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The Cauchy problem for a simplified shallow elastic fluids model, one 3 × 3 system of Temple’s type, is studied and a global weak
solution is obtained by using the compensated compactness theorem coupled with the total variation estimates on the first and third
Riemann invariants, where the second Riemann invariant is singular near the zero layer depth (𝜌 = 0). This work extends in some
sense the previous works, (Serre, 1987) and (Leveque and Temple, 1985), which provided the global existence of weak solutions for
2 × 2 strictly hyperbolic system and (Heibig, 1994) for 𝑛 × 𝑛 strictly hyperbolic system with smooth Riemann invariants.

1. Introduction

In [1], the authors proposed a new reduced model for
gravity-driven free-surface flows of shallow elastic fluids. It is
obtained by an asymptotic expansion of the upper-convected
Maxwell model for elastic fluids. The viscosity is assumed
small, but the relaxation time is kept finite. The simplified
system of (5.6) in [1] is as follows:

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢

2
+ 𝜋)
𝑥
= 0,

(𝜌
𝜋

𝑠2
)
𝑡

+ (𝜌𝑢
𝜋

𝑠2
+ 𝑢)
𝑥

= 0,

𝑠
𝑡
+ 𝑢𝑠
𝑥
= 0,

𝑐
𝑡
+ 𝑢𝑐
𝑥
= 0.

(1)

Since the variable 𝑐 in the last equation is independent of the
first four equations in (1), we remove it and let V = 𝜋/𝑠

2, 𝑠 =
const. > 0 to obtain the following conservation system:

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢

2
+ 𝑠
2V)
𝑥
= 0,

(𝜌V)
𝑡
+ (𝜌𝑢V + 𝑢)

𝑥
= 0.

(2)

By simple calculations, three eigenvalues of system (2) are

𝜆
1
= 𝑢 −

𝑠

𝜌
, 𝜆

2
= 𝑢, 𝜆

1
= 𝑢 −

𝑠

𝜌
(3)

with corresponding Riemann invariants

𝑅
1
= 𝑠
2V − 𝑠𝑢, 𝑅

2
= V +

1

𝜌
, 𝑅

3
= 𝑠
2V + 𝑠𝑢, (4)

and all characteristic fields are of the Temple type, namely, the
shock waves and rarefaction waves coincide.

In this paper, we will study the Cauchy problem of system
(2) with bounded initial data

(𝜌 (𝑥, 0) , 𝑢 (𝑥, 0) , V (𝑥, 0)) = (𝜌
0
(𝑥) , 𝑢

0
(𝑥) , V

0
(𝑥)) ,

𝜌
0
(𝑥) ≥ 0

(5)

and prove the existence of global weak solutions by using the
vanishing viscosity method coupled with the compensated
compactness argument.

The hyperbolic systems of two conservation laws whose
shock and rarefaction curves coincide were first described
by Temple in [2], and later the global existence of weak
solutions for such systems, with any bounded variation initial
condition, were proven by Serre in [3] (also [4] for a special
system), where the key technique is that the total variation of
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the Riemann invariants is decreasing in time. Serre’s idea was
extended by Heibig [5] to study any 𝑛 × 𝑛 strictly hyperbolic
system of Temple type, with smooth flux functions. For
system (2), both the flux functions and the second Riemann
invariant 𝑅

2
are singular near the zero layer depth 𝜌 = 0.

So, the technique proposed in [3, 5] cannot be used to study
system (2) directly. Fortunately, we may accept the method
in [3] to obtain that the total variation, of the first and third
Riemann invariants, is decreasing in time, which implies the
𝐻
−1

loc compactness of 𝑢𝜀
𝑥
and V𝜀

𝑥
for the viscosity solutions

(𝑢
𝜀
, V𝜀) given by the Cauchy problem.Then we may apply for

the div-curl lemma to the pairs of functions (𝑐, 𝑢𝜀) and (𝑐, V𝜀),
where 𝑐 is a constant, to give a very short proof of the existence
of global weak solutions for the Cauchy problem (2) and (5).

