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a b s t r a c t

In this paper, we introduce the flux approximation coupled with the classical
viscosity method to study the global entropy solutions to the Cauchy problem of
the inhomogeneous Euler–Poisson equations of two-carrier types in one dimension
with arbitrarily large initial data, and arbitrary adiabatic exponent “ > 1.
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1. Introduction

In this paper, we consider the following Euler–Poisson equations of two-carrier types in one dimension

Y
____]

____[

flit + (fliui)x = ≠R(fl1, fl2),

(fliui)t + (fli(ui)
2

+ Pi(fli))x = fliE ≠ fliui
·i

, i = 1, 2,

Ex = fl1 + fl2 ≠ b(x),

(1.1)

in the region (≠Œ, +Œ) ◊ [0, T ], with bounded initial data

(fli, ui)|t=0 = (fli0(x), ui0(x)), lim
|x|æŒ

(fli0(x), ui0(x)) = (0, 0), fli0(x) Ø 0 (1.2)

and a condition at ≠Œ for the electric potential

lim
xæ≠Œ

E(x, t) = E0, for a.e. t œ (0, Œ), (1.3)
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where T, E0 are fixed constants, (fl1, u1) and (fl2, u2) are the (density, velocity) pairs for electrons (i = 1)

and holes (i = 2) respectively, E is the electric potential and the given function b(x) represents the

impurity doping profile (cf. [1–10] and the references cited therein). The pressure–density relations are

Pi(fli) =
1
“i

(fli)
“i , where “i > 1 correspond to the adiabatic exponents, ·i > 0 are the momentum relaxation

times.

The recombination-generation rate R in (1.1) takes the form

R(fl1, fl2) = Q(fl1, fl2)(fl1fl2 ≠ 1) (1.4)

with a nonnegative, locally Lipschitz continuous function Q(fl1, fl2) satisfying

0 Æ Q(fl1, fl2) =
q0

(1 + fl1 + fl2)
,

|R(fl1, fl2)|
fli

Æ q0, for all fl1 > 0, fl2 > 0, (1.5)

where q0 is a positive constant.

The Initial–boundary value problem of (1.1) with the condition (1.5) on R(fl1, fl2) was first studied in [1,2],

where the adiabatic exponents “i are limited in the region (1, 3] to ensure the uniform L
Œ

estimates of the

viscosity approximation solutions (cf. the proof of (3.9) in [1]), or of the approximation solutions constructed

by the Godunov scheme with fractional step (cf. [2]), respectively. The Cauchy problem of (1.1) for the

homogeneous case (R(fl1, fl2) = 0) was studied in [3,4] for any “i > 1, where the approximation solutions

were constructed by the Lax–Friedrichs scheme and the Godunov scheme. Due to the lack of a technique to

obtain the a-priori L
Œ

estimate, it is a long-standing open problem to study the Cauchy problem of (1.1) by

using the vanishing viscosity method. In [11], a L
p

solution, 1 < p < Œ, was studied by using the vanishing

viscosity method.

In this paper, we apply the flux approximation coupled with the classical viscosity method, introduced

in [12], to study the global entropy solutions of the Cauchy Problem (1.1)–(1.3) and (1.5) with arbitrarily

large initial data, and arbitrary adiabatic exponents “i > 1.

We consider

Y
____]

____[

flit + ((fli ≠ 2”)ui)x = Áflixx ≠ fli≠2”
fli

R(fl1, fl2),

(fliui)t + (fli(ui)
2 ≠ ”(ui)

2
+ Si(fli, ”))x = Á(fliui)xx + fliE ≠ fliui

·i
,

Ex = (fl1 ≠ 2”) + (fl2 ≠ 2”) ≠ b(x)

(1.6)

with the initial data

(fl
Á,”
i (x, 0), u

Á,”
i (x, 0)) = (fli0(x) + 2”, ui0(x)) ú G

Á
, (1.7)

where (fli0(x), ui0(x)) are given in (1.2), ” > 0 denotes a regular perturbation constant, the perturbation

pressures

Si(fli, ”) =

⁄ fli

2”

t ≠ 2”

t
P

Õ
i (t)dt, (1.8)

