1

2
∂tρku

2
k + ρk∂tukuk = Ξ2

k −∇x · ((Ek + nkTk)uk)

and rearrange the formula to isolate ∂tTk.

⇔∂tTk = − 2

dvnk

[
∇x · ((Ek + nkTk)uk) + (

dv
2mk

Tk +
1

2
u2
k)∂tρk + ρk∂tukuk − Ξ2

k

]
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We continue by replacing the time derivatives of the density and number density (us-
ing (9.24)) and ∂tu using the previously calculated (9.29). Furthermore, we insert the
de�nition of Ek on the right side.

⇔∂tTk = − 2

dvnk
∇x ·

((
dv
2
nkTk +

1

2
ρku

2
k + nkTk

)
uk

)
+

(
1

nkmk

Tk +
1

dvnk
u2
k

)
∇x · (ρkuk)

− 2mk

dv
uk

(
−∇x · (uk ⊗ uk)−

Tk
ρk
∇x · (nkId)−

1

mk

∇x · (TkId) + uk(∇x · uk) +
Ξ1
k

ρk

)
+

2

dvnk
Ξ2
k (9.30)

We have h · ∇x · (uk ⊗ uk) = (h⊗ uk) : ∇xuk + h · uk(∇x · uk) ∀h ∈ Rd and thereby

∂tTk = − 2

dvnk

((
dv
2

+ 1

)
Tk∇xnk +

(
dv
2

+ 1

)
nk∇xTk +

1

2
∇xρku

2
k + ρkuk · ∇xuk

)
uk

− 2

dvnk

((
dv
2

+ 1

)
nkTk +

1

2
ρku

2
k

)
(∇x · uk)

+

(
Tk
ρk

+
1

dvnk
u2
k

)
(∇xρkuk + ρk∇x · uk)

+
2mk

dv
((uk ⊗ uk) : ∇xuk + uk ·

[
uk(∇x · uk) +

Tk
ρk
∇xnk +

1

mk

∇xTk − uk(∇x · uk)−
Ξ1
k

ρk

]
+

2

dvnk
Ξ2
k (9.31)

We add the marked terms and sort the remaining terms by the spatial derivatives

∂tTk = ∇xnk · (−
ukTk
nk
− 2ukTk

dvnk
− u3

k

dvnk
+
ukTk
nk

+
u3
k

dvnk
+

2ukTk
dvnk

)

+ (∇x · uk)(−Tk −
2

dv
Tk −

mku
2
k

dv
+ Tk +

mku
2
k

dv
)

+∇xTk(−uk −
2uk
dv

+
2uk
dv

)

− 2uk
dvnk

· Ξ1
k +

2

dvnk
Ξ2
k (9.32)

which obtains us the result

∂tTk = − 2

dv
Tk(∇x · uk)− uk∇xTk −

2uk
dvnk

· Ξ1
k +

2

dvnk
Ξ2
k (9.33)

Replacement of the time derivatives In the previous sections, we obtained the equa-
tions

∂tρk = −∇x(ρkuk)

∂tuk = −∇x · (uk ⊗ uk)−
Tk
ρk
∇x · (nkId)−

1

mk

∇x · (TkId) + uk(∇x · uk) +
Ξ1
k

ρk

∂tTk = − 2

dv
Tk(∇x · uk)− uk∇xTk −

2uk
dvnk

· Ξ1
k +

2

dvnk
Ξ2
k (9.34)
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We continue by replacing the time derivatives in the terms on the right side of equation
(9.23) one by one using (9.34).
The �rst term will be simple. We replace the time derivation ∂tρk by using (9.34), apply
the product rule and simplify the result.

1

ρk
(∂tρk + v · ∇xρk)

=
1

ρk
(−∇x · (ρkuk) + v · ∇xρk)

=
1

ρk
(−∇xρkuk − ρk∇x · uk + v · ∇xρk)

=
(v − uk)
ρk

· ∇xρk −∇x · uk (9.35)

In the next term, we want to replace the time derivative ∂tuk in the corresponding term
of (9.23)

mk(v − uk)
Tk

· (∂tuk + v · ∇xuk)

=
mk(v − uk)

Tk
·
(
−∇x · (uk ⊗ uk)−

Tk
ρk
∇x · (nkId)−

1

mk

∇x · (TkId) + uk(∇x · uk)

+
Ξ1
k

ρk
+ v · ∇xuk

)
(9.36)

We have h · ∇x · (uk ⊗ uk) = (h⊗ uk) : ∇xuk + h · uk(∇x · uk) ∀h ∈ Rd and thereby

mk(v − uk)
Tk

· (∂tuk + v · ∇xuk) =
mk(v − uk)⊗ (v − uk)

Tk
: ∇xuk

+
mk(v − uk)

