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Abstract. In this paper, we introduce the flux approximation coupled with

the classical viscosity method to study the global entropy solutions to the

Cauchy problem of the inhomogeneous Euler-Poisson equations of two-carrier
types in one dimension with arbitrarily large initial data, and arbitrary adia-

batic exponent γ > 1.

.

1. Introduction

In this paper, we consider the following Euler-Poisson equations of two-carrier
types in one dimension

(1.1)


ρit + (ρiui)x = −R(ρ1, ρ2),

(ρiui)t + (ρi(ui)
2 + Pi(ρi))x = ρiE − ρiui

τi
, i = 1, 2,

Ex = ρ1 + ρ2 − b(x),

in the region (−∞,+∞)× [0, T ], with bounded initial data

(1.2) (ρi, ui)|t=0 = (ρi0(x), ui0(x)), lim
|x|→∞

(ρi0(x), ui0(x)) = (0, 0), ρi0(x) ≥ 0

and a condition at −∞ for the electric potential

(1.3) lim
x→−∞

E(x, t) = E0, for a.e. t ∈ (0,∞),

where T,E0 are fixed constants, (ρ1, u1) and (ρ2, u2) are the (density, velocity)
pairs for electrons (i = 1) and holes (i = 2) respectively, E is the electric potential
and the given function b(x) represents the impurity doping profile (cf. [1]-[10] and
the references cited therein). The pressure-density relations are Pi(ρi) = 1

γi
(ρi)

γi ,

where γi > 1 correspond to the adiabatic exponents, τi > 0 are the momentum
relaxation times.

The recombination-generation rate R in (1.1) takes the form

(1.4) R(ρ1, ρ2) = Q(ρ1, ρ2)(ρ1ρ2 − 1)

1991 Mathematics Subject Classification. Primary 35L65, 76N10,65M12,78A35.
Key words and phrases. Global L∞ solution; Euler-Poisson equations; Two-carrier types;

flux approximation; compensated compactness.
Corresponding authors: Xianting Wang and Yun-guang Lu.

1



2 SILU YIN, XIANTING WANG, YUN-GUANG LU, AND CHRISTIAN KLINGENBERG

with a nonnegative, locally Lipschitz continuous function Q(ρ1, ρ2) satisfying
(1.5)

0 ≤ Q(ρ1, ρ2) =
q0

(1 + ρ1 + ρ2)
,
|R(ρ1, ρ2)|

ρi
≤ q0, for all ρ1 > 0, ρ2 > 0,

where q0 is a positive constant.
The Initial-boundary value problem of (1.1) with the condition (1.5) onR(ρ1, ρ2)

was first studied in [1, 2], where the adiabatic exponents γi are limited in the region
(1, 3] to ensure the uniform L∞ estimates of the viscosity approximation solutions
(cf. the proof of (3.9) in[1]), or of the approximation solutions constructed by the
Godunov scheme with fractional step (cf. [2]), respectively. The Cauchy problem of
(1.1) for the homogeneous case (R(ρ1, ρ2) = 0) was studied in [3, 4] for any γi > 1,
where the approximation solutions were constructed by the Lax-Friedrichs scheme
and the Godunov scheme. Due to the lack of a technique to obtain the a-priori L∞

estimate, it is a long-standing open problem to study the Cauchy problem of (1.1)
by using the vanishing viscosity method. In [11], a Lp solution, 1 < p < ∞, was
studied by using the vanishing viscosity method.

In this paper, we apply the flux approximation coupled with the classical viscos-
ity method, introduced in [12], to study the global entropy solutions of the Cauchy
Problem (1.1)-(1.3) and (1.5) with arbitrarily large initial data, and arbitrary adi-
abatic exponents γi > 1.

We consider

(1.6)


ρit + ((ρi − 2δ)ui)x = ερixx − ρi−2δ

ρi
R(ρ1, ρ2),

(ρiui)t + (ρi(ui)
2 − δ(ui)2 + Si(ρi, δ))x = ε(ρiui)xx + ρiE − ρiui

τi
,

Ex = (ρ1 − 2δ) + (ρ2 − 2δ)− b(x)

with the initial data

(1.7) (ρε,δi (x, 0), uε,δi (x, 0)) = (ρi0(x) + 2δ, ui0(x)) ∗Gε,
where (ρi0(x), ui0(x)) are given in (1.2), δ > 0 denotes a regular perturbation
constant, the perturbation pressures

(1.8) Si(ρi, δ) =

∫ ρi

2δ

t− 2δ

t
P ′i (t)dt,

Gε is a mollifier such that (ρε,δi (x, 0), uε,δi (x, 0)) are smooth and

(1.9) lim
|x|→∞

(ρε,δi (x, 0), uε,δi (x, 0)) = (2δ, 0), lim
|x|→∞

(ρε,δix (x, 0), uε,δix (x, 0)) = (0, 0).

