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1 Introduction

In this paper, we study the Cauchy problem for multiphase first-contact miscible

models with viscous fingering
St + f(S, T )x = 0,

(ST − T )t + (Tf(S, T )− T )x = 0,
(1.1)

with bounded measurable initial data

(S(x, 0), T (x, 0)) = (S0(x), T0(x)), 0 ≤ S0(x) ≤ 1, (1.2)

where S is the water saturation, C = ST − T is the solvent concentration, and f

is the water fractional flow function. System (1.1) is a special case of the following

nonstrictly hyperbolic systems of conservation laws modelling polymer flooding

in enhanced oil recovery
St + f(S, T )x = 0,

(ST + β(T ))t + (Tf(S, T ) + α(T ))x = 0.
(1.3)

When α(T ) = aT, β(T ) = bT , where a, b are positive constants, system (1.3)

represents a simple model for nonisothermal two-phase flow in a porous medium

[1, 2], and its Riemann problem was resolved and the entropy conditions were

discussed in [1] under suitable conditions on f . When β(T ) = 0 and α(T ) = 0,

system (1.3) is the famous Keyfitz-Kranzer [3] or Aw-Rascle model [4], and the

Riemann problem and the Cauchy problem of system (1.2) were studied in [3]-[18]

and the references cited therein. When α(T ) = 0 and β(T ) 6= 0, but β′(T ) > 0,

system (1.3) arises in connection with enhanced oil recovery, and its Riemann

problem was resolved in [19]. For general α(T ) 6= 0 and β(T ) 6= 0, but β′(T ) > 0,

the Cauchy problem was studied in the recent paper [20].

When β′(T ) < 0, system (1.3) is of interest and difficulty in mathematics

because the flux functions are sigular. For instance, the functions

(f(S, T ), T f(S, T )− T ) = (f(S,
C

S − 1
),

C

S − 1
(f(S,

C

S − 1
)− 1))

in system (1.1) are singular near the line S = 1.

In [21], the authors studied the analytical solutions of the Riemann problem

for system (1.1).
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As far as we know, there is no any existence result about the Cauchy problem

of system (1.1) or system (1.3) when β′(T ) < 0.

In this paper, we obtain the following results.

Theorem 1 Let the initial data (S0(x), T0(x)) be bounded, 0 ≤ S0(x) ≤ 1, the to-

tal variation of the second variant T0(x) be bounded, the functions f(S, T ), α(T ), β(T )

be suitable smooth and satisfy f(0, T ) = f(1, T ) = 0, meas {S : fSS(S, T ) = 0} =

0 for any fixed T , β′(T ) ≤ −1.

(1). If meas {T : β′′(T ) = 0} = 0 or β′(T ) = bT, b < −1, then the Cauchy

problem (1.3)-(1.2) has a global bounded entropy solution (S(x, t), T (x, t)) and

Tx(·, t) is bounded in L1(R), namely, (S(x, t), T (x, t)) satisfies system (1.3) and

the inequality η(S, T )t+q(S, T )x ≤ 0, in the sense of distributions, for any smooth,

convex, entropy η(S,C) and the corresponding entropy flux q(S,C).

(2). If β′(T ) = −T and α(T ) = −T , then the Cauchy problem (1.1)-(1.2) has

a global bounded weak entropy solution (S(x, t), T (x, t)), namely, (S(x, t), T (x, t))

satisfies system (1.3) and the inequality η(S, T )t + q(S, T )x ≤ 0, in the sense of

distributions, for any smooth, convex, weak entropy η(S,C) and the correspond-

ing weak entropy flux q(S,C).

Definition 1. A weak entropy η(S,C) of system (1.3) means η(1, C) = c1, and

a weak entropy flux q(S,C) means q(1, C) = c2, where c1, c2 are constants.

2 Proof of Theorem 1.

To prove Theorem 1, we consider the Cauchy problem for the related parabolic

system{
St + f(S, T )x = εSxx
(ST + β(T )− δT )t + (Tf(S, T ) + α(T ))x = ε(ST + β(T )− δT )xx,

(2.1)

with initial data

(Sε(x, 0), T ε(x, 0)) = (Sε0(x), T ε0 (x)), (2.2)

where T ε0 (x) = T0(x) ∗ Gε, Sε,δ0 (x) = (ε + (1 − 2ε)S0(x)) ∗ Gε are the smooth

approximations of T0(x), S0(x), Gε is a mollifier and ε, δ(ε < δ, δ = O(ε
1
2 )) are

positive, small perturbation constants. We first have the following lemmas.
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Lemma 2 Let α(T ), β(T ), f(S, T ) be suitable smooth functions and β′(T ) ≤ −1.

