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AN INTRODUCTION TO FRONT TRACKING 

CHRISTIAN KLINGENBERG* AND BRADLEY PLOHRt 

Abstract. In fluid flows one can often identify surfaces that correspond to special features of 
the flow. Examples are boundaries between different phases of a fluid or between two different 
fluids, slip surfaces, and shock waves in compressible gas dynamics. These prominent features 
of fluid dynamics present formidable challenges to numerical simulations of their mathematical 
models. The essentially nonlinear nature of these waves calls for nonlinear methods. Here we 
present one such method which attempts to explicitly follow (track) the dynamic evolution of 
these waves (fronts). Most of this exposition will concentrate on one particular implementation of 
such a front tracking algorithm for two space, where the fronts are one-dimensional curves. This 
is the code associated with J. Glimm and many co-workers. 

Introduction. In fluid flows one can often identify surfaces of co-dimension 
one that correspond to prominent features in the flow. Examples are boundaries 
between different phases of a fluid or between two different fluids, slip surfaces, 
shock curves in compressible gas dynamics. All such surfaces are characterized by 
significant changes in the flow variables over length scales small compared to the flow 
scale. For example in oil reservoirs the oil banks have a size of 10 meters compared 
to an average length scale of 10 kilometers; or in compressible gas dynamics shock 
waves have a width of 10-5 cm compar'ed to a length scale of 10 cm. The dynamics of 
such waves may be influenced by their internal structures. Whereas for shock waves 
the speed depends on the asymptotic states to the left and right, for two dimensional 
detonation waves the speed depends also on the chemistry and curvature, [B], [J]. 
There are situations where it is necessary to take these physical aspects of the flow 
into account when doing a numerical simulation. 

A simple model for nonlinear wave propagation is Burger's equation 

Ut + UU x = VU xx , 

where the state variable U is convected with characteristic speed U and diffused 
with viscosity v. Because of the dependence of the characteristic speed on the state 
variable one obtains a focusing effect that leads to the formation of shock waves. 
Consider initially a wave of length L (see Fig. 1 y. The monotone decreasing part of 
the wave will steepen such that in a thin layer the solution rapidly decreases from 
a value u/ to u r . The width w of this layer is about I v I' and this layer moves 

u/- U r 
1 

with speed s = '2 (u/ - u r ). If w L, we may approximate the layer by a jump 

from U/ to U r and consider the inviscid limit by neglecting v to obtain the inviscid 
Burger's equation 

*Department of Applied Mathematics, University of Heidelberg, 1m Neuenheimer Feld 294, 
D-6900 Heidelbert, Germany 

tDepartment of Applied Mathematics and Statistics, SUNY at Stony Brook, Stony, Brook, NY 
11794 



I > X 
L 

204 

f\ 
I 

iU.t 

I 
I , 

j 

Fig. 1 The evolution of the initial data (left) under 

Ut + UU x = VU xx 

is given on the right. 

t=- i, 

s 

I :> 

Now data as in Fig. 1 leads to jumps in the solution, where the Rankine-Hugoniot 
conditions govern the relationship between the speed of the jump and its left and 
right asymptotic states. 

When computing such a flow with very small viscosity v, suppose we represent 
the state variables associated with points on a fixed underlying grid with spacing 
In this framework we would like to contrast two numerical methodologies: shock 
capturing and shock tracking. In the shock capturing methods v is replaced by a 

1/ 
numerical viscosity Vnum v. The width of a shock layer Wnum = I nUIn I 

UI- U r 
so that these waves are most accurate for weak waves. In a shock tracking method 
an additional moving grid point is introduced which serves as a marker for the 
shock position. The algorithm has to update its position and the asymptotic left 
and right states on the underlying fixed grid. For the moving of the shock point 
analytic information about it is necessary. Shock tracking corresponds to replacing 
v by zero, so it is best for strong waves and gives a high resolution on relatively 
coarse grids. 

The front tracking principle, which is not limited to conservation laws or to 
shocks, is that a lower dimensional grid gets fit to and follows the significant features 
in the flow. This is coupled with a high quality interior scheme to capture the waves 
that are not tracked. 

