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Abstract. Existence and uniqueness is proved. in the class of functions
satisfying a wave entropy condition, of weak solutions to a conservation law
with a flux function that may depend discontinuously on the space variable.
The large time limit is then studied, and explicit formulas for this limit is
given in the case where the initial data as well as the = dependency of the
flux vary periodically. Throughout the paper, front tracking is used as a
method of analysis. A numerical example which illustrates the results and
method of proof is also presented.

0. Introduction. This paper is concerned with scalar conservation laws of
the form

(0.1) uy + (k) f(u)), = 0.

where v = u(z.t) is the unknown function. This equation expresses that
u is conserved with a flux density given by A{z)f(u). Such conservation
laws arise in a diversity of contexts, ranging from models of traffic flow [31],
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via models of flow in porous media [20], to hydrodynamic limits of nearest
particle processes [21].

Independently of the smoothness of the coefficient k(z), and of the initial
data u(z.0), discontinuities will generally develop in u(z,t). Therefore (0.1)
is interpreted in the distributional sense, this means that one has to impose
additional conditions in order to ensure uniqueness of a solution. In anal-
ogy with gas dynamics, these conditions are usually referred to as entropy
conditions.

If k(x) is continuous with bounded derivative, one can use the Kruzkov
entropy condition which says that

(0.2) Ot [u ~ c| + Oz (sgnlu — c] (k(z) f(u) — k(z) f(c))) <0,

should hold distributionally for every constant ¢. Kruzkov showed in {12]
that there is a unique function u of bounded variation which satisfies (0.2),
and takes the correct initial data. If k(z) is not continuous, (0.2) does not
make sense, and other entropy conditions must be considered.

In the present paper we use a “smallest jump” entropy condition, intro-
duced by Gimse and Risebro in [4], when constructing approximate solutions
o (0.1). We show that the approximate solutions lie in a compact set, and
that any limit also is a weak solution to (0.1). The “smallest jump” entropy
condition is shown to imply that a limit satisfies the wave entropy condition

03) 0. (k@) W) < K (1 +1).

for some constant K. And, via estimates for an adjoint problem, we show
that weak solutions of (0.1) satisfying (0.3), are unique if their initial data
u{z.0) coincide.

We then proceed to study the large time behavior of solutions to (1.1).
This is done by analyzing the behavior of the approximate solutions gener-
ated by the front tracking method. We show that for a periodic coefficient
k(z). and periodic initial data u(z, 0), the solution does not converge to zero,
but to a “standing N-wave”, whose shape resembles a roman ‘N’, in contrast
to the standard N-wave which resembles a cyrillic ‘1"

Existence of solutions to scalar conservation laws of type (0.1) have often
been established using difference methods, [19, 1], but a straightforward
generalization of these techniques is not possible if k(z) is not continuous.
Instead we choose to write (0.1) as a 2 x 2 system of equations, the first
equation being (0.1). the second expressing “conservation” of k, that is

(0.4) ke = 0.
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The Ricmann problem for this system. (0.1) and (0.4). may not be solvable
if Ae) is not bounded away from 0. consequently we asswne that A(x) is
NOVET 2010,

In 15] LeFloeh and Nedelee present another approch to existence and
unigueness of solutions to (0.1). They study an cquivalent equa-ion

(rlz)u)y + (r(e) flu)), = 0.

and use an explicit representation formula to show existence. This equation is
rransformed into (0.1} by rescaling the thme vaviable. Again. these techmiques
depend on the differentiability of r(r). and it would be interesting to sce
whether the argunent in (15 could be modified to cover the ease where (1)
is not assumed to be continuous.

The strueture of the solution of rhie Riemann problem for (0.1 and {0.4)
is remarkably similar to the solurion of the Ricmann problem for a systewm
of cquarion modeling How of oil. water aud polviner i a one dimensional
porous meditu

sp =+ flsoe), = 0.
(s¢) = (cf (s.0)) =0,

D

(0.5

Here s denores the saturation of water. and ¢ the concentration of dissolved
polviner in the water. This system has one linearly degenerate characteris-
tic feld, and ix nor strietly hyperbolic. Both of these properries ave shared

by (011 and (04). The svsrenn (0.5) was studied by Isaaeson 61 and later
existenee of a solution was proved by Tewple 25] wsing the Glinnn scheie,
It 15 fnreresting to note that both existence, wnigueness awd cortinuons de-
pewdence of solurions to (0.3) was proved. using a difference method and a
“RKruzkov rvpe™ entropy condition. by Tveiro and Winther in the case where
el 01 Is Lipshitz conrinuons 30]. The estimates used i [30° vely on sinooth-
ness estimares o cleo ) devived in (2970 hence asimple adaptation of this
differcnce method to (0.1) aud {0.4) can only be expected to work if M) is
continuons.