Theorem 1. Suppose (I)

𝑐
1
≤ 𝑢
0
(𝑥) − 𝑠V

0
(𝑥) ≤ 𝑐

2
, 𝑐

3
≤ 𝑢
0
(𝑥) + 𝑠V

0
(𝑥) ≤ 𝑐

4
,

1

𝜌
0
(𝑥) + 𝜀

+ V
0
(𝑥) > 𝑐

5
,

(6)

where 𝜀 is a small positive constant and 𝑐
𝑖
, 𝑖 = 1, 2, . . . , 5 are

suitable constants satisfying

𝑐
5
−
𝑐
4
− 𝑐
1

2𝑠
> 0; (7)

(II) the total variations of 𝑢
0
(𝑥)−𝑠V

0
(𝑥) and 𝑢

0
(𝑥)+𝑠V

0
(𝑥) are

bounded, then the Cauchy problem (2) and (5) has a bounded
measurable solution (𝜌, 𝑢, V), 𝜌 ≥ 0 satisfying system (2) in the
sense of distributions.

The existing result given in [5] is based on that for
any system of Temple type; there exists a strictly convex
entropy (Lemma 1, [5]). However, in our case, the existence
of a strictly convex entropy is not obvious since all pairs of
entropy-entropy flux of (2) are constructed in the following
theorem.

Theorem 2. All the entropies of (2) are in the form

𝜂 (𝜌, 𝑢, V) = 𝜌(𝐹 (𝑢 + 𝑠V) + 𝐺 (𝑢 − 𝑠V) + 𝐻(V +
1

𝜌
)) , (8)

where 𝐹, 𝐺, and𝐻 are arbitrary functions, with corresponding
entropy flux

𝑞 (𝜌, 𝑢, V) = (𝜌𝑢 + 𝑠) (𝐹 (𝑢 + 𝑠V) + (𝜌𝑢 − 𝑠) 𝐺 (𝑢 − 𝑠V)

+𝜌𝑢𝐻(V +
1

𝜌
)) .

(9)

Furthermore when 𝐹, 𝐺, and 𝐻 are all convex, the entropy is
convex.

We will prove Theorems 1 and 2 in Sections 2 and 3,
respectively.

2. Proof of Theorem 1

We will proveTheorem 1 by several lemmas.
Consider the Cauchy problem for the related parabolic

system

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 𝜀𝜌
𝑥𝑥
,

(𝜌𝑢)
𝑡
+ (𝜌𝑢

2
+ 𝑠
2V)
𝑥
= 𝜀(𝜌𝑢)

𝑥𝑥
,

(𝜌V)
𝑡
+ (𝜌𝑢V + 𝑢)

𝑥
= 𝜀(𝜌V)

𝑥𝑥

(10)

with initial data
(𝜌
𝜀
(𝑥, 0) , 𝑢

𝜀
(𝑥, 0) , V𝜀 (𝑥, 0))

= (𝜌
𝜀

0
(𝑥) , 𝑢

𝜀

0
(𝑥) , V𝜀

0
(𝑥))

= (𝜌
0
(𝑥) + 𝜀, 𝑢

0
(𝑥) , V

0
(𝑥)) ∗ 𝐺

𝜀
,

(11)

where 𝐺𝜀 is a mollifier.

Lemma 3. If the initial data satisfy (6) and (7), then for any
fixed 𝜀 > 0, the viscosity solution (𝜌

𝜀
, 𝑢
𝜀
, V𝜀) of the Cauchy

problem (10) and (11) exists.

Proof of Lemma 3. We substitute the first equation into the
second and third equations in (10), respectively, to obtain

𝑅
𝑖𝑡
(𝜌
𝜀
, 𝑢
𝜀
, V𝜀) + 𝜆

𝑖
𝑅
𝑖𝑥
(𝜌
𝜀
, 𝑢
𝜀
, V𝜀)

= 𝜀𝑅
𝑖𝑥𝑥

(𝜌
𝜀
, 𝑢
𝜀
, V𝜀) +

2𝜀

𝜌
𝜌
𝑥
𝑅
𝑖𝑥
(𝜌
𝜀
, 𝑢
𝜀
, V𝜀) ,

𝑖 = 1, 2, 3.