G
Á

is a mollifier such that (fl
Á,”
i (x, 0), u

Á,”
i (x, 0)) are smooth and

lim
|x|æŒ

(fl
Á,”
i (x, 0), u

Á,”
i (x, 0)) = (2”, 0), lim

|x|æŒ
(fl

Á,”
ix (x, 0), u

Á,”
ix (x, 0)) = (0, 0). (1.9)

The main result of this paper is given in the following:

Theorem 1.1. Let Pi(fli) =
1
“i

(fli)
“i , the initial data 0 Æ fli0(x) œ L

Œ
(R) fl L

1
(R), ui0(x) œ L

Œ
(R), the

doping profile b(x) œ L
1
(R) and ·i be su�ciently small such that

0 < ·i <
2

(“i + 1)q0
. (1.10)
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Then, (I) for fixed Á, ” > 0 and “i > 1, the problem (1.5)–(1.7) has a global smooth solution (fl
Á,”
i , u

Á,”
i , E

Á,”
)

satisfying

2” Æ fl
Á,”
i Æ M(t), |uÁ,”

i | Æ M(t), |EÁ,”| Æ M(t), |flÁ,”
i (·, t) ≠ 2”|L1(R) Æ M(t), (1.11)

where M(t) is a bounded function of t, which is independent of Á, ”, ·i, but could tend to infinity when t goes
to infinity; and

(II) there exists a subsequence of (fl
Á,”
i (x, t), u

Á,”
i (x, t), E

Á,”
(x, t)), which converges pointwisely to a weak

entropy solution (fli(x, t), ui(x, t), E(x, t)) of the problem (1.1)–(1.3) as ”, Á tend to zero.

Definition 1. (fli(x, t), ui(x, t), E(x, t)) is called a weak entropy solution of the problem (1.1)–(1.3) if

Y
________]

________[

s Œ
0

s Œ
≠Œ fli„t + (fliui)„x ≠ R(fl1, fl2)„(x, t)dxdt +

s Œ
≠Œ fli0(x)„(x, 0)dx = 0,

s Œ
0

s Œ
≠Œ fliui„t + (fliu

2
i + Pi(fli))„x + (fliE(x, t) ≠ fliui

· )„(x, t)dxdt

+
s Œ

≠Œ fli0(x)ui0(x)„(x, 0)dx = 0,

s Œ
0

s Œ
≠Œ E(x, t)„x + (fl1 + fl2 ≠ b(x))„(x, t)dxdt

(1.12)

holds for i = 1, 2, all test function „ œ C
1
0 (R ◊ R

+
) and

s Œ
0

s Œ
≠Œ ÷(fli, mi)„t + q(fli, mi)„x

≠(R(fl1, fl2)÷(fli, mi)fli ≠ (fliE(x, t) ≠ fliui
·i

)÷(fli, mi)mi)„(x, t)dxdt Ø 0

(1.13)

holds for any non-negative test function „ œ C
Œ
0 (R ◊ R

+ ≠ {t = 0}), where mi = fliui and (÷, q) is a pair of

convex entropy–entropy flux of system (1.1).

2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. Multiplying the first two equations of (1.6) by (
ˆwi
ˆfli

,
ˆwi
ˆmi

) and

(
ˆzi
ˆfli

,
ˆzi
ˆmi

), respectively, we have

wit + ⁄
”
i2wix = Áwixx +

2Á
fli

flixwix ≠ (“i+1)Á
2 (fli)

“i≠5
2 fl

2
ix

≠((fli)
◊i ≠ mi

fli
)

fli≠2”
fli

R(fl1,fl2)
fli

≠ ui
·i

+ E

= Áwixx +
2Á
fli

flixwix ≠ (“i+1)Á
2 (fli)

“i≠5
2 fl

2
ix

≠(
◊i≠1

2 wi +
◊i+1

2 zi)
fli≠2”

fli

R(fl1,fl2)
fli

≠ wi≠zi
2·i

+ E

(2.1)

and

zit + ⁄
”
i1zix = Ázixx +

2Á
fli

flixzix ≠ (“i+1)Á
2 (fli)

