STABILITY OF A RESONANT SYSTEM
OF CONSERVATION LAWS MODELING POLYMER FLOW WITH
GRAVITATION

CHRISTIAN KLINGENBERG AND NILS HENRIK RISEBRO

ABSTRACT. We prove L! uniqueness and stability for a resonant 2 x 2 system of conservation
laws that arise as a model for two phase polymer flow in porous media. The analysis uses the
equivalence of the Eulerian and Lagrangian formulation of this system, and the results are first
established for an auxiliary scalar equation. Our methods are based on front tracking approx-
imations for the auxiliary equation, and the Kruzkov entropy condition for scalar conservation
laws.

1. INTRODUCTION

We study the initial value problem for scalar conservation laws of type
(1.1) ur + fla(x),u)e =0,

where the coefficient a is a suitable function of z. Using the transformation given by Wagner in
[23], for u # 0, one finds the equivalent 2 x 2 system:

(5, (o (7).
(8, (w1 (w:3)),

If 1/u is interpreted as the saturation of water, and a the concentration of polymer dissolved in
the water, then (1.2) is a model of polymer flow in a porous two phase environment. This model
is one of the prime motivations for the present paper. Furthermore, conservation laws of the type
(1.1) are related to models of transonic flow of gas in a variable area duct.

If the coefficient a is smooth, and a’ is of bounded variation, one can use finite differences to
show existence of a weak solution to (1.1). This method was first used by Oleinik in [19], where
she used the Lax-Friedrichs scheme.

As long as a is smooth, we can also show uniqueness using the Kruzkov entropy condition, and
the classical “doubling of the variables” technique, see Kruzkov [15] or Kuznetsov [16].

However, if a is allowed to be discontinuous, none of the above techniques work. In this case,
it is more profitable to view (1.1) as a system, by adding the trivial conservation law

I
o

(1.2)

l
<

CltIO.

This system has characteristic speeds A® = 0 and A* = f,. If these two speeds coincide, the
system is non-strictly hyperbolic, and is called resonant. The solution of the Riemann problem for
resonant conservation laws is more complicated and interesting than the solution in the strictly
hyperbolic case, see Tsaacson and Temple [8]. This paper ([8]) studies a general system of resonant
conservation laws, and solves the Riemann problem locally around a state where two wave speeds
coincide.
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For the 2 x 2 systems (1.2) or (1.1), the global Riemann solution was studied by Gimse and
Risebro in [4], where it was shown that for a large class of flux functions f, a unique solution exists,
subject to an additional entropy condition. However, for certain fs, some Riemann problems do
not have a solution. Also for the special case of the polymer model without gravitation, the
solution of the Riemann problem was reported in Isaacson [7], and the solution of the Riemann
problem with gravitation was investigated in [3]

Utilizing the solution of the Riemann problem, Temple [21] showed existence of a weak solution
for the polymer model. This was done by generating approximate solutions by the Glimm scheme,
and then showing compactness using a nonlinear functional. This functional was subsequently
used in [5], to show existence for a model of two phase flow in a heterogeneous porous medium,
including gravitational effects. The Temple functional was also used in [14] where uniqueness and
existence was shown for a model problem where f(a,u) = ag(u) for a convex g. Here, uniqueness
was obtained using a wave entropy condition. This model problem was also studied by Klausen
and Risebro [13, 12], where it was shown that there is a unique solution, which is the limit of
solutions with smooth coefficients, and in addition a stability estimate was established, both with
respect to a and wu.

Moreover, the functional introduced in [21] was used to prove convergence of the Godunov
scheme for (1.1) by Longwai, Temple and Wang in [17], and for an inhomogeneous balance law by
Isaacson and Temple in [9]. In these papers, the coefficient a was assumed to be Lipschitz con-
tinuous with the total variation of @’ bounded. In this case, the solution generated by Godunov’s
method satisfies Kruzkov’s entropy condition, so that one has L! stability with respect to u, see
[18].

For discontinuous @, L' contraction of the solution operator with respect to « can be proved
by using front tracking and the semigroup approach by Bressan, [2, 10], and in the special case
where f, # 0 L' stability was shown by Baiti and Jenssen in [1].

Note that by Wagner’s fundamental result [23], corresponding existence and stability results as
the ones alluded to above, hold for (1.2) as well.

Without using this equivalence, Tveito and Winther [22] proved existence and ! stability for
the polymer system (1.10), (1.11), in the case without gravitational effects.

In this paper we incorporate gravitational effects (i.e., f in (1.1) need not be convex in u), and
then proceed to prove existence and L' stability without using smoothness assumptions on either
the initial data or on the coefficients.

The rest of this paper is organized as follows: In the remainder of this introductory section
we motivate the polymer model. In section 2 we define a “canonical” auxiliary conservation law.
When viewed in the proper coordinates, the Riemann solution for the auxiliary model is identical
to the Riemann solution for (1.10), (1.11). We therefore carry out the bulk of our analysis for the
auxiliary model, and defer the discussion of the corresponding results for the polymer model to the
next section. Based on the solution of the Riemann problem, we then define approximate solutions
by a front tracking scheme. Using a Temple functional, we proceed to show compactness, and hence
existence of a weak solution. For the moment assuming that the coefficient a is smooth, we next
show that the limit satisfies Kruzkov’s entropy condition, and hence in this case, the solution
operator is L' contractive. Furthermore, in the case that «’ is bounded, we obtain a convergence
rate for the front tracking approximation. Then, using both the front tracking approximations
and the Temple functional, we show a stability estimate for non-smooth coefficients. Finally in
section 3 we establish corresponding results for the polymer system with gravitation.

1.1. The polymer model. In this section we will motivate the polymer model for for a one
dimensional reservoir with constant geological properties, i.e., porosity and permeability. Assume
that we have two phases present in the reservoir, oil and water. Let s denote the saturation of the
water. The saturation of a phase is defined as the percentage of the available pore volume occupied
by that phase. Hence the saturation of the other phase, oil, is 1 — s. Let x denote the position in
the reservoir and let ¢ denote the time. Partial derivatives will be denoted by subscripts.
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The velocity of each phase, denoted by subscript i, is assumed to obey (the experimentally
verified) Darcy’s law

(1.3) vi ==X ((P), + pigDs)

where the mobility of each phase is defined as

ki

E.