Tk
·
[
−uk(∇x · uk)−

Tk
ρk
∇x · (nkId)−

1

mk

∇x · (TkId) + uk(∇x · uk) +
Ξ1
k

ρk

]
=
mk(v − uk)⊗ (v − uk)

Tk
: ∇xuk +

(v − uk)
Tk

·
(
−Tk
ρk
∇xρk −∇xTk +

Ξ1
k

nk

)
(9.37)

This leaves us with the replacement of the time derivative of Tk. We use (9.33)(
mk|v − uk|2

2Tk
2 − dv

2Tk

)
(∂tTk + v · ∇xTk)

=

(
mk|v − uk|2

2Tk
2 − dv

2Tk

)(
v · ∇xTk −

2

dv
Tk(∇x · uk)− uk∇xTk −

2uk
dvnk

· Ξ1
k +

2

dvnk
Ξ2
k

)
(9.38)

We insert (9.35), (9.37) and (9.38) into (9.23) and obtain

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

(v − uk)
ρk

· ∇xρk −∇x · uk

+
mk(v − uk)⊗ (v − uk)

Tk
: ∇xuk +

(v − uk)
Tk

·
(
−Tk
ρk
∇xρk −∇xTk +

Ξ1
k

nk

)
+

(
mk|v − uk|2

2Tk
2 − dv

2Tk

)(
(v − uk) · ∇xTk −

2

dv
Tk(∇x · uk)−

2uk
dvnk

· Ξ1
k +

2

dvnk
Ξ2
k

)
+O(

1

ν11

)
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we add the colored terms

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

mk(v − uk)⊗ (v − uk)
Tk

: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk
− mk|v − uk|2

2Tk

2

dv
(∇x · uk)

+

(
mk|v − uk|2

2Tk
2 − dv

2Tk

)(
− 2uk
dvnk

· Ξ1
k +

2

dvnk
Ξ2
k

)
+O(

1

ν11

)

and apply ∇x · u = Id : ∇xu along further simpli�cations. We obtain the �nal result

1

M (k)
(∂tM

(k) + v · ∇xM
(k)) =

(
mk(v − uk)⊗ (v − uk)

Tk
− mk|v − uk|2

Tkdv

)
: ∇xuk

+

(
mk|v − uk|2

2Tk
2 − dv + 2

2Tk

)
(v − uk) · ∇xTk

Tk
+

(v − uk)
Tk

· Ξ1
k

nk

+

(
mk|v − uk|2

Tk
2 − dv

Tk

)(
− uk
dvnk

· Ξ1
k +

Ξ2
k

dvnk

)
+O(

1

ν11

)

9.2.4 Derivation of the Navier-Stokes system for the model of Andries, Aoki,

and Perthame

In this section, we derive the Navier-Stokes system from (3.9), which was also derived in
[1]. We begin by calculating 〈(v ⊗ v)fk〉v and 〈v|v|2fk〉v according to 9.2.1 where we use
u de�ned in (3.2) instead of u(k). For 〈(v ⊗ v)fk〉v we obtain

〈(v ⊗ v)fk〉v
= 〈((v − u)⊗ (v − u))fk〉v + 〈(v ⊗ u)fk〉v + 〈(u⊗ v)fk〉v − 〈(u⊗ u)fk〉v
= 〈((v − u)⊗ (v − u))fk〉v + nk(uk ⊗ u) + nk(u⊗ uk)− nk(u⊗ u)

and for 〈v|v|2fk〉v we obtain∫
Rdv

v|v|2fkdv

=

∫
Rdv

(v − u)|v − u|2fkdv + 2

∫
Rdv

v(vᵀu)fkdv −
∫
Rdv

v|u|2fkdv

+

∫
Rdv

u|v|2fkdv − 2

∫
Rdv

u(vᵀu)fkdv +

∫
Rdv

u|u|2fkdv

= 〈(v − u)|v − u|2fk〉v + 2〈(v − u)⊗ (v − u)fk〉vu+ nkuk|u|2 − nku|u|2 +
2u

mk

Ek

Thereby we obtain the alternative help terms

Ψ1
k = mk〈((v − u)⊗ (v − u))fk〉v + ρk(uk ⊗ u) + ρk(u⊗ uk)− ρk(u⊗ u)

Ψ2
k =

mk

2
〈(v − u)|v − u|2fk〉v +mk〈(v − u)⊗ (v − u)fk〉v

+
1

2
ρkuk|u|2 −

1

2
ρku|u|2 + uEk (9.39)

for ∂tρk
∂t(ρkuk)
∂tEk

+∇x ·

ρkukΨ1
k

Ψ2
k

 =

 0
Ξ1
k

Ξ2
k

 (9.40)
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with the exchange terms

Ξ1
k =

2ρkρjχkj
mk +mj

(uj − uk) (9.41)

Ξ2
k =

2ρkρjχkj
(mk +mj)2

[uk · uj(mk −mj)− u2
kmk + u2

jmj + dv(Tj − Tk)] (9.42)

in a �nal step to obtain the Navier-Stokes system, we add the second and third line for
(k, j) ∈ {(1, 2), (2, 1)}.