“i≠5
2 fl

2
ix

≠((fli)
◊i +

mi
fli

)
fli≠2”

fli

R(fl1,fl2)
fli

+
ui
·i

≠ E

= Ázixx +
2Á
fli

flixzix ≠ (“i+1)Á
2 (fli)

“i≠5
2 fl

2
ix

≠(
◊i+1

2 wi +
◊i≠1

2 zi)
fli≠2”

fli

R(fl1,fl2)
fli

+
wi≠zi

2·i
≠ E,

(2.2)

3



S. Yin, X. Wang, Y.-g. Lu et al. Applied Mathematics Letters 132 (2022) 108174

where

⁄
”
i1 =

mi

fli
≠ fli ≠ 2”

fli

Ò
P

Õ
i (fli), ⁄

”
i2 =

mi

fli
+

fli ≠ 2”

fli

Ò
P

Õ
i (fli) (2.3)

are two eigenvalues of the approximation system (1.6), mi = fliui denote the momentums and (wi, zi) are

the corresponding Riemann invariants given by

zi(fli, ui) =
1

◊i
(fli)

◊i ≠ mi

fli
, wi(fli, ui) =

1

◊i
(fli)

◊i +
mi

fli
, ◊i =

“i ≠ 1

2
. (2.4)

Applying the maximum principle to the first equation in (1.6), we first have the a-priori estimates fli Ø 2”.

Integrating the both sides of the first equation in (1.6) over R ◊ [0, t], we obtain

s Œ
≠Œ fli(x, t) ≠ 2”dx =

s Œ
≠Œ fl

Á,”
i0 (x, 0) ≠ 2”dx ≠

s t
0

s Œ
≠Œ

fli≠2”
fli

R(fl1, fl2)dxdt

Æ
s Œ

≠Œ fli0(x, 0)dx +
s t

0
s Œ

≠Œ(fli ≠ 2”)
Q(fl1,fl2)

fli
dxdt

Æ M1 + q0
s t

0
s Œ

≠Œ(fli ≠ 2”)dxdt

(2.5)

and thus ⁄ Œ

≠Œ
fli(x, t) ≠ 2”dx Æ M2e

q0t
, (2.6)

where Mi are suitable positive constants, which depend only the initial data, but are independent of Á and

”.

By integrating the third equation in (1.6), we obtain

|E| = |E0 +

⁄ x

≠Œ
(fl1(x, t) ≠ 2”) + (fl2(x, t) ≠ 2”) ≠ b(x)dx| Æ M3e

q0t
. (2.7)

We make the transformation

wi = Wi + —e
–t

, zi = Zi + —e
–t

, (2.8)

where

— = max{1, |wio(x)|LŒ , |zio(x)|LŒ}, – = max{q0, ◊iq0 + M3}. (2.9)

Since

(fli)
◊i =

◊i

2
(wi + zi) =

◊i

2
(Wi + Zi + 2—e

–t
),

ui =
mi

fli
=

1

2
(wi ≠ zi) =

1

2
(Wi ≠ Zi)

and

≠–—e
–t

+ q0◊i—e
–t ± E Æ 0,

then (2.1), (2.2) can be rewritten as follows:

Wit + ⁄
”
i2Wix = ÁWixx +

2Á
fli

flixWix ≠ –—e
–t ≠ (“i+1)Á

2 (fli)
“i≠5

2 fl
2
ix

≠(
◊i≠1

2 Wi +
◊i+1

2 Zi + ◊i—e
–t

)
fli≠2”

fli

R(fl1,fl2)
fli

≠ Wi≠Zi
2·i

+ E

Æ ÁWixx +
2Á
fli

flixWix ≠ (
◊i≠1

2
fli≠2”

fli

R(fl1,fl2)
fli

+
1

2·i
)Wi + (

1
2·i

≠ ◊i+1
2

fli≠2”
fli

R(fl1,fl2)
fli

)Zi

(2.10)

