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1. Introduction. This paper considers the Cauchy problem for the
following systems of Broadwell’s type⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1t + f1x =
F (f1, f2, f3)

τ

f2t − f2x =
F (f1, f2, f3)

τ

f3t = −F (f1, f2, f3)
2τ

(1)

When the nonlinear function F takes the special form f1f2 − f2
3 , (1) is a

simple mathematical model of gas kinetics, the so called Broadwell model
[1] (see also [2], [6] and the references therein). It describes an idealization
of a discrete velocity gas of particles in one dimension subject to a simple
binary collision mechanism.

Let ρ = f1 +f2 +4f3, m = f1−f2, s = f3 . (1) may be written as follows:

⎧⎪⎪⎨
⎪⎪⎩

ρt + mx = 0

mt + (ρ − 4s)x = 0

st +
F̄ (ρ, m, s)

τ
= 0

(2)
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The conditions for (ρ, m, s) to be a local Maxwellian are

s = 1
6

(
2 −

√
1 + 3m2

ρ2

)
ρ (3)

for the case F = f1f2 − f2
3 . (ρ, m, s) is a local Maxwellian for

s = h(ρ) (4)

in case F = h1(f3) − h2(f1 + f2 + 4f3) for some nonlinear function h1 and
h2. The equilibrium system corresponding to (3) are the following Euler
equations: {

ρt + mx = 0

mt + (ρF (u))x = 0
(5)

where F (u) = 1
3

(
2(1 + 3u2)

1
2 − 1

)
.

The equilibrium system corresponding to (4) is the following p - system:

{
ρt + mx = 0

mt + (ρ − 4h(ρ))x = 0
(6)

The asymptotic relationship between the solutions of the Broadwell model
(1) and the solutions of the Euler equations (5) as τ goes to zero has been
investigated by many authors (See [2] and the references therein). All au-
thors considered the limit assuming some special structure of the solution,
such as continuity [2], Riemann solution, finite number of shock waves.

In this paper, we study the Cauchy problem (2) with bounded L2 mea-
surable initial data

(ρ, m, s)|t=0 =
(
ρ0(x), m0(x), s0(x)

)
. (7)

When the local Maxwellian is given by (4), we show that the solution of the
equilibrium system (6) is given by the limit of the solutions of the viscous
approximation ⎧⎪⎪⎨

⎪⎪⎩
ρt + mx = ερxx

mt + (ρ − 4s)x = εmxx

st +
F̄ (ρ, m, s)

τ
= εsxx

(8)
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as ε and τ go to zero. Our method is the compensated compactness. This
method has shown itself to be powerful in solving some relaxation limit
problems [3], [4], [7], [9], [10], [11]. When dealing with systems of more
than two equations it is well known that the one basic difficulty is the a
priori estimate independent of the approximate paprameter ε in a suitable
Lp space (p > 1). Since system (2) in general can not be diagonalized by
using Riemann invariants, it is not to be expected that viscosity solutions
(ρε, mε, sε) of the Cauchy problem (8) will be bounded in L∞, uniformly in
ε, by using the invariant region principle.

We have to search for solutions of the system (2) in Lp space. Similar
results about zero relaxation systems of three equations are discussed in [11].
In paper [11], we studied the following system:

⎧⎪⎪⎨
⎪⎪⎩

vt − ux = 0

ut − σ(v, s)x = 0

st +
s − f(v)

τ
= 0

(9)

where σ(v, s) is a nonlinear function of v and s, but f(v) must be a linear
function cv in order to make the technique used in [11] work. System (2) is
of a different form. The flux functions are linear, but the zero-th order term
is nonlinear. Some authors suggested solving the following system:⎧⎨

⎩
uτ

t + div(vτ ) = 0

vτ
t + μ div(uτ ) =

1
τ

(
f(uτ ) − vτ

) (10)

as an approximation to the general nonlinear hyperbolic system{
ut + div

(
f(u)

)
= 0. (11)

So in some sense, the study of the system (2) is more significant than that
of (9) in comparing the relationship between (10) and (11).