Ξk
1 + Ξ1

j =
2ρkρjχ

mk +mj

[(uj − uk) + (uk − uj)] = 0

Ξ2
k + Ξ2

j =
2ρkρjχ

(mk +mj)2
[uk · uj(mk −mj)− u2

kmk + u2
jmj + dv(Tj − Tk)

+ uk · uj(mj −mk) + u2
kmk − u2

jmj + dv(Tk − Tj)] = 0

The energy-exchange terms add up to zero, as expected. With the de�nitions u =
1

ρk+ρj
(ρkuk + ρjuj) from (3.1) we have

Ψ1
k + Ψ1

j =
∑
l∈{k,j}

ml〈((v − u)⊗ (v − u))fl〉v

+ (ρkuk ⊗ u) + (ρjuj ⊗ u) + (u⊗ ρkuk) + (u⊗ ρjuj)− (ρk + ρj)(u⊗ u)

=
∑
l∈{k,j}

ml〈((v − u)⊗ (v − u))fl〉v + ρ(u⊗ u)

and

Ψ2
k + Ψ2

j =
∑
l∈{k,j}

ml

2
〈(v − u)|v − u|2fl〉v

+
∑
l∈{k,j}

ml〈((v − u)⊗ (v − u))fl〉v

+ uE

Thereby we have calculated the Navier-Stokes system ∂tρk
∂t(ρu)
∂tE

+∇x ·

 ρkuk
P + ρu · u

Eu+ P · u+ q

 =

0
0
0

 (9.43)

with the terms

P =
∑
k

∫
Rdv

mk(v − u)⊗ (v − u)fkdv

q =
∑
k

∫
Rdv

mk(v − u)
|v − u|2

2
fkdv (9.44)

In [1] the quantities P and q are furthermore calculated to the �rst order of λ with the
results

P = nTIdv − η(∇xu+ (∇xu)ᵀ − 2

dv
(∇x · u)Idv) +O(λ2)

q =
dv + 2

2
T
∑
k

ρk(uk − u)

mk

− κ∇xT +O(λ2) (9.45)
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where we use the additional terms

η = T
∑
k

nk
νi

κ =
dv + 2

2
kBT

∑
k

nk
mkνk

(9.46)

9.3 Calculation of ∂tu
(k) and ∂tT

(k)

In this section, we calculate the time derivatives of the interspecies velocities and tem-
peratures based on their de�nitions (3.5) and (3.6). Furthermore, we seek to express the
derivatives with the terms I1,k,I2,k and I3,k which are de�ned in (3.42) and represent the
numeric approximations of the time derivatives ∂tρk, ∂t(ρkuk) and Ek.

9.3.1 Calculation of ∂tu
(k)

In this section, we calculate the time derivative of the interspecies velocity of gas k and
its expression using the quantities I1,k,I2,k and I3,k, which we will need for the dynamical
low-rank algorithm. We start with the de�nition of u(k)

u(k) = uk + 2
mj

mk +mj

χkj
νkknk + νkjnj

nj(uj − uk) (k, j) ∈ {(1, 2), (2, 1)}

and obtain the derivative

∂tu
(k) = ∂tuk + 2

mjχkj
mk +mj

[
∂tnj(uj − uk) + nj(∂tuj − ∂tuk)

νkknk + νkjnj

−nj(uj − uk)(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

]
We can simplify this equation by using

∂tnj(uj − uk) + nj(∂tuj − ∂tuk)
νkknk + νkjnj

− nj(uj − uk)(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

=
nj(∂tuj − ∂tuk)
νkknk + νkjnj

+
∂tnj(νkknk + νkjnj)(uj − uk)

(νkknk + νkjnj)2
− nj(uj − uk)(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

=
nj(∂tuj − ∂tuk)
νkknk + νkjnj

+
(uj − uk)[νkk(nk∂tnj − nj∂tnk) + νkj(nj∂tnj − nj∂tnj)]

(νkknk + νkjnj)2

=
nj(∂tuj − ∂tuk)
νkknk + νkjnj

+
(uj − uk)[νkk(nk∂tnj − nj∂tnk)]

(νkknk + νkjnj)2
(9.47)

and we obtain the result

∂tu
(k) = ∂tuk + 2

mjχkj
mk +mj

[
nj(∂tuj − ∂tuk)
νkknk + νkjnj

+
νkk(uj − uk)(∂tnjnk − ∂tnknj)

(νkknk + νkjnj)2

]
(9.48)