(1). For any fixed ε > 0 and δ > 0, the Cauchy problem (2.1) with the bound-

ed measurable initial data ε ≤ Sε(x, 0) ≤ 1− ε, |T ε(x, 0)| ≤M, always has a local

smooth solution (Sε,δ, T ε,δ)(x, t) ∈ (C∞(R × (0, τ)), C∞(R × (0, τ))), for a small

time τ , which depends only on the L∞ norm of the initial data (Sε(x, 0), T ε(x, 0)),

and the local solution satisfies

ε

2
≤ Sε,δ ≤ 1 + ε, |T ε,δ(x, t)| ≤M + ε. (2.3)

(2). If f(0, T ) = 0, f(1, T ) = 1, then the local solution (Sε,δ(x, t), T ε,δ(x, t))

has an a-priori L∞ estimate

|T ε,δ(x, t)|L∞ ≤M, 0 < c(t, c0, ε, δ) ≤ Sε,δ(x, t) ≤ 1, (2.4)

where c(t, c0, ε, δ) is a positive function, which could tend to zero as the time

t tends to infinity or ε, δ tends to zero, and the global solution of the Cauchy

problem (2.1) and (2.2) exists.

Proof. Let Cδ = ST + β(T ) − δT . Since β′(T ) ≤ −1, then for any fixed

S ∈ (0, 1 + ε), there exists a smooth, inverse function T = g(S,Cδ) and system

(2.1) can be rewritten as
St + f(S, g(S,Cδ))x = εSxx,

Cδ
t + (g(S,Cδ)f(S, g(S,Cδ)) + α(g(S,Cδ)))x = εCδ

xx,
(2.5)

which is a standard parabolic system and the local existence result in (1) can

be easily obtained by applying the contraction mapping principle to an integral

representation for a solution, following the standard theory of semilinear parabolic

systems.

To prove the estimates in (2.4), we substitute the first equation in (2.1) into

the second, we may rewrite the second equation in (2.1) as

Tt +
f + α′(T )

S + β′(T )− δ
Tx = εTxx + ε

2Sx + β′′(T )Tx
S + β′(T )− δ

Tx. (2.6)

Then we have the estimate |T ε(x, t)| ≤ M by applying the maximum principle

to (2.6).
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Since f(1, T ) = 1 and Sε(x, 0) ≤ 1 − ε, we rewrite the first equation in (2.1)

as

St + fS(S, T )Sx + fT (S, T )Tx = εSxx, (2.7)

where fT (1, T ) = 0, or

St + fS(S, T )Sx + fTS(θ, T )(S − 1)Tx = εSxx, (2.8)

where θ ∈ (S, 1). To prove Sε(x, 0) ≤ 1, we make the transformation

S = (S̄ +
M

L2
(x2 + cLet))eβt + 1, (2.9)

where c, L, β are positive constants and M is the bound of S, T on R × (0, T1).

By using the equation (2.8), we have immediately from (2.9)

S̄t + fSS̄x − εS̄xx + (β + fTSTx)S̄

= 2εM
L2 − cLet ML2 − fS 2xM

L2 − (β + fTSTx)
M
L2 (x2 + cLet)

(2.10)

and

S̄(x, 0) = S(x, 0)− 1− M

L2
(x2 + cL) < 0, (2.11)

S̄(±L, t) = (S(±L, t)− 1)e−βt − M

L2
(L2 + cLet) < 0. (2.12)

We have from (2.10), (2.11) and (2.12) that

S̄(x, t) < 0 on (−L,L)× (0, T1). (2.13)

If (2.13) is violated at a point (x, t) ∈ (−L,L)× (0, T1), let t̄ be the least upper

bound of the value t at which S̄(x, t) < 0; then by the continuity we see that

S̄(x, t) = 0 at some points (x̄, t̄) ∈ (−L,L)× (0, T1). So,

S̄t + fSS̄x − εS̄xx ≥ 0 at (x̄, t̄). (2.14)

However, we can choose a large β (depends on the local time) such that the

right-hand side of (2.10) is negative, then equation (2.10) gives a conclusion con-

tradicting (2.14). So (2.13) is proved. Therefore, for any fixed point (x0, t0) ∈
(−L,L)× (0, T1),

S(x0, t0) = (S̄(x0, t0) +
M

L2
(x20 + cLet0))eβt0 + 1 <

M

L2
(x20 + cLet0)eβt0 + 1, (2.15)
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which gives the desired estimate S(x0, t0) ≤ 1 when we let L go to ∞.