In the following we talk only about front tracking in two space dimensions. 
First we describe tracking of a single wave and mathematical issues arising from 
this. Next we discuss tracking wave interactions and its mathematical issues. Then 
follows a section describing the data structure of a front tracking code. After a few 
numerical examples we give a conclusion. 
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Front tracking applied to a singe wave. Suppose we consider an expanding 
cylindrical shock wave for a certain time interval. Say this is modeled by the two 
dimensional Euler equations for polytropic gas dynamics where the outstanding 
feature of the flow is a shockwave with smooth flow in front and behind it. If the 
numerical simulation requires a high level of resolution on a moderate size grid, 
front tracking lends itself to this problem. To this end a one dimensional grid 
is fitted to the shock wave and follows its dynamic evolution. The smooth flow 
is captured using an underlying two dimensional grid, where in each time step an 
initial-boundary value problem is solved in each smooth component of the flow field. 

The front is represented by a finite number of points along the curve, which 
carry with them physical data, in this case the left and right states and the fact 
that it is a hydrodynamic shock wave. Say the underlying grid is cartesian, which 
carries the associated state variables at each grid point. Each timestep consists of 
a front propagation and an interior update. 

THE CURVE PROPAGATION is achieved by locally at each curve point rewriting 
the equation in a rotated coordinate system, normal and tangential to the front: 

Ut + n((n. V)f(u)) + 8' ((8' V)f(u)) = O. 

This then gets solved through dimensional splitting. The normal step reduces to 
a one dimensional Riemann problem, if one approximates the data to the left and 
right of the shock by constants. 

1-------'---- ---"» .... 
/)'t 

Fig. 2 A second order scheme for the normal propagation of a 
hydrodynamic shock wave, [CG]. 

This normal step can be made into a second order scheme in the following way 
[CG], see Fig. 2: 

- first solve Riemann problem to obtain speed and approximate states at 
t = t l , 

- follow the characteristics from the left and right states at t = tl back to 
t = to and use the data at the foot of them to obtain updated left and right 
states at t = tl 
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- finally solve a Riemann problem at t = tl to improve states and speed there. 

After the normal step has been implemented at all points representing the shock 
curve, the tangential step, which propagates surface waves, is done by a one dimen-
sional finite difference scheme on each side of the front. 

Because points on the front may move too far apart (or too close together) 
during propagation, a routine which redistributes the points along the curve is 
sometimes useful. One has to be cautious though, because this routine stabilizes 
the curve which may tend to become unstable due to physical or numerical effects. 

THE INTERIOR SCHEME. The underlying principle is to solve an initial-boundary 
value problem on both sides of the front (the front is a moving boundary), and to 
never use states on the opposite side of the front. Away from the front this is readily 
achieved by using any finite difference scheme compatible with the resolution one 
needs in the interior. Near the front an algorithm which is consistent with the 
underlying partial differential equation has yet to be worked out. The following 
recipe has been implemented successfully (see Fig. 3): suppose the stencil gets cut 
off by the front. Use the states at the nearest crossing point (obtained through 
linear interpolation from the front states) and place them at the missing stencil 
points. 

Fig. 3 A five point centered stencil near the front, where the states 
on the front are assigned to the two grid points on the opposite side 
of the front. 

So far two papers have addressed the front-interior coupling problem in two 
space dimensions: [ee] suggest and implement a coupling which is conservative for 
gas dynamics. [KZ] have formulated a class of front tracking schemes for which they 
show stability. 

Mathematical issues related to this. In the previous section we saw that 
this approach leads to the study of one dimensional Riemann problems. This is a 
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special Cauchy problem of the type 

ut+f(u)x=O 

{ 
UL,X < 0 

U(O,) = 
uR,X > 0 

Since the equation and initial data are scale invariant 

(x, t) ----+ (ax, at) , 0' > 0 

we may expect scale invariant solutions. These are well understood e.g. for the 
scalar equation and for gas dynamics. 

There is a considerable research effort trying to understand the Riemann so-
lutions of more complicated models. One example are the 2 x 2 systems with 
quadratic flux functions studied by various authors, e.g. [IMj, [ITj. New interesting 
mathematical phenomena arise: 

- non-classical waves 

- non-contractible discontinuous waves, i.e. it is not possible to decrease the 
wave strength to zero while following a connected brach of the wave curve 

- open existence and uniqueness questions. 

Another example are Riemann solvers for equations describing conservation of 
mass, momentum and energy in real materials. Their effects on the wave structure 
has been studied, [MPj. In another approach the equation of state is tabulated 
(SESAME code at Los Alamos). Scheuermann used this for a Riemann solver by 
preprocessing the data. 