9.3.2 Calculation of ∂tT
(k)

In this section, we calculate the time derivation of the inter-species temperature of gas
k and its expression using the quantities I1,k,I2,k and I3,k which we will need for the
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dynamical low-rank algorithm. We start with the de�nition of T (k)

T (k) = Tk −
mk

dv
|u(k) − uk|2 +

2

dv

mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

nj

[
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

]
and insert the de�nition of u(k)

T (k) = Tk −
mk

dv

∣∣∣∣2 mj

mk +mj

χkj
νkknk + νkjnj

nj(uj − uk)
∣∣∣∣2

+
2

dv

mkmj

(mk +mj)2

4χkj
(νkknk + νkjnj)

nj

[
dv
2

(Tj − Tk) +mj
|uj − uk|2

2

]
and simplify the equation

T (k) = Tk −
4mkχ

2
kj

dv(mk +mj)2

∣∣∣∣ ρj(uj − uk)νkknk + νkjnj

∣∣∣∣2
+

4mkχkj
dv(mk +mj)2

[
dv

ρj(Tj − Tk)
(νkknk + νkjnj)

+mj
ρj|uj − uk|2

(νkknk + νkjnj)

]
We calculate the derivative

∂tT
(k) = ∂tTk −

8mkχ
2
kj

dv(mk +mj)2

ρj(uj − uk)
νkknk + νkjnj

·
[
∂tρj(uj − uk) + ρj(∂tuj − ∂tuk)

νkknk + νkjnj

−ρj(uj − uk)(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

]
+

4mkχkj
(mk +mj)2

[
∂tρj(Tj − Tk) + ρj(∂tTj − ∂tTk)

νkknk + νkjnj
− ρj(Tj − Tk)(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

]
+

4mkmjχkj
dv(mk +mj)2

[
∂tρj(uj − uk)2 + 2ρj(uj − uk) · (∂tuj − ∂tuk)

νkknk + νkjnj

− ρj(uj − uk)2(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

]
Furthermore, we will fuse the two terms for the derivative of the density ∂tρj in each
square bracket. We will show this for the �rst bracket

∂tρj(uj − uk)
νkknk + νkjnj

− ρj(uj − uk)(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

= (uj − uk)
∂tρj(νkknk + νkjnj)− ρj(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

= (uj − uk)mj
∂tnj(νkknk + νkjnj)− nj(νkk∂tnk + νkj∂tnj)

(νkknk + νkjnj)2

= (uj − uk)mj
νkk(∂tnjnk − nj∂tnk) + νkj(∂tnjnj − nj∂tnj)

(νkknk + νkjnj)2

= (uj − uk)mj
νkk(∂tnjnk − nj∂tnk)

(νkknk + νkjnj)2
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and apply this to the two following brackets. Thereby we obtain

⇒ ∂tT
(k) = ∂tTk

−
8mkχ

2
kj

dv(mk +mj)2

ρj(uj − uk)
νkknk + νkjnj

·
[
ρj(∂tuj − ∂tuk)
νkknk + νkjnj

+
mjνkk(uj − uk)(∂tnjnk − nj∂tnk)

(νkknk + νkjnj)2

]
+

4mkχkj
(mk +mj)2

[
ρj(∂tTj − ∂tTk)
νkknk + νkjnj

+
mjνkk(Tj − Tk)(∂tnjnk − nj∂tnk)

(νkknk + νkjnj)2

]
+

4mjmkχkj
dv(mk +mj)2

[
2ρj(uj − uk) · (∂tuj − ∂tuk)

νkknk + νkjnj
+
mjνkk(uj − uk)2(∂tnjnk − nj∂tnk)

(νkknk + νkjnj)2

]
In the last step, we simplify the equation and sort it by the derivations of density, �ux,
and temperature.

⇒ ∂tT
(k) = ∂tTk

+
4νkkχkj(∂tρjρk − ρj∂tρk)

(mk +mj)2(νkknk + νkjnj)2

[
− 2χkjρj(uj − uk)2

dv(νkknk + νkjnj)
+ (Tj − Tk) +

mj

dv
(uj − uk)2

]
+

8mkχkjρj(uj − uk) · (∂tuj − ∂tuk)
dv(mk +mj)2(νkknk + νkjnj)

[
− χkjρj

(νkknk + νkjnj)
+mj

]
(9.49)

+
4mkχkj

(mk +mj)2

ρj(∂tTj − ∂tTk)
νkknk + νkjnj

9.4 Calculation of Mk

In this section, we replace the time derivatives of the term

Mk =
1

M (k)
(∂tM

(k) + v · ∇xM
(k)) (9.50)

We will integrate (9.50) in the application of the low-rank algorithm with respect to v
and/or x for k ∈ {1, 2}. Therefore it will be practical to separate and sort the terms
(9.50) as a sum of products of functions that depend either on v or x. This allows us to
integrate the single functions and use the results in several calculations.
Furthermore, we will replace the time derivatives of (9.50) with the terms I1,k,I2,k and
I3,k which are de�ned in (3.43).
In Appendix (9.2.2) we calculated