Since f(0, T ) = 0 and Sε(x, 0) > ε, we rewrite the first equation in (2.1) as

St + (Sg(S, T ))x = εSxx, (2.16)

where g(S, T ) = f(S,T )
S

is bounded, so the lower bound 0 < c(t, c0, ε, δ) ≤ Sε,δ(x, t)

in (2.4) can be proved by using Theorem 1.0.2 in [22] directly.

Whenever we have an a-priori L∞ estimate of the local solution given in (2.4),

it is clear that the local time τ can be extended to any time T1 step by step since

the step time depends only on the L∞ norm. So, Lemma 2 is proved.

Lemma 3 (1). If T0(x) is of bounded total variation, then∫ ∞
−∞
|T ε,δx |(x, t)dx ≤

∫ ∞
−∞
|T ε,δx |(x, 0)dx ≤M. (2.17)

(2). The solutions (Sε,δ, T ε,δ) satisfy that

ε(δ − β′(T )− S)(T ε,δx )2, ε(Sε,δx )2 are bounded in L1
loc(R×R+). (2.18)

Proof. The conclusion (2.17) in Lemma 3 can be proved by applying for a

technique from [23] or [14, 16].

To prove (2.18), we multiply S + β′(T )− δ to (2.6) to obtain

(S + β′(T )− δ)Tt + (f + α′(T ))Tx = ε((S + β′(T )− δ)Txx + ε(2Sx + β′′(T )Tx)Tx.

(2.19)

We multiply (2.19) by h′(T ), the first equation in (2.1) by h(T ) and then add the

result to obtain

(Sh(T ) +
∫ T
c h

′(τ)β′(τ)dτ − δh(T ))t + (h(T )f(S, T ) +
∫ T
c h

′(τ)α′(τ)dτ)x

= ε(Sh(T ) +
∫ T
c h

′(τ)β′(τ)dτ − δh(T ))xx − εh′′(T )(S + β′(T )− δ)T 2
x .

(2.20)

Let K ⊂ R×R+ be an arbitrary compact set and choose φ ∈ C∞0 (R×R+) such

that φK = 1, 0 ≤ φ ≤ 1.

Multiplying Equation (2.20) by φ and integrating over R×R+, we obtain∫∞
0

∫∞
−∞−εh′′(T )(S + β′(T )− δ)T 2

xφdxdt

= −
∫∞
0

∫∞
−∞ Sh(T ) +

∫ T
c h

′(τ)β′(τ)dτ − δh(T )φt

+h(T )f(S, T ) +
∫ T
c h

′(τ)α′(τ)dτφx

+ε(Sh(T ) +
∫ T
c h

′(τ)β′(τ)dτ − δh(T ))φxxdxdt ≤M(φ)

(2.21)
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and hence that

ε(δ − β′(T )− S)(T ε,δx )2 is bounded in L1
loc(R×R+) (2.22)

if we choose h as a strictly convex function in (2.22).

We multiply g′(S) to equation (2.7) to obtain (for simplicity, we omit the

superscripts ε and δ)

g(S)t + (
∫ S
1 g
′(τ)fS(τ, T )dτ)x

+(g′(S)fT (S, T )−
∫ S
1 g
′(τ)fST (τ, T )dτ)Tx

= εg(S)xx − εg′′(S)S2
x.

(2.23)

Choosing a strictly convex function g and multiplying a suitable nonnegative test

function φ to (2.23), we have that ε(Sε,δx )2 is bounded in L1
loc(R × R+). Lemma

3 is proved.

Lemma 4

h(T ε,δ)x, Sε,δt + f(Sε,δ, T ε,δ)x (2.24)

are compact in H−1loc (R×R+), for any smooth function h(T ).