Because of these stmilarities. one mayv regard (0.1) as a model 27 2
syvster” of nonstrictly hyperbolic conservation laws, This model svstem of
conservation laws Is an example of a systewn of resonanmit conservarion laws.
Such syvstenis have been studied by Isaacson and Tewple 100 11 i« more
general serring. I particular. in 711 the Riewanu problem for

w4 flate)ow), = 0.

where o s avector. was shown to have a unigue solution provide:d the initial

stares were close.
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The large time asymptotics for scalar conservation laws with a flux fune-
tion f(u) has been studied by many authers. starting with Hopf [7] who
studied Burgers” equation. that is f(u) = 1u?/2. and established that

(0.6) v ) < const - 712

for initial data in L1 ™ L. Generalizations of this result was then obtained
by Lax (14 and many other authors [8. 24. 17. 3] to mention just a few.
For a review of the results on asvmptotic behavior of solutions to scalar
conservation laws. sce the article by Kruzkov and Petrosyan [13].

If &(r) is continuous. one can introduce a new variables y = ]OL dz/k(z)
and ¢ = w/k(r). and write (0.1} as
o . ) d ;

(0.7) vot flk(yle), = *.f(A‘(,l/)fr‘)E log [k(y}].

Such equations are conmonly called balance laws. since ¢ is not conserved.,
and the deviation from conservation is given by the source term — f(k(y)v)
% log "A{y)]. Asviuptotic behavior for balance laws was studied by Daferinos
3], Lyberpopoulos 187 and recently by Sinestrari [25. 261, All these authors
considered the case where the source term does uot depeud ou the spatial
position. Lyberpopoulos [18] assumed that the source term was equal to .
and found thar if the initial data was periodic with mean 0, then the solution
teuds to a traveling wave whose amplitude does not decay with time. This
is to be contrasted with the behavior of solutious to conservation laws where
kb is constaur (0.6). and is similar to the results obtained in this paper.

The rest of this paper is organized as follows: In section 1 we define the
front tracking method and construer the approximate solutions. The front
tracking scheme is hased on the solution of thie Riemann probleni. and we
therefore restate the solution of this from [47. Then we show that the front
tracking method is well defined. and that the functions generated by front
tracking lie in a compact set. We then proceed to show that any limit is a
weak solution which also satisfies a wave entropy condition. In the mauner
used in [16]. we show that this wave entropy condition implies uniqueness.

Section 2 ix concerned with the asymptotic limit for large times. In the
case where () and the initial data u(2e. 0) both vary periodically. we show
explicit fornmlas for this limit. This is done by exanining the corresponding
limirs for the approximate solutions. The approximate solutions have the
property rhat they are stationary, te.. k() f(u) is constant, after some finite
time which depends on the level of approximation. This means that the large
tinte liwir of the approximate solutions actually is attained after some finite
time.

Since frour tracking also is a viable practical nuinerical method. in section
3 we give a nmunerical example which illustrates the results from the previous
sections.
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1. Construction of the weak solution. We Lere study scalar conserva-
tion laws of the following type

w4 (k) flu)), =0
(1.1 \
' (e 0) = uy(r).
Here A0 Is a function of bounded total variation. not necessazily smooth.
bounded away from 0. and f is a strictly convex or concave funerion. We as-
sunte that there ave constants ¢ < b, such thar fia) = {0 = 0. and that the
initial function uy(e) takes values in ‘a0 Solutions of (1.17 will in general
be regular distributions, and are assumed to satisfv (L1 disteibutionally.,
o

o~ o~ o
(1.2} / / wop =+ ko) flayo, dtde = / wpletone 0 dr =4
A A S

for all test functions o in Ca. #).
When stating explicit fornmlas: (1.7). {1.8). and {231, we will in the rest
of this paper use

(131 Flu)y =l —u).

This expression for f(u) is also used implicitly in the remarks below equation
[2. 11 where we nse the faet thatr f has a maximn for o = 1720 For shmplicity
vo will alko assiune that ACr) > 00 All results can however quite easilv be
modified to cover the more general case.