Mk =
∂tnk
nk
− dv∂tT

(k)

2T (k)
+ v · ∇xnk

nk
− v · dv∇xT

(k)

2T (k)

+
mk(v − u(k))∂tu

(k)

T (k)
+
mk(v

2 − 2vu(k) + u(k)2
)∂tT

(k)

2T (k)2 + v · mk(v − u(k))∇u(k)

T (k)

+ v · mk(v
2 − 2vu(k) + u(k)2

)∇xT
(k)

2T (k)2 (9.51)
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Because we want to factorizeM using functions depending on either x or v, we sort the
terms based on the functions depending on v

Mk =

[
∂tnk
nk
− dv∂tT

(k)

2T (k)
− mku

(k) · ∂tu(k)

T (k)
+
mku

(k)2
∂tT

(k)

2T (k)2

]

+ v ·

[
∇xnk
nk
− dv∇xT

(k)

2T (k)
+
mk∂tu

(k)

T (k)
− mku

(k)∂tT
(k)

T (k)2 − mku
(k)∇xu

(k)

T (k)
+
mku

(k)2∇xT
(k)

2T (k)2

]

+ |v|2
[
mk∂tT

(k)

2T (k)2 − mku
(k)∇xT

(k)

T (k)2

]
+ (v ⊗ v)

mk∇xu
(k)

T (k)
+ |v|2v · mk∇xT

(k)

2T 2

Thereby we can use the following presentation

Mk =Mk
1 + v · Mk

2 + |v|2Mk
3 + (v ⊗ v) :Mk

4 + |v|2v · Mk
5

where we use the termsMk
1-Mk

5, which are only dependent on time t and space x.

Mk
1 =

∂tnk
nk
− dv∂tT

(k)

2T (k)
− mku

(k)∂tu
(k)

T (k)
+
mku

(k)2
∂tT

(k)

2T (k)2

Mk
2 =
∇xnk
nk
− dv∇xT

(k)

2T (k)
+
mk∂tu

(k)

T (k)
− mku

(k)∂tT
(k)

T (k)2 − mku
(k)∇u(k)

T (k)
+
mku

(k)2∇xT
(k)

2T (k)2

Mk
3 =

mk∂tT
(k)

2T (k)2 − mku
(k)∇xT

(k)

T (k)2

Mk
4 =

mk∇u(k)

T (k)

Mk
5 =

mk∇xT
(k)

2T (k)2

In the dynamical low-rank algorithm, we replace the time derivatives ofM1-M5 with

∂tρk = I1,k

∂tuk =
1

ρk
(I2,k − ∂tρkuk) =

1

ρk
(I2,k − I1,kuk)

∂tTk =
2

dvnk
(I3,k +

1

2
I1,ku

2
k − uk · I2,k)−

I1,k

ρk
Tk

whereby we obtain

Mk
1 =

I1,k

ρk
+

(
mku

(k)2

2T (k)2 −
dv

2T (k)

)[
2

dvnk

(
I3,k +

1

2
I1,ku

2
k − uk · I2,k

)
− I1,k

ρk
Tk

]
− mku

(k)

T (k)
· 1

ρk
(I2,k − I1,kuk)

Mk
2 =
∇xnk
nk
− dv∇xT

(k)

2T (k)
+

mk

ρkT (k)
(I2,k − I1,ku)− mku

(k) · ∇xu
(k)

T (k)
+
mku

(k)2∇xT
(k)

2T (k)2

− mku
(k)

T (k)2

[
2

dvnk

(
I3,k +

1

2
I1,ku

2
k − uk · I2,k

)
− I1,k

ρk
Tk

]
Mk

3 =
mk

2T (k)2

[
2

dvnk

(
I3,k +

1

2
I1,ku

2
k − uk · I2,k

)
− I1,k

ρk
Tk

]
− mku

(k)∇xT
(k)

T (k)2
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Mk
4 =

mk∇xu

T

Mk
5 =

mk∇xT
(k)

2T (k)2

9.5 IMEX Steps

9.5.1 First order IMEX Schemes

IMEX schemes can be applied to ordinary di�erential equations to compute approximate
solutions [2]. The IMEX scheme enables us to split the di�erential equation into a sti� part
which we treat implicitly, and a non-sti� part which we solve explicitly. More speci�cally,
we will implicitly treat terms that contain the factor νk = νkknk + νkjnj because we
consider problems with large collision frequencies.