Finally we mention certain waves where the internal structure of the waves play 
a role. Whereas say for shock waves of isentropic gas dynamics the two jump equa-
tions plus the three pieces of information given by the impinging characteristics 
determine the four state variables on both sides of the shock with its speed, for 
transitional shock waves not enough information impinges through the character-
istics and one needs information from the internal structure in order to determine 
speed and states. The structure depends sensitively on the viscosity used in the 
parabolic approximation. These waves thus present a danger for finite difference 
schemes, which introduce their own brand of viscosity which is different for different 
schemes. Here a tracking algorithm which mimicks the structure with a Riemann 
solver lends itself naturally to this problem. 

The front tracking method described so far could also be applied to more com-
plex flow patterns than the expanding spherical shock wave by simply tracking a 
single front and capturing all other phenomena using a high quality interior scheme. 
An example are the Euler equations coupled with complex chemistry used to model 
the flow around a hypersonic projectile [Zhuj. Here the hydrodynamic bowshock 
is tracked and the flow with most of the chemistry concentrated right behind this 
shock is captured. This is an example where a tracking of the bowshock is necessary. 
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Wave interaction. One can also track interacting waves. To illustrate this 
consider a planar shock wave impinging on a curved ramp (Fig. 4), giving rise first 
to a regular and then to a Mach reflection. This is an example on how new curves 
may arise. For hydrodynamic shock waves this bifurcation may arise through the 
intersection of shocks with each other or with other "curves", or through compres-
sive waves ("blow up" of the smooth solution). If one wants to incorporate these 
phenomena into a front tracking algorithm it is necessary to understand them math-
ematically. For example in the case of the planar shock impinging onto the wedge, 
one needs a criterion which gives for given shock strength the ramp-angle when a 
bifurcation from regular to Mach reflection occurs. If one wants to track all the 
waves, the algorithm needs to have this criterion built in. 

Fig. 4 A planar shock impinges onto a wedge, and, depending on 
the shock strength and wedge angle, give rise either to a regular re-
flection (left) or a Mach reflection (right). In the latter the reflected 
point has lifted off the wall to become a "triple point" from which 
a "Mach stem" connects to the wall. 

This is an example of a two dimensional Riemann problem. In general, at the 
meeting point of more than two curves, if one approximates the curves by rays and 
the states nearby by constant states, these nodes are examples of two dimensional 
Riemann problems. As in one dimensional case, this is scale invariant Cauchy data 

(x, y, t ---> a, ay, at , a > 0) giving rise to a self similar solution u = u 
Thus front tracking may lead to two dimensional Riemann problems. 

Mathematical issues related to this. There has been some progress on 
studying the qualitative behavior of two dimensional Riemann problems. For the 
equations of compressible inviscid, polytropic gas dynamics, in analogy to the one 
dimensional Riemann problem which is resolved by elementary waves, one expects 
that the two dimensional Riemann problem will evolve into a configuration con-
taining several two dimensional elementary waves. This this end these elementary 
waves were completely classified [GK], some of them can already be found in [L]. 

For the scalar two dimensional conservation law the two dimensional Riemann 
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problem could be solved much further. For 

Ut + f(u)x + g(u)y = 0 

with f = 9 it was solved in [W] (J convex), [Ll], [L2] (J one inflection point), [KO] 
(J any number of inflection points). For f # 9 [W] (J close to g,J convex) and 
[KO], [eH) (J convex, 9 one inflection point) gave solutions. 

Numerical implementation. This knowledge of two dimensional Riemann 
problems has been used in front tracking codes to some extent. The classification 
of elementary waves for gas dynamics gave a list of the generic node one can expect 
there, that is all generic meeting points of shock waves, contact discontinuities and 
centered rarefaction waves. The tracking of a node is the numerical solution of a 
subcase of the full Riemann problem, one has to determine the velocity and states 
associated with one specific elementary wave. for gas dynamics this has been done 
[GK), GI], [G2). 

For the scalar two dimensional conservation law the resolution of the two dimen-
sional Riemann problem caused by the crossing of two shocks has been implemented. 
Whereas in [K) the point is to solve the interaction of two scalar waves quite accu-
rately, in [GG) the emphasis is on following scalar wave interaction within a compli-
cated topology of curves in a robust fashion without an unacceptable proliferation 
of subcases. An approximate numerical solution to a general two dimensional Rie-
mann problem was implemented by approximating the flux functions by piecewise 
linear functions [R). 

Computer science issues related to front tracking. Here we briefly de-
scribe a package of subroutines which provides facilities for defining, building and 
modifying decompositions ofthe plane into disjoint components separated by curves. 
It is worth noting that ideas from conceptual mathematics, symbolic computation 
and computer science have been utilized, thereby going beyond the usual numerical 
analysis framework, see [GM). 
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Fig. 5 The front tracking representation of a Mach reflection. 