Another difficulty in applying the compensated compactness to the sys-
tem (2) is the compactness analysis of the viscosity solutions of the Cauchy
problem (8) in Lp. To overcome this difficulty, we adopt the method used
in [11] to reduce the equations to two equations and then use the entropy -
entropy flux pairs of system (6) as constructed by Jim Shearer [14] and the
framework given by Serre and Shearer [13] to realize our aim.
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This paper is structured as follows: In Section 2 we consider the existence
of viscosity solutions of system (8) with initial data(

ρε, mε, sε
)
|t=0

=
(
ρε
0, m

ε
0, s

ε
0

)
(12)

where (ρε
0, m

ε
0, s

ε
0

)
are smooth functions obtained by smoothing the initial

data (7) with a mollifier. The existence is based on the standard local ex-
istence theory by using the contraction mapping principle to an integral
representation of (8) and an a-priori estimation of the local solution depend-
ing on ε and τ . The a-priori L∞ bound depending on ε and τ is obtained by
the energy method. In section 3, the compensated compactness method is
used to study convergence of the viscosity solutions

(
ρε,τ , mε,τ , sε,τ

)
. First

the convergence of (ρε,τ , mε,τ ) is shown, and then using estimate (6), the
convergence of sε,τ . When taking δ = O(ε), the global weak solution of the
equilibrium (6) is obtained as ε goes to zero.

In this paper we make the following assumptions on F̄ and the initial
data:
(A1): F̄ (ρ, m, s)=H(s)−ρ; H(s)∈C3(R), H ′(s) ≥ 4+c for some constants

c > 0
Since H ′(s) > 0, H(s) = ρ has an inverse function H−1(ρ) = s. Let σ(ρ) =
ρ− 4h(ρ), h(ρ) = H−1(ρ) and σ(ρ) satisfy all the conditions in [16], namely
(A2): Strict hyperbolicity: σ′(ρ) ≥ σ0 > 0 with σ0 = constant
(A3): Genuine nonlinearity except at a point: σ′′(λ0) = 0 and σ′′(λ) �= 0

for λ �= λ0.
(A4): Growth constraints: σ′′

(σ′)
5
4
, σ′′′

(σ′)
7
4
∈ L2; σ′′

(σ′)
3
2
, σ′′′

(σ′)2
∈ L∞ σ(ρ)

Σ(ρ) → 0

as |ρ| → ∞ and there are constants c1, c2 with c1 > 1
2 such that(

σ′(ρ)
)c1 ≤ c2

(
1 + Σ(ρ0)

)
, where Σ(ρ0) =

∫ ρ

0
σ(s)ds.

Remark 1. From (A1)

d
(
H−1(ρ)

)
dρ

=
ds

dρ
=

1
H ′(s)

≤ 1
4 + c

,

then σ′(ρ) = 1 − 4h′(ρ) ≥ c
4+c and σ′(ρ) < 1 from the positivity of H ′(s).

So the strict hyperbolicity is derived directly from (A1).
Remark 2. Consider the special choice of H(s) ∈ C3(R) with

H(s) = (4 + c)s + d|s|α−1 · s (13)
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for |s| large enough, where d > 0, α > 1 are constants. Then H−1(ρ) ≈(
sgn(ρ)

)
(|ρ|

1
α ) for |ρ| large enough. Therefore,

|σ′′(ρ)| =
∣∣ 4H ′′(s)(

H ′(s)
)2 · ds

dρ

∣∣ =
∣∣ 4H ′′(s)(

H ′(s)
)3

∣∣ = O
( 1
|s|2α−1

)
= O

( 1

|ρ|
2α−1

α

)
(14)

as |ρ| is large. So σ′′(ρ) ∈ L1 ∩ L∞ if α > 1. Similarly, we have σ′′′(ρ) ∈
L1 ∩ L∞ if α > 1. So all the conditions in (A4) are satisfied when H(s) is
given by (13). (A3) is also true if H(s) is given by (13) for all s ∈ R and
α > 2.