Proof. Since T ε,δx are uniformly bounded in L1
loc(R×R+) from the estimate (2.17),

then they are compact in W−1,α
loc (R × R+), where α ∈ (1, 2), by the Sobolev’s

embedding theorem. Moreover, T ε,δx are uniformly bounded in W−1,∞
loc (R × R+),

then the Murat compact embedding theorem [24] shows that h(T ε,δ)x are compact

in H−1loc (R×R+), for any smooth function h(T ).

Since ε(Sε,δx )2 are bounded in L1
loc(R × R+), so the term εSxx in the first

equation in (2.1) is compact in H−1loc (R × R+). Thus Sε,δt + f(Sε,δ, T ε,δ)x are

compact in H−1loc (R×R+). Lemma 4 is proved.

Lemma 5

(Sε,δh(T ε,δ) +
∫ T ε,δ

c
h′(τ)β′(τ)dτ)t + (h(T ε,δ)f(Sε,δ, T ε,δ) +

∫ T ε,δ

c
h′(τ)α′(τ)dτ)x

(2.25)

are compact in H−1loc (R×R+), for any smooth function h(T ).
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Proof. From (2.20), we have that

(Sh(T ) +
∫ T
c h

′(τ)β′(τ)dτ)t + (h(T )f(S, T ) +
∫ T
c h

′(τ)α′(τ)dτ)x

= ε(Sh(T ) +
∫ T
c h

′(τ)β′(τ)dτ − δh(T ))xx

−εh′′(T )(S + β′(T )− δ)T 2
x + δ(h(T ))t.

(2.26)

Since β′(T ) ≤ −1, we have from the estimate in (2.22) that

εδ(T ε,δx )2 is bounded in L1
loc(R×R+). (2.27)

If we let δ = O(ε
1
2 ), we have from (2.18) that the following terms on the right-

hand side of (2.26)

ε(Sh(T ) +
∫ T

c
h′(τ)β′(τ)dτ − δh(T ))xx + δ(h(T ))t are compact in H−1loc (R×R+)

(2.28)

and

−εh′′(T )(S + β′(T )− δ)T 2
x is bounded in L1

loc(R×R+). (2.29)

Thus the right-hand side of (2.26) is compact in W−1,α, α ∈ (1, 2) by using

Sobolev’s embedding theorem. Since the left-hand side of (2.26) is bounded in

W−1,∞, the proof of Lemma 5 is completed by using Murat’s embedding theorem.

Lemma 6 If meas {T : β′′(T ) = 0} = 0 or β(T ) = bT, b < −1, then there exists

a subsequence (still labelled T ε,δ(x, t)) such that

T ε,δ(x, t)→ T (x, t) (2.30)

a.e. on any bounded and open set Ω ⊂ R×R+.

If β(T ) = −T , then there exists a subsequence (still labelled T ε,δ(x, t)) such

that T ε,δ(x, t)→ T (x, t) almost everywhere on the set S+ = {(x, t) : 0 ≤ S(x, t) <

1}, where S(x, t) is the weak limit of Sε,δ(x, t).

Proof. First, we may apply for the div-curl lemma in the compensated compact-

ness theory [25] to the following special pairs of functions

(c, h(T ε,δ)), (Sε,δ, f(Sε,δ, T ε,δ)) (2.31)

to obtain

Sε,δ · h(T ε,δ) = Sε,δh(T ε,δ), (2.32)
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where f(θε,δ) denotes the weak-star limit of f(θε,δ).

Second, letting h(T ) = T and h(T ) = β(T ) in (2.25) respectively, we can

apply for the div-curl lemma to the pairs of functions

(c, β(T ε,δ)−β(k)), (Sε,δ(T ε,δ−k)+β(T ε,δ)−β(k), (T ε,δ−k)f(Sε,δ, T ε,δ)+α(T ε,δ))

(2.33)

to obtain

Sε,δ(T ε,δ − k)(β(T ε,δ)− β(k)) + (β(T ε,δ)− β(k))2

= Sε,δ(T ε,δ − k) · β(T ε,δ)− β(k) + (β(T ε,δ)− β(k))2,

(2.34)

and to the pairs of functions (c, T ε,δ − k) and

(Sε,δ(β(T ε,δ)− β(k)) +
∫ T ε,δ

k
(β′(τ))2dτ, h(T ε,δ)f(Sε,δ, T ε) +

∫ T ε

0
h′(τ)α′(τ)dτ)

(2.35)

to obtain

Sε,δ(T ε,δ − k)(β(T ε,δ)− β(k)) + (T ε,δ − k)
∫ T ε,δ
k (β′(τ))2dτ

= (T ε,δ − k) · Sε,δ(β(T ε,δ)− β(k)) + (T ε,δ − k) ·
∫ T ε,δ
k (β′(τ))2dτ .