(12)

Then by applying the maximum principle to (12), we have

𝑐
1
≤ 𝑅
1
(𝜌
𝜀
, 𝑢
𝜀
, V𝜀) ≤ 𝑐

2
, 𝑐

3
≤ 𝑅
3
(𝜌
𝜀
, 𝑢
𝜀
, V𝜀) ≤ 𝑐

4
,

𝑅
2
(𝜌
𝜀
, 𝑢
𝜀
, V𝜀) > 𝑐

5
,

(13)

due to the initial conditions given in (6), where 𝑅
𝑖
are

Riemann invariants given in (4).
Using these estimates, we have the following bounded

estimates on (𝜌𝜀, 𝑢𝜀, V𝜀):
𝑐
3
− 𝑐
2

2𝑠
≤ V𝜀 ≤

𝑐
4
− 𝑐
1

2𝑠
,

𝑐
1
+ 𝑐
3

2
≤ 𝑢
𝜀
≤
𝑐
2
+ 𝑐
4

2
,

1

𝜌𝜀
> 𝑐
5
−
𝑐
4
− 𝑐
1

2𝑠
> 0

(14)

due to the condition in (7). Since the boundedness of 𝑢𝜀, we
have the positive, lower estimate

𝜌
𝜀
(𝑥, 𝑡) ≥ 𝑐 (𝑡, 𝜀) > 0, (15)

by using Theorem 1.0.2 in [6] and the first equation in (10),
where 𝑐(𝑡, 𝜀) could tend to zero as the time 𝑡 tends to infinity
or 𝜀 tends to zero.

The standard theory of semilinear parabolic systems,
namely, the local existence and the a priori bounded estimates
in (14) and (15), gives us the existence of global smooth
solution for the Cauchy problem (10) and (11). Lemma 3 is
proven.
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Lemma 4. If the total variations of 𝑢
0
(𝑥)− 𝑠V

0
(𝑥) and 𝑢

0
(𝑥)+

𝑠V
0
(𝑥) are bounded, then the viscosity solutions (𝜌𝜀, 𝑢𝜀, V𝜀)

satisfy

∫

∞

−∞

󵄨󵄨󵄨󵄨𝑢
𝜀

𝑥
(𝑥, 𝑡) − 𝑠V𝜀

𝑥
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝑀,

∫

∞

−∞

󵄨󵄨󵄨󵄨𝑢
𝜀

𝑥
(𝑥, 𝑡) + 𝑠V𝜀

𝑥
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝑀,

(16)

where𝑀 is a positive constant, which is independent of 𝜀.

Proof of Lemma 4. Let 𝜙 = 𝑅
1𝑥
. Choose 𝑖 = 1 in (12).

Differentiating (12) with respect to𝑥 and thenmultiplying the
sequence of smooth functions ℎ󸀠(𝜙, 𝛼) to the result, we have

𝜙
𝑡
+ (𝜆
1
𝜙)
𝑥
= 𝜀𝜙
𝑥𝑥
+ (2𝜀𝜌

−1
𝜌
𝑥
𝜙)
𝑥
,

ℎ(𝜙, 𝛼)
𝑡
+ (𝜆
1
ℎ (𝜙, 𝛼))

𝑥
+ (ℎ
󸀠
(𝜙, 𝛼) 𝜙 − ℎ (𝜙, 𝛼)) 𝜆

1𝑥

= 𝜀ℎ(𝜙, 𝛼)
𝑥𝑥
− 𝜀ℎ
󸀠󸀠
(𝜙, 𝛼) 𝜙

2

𝑥
+ (2𝜀𝜌

−1
𝜌
𝑥
ℎ (𝜙, 𝛼))

𝑥

+ (2𝜀𝜌
−1
𝜌
𝑥
)
𝑥
(ℎ
󸀠
(𝜙, 𝛼) 𝜙 − ℎ (𝜙, 𝛼)) .