We have the following assumption about the initial data (7):
(A5) : ρ0(x), m0(x), s0(x) are all bounded in L2(R) and tend to zero as

|x| → ∞ sufficiently fast such that the smooth functions given in
(12) satisfy

lim
|x|→∞

(diρε
0(x)

dxi
,
dimε

0(x)
dxi

,
disε

0(x)
dxi

)
= (0, 0, 0) i = 0, 1 (15)

|ρε
0(x)|H1(R) ≤ M(ε), |mε

0(x)|H1(R) ≤ M(ε), |sε
0(x)|H1(R) ≤ M(ε). (16)

From the basic property of the mollifier, we have that(
ρε
0(x), mε

0(x), sε
0(x)

)
→

(
ρ0(x), m0(x), s0(x)

)
(17)

uniformly on any compact set in R as ε → 0, and also the following proper-
ties: ⎧⎪⎨

⎪⎩
|ρε

0(x)|L2 ≤ |ρ0(x)|L2 ≤ M

|mε
0(x)|L2 ≤ |m0(x)|L2 ≤ M

|sε
0(x)|L2 ≤ |s0(x)|L2 ≤ M

(18)

|d
iρε

0(x)
dxi

| , |d
imε

0(x)
dxi

| , |d
isε

0(x)
dxi

| ≤ M(ε) i = 0, 1, 2. (19)

2. Viscosity solutions. In this section, we consider the existence of
the Cauchy problem for the parabolic system (8) with initial data (12).
Throughout this section, the solutions depend on the parameters ε and τ . For
simplicity, we continue to use the notation (ρ, m, s) instead of ρε,τ , mε,τ , sε,τ .
The local existence of solutions can be obtained by applying the general
contraction mapping principle to an integral representation of (8).
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Lemma 1 (Local existence). If the initial data satisfies the condition (18),
then for any fixed ε > 0, τ > 0, the Cauchy problem (8) and (12) has a
unique smooth solution (ρ, m, s) satisfying

|d
iρ

dxi
|, |d

im

dxi
|, | d

is

dxi
| ≤ M(t1, ε) on R × [0, t1], (1)

where M(t1, ε) is a positive constant that depends on t1 and t1 on the L∞
norm M(ε) of

(
ρε
0(x), mε

0(x), sε
0(x)

)
given in (18) for nonnegative integers

i = 0, 1, 2. Moreover, if we assume further that the initial data satisfy (15),
then

lim
|x|→∞

(∂iρ

∂xi
,
∂im

∂xi
,
∂is

∂xi

)
=

(
0, 0, 0

)
, i = 0, 1 (2)

uniformly in t ∈ [0, t1].

To extend the local solution to the global one, the following a priori
L∞ estimate, depending on ε, τ , obtained by using the energy method, is
essential.

Lemma 2. If the initial data satisfies (15), (16), (18), F̄ (ρ, m, s) satisfies
the condition (A1), and for any fixed ε, τ > 0 the solution (ρ, m, s) ∈ C∞

of the Cauchy problem (8), (12) exists in R × (0, T ]. Then the following
estimates hold

|ρ(x, t)| ≤ M(ε, τ, T ), |m(x, t)| ≤ M(ε, τ, T ), |s(x, t)| ≤ M(ε, τ, T ). (3)

Proof. Multiply ρ−4s to the first equation in (8), m to the second, 4H(s)−
4ρ to the third and adding the result, we have

(ρ2

2
+

m2

2
+ 4

∫ s

H(s)ds − 4ρs
)
t

+
(
ρm − 4sm

)
x

+
4(H(s) − ρ)2

τ
(4)

= ε
(ρ2

2
+

m2

2
+ 4

∫ s

H(s)ds − 4ρs
)
xx

− ε
(
ρ2

x + m2
x + 4H ′(s)s2

x − 8ρxsx

)
.