Here K denotes the absolute permeability of the rock, k; denotes the relative permeability of

(1.4) \= K

phase ¢, and p; the viscosity of the phase. Furthermore, p; denotes the density of the phase, g
the gravitational acceleration, and D measures vertical distance in the reservoir. The relative
permeabilities are convex functions from [0, 1] to [0, 1]. In subsequent equations the index i will
be o(denoting the oleic phase) and w(denoting the aqueous phase). We will ignore the capillary
pressure and set P, = Py = P. Conservation of mass for the aqueous phase now reads

- (O‘pwvw)x + agw = « (gpwsw)t )
where o denotes the cross section of the reservoir, # denotes the porosity, i.e., the fraction of the
total volume available for one of the phases. The term ¢y denotes sources or sinks present in
the reservoir. We will assume that the cross section is constant, and that the densities and the
porosity are independent of the pressure. Hence, formally, the conservation equation reads
Iw
1.5 — (v — =0 (5w),,
(1) (). + 2 = 0 o),

and similarly for the oleic phase. Adding the conservation equation for oil and for water, and
using that s, + sw = 1, we are left with

(vo + vw), = — (q_w N q_o)
A Pw Qpo
(vtot)x = Qtot

where the so-called total velocity is denoted by vy, similarly Qior denotes the total volumetric

(1.6)

injection or production rate. Thus we see that in a one-dimensional reservoir, the total velocity 1s
constant if Qo is zero. Using this in the equation for mass conservation (1.5), we find

(1.7) Ost + (fo(5) (Vior = (pw = po) gDz K Ao (s))), = 0,
where we write s for sw (so = 1 — s), and the function fy is the so called fractional flow function,
given by

Aw(s)

(1.8) fols) = () + Aa(s)

In oil reservoir applications, injection of water 1s done in order to help prevent pressure loss in the
reservoir, thereby forcing more oil out. However, since the viscosity of o1l is larger than that of
water, “fingers” may form, thereby rendering this process less effective than desirable. In order to
prevent this fingering, a polymer is sometimes added to the water to increase its viscosity. This
polymer is passively transported with the water, yielding a conservation equation

(1.9) (se)t + (cf(s,¢))s =0,
where f(s,c) is given by
f(s,¢) = fo(s,¢) (Viet — GAo(8)),

and

G = (pw — po) gD K.
So summing up, we have the following system of conservation laws
(1.10) s+ f(s,¢)s =0
(1.11) (sc)e + (cf(s,¢))z =0
In the figure below we show how f typically looks for two different ¢ values. In the rest of this
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The flux function as a function of s for c=1 and c=0
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F1GURE 1. The flux function f(s,¢) as a function of s for two different ¢ values.

paper we will use the following properties of the flux function f. Tt is a differentiable function of
s and ¢ for (s,¢) in [0,1] x [0,1]. There is an § such that

f(5,¢)=0

for all ¢, and f(s,¢) < 0 for ¢ in (0,8), and 1 > f(s,¢) > 0 for s in (5, 1). Furthermore f(0,¢) =0
and f(1,¢) =1 for all ¢. Also

of . .
B0 >0, forecin (0,3)
of o

B <0, forein (s,1).

2. THE AUXILIARY MODEL

Tt turns out that viewed in the proper coordinates, the Riemann problem for (1.10)—(1.11)
is identical to the Riemann solution for a scalar equation with # dependent coefficients. This
“system” 1is the following

0y + (rsind)_ =0
o o+ (rsing),
ry =
where the unknown is 0(z,t). We are interested in the initial value problem for (2.1) and assume
that r7(z,t) = r(x) and 6(z,0) = fg(x) are known. Furthermore, we shall assume that r(z) is
a positive function of bounded variation, and that the initial function y(z) takes values in the
interval [—7, 7]. We let h(0,7) = rsinf.

2.1. The Riemann problem. The Riemann problem for (2.1) is the initial value problem where

0, for # <0, I, for z <0,
(2.2) fo(z) = { : = r(x) = { : =

0, otherwise, Ty, otherwise,

where 6; , and r;, are constants. Such Riemann problems have been studied and solved by Gimse
and Risebro in [4], where it was demonstrated that subject to an extra entropy condition, there
existed a unique solution.

The solution Riemann problem for (2.1) consists of two types of waves, » waves, over which A
is constant, but r varies, and 0 waves, over which r is constant. Note that viewed as a system
(2.1), has two characteristic speeds A, = 0 and Ag = rcosf. Tt is linearly degenerate in the first
family, and for § = 4+7/2, the two eigenvalues coincide.
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Tt turns out that the (r,6) coordinates are awkward to work with when defining the front
tracking approximations, and we use instead the following coordinates:

v = sign (cos(#)) r (1 — |sin(8)])

w=rsinf

(2.3)

We denote this coordinate mapping by Zg,, i.e., (v, w) = Zg, (0, 7). We see that in the (v, w) plane,
the r waves will be lines with constant w, and the # waves will be on diamonds of constant r. A
Riemann problem is said to have a solution # if the left state is connected with the right state via
a 0 wave, similarly the solution the two states are connected with an » wave the solution is labeled
7. Hence we have essentially three types of solutions to the Riemann problem for (1.10), (1.11):
70, 6r and 6rf. In the figure below, we show the solution in each of the cases —7 < 0§ < —7/2,
—71/2<6<0,0<60<7/2and /2 <0 < 7. These cases appear counterclockwise, starting in
the lower left corner. This figure is interpreted by following the dashed lines from, representing

0r0 ro

F1GURE 2. The solution of the Riemann problem

either 8 waves or r waves, from the left state, denoted L, to any right state. In each case, the
(v.w) plane is divided into three regions, separated by thick lines, and in each region the wave
configuration is constant, e.g., frf. Note that » waves cannot cross the lines § = 4+7/2, where the
two eigenvalues coincide. Hence to solve a Riemann problem, we first find the wave configuration
from this figure 2. If a § wave appears in the solution, the left and right states have the same
r value, and the solution is found by solving a scalar Riemann problem. This is done by finding
the lower (if 6; < 6,) or upper (if 6; > 0,) envelope of h(0,r). Below we show how this works on
a specific example. The diagrams show how the solution will look in (v, w) coordinates, in (6, h)
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coordinates, and then we show the waves in (#,) space and finally @ as a function of z/¢. For a
more detailed explanation of the solution such Riemann solutions, we refer the reader to [4].

w h
R
R '
v 0
T 7 W
AL
Solution in (v, w) coordinates. Solution in (0, h) coordinates.
31 L L 31
t
o i Lo
o f Lo
31 T T 31
‘ x 080 027 027 080
Solution in (z,t) coordinates. Solution in (z/t, ) coordinates.

2.2. The front tracking scheme. Now we define the front tracking approximations which will
be our primary tool. The scheme we will use is an adaptation of the schemes used in [5] and in
[14].

Fix a (small) positive number 6. For i € 7, let v; = i and w; = i6 This will be our grid in
phase space. For r; = |i|d, we make a piecewise linear approximation to h(@,r), interpolating
between the points on the grid, i.e., let

6;; = sign (j) cos™! (1 — m) , for =21 < j < 2i.
i

Let h% be the piecewise linear approximation to h,
h(r,0ij41) = h(r, 0:))
Oij+1 = Oij

(2.4)  h%(8,7) = h(ri,0i5) + (6 — 6;5) , forr=r; and 0 € [0;;,60; j11]

For a fixed 7, the initial value problem for
(2.5) e+ R (6,m), =0, o(x,0)€ {05},

can be solved exactly using Dafermos’ method, see [6]. Furthermore, the unique weak solution
@(x,t) will be constant on a finite number of polygons in the (z,?) plane, and take values in the
0
set {gij}jlz—Zi'
Let 7°(z) be an approximation to (z), such that 7 takes values in the set {r;}, and
(2.6) ||7°5—7°||1 =0
as § — 0. Similarly 63(z) be an approximation to 6, taking values in the set {f;;}, and

(2.7) 165 = 60|, — 0
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as § — 0. We shall use front tracking to define a weak solution to
07 + h° (6°,r%) = 0.