(17)

If we choose a convex ℎ(𝜙, 𝛼), ℎ󸀠󸀠(𝜙, 𝛼) ≥ 0 and ℎ󸀠(𝜙, 𝛼) →

sign𝜙, ℎ(𝜙, 𝛼) → |𝜙| as 𝛼 → 0, then we let 𝛼 → 0 in (17)
and we have

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨𝑡
+ (𝜆
1

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨)𝑥

≤ 𝜀
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨𝑥𝑥

+ (2𝜀𝜌
−1
𝜌
𝑥

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨)𝑥

(18)

in the sense of distributions. Integrating (18) in 𝑅 × [0, 𝑡], we
have

∫

∞

−∞

󵄨󵄨󵄨󵄨𝑅1𝑥
󵄨󵄨󵄨󵄨 (𝑥, 𝑡) 𝑑𝑥 = ∫

∞

−∞

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨 (𝑥, 𝑡) 𝑑𝑥

≤ ∫

∞

−∞

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨 (𝑥, 0) 𝑑𝑥 ≤ 𝑀

(19)

since 𝑇𝑉𝑅
10
(𝑥) is bounded. So, we proved the first estimate

in (16). Similarly we can prove the second estimate in (16).
Lemma 4 is proven.

Lemma 5.
𝑓(𝑢
𝜀
(𝑥, 𝑡))

𝑥
, 𝑔(V𝜀 (𝑥, 𝑡))

𝑥

are compact in 𝐻
−1

loc (𝑅 × 𝑅
+
) ,

(20)

where 𝑓(𝑢), 𝑔(V) are any smooth functions.

Proof of Lemma 5. Using (16) and (14), we know that
𝑓(𝑢
𝜀
(𝑥, 𝑡))

𝑥
and 𝑔(V𝜀(𝑥, 𝑡))

𝑥
are uniformly bounded both

in 𝐿
1

loc(𝑅 × 𝑅
+
) and in 𝑊

−1,∞

loc (𝑅 × 𝑅
+
) and so compact

in 𝐻
−1

loc(𝑅 × 𝑅
+
) due to Murat’s lemma [7]. Lemma 5 is

proven.

Lemma 6.

𝜌
𝜀

𝑡
+ (𝜌
𝜀
𝑢
𝜀
)
𝑥
, (𝜌

𝜀
𝑢
𝜀
)
𝑡
+ (𝜌
𝜀
(𝑢
𝜀
)
2

+ 𝑠
2V𝜀)
𝑥
,

(𝜌
𝜀V𝜀)
𝑡
+ (𝜌
𝜀
𝑢
𝜀V𝜀 + 𝑢𝜀)

𝑥

(21)

are compact in𝐻−1loc(𝑅 × 𝑅
+
).

Proof of Lemma 6. Multiplying 𝑙𝜌
𝑙−1

(𝑙 > 0) to the first
equation in (10) (for simplicity, we omit the superscript 𝜀),
we have

𝜌
𝑙

𝑡
+ (𝜌
𝑙
𝑢)
𝑥
+ (𝑙 − 1) 𝜌

𝑙
𝑢
𝑥
= 𝜀𝜌
𝑙

𝑥𝑥
− 𝜀𝑙 (𝑙 − 1) 𝜌

𝑙−2
𝜌
2

𝑥
. (22)

Since 𝑢
𝑥
is bounded in 𝐿

1

loc(𝑅 × 𝑅
+
), multiplying a suitable

nonnegative test function to (22), we have that

𝜀𝜌
𝑙−2
𝜌
2

𝑥
is bounded in 𝐿

1

loc (𝑅 × 𝑅
+
) . (23)

So the right-hand side of the first equation in (10) is compact
in𝐻−1loc(𝑅 ×𝑅

+
), which implies the𝐻−1loc(𝑅 ×𝑅

+
) compactness

of 𝜌𝜀
𝑡
+ (𝜌
𝜀
𝑢
𝜀
)
𝑥
.