The condition (A1) ensures that the function ρ2

2 +4
∫ s

H(s)ds−4ρs is strictly
convex. Thus integrating (4) on R× [0, T ] and the estimates (1), (2) give us

|ρ(., t)|L2(R) ≤ M, |m(., t)|L2(R) ≤ M, |s(., t)|L2(R) ≤ M (5)
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∣∣ (H(s) − ρ)2

τ

∣∣
L1(R×[0,T ])

≤ M (6)

|ερ2
x|L1(R×[0,T ]) ≤ M, |εm2

x|L1(R×[0,T ]) ≤ M, |εs2
x|L1(R×[0,T ]) ≤ M. (7)

Differentiating (8) with respect to x and then using the estimates (1), (2),
(5), (6), (7) and (16), we can immediately get the following energy inequality:∫ ∞

∞
(ρx)2 + (mx)2 + (sx)2dx + ε

∫ T

0

∫ ∞

−∞
(ρxx)2 + (mxx)2 + (sxx)2dx dt

≤ M
(
ε, τ, |ρε

0|H1 , |mε
0|H1 , |sε

0|H1

)
.tag8

So the estimates (3) follow from the estimates (5) and (8). The two lemmas
in this section give us the following global existence theorem of the Cauchy
problem (8), (12):

Theorem 1. If the initial data (12) satisfies (15), (16), (18), F̄ (ρ, m, s)
satisfies the condition (A1). Then for any fixed ε, τ > 0, there is a global
solution of the Cauchy problem (8), (12) such that all the estimates in (5),
(6), (7) hold.

3. Strong convergence of viscosity solutions. In this section,
we are going to consider the strong convergence of the viscosity solutions(
ρε,τ , mε,τ , sε,τ

)
for the Cauchy problem (8), (12), when ε and τ go to zero

related by δ = O(ε).
We first prove the strong convergence of

(
ρε,τ , mε,τ

)
by using the method

of compensated compactness as used in the papers [13] and [14].
To prove the convergence of the viscosity solutions for the following par-

abolic system {
ρt + mx = ερxx

mt + σ(ρ)x = εmxx
(1)

J.W. Shearer gives the framework on how to apply the compensated com-
pactness to the corresponding hyperbolic system (ε = 0) to obtain a weak
solution in Lp space [14] (see also [8]). He first proves global existence of
weak solutions in Lp for the system{

ρt + mx = 0

mt + σ(ρ)x = 0
(2)

in the case of strict hyperbolicity, genuine nonlinearity (σ′′ �= 0), the same
growth constraints on σ as (A4). This opens the possibility to extend this to
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study the convergence of physical viscosity solutions, to weaken the genuine
nonlinearity assumption (σ′′ �= 0) such that this may be violated at single
points (A3) [13] and to apply this to our system of three equations.

A pair of functions
(
η, q

)
constitute an entropy, entropy flux pair for the

hyperbolic system (1) if the following linear hyperbolic differential equations
are satisfied: {

ηρ = qm

σ′(ρ)ηm = qρ
(3)

Making a change of variables as in [14]

η = 1
2

(
σ′)− 1

4
(
Φ + Ψ

)
, q = 1

2

(
σ′) 1

4
(
Φ − Ψ

)
(4)

we can obtain from (3) { Φw = aΨ
Ψz = −aΦ

(5)

where

w = m +
∫ ρ

0

√
σ′(s)ds, z = m −

∫ ρ

0

√
σ′(s)ds (6)

are two Riemann invariants and

a = a(w − z) =
σ′′(ρ(w−z

2 )
)

8
(
σ′(ρ(w−z

2 )
)) 3

2
. (7)

To prove the convergence of the physical viscosity solutions of (2) with the
conditions (A2), (A3), (A4), Serre and Shearer constructed two classes of
entropies. One is obtained by choosing a point (w̄, z̄) in the (w, z) plane
and solving the linear hyperbolic problem (5) with Goursat data given on
the lines w = w̄ and z = z̄. The second class of entropies is obtained by
solving the linear hyperbolic problem for Φ, Ψ with continuous, compactly
supported initial data on a noncharacteristic line of the form w − z = ξ0 =
constant (i.e., Φ(w, w − ξ0) = g(w), Ψ(w, w − ξ0) = h(w) and g, w have
compact support in R). From the proof of Lemma 3 in [13], we know that
all the estimates about the second class of entropy - entropy flux pairs are
the same as for the first class, by compactness of g, h.