=0

(2.8)

Firstly, note that each initial Riemann problem defined by % and #¢ will have solution which are
piecewise constant, and that takes values on the grid (v;, w;). Furthermore, the discontinuities
emanating from each initial discontinuity, all have finite speed. Therefore, by solving the initial
Riemann problems, we have defined a weak solution initial two discontinuities collide. At the
collision point, we solve the Riemann problem defined by the states to the left and right of the
collision point. Since these states are on our grid, also the resulting states will be on the grid.
Now we have a solution defined until the next collision point. Therefore, we have a weak solution
up to any collision point. We call this construction front tracking.

It remains, of course, to show that this process is well defined, we have to check whether we
can reach any predetermined time, and whether the number of discontinuities stays finite for any
time. To accomplish this we define a functional on (95, ré). This functional is chosen so that it
dominates the total variation in (v, w), and such that it is non-increasing in ¢.

Let now u’ = (vé, wé), we have that u® defines a path on the (v, w) grid. This path consists
of 8 waves and r waves. We call any finite connected sequence of # and r waves an I curve, and
say that I connects uy to ug if the left state of the first segment is uz and the right state of the
last segment is ug. An [ curve can then be written r1617r96s5...75. This terminology and the
subsequent techniques are ultimately borrowed from Temple [21], but see also [5] and [14].

We first define F' on simple wave segments, for a § wave, let

(2.9) F(6) =T.V.(w(d)),

i.e., F(0) is & times the number of horizontal grid lines crossed by the @ wave. For an r wave
connecting points (vr,w) and (vg, w), let Ar = vgp —vr. Then

(2.10) F(r) = (3 —sign (Ar)) |Ar|.

For general I curves, I = b1bsy---by, F is defined additively, i.e.,

N
F(I) =" "F(b).
i=1
For later use, note that F' (ué) can also be written

(2.11) r (ué) :/ (3 — sign (vi)) |vi| + |wi| dz,
R
and we then clearly have that
T.V.(0°) < F (u®) <4T.V. (v’) .
Now we can show that

Lemma 2.1. Let I be any I curve connecting uy, to ug, and let [uy,ug] be the I curve defined
by the solution of the Riemann problem with left state uy and right state ug. Then

(2.12) F ([ur, ug)) < F(I).

Proof. First we show the lemma in case where sign (7) is constant, i.e, I does not cross the v axis.
Then it suffices to observe that # € [—m, 0] and 6 € [0, 7] are both invariant regions with respect to
the solution of the Riemann problem, cf. figure 2. In this case the proof of this lemma is identical
to the proof of the corresponding lemma in [14] or [21].

Next assume that w;, = wg = 0,and vy, vg > 0, in this case the [uy,ug] = r, and by the above
remarks F' ([ur,ug]) < F(J) for any J curve connecting the states and not crossing the v axis.

Assume next that wy > 0 and wg > 0, and I crosses the v axis. Let J be the I curve from
uy, to ug consisting of the part of I with non-negative w coordinate, together with parts on the
v axis. Then

J= NI T Jd . J) T
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where J denotes the parts of I with non-negative w and J; denotes the parts of J with zero w.
Corresponding to JJ we let I, denote the part of I connecting the same points (on the v axis) as
J?. Then we have

F([ur,ug]) < F(J)

L L+1

=) F () + > F ()
k=1 k=1
L+1

<Y CF () + > F (k)
_rn.

An identical argument covers the case where wy,, wg < 0.
Assume now that sign (wy,) # sign (wg). From figure 2 we see that
[uz, ug] = [uz, uy] [y, ugl,
where wps = 0. Furthermore
F(lug,ug]) = F([ur, uym]) + F ([us, agl) .

First we show the lemma in case I crosses the v axis once at uy, the general case will then follow
by induction. Now we have that

[u,ug] = rf = [uy,up][us,ug].

Let I; denote the part of I connecting uz and u; and let I denote the part connecting u; and
ug. Then

F(I) = F (L) + F (1)
> F (L) + F ([ur,uy]) + F ([an, ug])
= F (I [uy,up]) + F ([up, ug))
> F([ug,up]) + F ([un, ug])
= F([ur, ug])

Regarding the general case, assuming that I crosses the v axis k times. Using the above arguments,
we can find another I curve I, with F(I)>F (f) connecting uy, and ug and crossing the v axis

k — 1 times. This concludes the proof of Lemma 2.1. O
From this lemma the following is immediate:

Lemma 2.2. F (ué) 1§ non-increasing in tLime.

Proof. Tt is clear that F only changes value when two discontinuities in u’ collide. At collision
points, a section of the I curve traced out by u’ connecting uy and ug is replaced by [ur,ug].
Hence, F' is non-increasing. O

Now we can also use this to show that front tracking is well defined. We have that the following
types of collisions can occur

00 — ¢

rf — 0 r

Or —r' ¢

rd — 07 v 6}

Or— 0,0 0,
meaning that the two waves to the left of the arrow collides, producing a solution indicated by
the waves to the right of the arrows. FEach of the §’ waves to the right may consist of several

discontinuities. This will be the case if the ¢ wave is approximating a rarefaction. To aid the
further analysis we use the next lemma

Lemma 2.3. If we have a collision of type r0 — 077" 6 or 0r — 6, v' 0, then F — F' > 4.
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Proof. The proof of this i1s a study of cases. We prove the lemma in the case where we have a
collision of type 6 r, the other case being entirely similar.

Let @ separate uy, and ups, and r separate upy and ug. The point uy, has coordinates (6, 7).
Similarly for the points uss and ug. To show the lemma we consider four cases, depending on
which quadrant in the (v,w) plane uz is in. With a slight abuse of notation, let 67 be the 6
coordinate of the left state. The reader is urged to consult the Riemann solution, fig. 2 as a tool
to understand our arguments.

Case 1: —7 <0 < —7/2:
In this case —7/2 < g < 7, and rg < rg, since this is the set where [uy,ug] = 6 r6.
Now rjr = rr, since uy, and uys are connected via a § wave. Furthermore, this 0 wave has
positive speed. Now there are no single  waves of positive speed having ;, as its left state,
which follows from the Rankine-Hugoniot condition. Hence in case —m < 0, < —7/2 there
are no such collisions.
Case 2 —7/2 < 0;, < —0:
In this case the set of states where [uy,ug] = 0r6 is given by —7/2 < g < 7, and
rr < |wr| — &, where wy, is the w coordinate of uy,. Since upr and ug are connected by an
r wave, uy must be such that |wy| < |wr| — 8, and since uy, and ups are connected by a @
wave, rpr = r7,. Now it is a simple exercise to control that F/ — F > 4.
Case 3 0< 0 < m/2:
Now —7 < 0r < 7/2 and |wg| < wi, — . Also in this case it is straightforward to check
that F' decreases by at least §.
Case 4 0< 0 < m/2:
This case is similar to the first case.