(2.36)

Deleting the common term Sε,δ(T ε,δ − k)(β(T ε,δ)− β(k)) in (2.34) and (2.36), we

have from (2.32) that

(T ε,δ − k)
∫ T ε,δ
k (β′(τ))2dτ − (β(T ε,δ)− β(k))2

= (T ε,δ − k) ·
∫ T ε,δ
k (β′(τ))2dτ − (β(T ε,δ)− β(k))2,

(2.37)

which is same to the weak limit equation we obtained for the following scalar

conservation law with the viscosity (see Theorem 3.1.1 in [22] for the details)

Tt + β(T )x = εTxx. (2.38)

Therefore, If meas{T : β′′(T ) = 0} = 0, then there exists a subsequence (still

labelled T ε,δ(x, t)) such that T ε,δ(x, t)→ T (x, t).

If β(T ) = bT , we apply for the div-curl lemma to the following pairs of

functions

(c, T ε,δ), (Sε,δT ε,δ + bT ε,δ), T ε,δf(Sε,δ, T ε,δ) + α(T ε,δ)) (2.39)
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to obtain

Sε,δ(T ε,δ)2 + b(T ε,δ)2 = (Sε,δT ε,δ + bT ε,δ) · T ε,δ = ST 2 + bT 2. (2.40)

Letting h(T ) = T 2 in (2.32), we know that Sε,δ(T ε,δ)2 = S(T ε,δ)2 and so from

(2.40) that

(S + b)(T ε,δ − T )2 = 0. (2.41)

Since S ≤ 1, if b < −1, then there exists a subsequence (still labelled T ε,δ(x, t)

) such that T ε,δ(x, t) → T (x, t) a.e. on any bounded and open set Ω ⊂ R × R+,

and if b = −1, T ε,δ(x, t) → T (x, t) almost everywhere on the set S+ = {(x, t) :

0 ≤ S(x, t) < 1}. Lemma 6 is proved.

Lemma 7 If meas {S : fSS(S, T ) = 0} = 0 for any fixed T , then there exists a

subsequence (still labelled Sε(x, t)) such that

Sε,δ(x, t)→ S(x, t) (2.42)

a.e. on any bounded and open set Ω ⊂ R×R+.

Proof. (I). First, we suppose β′′(T )fT (S, T ) ≥ 0 (or ≤ 0). Then it is easy to

prove that

f(Sε,δ, T ε,δ)t + (
∫ Sε,δ

1
f 2
S(τ, T ε,δ)dτ)x are compact in H−1loc (R×R+). (2.43)

In fact, multiplying (2.7) by fS, (2.6) by fT respectively, then adding the result,

we have (for simplicity, we omit the superscript ε, δ)

ft + (
∫ S
1 f

2
S(τ, T )dτ)x

= εfSSxx + εfTTxx + 2εfT
S+β′(T )−δSxTx + ε β′′(T )fT

S+β′(T )−δT
2
x

+
∫ S
1 2fS(τ, T )fST (τ, T )dτTx − fSfTTx − fT f+α′(T )

S+β′(T )−δTx

= ε(fSSx + fTTx)x − ε(fSSS2
x + 2fSTSxTx + fTTT

2
x ) + 2εfT

S+β′(T )−δSxTx

+ε β′′(T )fT
S+β′(T )−δT

2
x +

∫ S
1 2fS(τ, T )fST (τ, T )dτTx − fSfTTx − fT f+α′(T )

S+β′(T )−δTx.