In fact, we assume that the support of the Cauchy problem on w− z = ξ0

lies between the points (w̄, z̄) and (ŵ, ẑ), where w̄− z̄ = ξ0 = ŵ− ẑ. Clearly,
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the characteristics for the hyperbolic problem (5) are w = constant , z =
constant. Hence, the solution Ψ, Φ is identically zero in the quadrants w >
ŵ, z > z̄ and w < w̄, z < z̄. We use this solution to get the initial data for a
Goursat problem in the quadrant w < w̄ with z > z̄. Consider continuous,
compactly supported Goursat initial data g1, h1 satisfying g1(z) = Φ(ŵ, z)
for z > z̄, h1(w) = Ψ(w, z̄) for w < w̄. Then the solution Φ̂, Ψ̂ to the system
(5) with Goursat data g1, h1 satisfies Φ̂ = Φ, and Ψ̂ = Φ in the quadrant
w < ŵ with z > z̄ by uniqueness of the Goursat problem. Shearer in [14]
carefully constructed and estimated the first class of entropy-entropy flux
pairs. Roughly speaking, (Φ,Ψ) satisfy the following estimates (in Lemma
2 of Section 5 in [14])

|θ| ≤ c1

(
1 + (σ′(ρ)

) 1
4 (8)

for θ having the form ∂iΦ
∂wj∂zi−j , ∂iΨ

∂wj∂zi−j , i, j = 0, 1, 2 i ≤ j, respectively.
Noticing c

4+c ≤ σ′(ρ) < 1 given in Remark 1, we know |θ| is bounded for
all θ given above. Furthermore, the assumptions on the growth constraints
of σ,

(
see (A4)

)
give us the boundedness of q and of ∂iη

∂ρj∂mi−j , namely

|q| ≤ M, | ∂iη

∂ρj∂mi−j
| ≤ M (9)

for i, j = 0, 1, 2 and j ≤ i and a constant M, where (η, q) is an entropy-
entropy flux of (2). For details see [17].

If the compactness of η
(
ρε,τ , mε,τ

)
t
+ q

(
ρε,τ , mε,τ

)
x

in H−1
loc (R × R+) is

proved with respect to the viscosity solutions for the Cauchy problem (8),
(12), the framework of Serre and Shearer in [13] will give us the convergence
of

(
ρε,τ , mε,τ

)
as we stated in the beginning of this section.

Lemma 3. If the conditions in (A1)–(A5) are satisfied, then η(ρε,τ , mε,τ )t+
q(ρε,τ , mε,τ )x are compact in H−1

loc (R × R+) with respect to the viscosity so-
lutions (ρε,τ , mε,τ ) given by the Cauchy problem (8), (12), where (η, q) is an
entropy-entropy flux pair of (2) satisfying the estimates (9).

Proof. We rewrite the first and second equation in (8) as follows:{
ρt + mx = ερxx

mt + (ρ − 4h(ρ))x + 4(h(ρ) − s)x = εmxx.
(10)

Multiplying (ηρ, ηm) to (10), we get

ηt + qx + 4ηm(h(ρ) − s)x = εηxx − ε(ηρρρ
2
x + 2ηρmρxmx + ηmmm2

x). (11)



126 yun-guang lu and christian klingenberg

Since

h(ρ) − s = H−1(ρ) − H−1(H(s)) =
(
H−1(ξ)

)′(ρ − H(s)), (12)

where ξ is between ρ and H(s) and 0 ≤
(
H−1(ξ)

)′ ≤ 1
4+c by Remark 1, we

have from (11)
ηt + qx = I1 + I2, (13)

where

I1 = εηxx −
(
4ηm

(
H−1(ξ)

)′(
ρ − H(s)

))
x

I2 = −ε
(
ηρρρ

2
x + 2ηρmρxmx + ηmmm2

x

)
+ 4

(
H−1(ξ)

)′(ηmρρx + ηmmmx)
(
ρ − H(s)

)
.