This concludes the proof of the lemma. O

A consequence of this lemma is that for some fixed §, “reflections” of § waves can only occur
a finite number of times. Hence after some finite time, all § waves of nonzero speed will have
passed into the region to the left or right where r is constant. Recall that the initial data, and in
particular r, is constant outside some bounded interval.

Regarding 8 6 collisions, these always result in a single 6 discontinuity if F is constant, and if
more than one discontinuity results, then F' — F’ > §, see [6] for details. Hence after some finite
time, any 6 6 collisions will result in a single 6 discontinuity. Also the speed of this discontinuity will
be between the speeds of the colliding discontinuities. In particular, two colliding 8 discontinuities
of negative speed, will result in a single discontinuity moving with negative speed.

Combining the above remarks, we see that after some finite time Ty, there will be no further
collision of fronts. Hence the front tracking method is well defined, and for a fixed 4§, requires only
a finite number of operations.

2.3. Compactness and convergence. Now we are in a position to use standard arguments to

show that there is a subsequence of u’ that converges to some u, such that (6,7) def Ee_rl

weak solution to (2.1).
For the auxiliary system the relevant theorem 1s:

uis a

Theorem 2.1. Let ug = =4, (0o, 7) be such that T.V. (u) is finite, and assume that ug is in L.
Let u’ denote the function defined by the front tracking construction. Then for any sequence {8}
such that § — 0, there exists a subsequence {d;}, such that for any finite time t > 0, 05,(-,1)

=—1..4

converges uniformly in L1 . where (95,7“5) = B, u’. Furthermore the limit of 0% is a weak

loc?
solution of (2.1).
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Proof. The compactness of the sequence {u}é follows by standard arguments, see e.g., [20], for u
satisfies

[’ < A,
[’ ¢ 8)]l, < M,
T.V.(u) < M,

||u6('a5) —u6(~,t)||1 S M |t - 5|a

(2.13)

where M is a generic constant. The proof of the the fourth of these inequalities follows from finite
speed of propagation and the third inequality. Then the convergence of a subsequence of {u} in
L. follows by applying Helly’s theorem and using a further diagonal argument, see e.g., [20].
Since Zy,. is injective, the corresponding convergence for a subsequence of {95} follows.

For simplicity we now denote the subsequence {4;} by {d}. For a test function ¢ we define the
functional

(2.14) w(8) :/]R/Ooo O + h(0, 7)oy dxdt—I—/RH(x,O)go(x,O) dz.

By the front tracking construction, (95, ré) is a weak solution to the approximate problem

(6°), + h° (0°,2°) _=0.

xr

Let @ = lim#°, then we find

W (6)] = ‘// (0 —0°) ¢ + (h(0,7) — h° (6°,7°)) s dxdt—l—/(ﬁo—ﬁg)go(x,O) dx
< M0 = 0slly + [|1(0,7) = 0 (0,0, + 100 = 63]),)

where M is a bound on |¢]|, |¢s| and ||, and as (0°,7°) takes values at precisely those points
where h% = h, we have replaced h? by h in the middle term. Since #° converges to § and r? to r
in L', the terms on the right hand side can be made arbitrarily small by making J small. Hence
0 is a weak solution to (2.1). O

2.4. Stability for the scalar equation. We first study stability for the scalar auxiliary equation
with respect to perturbations in the initial value 8. If r is twice differentiable, we can use the
classical results of Oleinik [19] and Kruzkov [15] to show that

(2.15) 16" (o) =020l < ]l0g — 03],

where 0 is the entropy solution of (2.1) with initial data 6 for i = 1,2. Now, our first goal is to
show that this also holds for the solutions produced by front tracking.

To do this, we must first show that for smooth r, the front tracking method produces the correct
entropy solution.

Lemma 2.4. Assume that r(x) is uniformly Lipschitz continuous and constant outside some
bounded interval. Let 8 = lims_q #°. Then we have that

[ [16= Kot sign (0 = 1) [(b(6.1) = bk, ) s = (h(h 7)) o] dade
(2.16) o /R

— [ 10T~ k(e Ty de+ [ 160 = k(2,00 o2 0,
R R

for all non-negative test functions ¢ and all constants k, i.e., 8 satisfies the Kruzkov entropy
condition.
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Proof. Let the discontinuities of r® be located at #;, i = 1,..., N. Since # is a weak solution in
each interval {x;, z;41), we have that

(2.17)

T Ti41
/ / |0° — k| o+ sign (6° — k) [R® (6°,7°) — h® (k,7°)] ¢, ddt
0 T,
T

—1—/0 ¢ (2i41,t)sign (96 (Tig1,1) — k) [hé (96 (Zig1,1), o (l‘H_l)) - (k, o (l‘z+1))]
— (x4, 1)sign (96 (g, ) — k) [hé (96 (2;,1), P (a:l)) A (k, P (a:l))] dt

—/ a |96($,T)—k|s0(x,T)dx+/ - |05 — k| (x,0) de > 0.

i

Thus
T
/ / |0° — k| r +sign (0° — k) [2° (6°,7°) — h° (k,r°)] oo dadt
0 R

_/ |95(a:,T)—k|g0(x,T) da:—l—/ |93 — k| ¢(x,0) dx

(2.18) R R
T N

— [ ernsien (0 - =) [ (0l rdi ) = (o, )]
i=1

—gysign (07, — k)[R (00 4,70 ) — B (kv )] dt>0

where r?,i = limy 4 7° (y), similarly for nyi, and ¢; = ¢ (2;,t). Consider now the last term in
(2.18), since r is smooth, we can define
r?,+ =r(x) =:r.
Furthermore, by the solution of the Riemann problem,
§ (pd § (pd
h <0i+1,—ari> = h <0i+1,+a 7°Z'_|_1) = hz

Let now
P = {l‘j | max{|9;|,|9;|'|} >7r/2}, and S = {l‘j | max{|9;|,|9;|'|} §7r/2}.

Then we write the sum under the integral in (2.18) as

(2.19) > i [hi = (k,ri-1)] [sign (0] _ — k) —sign (6] | — k)]
(2.20) + pisign (67 , — k) [h(k,r;) — h (k,ri_1)]
(2.21) + i [hi = B (k, 7)) [sign (67 — k) — sign (62, — k)]
P
(2.22) + i sign (07 _ — k) [h (k,7;) — b (k, 7i_1)]

As § = 0, clearly the second and fourth terms, (2.20) and (2.22) tend to

/ psign (0 — k) h(k,r), d.
R

Regarding the first and the third term, (2.19) and (2.21), it is a simple exercise to verify that
solution of the Riemann problem implies that (2.19) and (2.22) are non-negative. Hence the limit
f satisfies the Kruzkov entropy condition. O

Thus, for smooth r, the front tracking construction will give a limit which is L' contractive, i.e.,
(2.15) holds. We now show that also if 7 is not continuous, there is a weak solution to (2.1) such

that (2.15) holds .
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For later use we now write the entropy inequality satisfied by 6° as
T
/ / |0° — k| @ + sign (6° — k) [h° (6°,7°) — h® (k,7°)] ¢, ddt
0 Jr
T
= [ S sion 61 = ) 0 ) = B (ki)
b s

—|—ZQDZ sign (9?7_ - ]f) [h (k’, ri) - h (ka 7“2'_1)] dt
P

(2.23)

—/ |95(x,T)—k|g0(x,T)dx—|—/ |93—k|g0(x,0)dx20.
R &

If » 1s discontinuous, let 87 be entropy solutions to
(2.24) (05) + h (6, 7°), =0,
with initial data 6; ¢, and ¢ = r % w. for a standard mollifier w.. Using the functional F' we can

now show that

Theorem 2.2. For i = 1,2, let (6;0,7) be as in Theorem 2.1, and let 6 be defined by (2 24).
Then, for any sequence {6} such that ¢ = 0, there is a subsequence e; such 651 — 0; in L]
j — 00. Furthermore 8; are weak solutions to

(0i), + h(0i,7), =0,
Hl(l‘,O) = Hiyo(l‘).