9.5.2 IMEX Step Kk,n
j

We have the time derivative of Kk
j

∂tK
k
j =

r∑
m=1

[−(∇xK
k
m)〈vV k

j V
k
m〉v −Kk

m〈V k
j V

k
mMk〉v] + νk(〈V k

j 〉v −Kk
j )

We implicitly treat the term νkK
k
j on the right side as we need to account for sti�ness

due to large νk. We perform an IMEX step

Kk,n+1
j = Kk,n

j + τ

(
r∑

m=1

[−(∇xK
k,n
m )〈vV k,n

j V k,n
m 〉v −Kk,n

m 〈V
k,n
j V k,n

m Mk〉v] + νnk 〈V
k,n
j 〉v

)
− τνnk ·K

k,n+1
j

and solve the equation for Kk,n+1
j

⇔ Kk,n+1
j (1 + τνnk ) = Kk,n

j + τ

(
r∑

m=1

[−(∇xK
k,n
m )〈vV k,n

j V k,n
m 〉v −Kk,n

m 〈V
k,n
j V k,n

m M〉v]

+ νnk 〈V k
j 〉v
)

⇔ Kn+1
j =

1

1 + τνnk
Kk,n
j +

τ

1 + τνnk

r∑
m=1

[−(∇xK
k,n
m )〈vV k

j V
k
m〉v −Kk,n

m 〈V
k,n
j V k,n

m M〉v]

+
τνnk

1 + τνnk
〈V k,n

j 〉v

With the notations in (3.48) and (3.49) this becomes

Kn+1
j =

1

1 + τνnk
Kk,n
j −

τ

1 + τνnk

[
r∑
l=1

c1,k
jl · (∇xK

k,n
l ) +

r∑
l

ckjlK
k,n
l

]
+

τνnk
1 + τνnk

V
k

j
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9.5.3 IMEX Step Sk,nij

We have the time derivative of Skij

∂tS
k
ij =

r∑
l,m=1

[
Sklm〈Xk

i ∇xX
k
l 〉x · 〈vV k

j V
k
m〉v + Sklm〈Xk

l X
k
i V

k
j V

k
mMk〉x,v

]
+

r∑
l=1

Sklj〈νkXk
i X

k
l 〉x − 〈νkXk

i 〉x〈V k
j 〉v

In order to adjust for sti�ness induced by large νk we will approach the term∑r
l=1 S

k
lj〈νkXk

i X
k
l 〉x implicitly while we treat the remaining terms explicitly. This leaves

us with the equation

Sk,2ij = Sk,1ij − τ〈νnkX
k,n+1
i 〉x〈V k,n

j 〉v + τ

r∑
l=1

Sk,2lj 〈ν
n
kX

k,n+1
i Xk,n+1

l 〉x

+ τ

r∑
l,m=1

[
Sk,1lm 〈X

k,n+1
i ∇xX

k,n+1
l 〉x · 〈vV k,n

j V k,n
m 〉v + Sk,1lm 〈X

k,n+1
l Xk,n+1

i V k,n
j V k,n

m Mk〉x,v
]

With the notations de�ned in (3.48), (3.50) and (3.51) this becomes

Sk,2ij = Sk,1ij + τ
r∑

l,m=1

[
Sk,1lm d

k,0
il · c

k,1
jm + Sk,1lm d̂

k
il;jm

]
− τXk

i V
k

j + τ
r∑
l=1

Sk,2lj R
k
il

which is equal to

r∑
l=1

(I − τRk)ilS
k,2
lj = Sk,1ij + τ

r∑
l,m=1

[
Sk,1lm d

k,0
il · c

k,1
jm + Sk,1lm d̂

k
il;jm

]
− τXk

i V
k

j

9.5.4 IMEX Step Lk,ni

We have the time derivative of Lki

∂tL
k
i =

r∑
l=1

[
−〈Xk

i ∇xX
k
l 〉x · vLkl − 〈Xk

l X
k
iMk〉xLkl − 〈νkXk

i X
k
l 〉xLkl ] + 〈νkXk

i 〉x

In order to adjust for sti�ness induced by large νk in the term 〈νkXk
i X

k
l 〉xLl we will treat

this term implicitly. We treat the remaining terms explicitly. The �rst order IMEX step
leaves us thereby with the equation

Lk,n+1
i = Lk,ni − τ

r∑
l=1

[
〈Xk,n+1

i ∇xX
k,n+1
l 〉x · vLk,nl + 〈Xk,n+1

i Xk,n+1
l Mk〉xLk,nl

]
− τ

r∑
l=1

〈νnkX
k,n+1
i Xk,n+1

l 〉xLk,n+1
l + τ〈νnkX

k,n+1
i 〉x

With the notations de�ned in (3.50), this becomes

Lk,n+1
i = Lk,ni − τ

r∑
l=1

Rk
ilL

k,n+1
l + τX

k

i

− τ
r∑
l=1

[
dk,0il · vL

k,n
l + (dk,1il + v · dk,2il + |v|2dk,3il + (v ⊗ v) : dk,4il + |v|2v · dk,5il )Lk,nl

]
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which is equal to the equation

r∑
l

(
I + τRk

)
il
Lk,n+1
l = Lk,ni + τX

k

i

− τ
r∑
l=1

[
dk,0il · vL

k,n
l + (dk,1il + v · dk,2il + |v|2dk,3il + (v ⊗ v) : dk,4il + |v|2v · dk,5il )Lk,nl

]

94



References

[1] Pierre Andries, Kazuo Aoki, and Benoit Perthame. A consistent BGK-type model
for gas mixtures. Journal of Statistical Physics, 106:993�1018, 2002.