Tn ovder to be able to deal with a discontinuons cootficient A we use the
strategy from 3 and introduce an anxiliary svstem with unknowy o = (u, ).
and correspondine Aux function G(el = (A f{u). 0} =0 that {11} can be
written

b vy = Gle) =0,

The atin of writing a scealar equarion as a svstewn of two equations is thatr
the behavior of w{e. £ ar discontinuities of () is more casilv anadvzed using
{143, More precizely, the Riewann problem for (1.1} was shown tn 4 to have
a unique solurion provided an additional “entropy”™ condition was assumed
to hold. We will now brieHly stummnarize the construcerion of the Ricmann

problent solution reported in [-L.

The Riconann problem. The Ricmann problewn for (11 s the initial value
problein where the nitial function egle) ix given by

o 1" for .o < 0. by for < O,
(1.5} ot = o) =

Lo for > 0. by for = 0
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Figure 1. Solution of the Riemann problem

VWe define r_ and 1~ to be the left and right hand limits of the solution
of (1.5) as » — 07 and r = 07 respectively. The quantities u_ and k.
ave similarly defined. The additional entropy condition which is required in
order to obtain uniqueness. savs that v_ and w. should be chosen such that

the jump w_ — u_l is the smallest possible jump satisfying the Rankine-
Hugoniot condition
(1.6) E_flu_y=heof(u-).

In 4] it is shown that this jump condition is equivalent to a viscous profile
entropy condition for the enlarged svstem (1.4). If equation (1.1) is viewed
as the svstem (1.4). we see that we have two types of waves: a u wave.
over which A is constant. and a & wave. The system (1.4) is non-strictly
hvperbolic. & waves always have zero speed. and u waves may have both
positive and negative speeds. Note that by (1.6). kf{u) is constant along k
waves, 50 that if we picture the solution as a curve in {u. k) space. k waves
will be contour lines of kf(u). In order to simplify our calculations and
diagrams. we will not use (1. k) coordinates. but rather (¥(u. k). k). where
U is defined by

-
f

(1.7) Uiu. k) =sgn {u—%} k(1 —du(l—w).

We see that the contour lines of kf{u) is mapped to straight lines with slope
+1if u > 1/2 and slope —1 if u < 1/2. Note that U is injective. and regular
evervwhere except on u = 1/2. In the following let z = ¥(u.k). so that a
Riemann problem is solved by a combination of z-waves and k-waves. The
solution of each Riemann problem is indicated in figure 1. To read how a
Riemann problem is solved. follow the arrows from (2. k;) until the desired
(zp. hyr) is reached.
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For a further explanation and more detailed descriprion of the solution of
such Rictann problems. the reader is referred to ).

The frout tracking scheme. We will use the above solution of the Ricmann
problem for (1.4) to coustruct a front tracking scheme for the juitial value
problem. If k() is constant. this scheme colncides with Daferinos™ scheme
2 fuwrthermore the present scheme is an adaptarion of the scheme nsed in

The accuracy of the scheme is controlled by some {siall) pavaweter ¢ > (.
For cach fixed & we define &, = ¢, Define z;; for —i < j </ by z,; =
g We will now define an approximate flux fnction &, fxu) by making an

approximation to &, flu) which is linear berween the o values U (200 h))
and WLk By U k) we denote the iuverse of (L.T] for o fixed
/w'. i.(‘..
1 . 1
B g lki.AJ = -
2

To hewore precise. we let

1Y

o f () it = u;; for some j
Aﬂ,fﬁfﬂ/ﬂ = o Y PR RTINS -

I (yf T I T ey— up oo <<, o1
heve ;= ¢! {2, A1 For some fixed /. the Riciann problem wirly initial
states

) Ui for o < 0
(110 uplrl = .
Ui for .0 > 0

for some integers . such that —i < nom < 7 can be found hy taking
envelopes. I particalar. the solution will in this case consist of @ number
(maxn — L1 of discontinuities moving apart in (. #) space. urthermore
Al intermediare stares will also be in the set {w,0}. This last property.
wamely that the intermediate states in the solution of the Riemenn problem
are i1 sone fixed finire diserete set. are also seen to hold for the cpproximate
version of (1.1}

vop = Gelved, =0
f1Ll ) Ui tor o o< )
celr 01 = .
Ui tor o > 0
where o, = (u;; Ay and Ge = (Mfe 000 In this case the inrerediate o

values will be i the set {o; b 0 <7 < Noand =/ < j < /. For a more
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detailed description of Dafermos’ method the reader is referred to either [2].
or [6). where convergence properties are showun.

Let now vo(2) be some function taking values in the rectangle [0. 1]x{0, K.
We will approximate g in Ly with a step function vsqy taking values in the
finite set {v;;}. such that

(1.12) }13(1) llvg = vsollprec = 0.