Proof. We first show the convergence with respect to e, u® = Zg, (0°ps1, r®). By Lemma 2.2 and
(2.11) we have that

loc 45

T.V.(u®(-,1)) <4T.V. (u(-,0)).
Hence the total variation of u is bounded independently of . Also u® satisfies the bounds
||, < M
[0 (-, 8) —u* (- )], < M|t — s
[0 (-, B[, < M,
for some constant M independent of €. So we see that u® satisfies all the requirements of using

the classical technique of Helly’s theorem and a further diagonalization to show that there exists
a convergent subsequence. Hence 6 converges in Ll . to some function §. We also have that

0)| = ‘// (0 —60%)pr + (h(6,7) — h (r®,0%)) @, dadt
< M (10— 6°ly + 1A (0, 7) = h (7, 0%)]1,) -

Since 6 tends to @ in L', the terms on the right hand side can be made arbitrary small, and  is
a weak solution to (2.1). Letting 6 denote the weak solutions of (2.24) with initial data 6}, we
have

101(, 1) = 2 ()l = Hm (163, 8) = 650 )|y < [161,0 = 2,0,
which is (2.15). O

Note that we do not know whether the weak solution constructed directly by front tracking: 6
is equal to 8. To show this we must show stability with respect to variations in the coefficient
r. Now we show stability with respect also to the r variable, this is done by a “doubling of the
variables” approach similar to Kuznetsov [16] original approach, see also [22]. Before stating the
lemma, we remind the reader that for r twice differentiable, and T.V. (') bounded, there exists
an entropy solution of (2.1) of bounded variation in any bounded time interval. This follows by
showing that the approximate solution generated by the Lax-Friedrichs scheme are of bounded
variation, and that they satisfy an approximate entropy inequality, see e.g., [19] or [12].



(2.30)

(2.31)
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Lemma 2.5. Let 6 and 0 satisfy

[ [ 10— et sign 0 = 0 [h(6.1) = bk, ) s = (7)) ] dade
(2.25) o Jr

w1
—/R‘é(x,T)—k‘gp(m,T)dx—l—/R‘éo—k‘gp(m,O)er0,

for all constants k and all non-negative test functions p. Assume that either T.V.(0(-,1)) or
T.V. (é(,t)) 1s uniformly bounded fort < T, and that either v or ¥ are Lipschitz continuous, and
that both T.V.(v") , T.V.(#') are bounded. Then

<M (o0 = o+l = #ll + TV = 1))

= [10T) = bl Ty o+ [ 160~ Kl (2, 0) o> 0
R R

o k‘ potsign (0= k) [((0,7) = h(k, 7)) @u — (h(k, 7)) o] drdt

(2.27) H9(~,T) —0(-,T)

for some finite constant M depending on min{T.V.x (0), T.V.y (é)} and min {||7'||.. , |||, }, for
t €[0,Ty].
Proof. Let w. be the usual approximate § function, with |w.| < M, /e, and set
Fi(0,r k) =sign (0 — k) (h(0,7) — h(k,r)), Fa(0,r k) =sign(d —k)h(k, r)y.
Then (2.25) and (2.26) read

/ |0 — k| e + F1(0,r, k)py — Fa(0, 7, k) dedt
(2.28)
—|—/|90—k| dx—/|9(T)—k|g0deO
// ‘é - k‘ o + Fl(A, Pk oy — Fz(é, 7, k) dyds
+/‘é0—k‘ dy—/‘é(T) —k‘gpdyz 0.
By using the test function ¢(z,y,s,t) = w:((z — y))w: ((t — s)) and setting k = é(y, s) in (2.28)

and k = 0(x,t) in (2.29), then integrating (2.28) with respect to y and s and (2.29) with respect
to x and ¢, we find that

Og/OT/R/OT/R‘H(x,t)—é(y,S)

+ F (9(1‘, t),r(z), é(y, 5)) oy — Fs (9(1‘, t),r(z), é(y, 5)) e drdt dyds

+/0T pe (Ho,é(~,5)))w€(5) ds—/OT pe (9(~,T),é(~,s)))w€(s) ds

og/oT/R/OT/R‘e(x,t)_é(y,s)

+ Py (00,5), 7(0), 6. 1)) 0y = Fo (0(3,5), #(9), 6(, 1)) o dirdt dyds
(

A(y,s 7
+/0T pe (éo,a ~,t)))w€(t) dt — /OT pe (é(~,T),9(~,t)))wa(s) dt,

)= [ [ o= lla) = =) dod.

(2.29)

Pt

Ps

where p. is defined by
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Using that ¢, = —¢, and ¢; = —¢;, and adding (2.30) and (2.31), we obtain
T

/OT pe (00.7),00.5)) we(T =) ds+ [ oo (00.7).00.0))welt = T)
S/OT/R/OT/R{E (0621, 7). 05, 5)) = Fu (0(y, ), 7). 0z, 1)) } o dvdt dyds
- /oT/R/OT /]R {72 (062, ),7(2), 605, )) = P2 (0(95), 7(0),0(21)) } o dadt dyds
‘1‘/0Tpa (90,0(5)) ds—I—/OTpg (60,00,1)) a.

We write this equation as
(2.32) L'(e) + La(e) < Ri(e) + Ra(e) + Ra(e) + Ra(e).
Now standard arguments, see e.g., [15] imply that

lim [Ly(2) + La(e)] = Ha é(.,T)H
(2.33) =0 !
lim [R3(e) + Ra(e)] = H90 - 90H
e—0

Regarding Rs, assuming that r’ is bounded, we have that

< / ' / /OT / e (0(2,1), #(9)) (7 (3) — /(@) ¢

ot [pe (e (0,0),30) = 610, ), ()

<o [0~ v+ [0006) 060, 0] o) — #1 det ds

where M! depends linearly on ||7/||_, but not on ¢ or on ||7|| .. Now

/ // /|7° ) —7( |g0dxdtdyds—>T/ Ir(z) — 7 ()| da
(2.34) / // /|r —7( |godxdtdydsio>T/ I (2) — #'(2)| dz
/0 /R/O /]R‘H(x,t)—é(y,s) godxdtdydsi%/oT/R‘g(x,t)—é(x,t)‘dxdt,

This provides the bound

|7 ()] ¢ dedt dyds

T
(2.35) lirm |Ra(e)| < M (T(Hr |, + TV (¢ — ) +/ H9(~,t) - é(~,t)H1 dt) .
€ 0
Now we estimate Ri. Let

Q(z,t,y,s) = sign (H(x,t) - é(y, 5)) X

Then

////Q )y dedt dyds.
////Q(y,s,y’ 8)pp drdt dyds = 0.