The main result of this paper is given in the following:

Theorem 1.1. Let Pi(ρi) = 1
γi

(ρi)
γi , the initial data 0 ≤ ρi0(x) ∈ L∞(R) ∩

L1(R), ui0(x) ∈ L∞(R), the doping profile b(x) ∈ L1(R) and τi be sufficiently small
such that

(1.10) 0 < τi <
2

(γi + 1)q0
.

Then, (I) for fixed ε, δ > 0 and γi > 1, the problem (1.5)-(1.7) has a global smooth

solution (ρε,δi , uε,δi , Eε,δ) satisfying
(1.11)

2δ ≤ ρε,δi ≤M(t), |uε,δi | ≤M(t), |Eε,δ| ≤M(t), |ρε,δi (·, t)− 2δ|L1(R) ≤M(t),
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where M(t) is a bounded function of t, which is independent of ε, δ, τi, but could
tend to infinity when t goes to infinity; and

(II) there exists a subsequence of (ρε,δi (x, t), uε,δi (x, t), Eε,δ(x, t)), which con-
verges pointwisely to a weak entropy solution (ρi(x, t), ui(x, t), E(x, t)) of the prob-
lem (1.1)-(1.3) as δ, ε tend to zero.

Definition 1. (ρi(x, t), ui(x, t), E(x, t)) is called a weak entropy solution of the
problem (1.1)-(1.3) if
(1.12)

∫∞
0

∫∞
−∞ ρiφt + (ρiui)φx −R(ρ1, ρ2)φ(x, t)dxdt+

∫∞
−∞ ρi0(x)φ(x, 0)dx = 0,∫∞

0

∫∞
−∞ ρiuiφt + (ρiu

2
i + Pi(ρi))φx + (ρiE(x, t)− ρiui

τ )φ(x, t)dxdt

+
∫∞
−∞ ρi0(x)ui0(x)φ(x, 0)dx = 0,∫∞

0

∫∞
−∞E(x, t)φx + (ρ1 + ρ2 − b(x))φ(x, t)dxdt

holds for i = 1, 2, all test function φ ∈ C1
0 (R×R+) and

(1.13)

∫∞
0

∫∞
−∞ η(ρi,mi)φt + q(ρi,mi)φx

−(R(ρ1, ρ2)η(ρi,mi)ρi − (ρiE(x, t)− ρiui
τi

)η(ρi,mi)mi)φ(x, t)dxdt ≥ 0

holds for any non-negative test function φ ∈ C∞0 (R×R+−{t = 0}), where mi = ρiui
and (η, q) is a pair of convex entropy-entropy flux of system (1.1).

2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. Multiplying the first two equations
of (1.6) by (∂wi∂ρi

, ∂wi∂mi
) and ( ∂zi∂ρi

, ∂zi∂mi
), respectively, we have

(2.1)

wit + λδi2wix = εwixx + 2ε
ρi
ρixwix − (γi+1)ε

2 (ρi)
γi−5

2 ρ2ix

−((ρi)
θi − mi

ρi
)ρi−2δρi

R(ρ1,ρ2)
ρi

− ui
τi

+ E

= εwixx + 2ε
ρi
ρixwix − (γi+1)ε

2 (ρi)
γi−5

2 ρ2ix

−( θi−12 wi + θi+1
2 zi)

ρi−2δ
ρi

R(ρ1,ρ2)
ρi

− wi−zi
2τi

+ E

and

(2.2)

zit + λδi1zix = εzixx + 2ε
ρi
ρixzix − (γi+1)ε

2 (ρi)
γi−5

2 ρ2ix

−((ρi)
θi + mi

ρi
)ρi−2δρi

R(ρ1,ρ2)
ρi

+ ui
τi
− E

= εzixx + 2ε
ρi
ρixzix − (γi+1)ε

2 (ρi)
γi−5

2 ρ2ix

−( θi+1
2 wi + θi−1

2 zi)
ρi−2δ
ρi

R(ρ1,ρ2)
ρi

+ wi−zi
2τi
− E,

where

(2.3) λδi1 =
mi

ρi
− ρi − 2δ

ρi

√
P ′i (ρi), λδi2 =

mi

ρi
+
ρi − 2δ

ρi

√
P ′i (ρi)
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are two eigenvalues of the approximation system (1.6), mi = ρiui denote the mo-
mentums and (wi, zi) are the corresponding Riemann invariants given by

(2.4) zi(ρi, ui) =
1

θi
(ρi)

θi − mi

ρi
, wi(ρi, ui) =

1

θi
(ρi)

θi +
mi

ρi
, θi =

γi − 1

2
.