We shall now proceed to construct a weak solution vg(z, t) to the initial value
problem

vs; + G (2?5>1, =0

(1.13) vs(a.0) = vgglx).
The initial value function defines a series of Riemann problems, these can be
solved independently. and the solutions consist of constant states separated
by discontinuities which move linearly in (z.t). We track these discontinuities
and therebyv propagate the solution forward in time until two discontinuities
collide. At the collision point a new Riemann problem is defined by the state
to the left of the leftnost colliding discontinuity and the state to the right
of the rightmost. Thus the tracking can continue up to the next collision
aud so on. For more details on this type of front tracking schemes see [6. 22,
23] and the references therein. In analogy with the terminology used in the
solution of the Riemann problem. we label the discontinuities in v either z
waves o1 b waves.

Now we have the following lemuma which implies that the front tracking
procedure is well defined:

Lemma 1.1la. The number of discontinunities in vs is nonincreasing for
cach collision of discontinuities. Furthermore. the number of discontinuites
decreases by at least one if two = waves collide. and is constant if a z wave
collides with a b wave.

This lenma also has parts (b) and (¢) which will be needed later when
we consider uniqueness and asymptotic behavior, the proof of the lemma is
a straightforward study of cases and is therefore contained in an appendix.

Compactness of the approzimations. In order to show that the approxi-
mations have uniforinly bounded total variation with respect to the variables
(z. k). we use the argument in section 4 of [5].

The solution ¢s defines a directed path in (z. &) space. This path consists
of » and I waves. The k waves are line scgiments which have slope £1. and
the = waves are horizontal line segments. We will call any tinite connected
sequence of z and & waves an I curve. and say that an I curve connects
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vz to vg if the left state of the first segment is ¢, aund the right state of
the last segment is vp. We will write an I curve consisting of z and &
waves as [ = z1hky2p ... zy. This rerminology and the subsequent techniques
are ultimately borrowed from Temple [28]. see also [5]. We now define a
funcrional £ on I curves, this functional is defined so that it dominates the
total variation of vs. and F (vg(-. t)) will be shown to be noninereasing in ¢.

We first define F on simple wave segments, Let first / = = be a wave
conuecting z; and z,. let Az = |z, — z. then

(1.14) F(z) = Az

If I = k. the definition of F(k) is more complicated. Let & cornect (z;. ky)
and (2. hn). We say that b is clockwise if z; > z,. otherwise we sav that
A s counrerclockwise. The reason for these terms are to be found in the
diagras in figure 1. Then we define

B 2 [AR if b is clockwise
(1.15) F(A-):{

1Ak if & is counterclockwise.
For more general T curves. I = b1bobs ... b, where each b; s a b or a 2 wave.
we define F(7) additively
mn
(1.16) F(I) =Y Fi).
=1

It is now not difficult to prove the following lennna

Lemma 1.2, Ler [ be anyv [ curve connecting vy to oy, Let vy vp] be the
I curve defined by the solution of the Riemann problem with loft and right
states vy and vy, Then

(1.17) F{lepvgrl) € F(I).

Proof. The proof of this lemma is similar to the proof of the corresponding

lemmas in [238] or [3] (lemuna 3.1). 2
This lemma has the inmmediate and important consequence rlhat
Lemma 1.3. F (v4) is nonincreasing in time.

Proof. It is clear that F onlv changes at collisions of disconrinuiries, At
collisions. a section of the I curve traced by s connecting states 1y awd v,
is replaced by the Rientann solution vy ¢, Thus F is nonincreasing. O

Lot Var,, ¢ denote the total variation of v with respect to the variables o
and 5. By construction of Fwe have that F(I) > Var., I for anv I curve.
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Therefore we have that Var., vg is uniformly bounded if F (vgq) is bounded.
For any ; and ¢, we see from figure 1 that [v; ¢} consists of a finite number
of waves (< 3) which intersect transversally in the (2, k) plane. Furthermore,
we see that in all cases F ([vyvr]) <5 (]2 — 2] + [k — kr[). Thus

(1.18) Varzp s < F (vs) < F(uvgg) < 5 Varsg vsg < O(1) Var.g vg

For periodic initial data. we have that the total variation over a period is
uniformly bounded. Now we may use the boundedness of the total variation,
and the fact that (1.13) has finite speed of propagation, to show the following
Lipshitz continuity of the L; norm of the solution