/// Q. QY. 5,y,5)} po drdt dyds.

Observe that

Hence we can write Ry as
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Estimating the difference Q(z,%,y,s) — Q(y, s,y, s), we find that

Q. t,y,5) = Qy,s,y,8)| < M (l?“(l‘) —#(Y)] 10(z,1) = 0y, )| + [r(2) = r(¥)] |6(y,5) = O(y,5)

for some constant M depending on h. Consequently

IRl(E)ISM{ / ' / /OT [ @) = )] 100,8) = 000 9] e (2 = ) e = o) dad s
+/0T/R/OT/R|7~(Q;)_7~(y)| 0y, 5) — 0(y, )| e (2 — ) welt — 5) dxdtdyds}

= 11(6) + 12(6).

)

J<M / / / / )+ () — (@) 10(z,1) — 8(y, 8)| |we' (x — )| we(t — ) dxdt dyds
= M////' —#(y)] (10(z, 1) = 0(y, )] + 10(y, 1) = 0(y, 5)]) |we" (2 — y)|we (t — 5) dwdt dyds

2
M M / // / 0(x,t) = 0(y, s)| dydsdzdt.
t—e

Since 6 is bounded and measurable, the second term above tends to zero as € becomes small. The
integral in the first term is bounded by

I — ., /OT/OTwau—s){/R/wa,t)—e<y,t>| lwe'(z — )| dedy
—I-/ 16(y,t) — 6(y, s)| [/@:'f lw:' (z — )] dx] dy} dsdt
<l — 7l / / wat—s{/kua |/|9xt )= 0(z — 2,4)| dz dz

(1) — 6. >||1}dsdt

§||7~—f||oo/0 (M2T.V.(0(-,1)) + M?) dt

where the constant M? depends on [ zw.’(z)dz and M? depends linearly on T.V.(6). Hence

. 4 _ ~
lim 73 (e) < MAT ||y — 5]l

for some constant M* depending linearly on T.V., (#). We estimate I, by using the Lipschitz
continuity of r.

lim I(e) < M’ hm////‘ﬁy, v, 5)

< Mlalg%//‘ﬁ(y,s) —H(y,s) /|J;—y| lw."(x — y)| we (t — s)dr dyds

T
§M1M2/ H9(~,t)—é(~,t)H dt.
0 1

"(x — y)|we(t — 5) dedt dyds

Consequently,

dt) ,
1

(2.36) lim |Ry(e)| < M° (T||r— o + /OT Ha(.,t) —0(-,5)

e—0
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for some constant M® depending linearly on ||7/[|_, and 7.V.(#). Collecting the bounds on the
terms in (2.32), and using the relation ||r —7|| < T.V.(r —#), we find that
dt)
1

(2.37)
for some constant M depending linearly on ||7’||., and T.V.(#). The lemma then follows by the
Gronwall inequality. O

H9(~,T) - é(.,T)H1 < Hao _ éoul + M (T(Hr — |, + TV (= 7)) + /OT H9(~,t) —d(.,s)

Note that for » = 7, this proof will yield Kruzkov’s stability result (2.15).
Remark. By itself, this lemma is not quite enough to show that the weak solution generated by
front tracking; /| is the same weak solution obtained by letting ¢ — 0 in (2.24). The next section
is devoted to obtaining the necessary tools for showing this.

2.5. An estimate of the convergence rate if r is smooth. We can actually extract more
information from the entropy inequality for the approximate solutions 6°, (2.18). To this end, we
need some technical results.

For a function u(z,t), assume that there exist continuous functions v, and vy Ry +— R, with

vy +(0) = 0, such that

sup / |u(z +y,t) —u(z,t)| de < vy(e)
lyl<e JR

sup / |u(z, t 4 s) —u(z,t)] de < v(7)
ls|<7 JR

(2.38)

If we can find such functions, we say that « has moduli of continuity in # and ¢. Note that if u is of
bounded variation in «, then v, can be chosen as C's. The next proposition states that functions
(A, 7) that have the property that Zg, (0, r) is of bounded variation, have moduli of continuity.

Proposition 2.1. Let 6 : R — [—m, 7| and » — [a,b] where 0 < a < b. Assume that Zg,(0,7)
has bounded variation. Furthermore assume that both r and 6 are constant outside some bounded
interval I. Then 0 has a module of continuity v, which can be chosen as Ce'!? for some constant

C' depending on h, a, b, T.V.(Z¢,(0,7)) and I.

Proof. Without loss of generality, we can assume that both # and r are right continuous. Let
¢ > 0, and set x; = ie for i € Z. Set 0; = 0(x;+), and r; = r(2;+). Define the sets

Sai = {l‘z | |0; F /2] < /e and |0;_1 F /2| < \/E} and B. = {l‘Z | x; QSgi}

Note that for |0 F 7/2| > /€, |0sZ¢r| > C1+/Z for some constant Cy depending on h and a. Since
0 and r are constant outside I, ) ¢ 1= O (1/e). Therefore,

0222(\/5)22\/EZ|92'—92'—1|~

Se
Furthermore since T.V. (2, (0, 7)) is finite

Z |(E€r)l' - (EGT)Z'_1| S 03,
Be
for some constant C not depending on €. Combining the above we obtain
\/EZ |6; — 6;_1] = \/EZ |0; — 0i—1] + \/C:Z |0; — 0;-1]
i B. S.
<y |Eor)i = (Eor)ioa] + Ca
Be

< Cs.

Since ¢ is arbitrary, this implies the conclusion of the proposition. O
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Lemma 2.6 (Kruzkov’s interpolation lemma). Let z(x,t) be a bounded measurable function de-

fined inTlp = R x [0,T]. Fort € [0,T] assume that z possesses a spatial modulus of continuity v,
that does not depend on t. Suppose that for any ¢ € C{°(R) and any t1,t2 € [0,T],

/]R (z (w,12) — z (x,11)) ¢(2) dx

Then fort and t + 7 € [0,T] and all £ > 0

(2.39)

< Consty - ||¢'||, |t2 —t1].

7]

(2.40) /]R |2(2,t +7) — 2(2,1)| dz < Constr - <? + yx(g)) .