Taking the Mach reflection example (Fig. 4), we illustrate in Fig. 5 the repre-
sentation of this particular flow. The front consists of piecewise linear curves at the 
endpoints of each linear piece we have associated quantities like states and wave 
types. Given this interface, the plane is decomposed into disjoint components. An 
integer component value is associated with each such component. Given any point 
x, y in the plane, the component value can be recovered. The underlying grid and 
possible interpolating grids near the front allow the definition of associated state 
variables in the interior. 

There is a recursive data structure. It consists of 

POINT: 

BOND: 

CURVE: 

NODE: 

which denotes the position of the grid points on the curve 

which denotes the piece of the curve between two adjacent points 

and previous bond 

by giving a start and an end point and having a pointer to the next 

denoting usually a pice of the interface homotopic to an interval. 

A curve is a doubly-linked list of bonds given by a start and node 

(see below). It has a point to the first and last band. 

which is the position of a point on the interface where more than 

two curves meet. Its position is given with a list in and out curves. 

INTERFACE: is a list of nodes and curves 
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Then there are routines that operate on the interface structure. There are 
routines that allocate and delete the above structures, then those which add these to 
the interface, routines that split and join bonds and curves, all needed for example 
when there is a change in topology. Also one can traverse a list of the above 
structures. 

The code has purposely been set up in such a way that this interface data 
structure can be dressed with the physics of a given problem containing curves. For 
gas dynamics one would associate with each point a left and right state, with each 
curve the wave type and at the node the state in each sector in order to have the 
set up for the Riemann problem. 

This whole structure now needs routines which allows the interface to propagate 
from one timestep to the next. This is done by first moving the interface. This 
means moving bonds and nodes. Next the interior is updated. Then one has to 
handle possible interactions and bifurcations. These have to be detected, classified 
(they could be tangIer of curves or two dimensional Riemann problems and th'en 
resolved. There is also a routine which redistribute points on the interface, in case 
they become to close together or too far apart. 

Numerical examples. We shall give four examples out of many that have 
been calculated over the years with the code. Fig. 6 shows regular and Mach 
reflection, [GK]. Fig. 7 show an underwater explosion [G2]. Fig. 8 shows Rayleigh-
Taylor instability [FG]. Fig. 9 shows an example from oil reservoir modelling [GG]. 
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Fig. 6 On the left the numerical simulation of regular reflection, 
where the incident shock has Mach number 2.05 and the wedge angle 
is 63.40 • The calculation was performed on a 80 by 20 grid. The 
picture shows lines of constant density inside the bubble formed by 
the reflected shock. 

On the right the numerical simulation of a Mach reflection, where 
the incident shock has Mach number 2.03 and the wedge is 270 • 

Inside the bubble formed by the reflected shock the calculated lines 
of constant density are shown. The calculations we performed on a 
60 by 40 grid. 

In both cases there is excellent agreement with experiments, 
[GK]. 
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(a) time 0.0 msec (b) Lime 7.5 msec 

• 

(c) time 15.0 msec (d) time 50.0 msec 

20.:U= 206y 

Fig. 7 An underwater expanding shock wave diffracting through 
the water's surface. The internal pressure is 100 kbans and initial 
radius of 1 meter installed 10 meters below the water's surface. The 
tracked front in dark lines is super imposed over lines of constant 
pressure. The grid is 60 by 120. 
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Light fluid r +---+ 
lOdx = lOdy 

g 

Heavy fluid 

t = 0 t = 12 

t = 18 t = 24 

Fig. 8 Two compressible fluids of different densities, with gravita-
tional forces (here positing upward) pushing lighter fluid into heavy 
one. The interface is initialized by 14 bubbles with different wave 
length and initial amplitude of 0.01. The density ratio is 10. The 
interface between these fluids is unstable and leads to a mixing layer, 
with bubbles of light fluid rising in the heavy fluid. 
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Fig. 9 A horizontal cross section of an oil reservoir modeled by 
the Buckley-Leverett equations_ Water gets injected at 19 injection 
wells (cross squares), displacing the oil in the porous media, and 
oil get extracted at 12 producing wells (open squares). Plots of the 
fronts between water and oil are shown_ The frontal mobility ratio 
for water displacing oil is 1.33. 

Conclusion. It should have become clear that this numerical approach forces 
one to think hard about underlying physics and mathematics_ If one is successful 
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at penetrating the problem at hand, front tracking can give the correct simulation 
with very high resolution. 
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