Applying the maximum principle to the first equation in (1.6), we first have the
a-priori estimates ρi ≥ 2δ.

Integrating the both sides of the first equation in (1.6) over R× [0, t], we obtain

(2.5)

∫∞
−∞ ρi(x, t)− 2δdx =

∫∞
−∞ ρε,δi0 (x, 0)− 2δdx−

∫ t
0

∫∞
−∞

ρi−2δ
ρi

R(ρ1, ρ2)dxdt

≤
∫∞
−∞ ρi0(x, 0)dx+

∫ t
0

∫∞
−∞(ρi − 2δ)Q(ρ1,ρ2)

ρi
dxdt

≤M1 + q0
∫ t
0

∫∞
−∞(ρi − 2δ)dxdt

and thus

(2.6)

∫ ∞
−∞

ρi(x, t)− 2δdx ≤M2e
q0t,

where Mi are suitable positive constants, which depend only the initial data, but
are independent of ε and δ.

By integrating the third equation in (1.6), we obtain

(2.7) |E| = |E0 +

∫ x

−∞
(ρ1(x, t)− 2δ) + (ρ2(x, t)− 2δ)− b(x)dx| ≤M3e

q0t.

We make the transformation

(2.8) wi = Wi + βeαt, zi = Zi + βeαt,

where

(2.9) β = max{1, |wio(x)|L∞ , |zio(x)|L∞}, α = max{q0, θiq0 +M3}.

Since

(ρi)
θi =

θi
2

(wi + zi) =
θi
2

(Wi + Zi + 2βeαt),

ui =
mi

ρi
=

1

2
(wi − zi) =

1

2
(Wi − Zi)

and

−αβeαt + q0θiβe
αt ± E ≤ 0,

then (2.1), (2.2) can be rewritten as follows:
(2.10)

Wit + λδi2Wix = εWixx + 2ε
ρi
ρixWix − αβeαt − (γi+1)ε

2 (ρi)
γi−5

2 ρ2ix

−( θi−12 Wi + θi+1
2 Zi + θiβe

αt)ρi−2δρi

R(ρ1,ρ2)
ρi

− Wi−Zi
2τi

+ E

≤ εWixx + 2ε
ρi
ρixWix − ( θi−12

ρi−2δ
ρi

R(ρ1,ρ2)
ρi

+ 1
2τi

)Wi + ( 1
2τi
− θi+1

2
ρi−2δ
ρi

R(ρ1,ρ2)
ρi

)Zi
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and
(2.11)

Zit + λδi1Zix = εZixx + 2ε
ρi
ρixZix − αβeαt − (γi+1)ε

2 (ρi)
γi−5

2 ρ2ix

−( θi+1
2 Wi + θi−1

2 Zi + θiβe
αt)ρi−2δρi

R(ρ1,ρ2)
ρi

+ Wi−Zi
2τi

− E

≤ εZixx + 2ε
ρi
ρixZix − ( θi−12

ρi−2δ
ρi

R(ρ1,ρ2)
ρi

+ 1
2τi

)Zi + ( 1
2τi
− θi+1

2
ρi−2δ
ρi

R(ρ1,ρ2)
ρi

)Wi,

where the coefficient functions before Zi in (2.10) and Wi in (2.11)

(2.12)
1

2τi
− θi + 1

2

ρi − 2δ

ρi

R(ρ1, ρ2)

ρi
≥ 1

2τi
− θi + 1

2
q0 > 0

due to the conditions (1.5) and (1.10).
From (2.8), we have Wi(x, 0) ≤ 0, Zi(x, 0) ≤ 0, so, we may apply the maximum

principle to (2.10) and (2.11) to obtain the estimates Wi(x, t) ≤ 0, Zi(x, t) ≤ 0.
Therefore we have the following estimates

(2.13) wi(x, t) ≤ βeαt, zi(x, t) ≤ βeαt,

which deduce the a-priori estimates in (1.11).
To prove the part (I) in Theorem 1.1, we may first obtain a local solution of the

Cauchy problem (1.5)-(1.7) by applying the general contracting mapping principle
to an integral representation of (1.6). After we have the estimates in (1.11), the
standard method on nonlinear parabolic system could help us to extend the local
time step by step and deduce a global solution (cf. [13]). So, Part (I) of Theorem
1.1 is proved.