For a proof of this lemma, see [11].
Now it is straightforward to show that 6% satisfies (2.39). Hence we can use the lemma and
Proposition 2.1 to conclude that 8° possesses a modulus of continuity v, which can be chosen as

w(r) = cr/s,
Consequently both the approximate solutions 6° and the limit § possess moduli of continuity
(2.41) ve(e) = CeY? () = O3,

where the constant C' does not depend on ¢ for t <T.
Let we(2) be a standard mollifier as before, and define a test function ¢(z,y,t,s) by

QD(I, Yy, 1, 5) = We (l‘ - y)(-dg (t — 8).
For a function u = u(z,1) let A;(u, ¢) be defined as
(2.42)

Ae(u, k) = —/ |u— k| e +sign (v —c) (h(u,r) — h(k,r))pr —sign (u— ¢) h(k, 7)o dedt

t=T
—|—/|u—k|gp |t:0 de.
R
For two functions u and v we define the functional A, (u,v) as

(2.43) A (u,v) = // e (u, v(y, 5)) dyds,

where u = u(z,t) and v = v(y, s). In passing, we note that if u is an entropy solution of (2.1),
then

(2.44) A:(u,v) <0.
For two arbitrary functions v and v we have the following result:

Lemma 2.7 (Kuznetsov’s lemma). Assume that that r is in C(R) and v’ is in L (R) and that
both r and v' have moduli of continuity. If w and v are in L*(Tl7) and have moduli of continuity
i space and time, then

lu(T) = o Dl < MJul 0) = v 0+ Ae (u,v) + A (v, 1)

5 e, 0)36) + v (0, 0)52) & v (0, T)52) 4 v 7))

(2.45) + 5 T)5) 4 10 T)0) + (-, 00:2) (o, 0)52)]
Il Wl T sup_ (-1 1)32) + v (u( 0: )
HOT (¥l va(r32) + 2 (0':2))

where vy (-5 ) and ve(+;-) denote moduli of continuity. The constant C' depends on h, and hy,.
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For a proof of this lemma, see Karlsen and Risebro [11]. Applying Kuznetsov’s lemma with
u =0 and v = 0° and using (2.41), we find

(2.46) 16, T) —6°(, ||1_||90—93”1—|—A€(95,9)+C’~||r/||oo(6—1—61/2—1—61/3).

Here we tacitly assume that |||, > 0, as this will be the case for our primary application of the
results following from this. ~ ~
It remains to estimate A.(6°,0). Let A be defined by the negative of (2.23), then A < 0, and

(00 k) = (A0, ) = X) + 4 <

(6%, k) —X‘.
i< // (|h°(8°, %) — h(@°, )| + B (k. #®) — h(k,r)]) ls]| dad

T
T Ti41
+ [ [ et = el ik ) dade.
0 B T;

Regarding the first term on the right, we have that h%(6° r°) = h(6°,7°), hence
(2.47) |h%(0°,7°) — h(0°, )| < C,

since |r5 — r| < 4. Also

(2.48) |h8 (k, 7Y — h(k,7)| < [RO(k,7°) — B (k,7)| + |h®(k,7) — h(k,7)| < C§

by the construction of h®. To estimate the second term, we must specify how the points z; are
chosen. By assumption, r is constant outside a finite interval I = (a,b). Let x¢ = a, if necessary
modify & such that r(a) = jé for some j € Z. Then define

(2.49) zig = if{x > o | |r(z) = r(as)]) > 8},

If this infimum does not exist, then #;41 = b. Since r and r' are of bounded variation, for
sufficiently small §, » is monotone in each interval (z;, 2,11). Then

Ti41 Tig1 x
/ |wmw—¢wwuuhmumsc/’ /|%u¢nwwwnw
(2.50) : : : -
scuﬁrwwa/ oo (2,1)] do

Combining (2.47), (2.48) and (2.50) we then find

A (00 k) < C- 6/ </+Z (Tip1 — / - oo (2, 1) da:) dt

Recall that we have defined our approximation #° such that

165 (x) — 8o ()] < V3
for all z. Since 8y has compact support, this implies that

oz =], < ca
Finally, using our special choice of test function, we find that

)
(2.51) 6, T) = 0° ()|, <+C- [61/2 I (42 51/3)],
where C' depends also on T. Minimizing with respect to ¢ gives
1/4

(2.52) lo. 1)~ (1), < - ()2, 9)

To conclude this section, we state our results:
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Theorem 2.3. Let 6y and r be functions such that the assumptions of Theorem 2.1 hold. Fur-
thermore assume that r is continuous and r' uniformly bounded, and that 0y and ' have bounded
support. Let O denote the entropy solution to

O + h(6,7); =0, 6(x,0) = bp(z),

and let #° denote the front tracking approzimation to 0. Then the bound (2.52) holds, where the
constant C' only depends on h, T and the support of g and v'.

2.6. Entropy solutions with discontinuous 7. Let now #  denote the solution to (2.24). Since
r 18 bounded we have that

C

1Yl < 5

for some constant C'. Furthermore we have established that there is a subsequence of {¢}; {¢;}
such that

|6 =], =0,

where 00 is a weak solution of (2.53). If 6% denotes the front tracking approximation to #° then
the previous theorem; Theorem 2.3 says that

d,e € 6 e
e ol < ()

Let now #° denote the front tracking approximation to

(2.53) Or + h(0,r): =0,

with 7 bounded but possibly discontinuous. Note that while we must define ¢ according to
(2.49), however we can define 7’ to be any function taking values in the set {jé}jez, such that

(2.54) lim [|»° —r|, = 0.

§—0

Now set § = €*, by choosing subsequences if necessary, we have that

|6° — 67|, >0, and |6 —0°||, =0,
as § (¢) = 0. Now define 0 as ¢, when & = §'/ this choice clearly satisfies (2.54). Since the
initial data coincide, also %¢ = #9, thus

0 § § d,e d,e € € 0
167 = 6°ll, < (|07 = 0°]], + [|0* — 0%<[l, + [|6°* — =], + o —0°,
<|lor =), + - om0

Now let ¢ — 0 and conclude that #f = 6°. In other words, also the solution obtained by front
tracking converges to the solution obtained by smoothing the coefficients and letting the smoothing
radius tend to zero. Furthermore by (2.15) this limit is unique. We therefore say that a weak

solution to (2.1) is andn entropy solution if it is the L' limit as ¢ — 0 of Kruzkov entropy solutions
to

(2.55) 0; + h(6°,rxw.), = 0.
Summing up, we have shown:

Theorem 2.4. Let (6g,7) be such that ug = Z,. (0o,7) is in B.V. N LY. Then, there exists a
unique entropy solution to

O + h(6,7); =0, 6(x,0) = bp(z).

This entropy solution can be constructed by front tracking. Furthermore, zfé 18 another entropy
solution to the above equation, but with initial data 6y, then

loc=oc.0], < oo - o

1
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Note that for the specific equation as (2.1), using the methods in [13], we can actually prove a
stronger stability estimate

(2.56) loc.o =00 < o= +comvie )

for some constant C' depending only on », 7, h and the initial data. This estimate is possible
only for those systems on the form (2.1) where the transition curves are not a function of ». ITn
the proof of Theorem 2.4, we have not used this, and our arguments relies only on the fact that
the solution of the Riemann problem can transformed into the diagrams in figure 2. While not
attempting to describe precisely which scalar conservation laws that have this property, we will
display one such equation in the next section.

3. THE POLYMER SYSTEM

In this section we shall show analogous results for the polymer system (1.10), (1.11), as we
did in the previous section for the auxiliary system (2.1). To do this we adapt Wagner’s general
results [23], to the polymer case.