(2.44)
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Since |T ε,δx |, ε(Sε,δx )2 and ε((δ − β′(T ) − S)(T ε,δx )2 are bounded in L1
loc(R × R+),

the following terms on the right-hand side of (2.44)

| − εfSSS2
x +

∫ S

1
2fS(τ, T )fST (τ, T )dτTx − fSfTTx| ≤ εMS2

x +M |Tx| (2.45)

are bounded in L1
loc(R × R+). Since f(1, T ) = 1, then fT (1, T ) = fTT (1, T ) = 0

and

| − εfTTT 2
x − fT

f+α′(T )
S+β′(T )−δTx|

= |ε(fTT (S, T )− fTT (1, T )))T 2
x + (fT (S, T )− fT (1, T )) f+α′(T )

S+β′(T )−δTx|

= ε|fTTS(θ1, T )(S − 1)T 2
x + |fTS(θ2, T )(S − 1) f+α′(T )

S+β′(T )−δTx|

≤ εM(δ − β′(T )− S)(T ε,δx )2 +M |Tx|

(2.46)

are bounded in L1
loc(R×R+), where θi ∈ (S, 1), i = 1, 2.

In we choose g(S) = (1 + δ − S)l, l ∈ (0, 1) in (2.23), since the following term

in (2.23)

|g′(S)fT (S, T )| = |g′(S)(fT (S, T )− fT (1, T ))| ≤ α(1 + δ− S)l|fTS(θ3, T )| (2.47)

is uniformly bounded, we can prove from (2.23) that

ε(1 + δ − S)l−2(Sε,δx )2 are bounded in L1
loc(R×R+), (2.48)

and so the terms on the right-hand side of (2.44)

| − 2εfSTSxTx + 2εfT
S+β′(T )−δSxTx| = 2ε| − fST + fT (S,T )−fT (1,T )

S+β′(T )−δ ||SxTx|

≤ εM |SxTx| ≤ εM(1 + δ − S)−1(Sε,δx )2 + εM(1 + δ − S)(T ε,δx )2
(2.49)

are bounded in L1
loc(R×R+).

Since β′′(T )fT (S, T ) ≥ 0 (or ≤ 0), we may multiply a suitable nonnegative

test function to (2.44), to obtain that

ε| β′′(T )fT
S + β′(T )− δ

|T 2
x are bounded in L1

loc(R×R+). (2.50)

Similarly, we can prove that the left terms on the right-hand side of (2.44)

ε(fSSx + fTTx)x are compact in H−1loc (R×R+), (2.51)
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so, the the right-hand side of (2.44) is compact in W−1,α
loc (R × R+), α ∈ (1, 2). It

is clear that the left-hand side of (2.44) is bounded in W−1,∞
loc (R × R+), so the

Murat’s theorem gives us again the conclusion in (2.43).

Second, we apply for the div-curl lemma to the pairs of functions

(Sε,δ, f(Sε,δ, T ε,δ)) and (f(Sε,δ, T ε,δ),
∫ Sε,δ

1
f 2
S(τ, T )dτ) (2.52)

to obtain
Sε,δ

∫ Sε,δ
1 f 2

S(τ, T ε,δ)dτ − f 2(Sε,δ, T ε,δ)

= Sε,δ ·
∫ Sε,δ
1 f 2

S(τ, T ε,δ)dτ − (f(Sε,δ, T ε,δ))2.

(2.53)

Using the convergence given in Lemma 6, we have

|Sε,δ
∫ Sε,δ
1 f 2

S(τ, T ε,δ)dτ − Sε,δ
∫ Sε,δ
1 f 2

S(τ, T )dτ |

= |Sε,δ
∫ Sε,δ
1 2fS(τ, θ)fST (τ, θ)(T ε,δ − T )dτ | ≤M |(Sε,δ − 1)(T ε,δ − T )| → 0,

(2.54)

where M is a constant independent of ε, δ and θ ∈ (T, T ε,δ); and

|f 2(Sε,δ, T ε,δ)− f 2(Sε,δ, T )| = 2|f(Sε,δ, θ)fT (Sε,δ, θ)(T ε,δ − T )|

= |f(Sε,δ, θ)(fT (Sε,δ, θ)− fT (1, θ))(T ε,δ − T )| ≤M |(Sε,δ − 1)(T ε,δ − T )| → 0
(2.55)

since fT (1, θ) = 0, thus we may replace T ε,δ(x, t) in (2.53) by T (x, t) and obtain

Sε,δ
∫ Sε,δ
1 f 2

S(τ, T )dτ − f 2(Sε,δ, T )

= Sε,δ ·
∫ Sε,δ
1 f 2

S(τ, T )dτ − (f(Sε,δ, T ))2.