To prove the part (II) in Theorem 1.1, since η(ρε,δi , uε,δi )t + q(ρε,δi , uε,δi )x are

compact inH−1loc (R×R+), for any weak entropy-entropy flux pair (η(ρi, ui), q(ρi, ui))
of system (1.1), as proved in [12], then by applying the compactness frameworks
given in [14] for 1 < γ < 3 and in [15] for γ ≥ 3, we can easily prove the pointwise

convergence (ρε,δi (x, t), uε,δi (x, t))→ (ρi(x, t), ui(x, t)) as ε, δ go to zero.
To deduce the pointwise convergence Eε,δ(x, t) → E(x, t), we first prove the

following lemma:

Lemma 2.1. Both Eε,δ(x, t)t and Eε,δ(x, t)x are compact in H−1loc (R×R+).

Proof of Lemma 2.1. From the bounded estimate (2.7), we have that
Eε,δ(x, t)x are bounded in W−1loc (R × R+). Moreover, from the L1 estimates in

(2.6), we have from the third equation in (1.6) that |Eε,δx |L1 are bounded and so
Eε,δx are compact in H−1loc (R×R+) by using the Murat’s lemma [16].

Using the third and the first equations in (1.6), we have

(2.14)

Eε,δt =
∫ x
−∞ ρ1t(y, t) + ρ2t(y, t)dy

= −
∑2
i=1((ρi − 2δ)ui + ερix −

∫ x
−∞

ρi(y,t)−2δ
ρi(y,t)

R(ρ1(y, t), ρ2(y, t))dy),

which being locally bounded in L1(R×R+) . Thus Eε,δt are compact inH−1loc (R×R+)
by using the Murat’s lemma [16] again. Lemma 2.1 is proved.

We may apply the Div-Curl lemma to the pairs of functions

(2.15) (0, Eε,δ), (Eε,δ, 0),



6 SILU YIN, XIANTING WANG, YUN-GUANG LU, AND CHRISTIAN KLINGENBERG

to obtain

(2.16) Eε,δ · Eε,δ = (Eε,δ)2,

which deduces the pointwise convergence of Eε,δ(x, t). Thus the part (II), and so
Theorem 1.1, is proved.
Acknowledgments: This paper is partially supported by Zhejiang Province NSFC
grant Nos. LY20A010023 and LQ19A010006, the NSF grant Nos. 12071106 and
12001149 of China and a Humboldt renewed research fellowship of Germany.

References

[1] W. Fang and K. Ito, Weak solutions to a one-dimensional hydrodynamic model of two carrier

types for semiconductors, Nonlinear Analysis, TMA, 28 (1997), 947-963.

[2] D.-H Wang, Global solutions to the Euler-Poisson equations of two-carrier types in one di-
mension, Z. Angew. Math. Phys., 48 (1997), 680-693.

[3] A. Jungel and Y.J.Peng, A hierarchy of hydrodynamic models for plasmas: zero-relaxation
time-limits, Comm. Partial Differential Equations, 58 (1999), 1007-1033.

[4] R. Natalini, The Bipolar Hydrodynamic Model for Semiconductors and the Drift-Diffusion

Equations, J. of Math. Anal. Appl., 198 (1996), 262-281.
[5] P. Degond and P.A. Markowich, On a one-dimensional steady-state hydrodynamic model for

semiconductors, Appl. Math. Letters, 3 (1990), 25-29.

[6] F.M. Huang, T.H. Li and H.M. Yu, Weak solutions to isothermal hydrodynamic model for
semiconductors, J. Differential Equations, 247 (2009), 3070-3099.

[7] F.M. Huang, T. H. Li, H.M. Yu and D.F. Yuan, Large time behavior of entropy solutions

to 1-d unipolar hydrodynamic model for semiconductor devices, Z. Angew. Math. Phys., 69
(2018), 69.

[8] F.M. Huang, R.H. Pan and H.M. Yu, Large time behavior of Euler-Poisson system for semi-

conductor, Science in China: Mathematics, 51 (2008), 965-972.
[9] P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: the

Cauchy problem, Proc. Roy. Soc. Edinburgh, 125A (1995), 115-131.
[10] P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semconductors and

relaxation to the drift-difusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145.

[11] Y. Hu, C. Klingenberg and Y. Lu, Zero Relaxation Time Limits to A Hydrodynamic Model
of Two Carrier Types for Semiconductors, Mathematische Annalen, 382,?(2022), 1031-1046.

[12] Y.-G. Lu, Global Existence of Resonant Isentropic Gas Dynamics, Nonlinear Analysis, Real

World Applications, 12(2011), 2802-2810.
[13] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin-

Heidelberg-New York, 1983.

[14] P. L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions
for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,

Comm. Pure Appl. Math., 49 (1996), 599-638.

[15] P. L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics
and p-system, Commun. Math. Phys., 163 (1994), 415-431.
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