For technical reasons, we assume that the relative permeability of the water satisfies

Aw(s) =0, forall s<a

for some constant o < 1. This assumption means that a certain amount of the water is bound
to the rock. We begin by translating the stability results obtained for smooth coefficients in the
previous section, to the corresponding results for the polymer system.

3.1. Stability estimates for smooth c. Let now g = f/s. In [22], Tveito and Winther defined
an entropy solution to (1.10), (1.11) as follows: A pair of functions (s,¢) is called an entropy
solution to (1.10), (1.11) in R x [0, T if:

Definition 3.1. 1. (s,c) take values in [, 1] x [0,1], (s,¢) is L'(dx)-Lipschitz continuous in
t, s(-,t) and ey (-,t) are Lipschitz continuous and of bounded variation, and ¢ is Lipschitz
continuous.

2. For all non-negative test functions @, all constants q € [a, 1] if

/L/Bﬂmmﬂ@@—MUQQ—ﬂ%m@rﬂ@@—ﬁﬂ%%wwﬁ
31 o /e

= [ b7 = al ol Ty da+ [ 1s(e,0) = ol o, 0) do > 0.
& &

3. For almost all (z,t) in R x [0,T], ¢ satisfies
(3.2) et +g(s,c)e, = 0.

By Theorem 2 in [23], there is a one-to-one correspondence between weak solutions of (1.10),
(1.11), satisfying 0 < o < s < 1, and weak solutions of

(3.3) (é) - (w)y =0

cr =10
The new coordinates (y, ) are given by
Oy Oy or or
— = — =- — =0 d —=1.
2= o I g =0 amd

Then
o_90, f9 9 _19
3T_3t+53x’ dy ~ sox’
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For smooth ¢, a Kruzkov entropy solution of (3.3) satisfies

(3.4)
[ fse () (2223
i (1) (11 () ) oavar

- [\ - H et |

s(T) R
for all constants k € [1,1/a], and all non-negative test functions ¢. Changing variables to (z,?)
we find that the first integral above equals

T
[ (oo 2o) a2 B2
o Jrlls s s s k s
+ sign (é — k) kf (%,C) égp}sdrdt
7 L (1 b e
= [ ) (G- T ()
1

k
T
:k/o /]R s—%‘%—i—sign (5—%) [f(s,c)-f(%m)] 0y — sign (8—%)f(%,c)xgodxdt.
Similarly
[t
RIS R

wr (K2 =g

almost everywhere. Consequently, entropy solutions of (1.10), (1.11) in the sense of Definition 3.1,
are equivalent to Kruzkov entropy solutions of (3.3). Furthermore, from the stability estimate

(2.15), we find

1
— —k
S0

—k ©(0)dy >0

1
s — E‘gpdw.

Also, if ¢(y) is smooth, then

L1t =50l de < [ 1.0 =501 s ds
1 1
AR
(3.5) S/ si_si dy

1
I/—|§0—80|dl‘
R S0
[
< — [ |80 — so| dx
@ Jr

where s and § are entropy solutions of (3.3) with initial data sg and §q respectively. Tt is also
now straightforward to translate the stability estimate (2.27) into a corresponding estimate for
the polymer system

(Is(t) = s Oy + e, ) = e Ol 4 [lex (1) — (- )]])
< M (||so = Solly + llco — éolly + [lco,e — co,ll;)

where (s,¢) and (8, ¢) are entropy solutions of (1.10), (1.11), with initial data (sq, cg) and (8o, éo).
Collecting the bounds obtained in this section, we have:

(3.6)
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Theorem 3.1. There erxists a unique entropy solution, in the sense of Definition 3.1 to (1.10),
(1.11).  Furthermore two entropy solutions with the same initial ¢ data, satisfies (3.5), and two
entropy solutions with different s and ¢ initial data satisfies (3.6).

3.2. Stability of entropy solutions for general c. Let now
1 1 1
6:—’ 4= ——", and hﬁaq:f<_aCQ)
AT o) =15 @
We wish to use front tracking to construct approximate solutions to
67’+h(6aq)y:0a g =0
6(ya 0) = Bo(y)a

where [y is in the interval [1,1/a] and ¢ > 0. Below we have shown the function & as a function of
B for two different r values. Using the solution of the Riemann problem in [4], it is now a matter

(3.7)

The function h(®,r) as a function of 6 fortwo r values

h®,r)

In(®)
F1GURE 3. The function h(3,q) as a function of In(3).

of routine to verify that there exist smooth mappings 0(3,¢) and r(q), such that the solution of
the Riemann problem for (3.7) is given by figure 2. Using this Riemann solution, we can repeat
the arguments in section 2 to show that there exists a weak solution for any initial data gy, and »
such that F(6(5o,r), ¢(r)) is bounded. Tn particular, this includes the case where fy and r are of
bounded variation. This means that also the polymer system (1.10), (1.11), has a weak solution
for sg and ¢ in BV N L.

We can also mimic the definition of entropy solutions in the case where ¢g(2) is discontinuous.
Let (5%, ¢) be entropy solutions, in the sense of Definition 3.1, to the initial value problem

sp+f(55,7), =0, (), + (¢ f(s7,¢)), =0
s (2,0) = so(z), ¢ (2,0) = co *we(z)

where w, i1s a standard mollifier. By using the arguments in the previous section, we find that
{(s%,¢%)} converges in L _ to a unique limit as ¢ — 0, and that this limit is a weak solution to
(1.10), (1.11). Furthermore, this unique limit can be constructed by using front tracking on the
corresponding problem (3.7). We define this unique limit as an entropy solution to (1.10), (1.11).
Hence we have shown

(3.8)

Theorem 3.2. Let f(s,¢) be as in section 1.1, with f(s,¢) = 0 for all s < o and all ¢ € [0,1].
Assume that sq and co are in BV N L' and take values in [«, 1] and [0, 1] respectively. Then there
erists a unique entropy solution to the initial value problem

st + f(s,e)py =0, (se)t + (cf(s,¢))s =0
s(z,0) = so(x), e(z,0) = co(z).
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If s 1s another entropy solution with initial value sq, but with the same initial ¢ value, then

. 1 .
[I5(,8) =3Ol <~ lIso = Soll; -

Remark. The above uniqueness results enable us to give an independent proof of the equivalence
between weak (entropy) solutions of (1.10), (1.11) and (3.3). To prove such a result we can do
the following: First show that front tracking converge to the unique entropy solutions of (1.10),
(1.11) and (3.3) respectively. Then we can use the fact that the front tracking approximations
are weak solutions to approximate problems, and the fact that the Rankine-Hugoniot condition
for the front tracking approximations to (1.10), (1.11) and (3.3) are equivalent. This means that
under the coordinate transformation # — y, where

= 8 — =

Ox oot
, ¢® and f0 are the front tracking approximations and the approximate flux function
respectively, front tracking approximations to (1.10), (1.11) are mapped to front tracking approx-
imations to (3.3). Since front tracking converges to unique entropy solutions, these must also be
equivalent.

8_y_ s 33/__1,»5 (85’65)’

where s?

Remark. The front tracking approximation can also yield an existence result without the restric-
tion f(s,¢) = 0 for s < . This follows by using the functional F' and the arguments in [21] or

[5].
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