(2.56)

Therefore under the condition β′′(T )fT (S, T ) ≥ 0 (or ≤ 0), the proof of Lemma

7 can be completed by using the previous results on scalar hyperbolic equation if

we consider T in (2.56) as a parameter ([26, 22]).

(II). Second, we prove Lemma 7 without the assumption β′′(T )fT (S, T ) ≥ 0

(or ≤ 0). Let

v = g(S), F (v, T ) =
∫ S

1
g′(τ)fS(τ, T )dτ. (2.57)
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Then we have from (2.23) that

vt + F (v, T )x

= εg(S)xx − εg′′(S)S2
x

−(g′(S)fT (S, T )−
∫ S
1 g
′(τ)fST (τ, T )dτ)Tx.

(2.58)

Using the estimates given in (2.17) and (2.18), for any smooth function g(S), we

have that

vε,δt + F (vε,δ, T ε,δ)x are compact in H−1loc (R×R+). (2.59)

Multiplying (2.58) by Fv, (2.6) by FT respectively, then adding the result, we

have (for simplicity, we omit the superscript ε, δ)

F (v, T )t + (
∫ v
1 F

2
v (τ, T )dτ)x

= εFvvxx + εFTTxx + 2εFT
S+β′(T )−δSxTx + ε β′′(T )FT

S+β′(T )−δT
2
x

+
∫ v
1 2Fv(τ, T )FvT (τ, T )dτTx − FvFTTx − FT f+α′(T )

S+β′(T )−δTx

−εFvg′′(S)S2
x − Fv(g′(S)fT (S, T )−

∫ S
0 g
′(τ)fST (τ, T )dτ)Tx

= ε(Fvvx + FTTx)x − ε(Fvvv2x + 2FvTvxTx + FTTT
2
x ) + 2εFT

S+β′(T )−δSxTx

+ε β′′(T )FT
S+β′(T )−δT

2
x +

∫ v
1 2Fv(τ, T )FvT (τ, T )dτTx − FvFTTx − FT f+α′(T )

S+β′(T )−δTx

−εFvg′′(S)S2
x − Fv(g′(S)fT (S, T )−

∫ S
0 g
′(τ)fST (τ, T )dτ)Tx.

(2.60)

Now we choose g(S) = S − 1. By simple calculations

Fv = FS
dS

dv
= fS(S, T ), Fvv =

fSS(S, T )

g′(S)
(2.61)

and

|FT | = |
∫ S

1
g′(τ)fST (τ, T )dτ | ≤M(S − 1)2. (2.62)

Thus the following terms on the right-hand side of (2.60)

2εFT
S+β′(T )−δSxTx + ε β′′(T )FT

S+β′(T )−δT
2
x

+
∫ v
1 2Fv(τ, T )FvT (τ, T )dτTx − FvFTTx − FT f+α′(T )

S+β′(T )−δTx

−εFvg′′(S)S2
x − Fv(g′(S)fT (S, T )−

∫ S
0 g
′(τ)fST (τ, T )dτ)Tx

(2.63)
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are uniformly bounded in L1
loc(R×R+) and so compact in W−1,α

loc (R×R+), where

α ∈ (1, 2), by the Sobolev’s embedding theorem.

Similarly

ε(Fvvv
2
x + 2FvTvxTx + FTTT

2
x )

= ε(fSSg
′(S)S2

x + 2fSTg
′(S)SxTx +

∫ S
1 g
′(τ)fSTT (τ, T )dτT 2

x )
(2.64)

are uniformly bounded in L1
loc(R×R+) and so compact in W−1,α

loc (R×R+).

Using the estimates given in (2.17) and (2.18) again, we have that the terms

on the right-hand side of (2.60)

ε(Fvvx + FTTx)x = ε(fSg
′(S)Sx +

∫ S

1
g′(τ)fST (τ, T )dτTx (2.65)

are compact in H−1loc (R×R+).

Since the left-hand side of (2.60)

F (vε,δ, T ε,δ)t + (
∫ vε,δ

1
F 2
v (τ, T ε,δ)dτ)x (2.66)

are uniformly bounded in W−1,∞
loc (R × R+), then the Murat compact embedding

theorem [?] shows that they are also compact in H−1loc (R×R+).