[2] Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. Implicit-explicit Runge-
Kutta methods for time-dependent partial di�erential equations. Applied Numerical
Mathematics, 25(2):151�157, 1997.

[3] Pietro Asinari. Asymptotic analysis of multiple-relaxation-time lattice Boltzmann
schemes for mixture modeling. Computers and Mathematics with Applications,
55(7):1392�1407, 2008. Mesoscopic Methods in Engineering and Science.

[4] Claude Bardos, Francois Golse, and David Levermore. Fluid dynamic limits of kinetic
equations. i. formal derivations. Journal of Statistical Physics, 63:323�344, 04 1991.

[5] Prabhu L. Bhatnagar, Eugene P. Gross, and Max Krook. A model for collision
processes in gases. i. small amplitude processes in charged and neutral one-component
systems. Phys. Rev., 94:511�525, May 1954.

[6] Sylvio Bistafa. On the development of the Navier-Stokes equation by Navier. Revista
Brasileira de Ensino de Física, 40:1�12, 11 2017.

[7] Carlo Cercignani. The Boltzmann equation and its applications. Applied Mathemat-
ical Sciences. Springer New York, 2012.

[8] Sydney Chapman, Thomas G. Cowling, David Burnett, and Carlo Cercignani. The
mathematical theory of non-uniform gases: An account of the kinetic theory of vis-
cosity, thermal conduction and di�usion in gases, 1990.

[9] Carl Eckart and Gale Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1:211�218, 1936.

[10] Lukas Einkemmer, Jingwei Hu, and Yubo Wang. An asymptotic-preserving dynami-
cal low-rank method for the multi-scale multi-dimensional linear transport equation.
Journal of Computational Physics, 439:110353, 2021.

[11] Lukas Einkemmer, Jingwei Hu, and Lexing Ying. An e�cient dynamical low-rank
algorithm for the Boltzmann-BGK equation close to the compressible viscous �ow
regime. SIAM Journal on Scienti�c Computing, 43:B1057�B1080, 01 2021.

[12] Lukas Einkemmer and Ilon Joseph. A mass, momentum, and energy conservative
dynamical low-rank scheme for the Vlasov equation. J. Comput. Phys., 443:1�20,
2021.

[13] Lukas Einkemmer and Christian Lubich. A low-rank projector-splitting integrator
for the Vlasov�Poisson equation. SIAM Journal on Scienti�c Computing, 40:1�23,
01 2018.

[14] Lukas Einkemmer, Alexander Ostermann, and Chiara Piazzola. A low-rank
projector-splitting integrator for the Vlasov�Maxwell equations with divergence cor-
rection. Journal of Computational Physics, 403:109063, 10 2019.

95



[15] Vicente Garzo, Andres Santos, and J. Javier Brey. A kinetic model for a multicom-
ponent gas. Physics of Fluids A: Fluid Dynamics, 1:380�383, 02 1989.

[16] Bernard B. Hamel. Kinetic model for binary gas mixtures. The Physics of Fluids,
8(3):418�425, 1965.

[17] Harland Glaz John Bell, Phillip Colella. A second-ord ofer projection method for the
Navier�Stokes equations. Journal of Computational Physics, 85:257�283, 1988.

[18] Virginia C. Klema and Alan J. Laub. The singular value decomposition: Its compu-
tation and some applications. IEEE Transactions on Automatic Control, 25:164�176,
1980.

[19] Christian Klingenberg, Marlies Pirner, and Gabriella Puppo. A consistent kinetic
model for a two-component mixture with an application to plasma. Kinetic and
Related Models, 10(2):445�465, 2017.

[20] Oliver Knill. Characteristic length and clustering, 2014.

[21] Othmar Koch and Christian Lubich. Dynamical low-rank approximation. SIAM
Journal on Matrix Analysis and Applications, 29(2):434�454, 2007.

[22] Naraparaju K. Kumar and Jan Schneider. Literature survey on low rank approxima-
tion of matrices. Linear and Multilinear Algebra, 65(11):2212�2244, 2017.

[23] Jonas Kusch, Gianluca Ceruti, Lukas Einkemmer, and Martin Frank. Dynamical low-
rank approximation for Burgers' equation with uncertainty. ArXiv, abs/2105.04358,
2022.