We substitute the first equation into the second in (10) to
obtain

𝑢
𝑡
+ 𝑢𝑢
𝑥
+
𝑠
2

𝜌
V
𝑥
= 𝜀𝑢
𝑥𝑥
+
2𝜀

𝜌
𝜌
𝑥
𝑢
𝑥
. (24)

Then we multiply (24) by 𝜌ℎ󸀠(𝑢), the first equation in (10) by
ℎ(𝑢), then add the result to obtain

(𝜌ℎ (𝑢))
𝑡
+ (𝜌𝑢ℎ (𝑢))

𝑥
+ 𝑠
2
ℎ
󸀠
(𝑢) V
𝑥

= 𝜀(𝜌ℎ (𝑢))
𝑥𝑥
− 𝜀ℎ
󸀠󸀠
(𝑢) 𝜌𝑢

2

𝑥
.

(25)

Choosing a strictly convex function ℎ(𝑢) and multiplying a
suitable nonnegative test function to (25), we have that

𝜀𝜌𝑢
2

𝑥
is bounded in 𝐿

1

loc (𝑅 × 𝑅
+
) . (26)

Similarly we can prove that

𝜀𝜌V2
𝑥

is bounded in 𝐿
1

loc (𝑅 × 𝑅
+
) . (27)

Using (23), (26), (27), and (20), we may prove the 𝐻−1loc(𝑅 ×

𝑅
+
) compactness of the last two terms in (21). Lemma 6 is

proven.

Now we give the proof of Theorem 1. Let
(𝜌, 𝑢, V, ℎ(𝜌, 𝑢𝜀, V𝜀)) be the weak star limits of
(𝜌
𝜀
, 𝑢
𝜀
, V𝜀, ℎ(𝜌𝜀, 𝑢𝜀, V𝜀)).

Using the div-curl lemma [6, 8] to the following pairs of
functions, respectively:

(𝑐, 𝑢
𝜀
) , (𝜌

𝜀
, 𝜌
𝜀
𝑢
𝜀
) ;

(𝑐, 𝑢
𝜀
) , (𝜌

𝜀
𝑢
𝜀
, 𝜌
𝜀
(𝑢
𝜀
)
2

+ 𝑠
2V𝜀) ;

(𝑐, V𝜀) , (𝜌
𝜀
, 𝜌
𝜀
𝑢
𝜀
) ;

(𝑐, V𝜀) , (𝜌
𝜀
𝑢
𝜀
, 𝜌
𝜀
(𝑢
𝜀
)
2

+ 𝑠
2V𝜀) ,

(28)

where 𝑐 is a constant, we have

𝜌𝜀𝑢𝜀 = 𝜌𝑢, 𝜌𝜀(𝑢
𝜀
)
2
= 𝜌𝜀𝑢𝜀 ⋅ 𝑢𝜀 = 𝜌𝑢

2
,

𝜌𝜀V𝜀 = 𝜌V, 𝜌𝜀V𝜀𝑢𝜀 = 𝜌𝜀𝑢𝜀 ⋅ V𝜀 = 𝜌𝑢V.
(29)

Therefore we may prove that the limit (𝜌, 𝑢, V) satisfies (2)
in the sense of distributions by letting 𝜀 go to zero in (10).
Theorem 1 is proven.
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3. Proof of Theorem 2

In this section, we will prove Theorem 2. It is easy to prove
that any pair of entropy-entropy flux (𝜂(𝜌, 𝑢, V), 𝑞(𝜌, 𝑢, V)), of
system (2), must satisfy the following system:

𝑞
𝜌
= 𝑢𝜂
𝜌
,

𝑞
𝑢
= 𝜌𝜂
𝜌
+ 𝑢𝜂
𝑢
+
1

𝜌
𝜂V,

𝑞V =
𝑠
2

𝜌
𝜂
𝑢
+ 𝑢𝜂V.