So, if we replace (Sε,δ, f(Sε,δ, T ε,δ)) in (2.56) by (vε,δ, F (vε,δ, T ε,δ)), we can

also prove the pointwise convergence of vε,δ or Sε,δ given in (2.42). Thus Lemma

7 is proved.

Now we are going to prove Theorem 1.

Proof of Theorem 1. When meas {T : β′′(T ) = 0} = 0 or β′(T ) = bT, b < −1,

since the pointwise convergence of Sε,δ and T ε,δ obtained in Lemmas 6 and 7,

we may prove that (S, T ) satisfies (1.1) in the sense of distributions by letting

ε, δ in (2.1) go to zero directly. Similarly, we can prove the inequality η(S, T )t +

q(S, T )x ≤ 0, in the sense of distributions, for any smooth, convex, entropy

η(S,C) and the corresponding entropy flux q(S,C). So, the existence (1) in

Theorem 1 is proved.
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Let α(T ) = β(T ) = −1. First, we have

|f(Sε,δ, T ε,δ)− f(S, T )|

≤ |f(Sε,δ, T ε,δ)− f(S, T ε,δ)|+ |f(S, T ε,δ)− f(S, T )|

= |fS(θ1, T
ε,δ)(Sε,δ − S)|+ |fT (S, θ2)(T

ε,δ − T )|

= |fS(θ1, T
ε,δ)(Sε,δ − S)|+ |(fT (S, θ2)− fT (1, θ2))(T

ε,δ − T )|

= |fS(θ1, T
ε,δ)(Sε,δ − S)|+ |fTS(θ3, θ2)(S

ε,δ − 1)(T ε,δ − T )| → 0,

(2.67)

in the sense of distributions, since the convergence obtained in (2.30) and (2.42).

Similarly, letting F (S, T ) = T (f(S, T )− 1), we have F (1, T ) = 0 and

|T ε,δ(f(Sε,δ, T ε,δ)− 1)− T (f(S, T )− 1)|

= |F (Sε,δ, T ε,δ)− F (S, T )| → 0,
(2.68)

in the sense of distributions, so the limit (S, T ) satisfies system (1.1) by letting

ε, δ go to zero in (2.1) directly.

Second, let η(S,C) ∈ C2 be a convex, weak entropy of system (1.1) with the

corresponding weak entropy flux q(S,C), where C = ST − T . We multiply (2.1)

by (ηS, ηC) to obtain (for simplicity, we omit the superscripts ε and δ)

η(S,C)t + q(S,C)x

= εη(S,C)xx − ε(ηSSS2
x + 2ηSCSxCx + ηCCC

2
x) + ηC(S,C)(δTt − εδTxx)

≤ εη(S,C)xx + δηC(S,C)(2ε Sx
S−(1+δ)Tx −

f−1
S−(1+δ)Tx).

(2.69)

Since η(1, C) = c1, q(1, C) = c2, we can prove that

(η(Sε,δ, T ε,δ), q(Sε,δ, T ε,δ))→ (η(S,C), q(S,C)), (2.70)

in the sense of distributions. Moreover,

δ|ηC(S,C)
f − 1

S − (1 + δ)
Tx| = δ|ηC(S,C)

f(S, T )− f(1, T )

S − (1 + δ)
Tx| ≤ δM |Tx| → 0,

(2.71)
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and
2εδ|ηC(S,C) Sx

S−(1+δ)Tx|

= 2εδ|(ηC(S,C)− ηC(1, C)) Sx
S−(1+δ)Tx|

≤ εδM |SxTx| → 0,

(2.72)

in the sense of distributions. Therefore, letting ε, δ go to zero in (2.69), we have

that η(S,C)t + q(S,C)x ≤ 0 in the sense of distributions, and so complete the

proof of Theorem 1.
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[24] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5

(1978), 489-507.

[25] T. Tartar, Compensated compactness and applications to partial differential

equations, In: Research Notes in Mathematics, Nonlinear Analysis and Me-

chanics, Heriot-Watt symposium, Vol. 4, ed. R. J. Knops, Pitman Press,

London, 1979. Anal., 261 (2011), 2797-2815.

[26] K. H. Karlsen and J. D. Towers, Convergence of the Lax-Friedrichs scheme

and stability for conservation laws with a discontinuous space-time dependent

flux, Chinese Annals of Mathematics, Ser. B., 25 (2004), 287-318.

18