[24] Christian Lubich and Ivan Oseledets. A projector-splitting integrator for dynamical
low-rank approximation. BIT Numerical Mathematics, 54:171�188, 2013.

[25] Axel Maas. On gauge �xing. arXiv: High Energy Physics - Lattice, pages 1�7, 2010.

[26] Mario Motta, Erika Ye, Jarrod R. McClean, Zhendong Li, Austin J. Minnich, Ryan
Babbush, and Garnet Kin-Lic Chan. Low rank representations for quantum simula-
tion of electronic structure. npj Quantum Information, 7(1):1�8, may 2021.

[27] Constance Nicholas and Robert C. Yates. The probability integral. The American
Mathematical Monthly, 57(6):412�413, 1950.

[28] Marlies Pirner. Kinetic modelling of gas mixtures. Würzburg University Press, pages
1�222, 2018.

[29] Victor Sofonea and Robert F. Sekerka. BGKmodels for di�usion in isothermal binary
�uid systems. Physica A Statistical Mechanics and its Applications, 299(3):494�520,
October 2001.

[30] Eleuterio Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A
Practical Introduction. 01 2009.

[31] Cédric Villani. A review of mathematical topics in collisional kinetic theory. volume 1,
2002.

96



[32] Hanjie Wang, Xiujuan Chai, Yu Zhou, and Xilin Chen. Fast sign language recognition
bene�ted from low rank approximation. 2015 11th IEEE International Conference
and Workshops on Automatic Face and Gesture Recognition (FG), 1:1�6, 2015.

[33] Xiaowei Zhou, Can Yang, Hongyu Zhao, and Weichuan Yu. Low-rank modeling and
its applications in image analysis. ACM Computing Surveys (CSUR), 47:1 � 33, 2014.

97



Versicherung zur Leistungserbringung 

Titel der Abschlussarbeit: 

_________________________________________________________________________________ 

Thema bereitgestellt von (Titel, Vorname, Nachname, Lehrstuhl): 

_________________________________________________________________________________ 

Eingereicht durch (Vorname, Nachname, Matrikel): 

_________________________________________________________________________________ 

Ich versichere, dass ich die vorstehende Arbeit selbstständig und ohne fremde Hilfe angefertigt 
und mich keiner anderer als der in den beigefügten Verzeichnissen angegebenen Hilfsmittel 
bedient habe. Alle Textstellen, die wörtlich oder sinngemäß aus Veröffentlichungen Dritter 
entnommen wurden, sind als solche kenntlich gemacht. Alle Quellen, die dem World Wide Web 
entnommen oder in einer digitalen Form verwendet wurden, sind der Arbeit beigefügt. 

Weitere Personen waren an der geistigen Leistung der vorliegenden Arbeit nicht beteiligt. 
Insbesondere habe ich nicht die Hilfe eines Ghostwriters oder einer Ghostwriting-Agentur in 
Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar Geld oder 
geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der 
vorgelegten Arbeit stehen. 

Der Durchführung einer elektronischen Plagiatsprüfung stimme ich hiermit zu. Die eingereichte 
elektronische Fassung der Arbeit ist vollständig. Mir ist bewusst, dass nachträgliche 
Ergänzungen ausgeschlossen sind.  

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch nicht 
veröffentlicht. Ich bin mir bewusst, dass eine unwahre Erklärung zur Versicherung der 
selbstständigen Leistungserbringung rechtliche Folgen haben kann. 

Ort, Datum, Unterschrift  

Ref. 2.3 / Stand: 02.11.2021

A dynamical low-rank algorithm for a kinetic model for gas mixtures close to the compressible regime

Prof. Dr., Christian, Klingenberg, Lehrstuhl für Mathematische Strömungsmechanik

Kai Ulrich


	List of Figures
	Introduction
	The dynamical low-rank algorithm for the Boltzmann-BGK equation 
	Introduction 
	Fluid limits
	The low-rank approximation 
	The dynamical low-rank algorithm 
	Time discretization 

	The dynamical low-rank algorithm for a BGK-type model for gas mixtures 
	Introduction
	Fluid limits 
	The low-rank approximation
	The dynamical low-rank algorithm
	Time discretization 

	Analysis of the rank of g and gk 
	Analysis of the computational cost 
	Experiments 
	Shear flow 
	Indifferentiability property 
	Variation from equilibrium 

	Summary and Conclusion
	Appendix A
	Fundamental integration results
	Derivation of the moment equation 
	Calculations for the Chapman-Enskog expansion
	Calculation of M 
	IMEX Steps

	Appendix B
	Derivation of the moment equation (mixtures) 
	Calculations for the Chapman-Enskog expansion (mixtures)
	Calculation of t u(k) and tT(k)
	Calculation of Mk
	IMEX Steps

	References