(30)

Then we have

𝑞
𝜌𝑢
= 𝜂
𝜌
+ 𝑢𝜂
𝜌𝑢
= 𝑞
𝑢𝜌
= 𝜂
𝜌
+ 𝜌𝜂
𝜌𝜌

+ 𝑢𝜂
𝜌𝑢
−

1

𝜌2
𝜂V +

1

𝜌
𝜂V𝜌,

𝑞
𝜌V = 𝑢𝜂

𝜌V = 𝑞V𝜌 = −
𝑠
2

𝜌2
𝜂
𝑢
+
𝑠
2

𝜌
𝜂
𝑢𝜌
+ 𝑢𝜂
𝜌V,

𝑞
𝑢V = 𝜌𝜂

𝜌V + 𝑢𝜂𝑢V +
1

𝜌
𝜂VV

= 𝑞V𝑢 =
𝑠
2

𝜌
𝜂
𝑢𝑢
+ 𝜂V + 𝑢𝜂V𝑢,

(31)

which is

𝜌
3
𝜂
𝜌𝜌
+ 𝜌𝜂V𝜌 = 𝜂V,

𝜌𝜂
𝑢𝜌
= 𝜂
𝑢
,

𝜌
2
𝜂
𝜌V + 𝜂VV = 𝑠

2
𝜂
𝑢𝑢
+ 𝜌𝜂V.

(32)

Using the first and third equations in (32), we obtain

𝜂VV − 𝜌
4
𝜂
𝜌𝜌
= 𝑠
2
𝜂
𝑢𝑢
. (33)

Resolving the second equation in (32), we have

𝜂
𝑢
= 𝜌ℎ
1
(𝑢, V) , (34)

where ℎ
1
is an arbitrary function of (𝑢, V).

We rewrite the first equation in (32) as

(
𝜂V

𝜌
)

𝜌

= −𝜌𝜂
𝜌𝜌
. (35)

Then
𝜂V

𝜌
= −𝜌𝜂

𝜌
+ 𝜂 + ℎ

2
(𝑢, V) or 𝜂V = 𝜌 (𝜂 − 𝜌𝜂

𝜌
) + 𝜌ℎ

2
(𝑢, V) ,

(36)

where ℎ
2
is an arbitrary function of (𝑢, V).

Differentiating (36) with respect to V and using the first
equation in (32), we have

𝜂VV = 𝜌 (𝜂V − 𝜌𝜂V𝜌) + 𝜌ℎ2V (𝑢, V) = 𝜌
4
𝜂
𝜌𝜌
+ 𝜌ℎ
2V (𝑢, V) . (37)

Differentiating (34) with respect to 𝑢 and using (33) and (37),
we have

ℎ
2V (𝑢, V) = 𝑠

2
ℎ
1𝑢
(𝑢, V) . (38)

Moreover, differentiating (34) with respect to V and differen-
tiating (36) with respect to 𝑢 and using the second equation
in (32), we have

ℎ
2𝑢
(𝑢, V) = ℎ

1V (𝑢, V) . (39)

We resolve (38) and (39) to obtain

ℎ
1
(𝑢, V) = 𝑓 (𝑢 + 𝑠V) + 𝑔 (𝑢 − 𝑠V) ,

ℎ
2
(𝑢, V) = 𝑠𝑓 (𝑢 + 𝑠V) − 𝑠𝑔 (𝑢 − 𝑠V) ,

(40)

where 𝑓, 𝑔 are two arbitrary functions.
Integrating (34) with respect to 𝑢, we have

𝜂 (𝜌, 𝑢, V) = 𝜌 (𝐹 (𝑢 + 𝑠V) + 𝐺 (𝑢 − 𝑠V)) + ℎ (𝜌, V) , (41)

where 𝐹󸀠 = 𝑓, 𝐺󸀠 = 𝑔, and ℎ is a suitable function of (𝜌, V)
such that 𝜂 given in (41) must satisfy (36). Thus ℎ satisfies

ℎV (𝜌, V) = 𝜌ℎ (𝜌, V) − 𝜌2ℎ
𝜌
(𝜌, V) or (

ℎ

𝜌
)

V
+ 𝜌
2
(
ℎ

𝜌
)

𝜌

(42)

and so ℎ/𝜌 = 𝐻(V + 1/𝜌) or ℎ(𝜌, V) = 𝜌𝐻(V + 1/𝜌). Thus (8)
is proven.