and

Zit + ⁄
”
i1Zix = ÁZixx +

2Á
fli

flixZix ≠ –—e
–t ≠ (“i+1)Á

2 (fli)
“i≠5

2 fl
2
ix

≠(
◊i+1

2 Wi +
◊i≠1

2 Zi + ◊i—e
–t

)
fli≠2”

fli

R(fl1,fl2)
fli

+
Wi≠Zi

2·i
≠ E

Æ ÁZixx +
2Á
fli

flixZix ≠ (
◊i≠1

2
fli≠2”

fli

R(fl1,fl2)
fli

+
1

2·i
)Zi + (

1
2·i

≠ ◊i+1
2

fli≠2”
fli

R(fl1,fl2)
fli

)Wi,

(2.11)
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where the coe�cient functions before Zi in (2.10) and Wi in (2.11)

1

2·i
≠ ◊i + 1

2

fli ≠ 2”

fli

R(fl1, fl2)

fli
Ø 1

2·i
≠ ◊i + 1

2
q0 > 0 (2.12)

due to the conditions (1.5) and (1.10).

From (2.8), we have Wi(x, 0) Æ 0, Zi(x, 0) Æ 0, so, we may apply the maximum principle to (2.10) and

(2.11) to obtain the estimates Wi(x, t) Æ 0, Zi(x, t) Æ 0. Therefore we have the following estimates

wi(x, t) Æ —e
–t

, zi(x, t) Æ —e
–t

, (2.13)

which deduce the a-priori estimates in (1.11).

To prove the part (I) in Theorem 1.1, we may first obtain a local solution of the Cauchy problem

(1.5)–(1.7) by applying the general contracting mapping principle to an integral representation of (1.6).

After we have the estimates in (1.11), the standard method on nonlinear parabolic system could help us to

extend the local time step by step and deduce a global solution (cf. [13]). So, Part (I) of Theorem 1.1 is

proved.

To prove the part (II) in Theorem 1.1, since ÷(fl
Á,”
i , u

Á,”
i )t +q(fl

Á,”
i , u

Á,”
i )x are compact in H

≠1
loc (R◊R

+
), for

any weak entropy–entropy flux pair (÷(fli, ui), q(fli, ui)) of system (1.1), as proved in [12], then by applying

the compactness frameworks given in [14] for 1 < “ < 3 and in [15] for “ Ø 3, we can easily prove the

pointwise convergence (fl
Á,”
i (x, t), u

Á,”
i (x, t)) æ (fli(x, t), ui(x, t)) as Á, ” go to zero.

To deduce the pointwise convergence E
Á,”

(x, t) æ E(x, t), we first prove the following lemma:

Lemma 2.1. Both E
Á,”

(x, t)t and E
Á,”

(x, t)x are compact in H
≠1
loc (R ◊ R

+
).

Proof of Lemma 2.1. From the bounded estimate (2.7), we have that E
Á,”

(x, t)x are bounded in

W
≠1
loc (R ◊ R

+
). Moreover, from the L

1
estimates in (2.6), we have from the third equation in (1.6) that

|EÁ,”
x |L1 are bounded and so E

Á,”
x are compact in H

≠1
loc (R ◊ R

+
) by using the Murat’s lemma [16].

Using the third and the first equations in (1.6), we have

E
Á,”
t =

s x
≠Œ fl1t(y, t) + fl2t(y, t)dy

= ≠
q2

i=1((fli ≠ 2”)ui + Áflix ≠
s x

≠Œ
fli(y,t)≠2”

fli(y,t) R(fl1(y, t), fl2(y, t))dy),

(2.14)

which being locally bounded in L
1
(R ◊ R

+
). Thus E

Á,”
t are compact in H

≠1
loc (R ◊ R

+
) by using the Murat’s

lemma [16] again. Lemma 2.1 is proved.

We may apply the Div-Curl lemma to the pairs of functions

(0, E
Á,”

), (E
Á,”

, 0), (2.15)

to obtain

EÁ,” · EÁ,” = (EÁ,”)2, (2.16)

which deduces the pointwise convergence of E
Á,”

(x, t). Thus the part (II), and so Theorem 1.1, is proved.
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