From the estimates (6), (7) and (9), we can easily prove that I1 is compact
in H−1

loc (R × R+). Since

(
ηmρρx + ηmmmx

)(
ρ − H(s)

)
=

√
τ
(
ηmρρx + ηmmmx

)ρ − H(s)√
τ

, (14)

then the estimates (6), (7) and (9) give the boundedness of I2 in L1
loc(R×R+)

if τ = O(ε), so the compactness of I2 in W−1,k
loc for 1 < k < 2 by the standard

embedding theorem. So ηt + qx is compact in W−1,k
loc for 1 < k < 2 from

(13). Moreover, ηt + qx is bounded in W−1,∞(R ×R+) by the estimate (9),
so ηt + qx is compact in H−1

loc (R × R+). The lemma is proven.
From the lemma and the framework given in [13], we have the strong

convergence of (ρε,τ , mε,τ ) in Lp
loc(R

2) for any p < 2 as ε, τ go to zero related
by τ = O(ε) and so the strong convergence of sε,τ by the estimate (6).

We end this section by the following theorem:

Theorem 2. The solutions
(
ρε,τ , mε,τ , sε,τ

)
of the Cauchy problem (8), (12)

with the assumptions (A1)–(A5) converge almost everywhere in a compact set
Ω ∈ R × R+ to an L2 bounded function triple (τ, m, s) as ε, τ go to zero
related by τ = O(ε). Moreover, (ρ, m) is a weak solution of the Cauchy
problem (6) with initial data

(
ρ0(x), m0(x)

)
in (7).

Remark 3. The basic ideas to use the framework given in [14] to study
solutions in Lp space are also used by other authors to some relaxation
systems without introducing the viscosity terms (See [15]). In fact, under
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a linear transformation of variables, the system in [15] is same to what we
study in this paper.

REFERENCES

[1] J.E. Broadwell, Shock structure in a simple discrete velocity gas, Phys. Fluids, 7

(1964), 1243–1247.

[2] R.E. Caflish, Navier-Stokes and Boltzmann shock profiles for a model of gas dy-

namcs, Comm. Pure Appl. Math., 32 (1979), 521–554.

[3] G.Q. Chen and T.P. Liu, Zero relaxation and dissipation limits for hyperbolic con-

servation laws, Comm. Pure Appl. Math., 46 (1993) 755–781.

[4] G.Q. Chen, C.D. Levermore, and T.P. Liu, Hyperbolic conservation laws with stiff

relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787–430.

[5] R.J. Diperna, Convergence of approximate solutions of conservation laws, Arch.

Rat. Mech. Anal., 82 (1983), 27–70.

[6] S.K. Godunov and U.M. Sultangazin On discrete models of the kinetic Boltzmann

equation, Uspeki Mat. Nauk., 26 (1971), 3–51.

[7] C. Klingenberg and Y.G. Lu, Cauchy problem for hyperbolic conservation laws with

a relaxation term, Proc. Royal Soc. of Edinb., Series A, 126 (1996), 821–828.

[8] P.X. Lin, Young measure and an application of compensated compactness to one-

dimensional nonlinear elastodynamics, Trans. Amer. Math. Soc., 329 (1992), 377–

413.

[9] Y.G. Lu, Cauchy problem for an extended model of combustion, Proc. Roy. Soc.

Edinb., Series A, 120 (1992), 349–360.

[10] Y.G. Lu, Convergence of the viscosity method for some nonlinear hyperbolic system,

Nonlinear Analysis TMA, 23 (1994), 1135–1144.

[11] Y.G. Lu and C. Klingenberg The Cauchy problem for hyperbolic conservation laws

with three equations, Journ. Math. Anal. & Appl., 202 (1996), 206–216.

[12] T. Platowski and R. Illner, Discrete models of the Boltzmann equation: a survey

on the mathematical aspects of the theory, SIAM Rev., 30 (1988), 213–255.

[13] D. Serre and J. Shearer, Convergence of physical viscosity for nonlinear elastisity,

preprint available from Denis Serre (1995).

[14] J. Shearer, Global existence and compactness in Lp for quasilinear wave equations,

Comm. PDE, 19 (1994), 1829–1877.

[15] A. Tzavaras, Materials with internal variables and relaxation to conservation laws,

Arch. Rational Mech. & Anal., 146(1999), 2, 129-155.