To prove (9), we remove all the terms on the right-hand
side of (12) to obtain

(𝑢 − 𝑠V)
𝑡
+ (𝑢 −

𝑠

𝜌
) (𝑢 − 𝑠V)

𝑥
= 0,

(
1

𝜌
+ V)
𝑡

+ 𝑢(
1

𝜌
+ V)
𝑥

= 0,

(𝑢 + 𝑠V)
𝑡
+ (𝑢 +

𝑠

𝜌
) (𝑢 + 𝑠V)

𝑥
= 0.

(43)

Multiplying the first equation in (43) by 𝜌𝐺󸀠(𝑢 − 𝑠V) and the
first equation in (2) by 𝐺(𝑢 − 𝑠V), then adding the result, we
have

(𝜌𝐺)
𝑡
+ ((𝜌𝑢 − 𝑠) 𝐺)

𝑥
= 0. (44)

Thus the entropy flux corresponding to the entropy 𝜌𝐺(𝑢−𝑠V)
is 𝑞
1
= (𝜌𝑢 − 𝑠)𝐺(𝑢 − 𝑠V).

Similarly, wemay prove that the entropy flux correspond-
ing to the entropy 𝜌𝐹(𝑢 + 𝑠V) is 𝑞

2
= (𝜌𝑢 + 𝑠)𝐹(𝑢 + 𝑠V),

the flux corresponding to the entropy 𝜌𝐻(V + 1/𝜌) is 𝑞
3
=

𝜌𝑢𝐻(V + 1/𝜌). Thus (9) is proven.
Let 𝜂 = 𝜌𝐹(𝑢 + 𝑠V), 𝑚 = 𝜌𝑢 and 𝑛 = 𝜌V. By simple

calculations

𝜂
𝜌𝜌
=
1

𝜌
(
𝑚 + 𝑠𝑛

𝜌
)

2

𝐹
󸀠󸀠
, 𝜂

𝑚𝑚
=
1

𝜌
𝐹
󸀠󸀠
,

𝜂
𝑛𝑛
=
𝑠
2

𝜌
𝐹
󸀠󸀠
, 𝜂

𝜌𝑚
= −

𝑚 + 𝑠𝑛

𝜌2
𝐹
󸀠󸀠
,

𝜂
𝜌𝑛
= −𝑠

𝑚 + 𝑠𝑛

𝜌2
𝐹
󸀠󸀠
, 𝜂

𝑚𝑛
=
𝑠

𝜌
𝐹
󸀠󸀠

(45)
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and for any vector (𝑎, 𝑏, 𝑐)

𝜂
𝜌𝜌
𝑎
2
+ 𝜂
𝑚𝑚

𝑏
2
+ 𝜂
𝑛𝑛
𝑐
2
+ 2𝜂
𝜌𝑚
𝑎𝑏 + 2𝜂

𝜌𝑛
𝑎𝑐 + 2𝜂

𝑚𝑛
𝑏𝑐

=
1

𝜌
𝐹
󸀠󸀠
(
𝑚 + 𝑠𝑛

𝜌
𝑎 − 𝑏 − 𝑠𝑐)

2

≥ 0, as 𝐹
󸀠󸀠
≥ 0.

(46)

Thus 𝜂 = 𝜌𝐹(𝑢+ 𝑠V) is convex when 𝐹 is convex. Similarly we
can prove both 𝜌𝐺(𝑢 − 𝑠V) and 𝜌𝐻(V + 1/𝜌) are convex when
𝐺,𝐻 are convex. Theorem 2 is proven.
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