)
(119) / ‘Z‘(x (‘I’.fl) — Ug (.’l'.fg)‘ < ()(1) f] — Tﬂ\’vﬁl‘zk tp-

The integration limits @ and b are Foc if the initial data are of bounded vari-
ation. and the integration is over one period if the initial data are periodic.
Tlhe proof of this inequality may be found in [5. Lemma 4.1}. We can then
use Hellv's theorem and standard arguments as in e.g. [27] to show:

Theorem 1.1. Let vg(x) = U ((ug(z). k(x)) be such that Var., v Is finite.
TLen for any sequence {8} such that & — 0, there exists a subsequence {6;}
such that for any finite time t > 0. ug, {-.1) converges uniformly in L ().
Furthermore. the limit of us, is a weak solution to (1.1)

Proof. As mentioned above the compactness of the sequence follows from
standard arguments. To show that the limit is a weak solution we exploit the
fact that the approximations are weak solutions to the approximate problems
(1.13). Let ¢ and b be as in (1.19). for simplicity let us denote the convergent
subsequence. and let u denote the limit of us. We have for a suitable test
function ¢

b

b opxe
(1.21) W= / / udy + kx)f(u)é, dedt + / ug(a)o(z.0)dx =
Ja J0

< a

NS
/ / (0= ) 0+ {k(2)F(u) = hs(a)fo(us)} & dudt
Ja JO

b
+ / (up(a) — ugpla)) olx. 0) dx.

Ja
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Thus we see that

”'[H” < .\[(Hu — UL T iA'f(U) - A',\yf(\ (ll(\) i - HU() — “NJMI)

< Mlu—usii—
(1.22h) Mk fu) = b fslu) |+
(1.22¢) Mk fslu) = ke fo(w)lh—
(1.22d) M ke folu) = b fo (us) 1+
(1.22¢) Mouy = usg 1

Lhere 1/ is a bound on o,. ¢, and o. The frst term (1.22a) can be made
arbitrarily small by construction since ws converges to w i Ly. The second
and third rerms (1.22b and ¢) can be made sinall since fo converges to f and
ke to k uniformly. The fourth rerm (1.22d) may also be made arbitrarily
small since fr is uniformly Lipshitz continuous. and finally the last term
(1.22¢) converges as & — (b by construction of usg. =

Unigueness. We now turn to the question of uniqueness. If #(a) is con-
tinuous with A"z} bounded. we can appeal to the fundamental uniqueness
result by Kruzkov [12] and conclude that there is a unique weak solution
which sarisfies the following inequality

(1.23) T lu = | = = seulu —c) (M) flu) = k() fle) ) <0

weakly for all constanrs ¢. This equation will alinost be satisfied for each g
with fr replacing f in (1.23). the discrepaney is Hmited by const- [ths =8 .
Frow: this it follows that the limit constructed by front tracing also satisfies
(1.23). 1.e.. it belongs to the “right™ class. If we have a k{v) whicl is not con-
rinuous. we have seen that we must impose an additional entropy condition
at the discoutinuity points of k(1) in order to solve the Riemann problewn
uniquely. This entropy condition states that among all discontinuities in u
which satisfies the Rankine-Hugoniot condition (1.6) across the dscontinuity
in k. the correct discontinuity in o is the smallest sucl.

We will now show that this entropy condition iimplies the the limit function
satisfies a wave entropy condition (1.33). and then show rhat this implies
unicueness. This proof is motivated by a recent result of LeFloch and Xin
16]. where a wave entropy condition is used to <how uniqueness of solutions
to a cortain class of svstems.

In order to define the wave entropy condition and to show that the limit
function v satisfies this condition. we first state some prelindnary results,
We sav the the function ns has an approximate cenrered rarvefiction wave
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at some point {x.t). if (z.t) is a point of collision between discontinuities in
vs. or t = 0. and the solution of the Riemann problem at (z,t) involves a z
wave larger than & and such that z; > z.. In other words, the solution of
the Riemann problem with f replacing fs would involve a rarefaction wave,
and this rarefaction wave is approximated with more than one discontinuity.
Regarding approximate rarefaction waves, we have:

Lemma 1.1b. There are no approximate centered rarefaction waves in ug
fort > 0.

From now on we assume that k(z) is discontinuous at finitely many points:
{;}. and has uniformly bounded derivative at all other points. We will also
make the approximation ks(z) such that if a discontinuity in & is larger than
do. also ks has a discontinuity at the same point for all § < &.

We will now define an approximate characteristic speed g4. and then show
that s satisfies an entropy inequality. This will then imply that the charac-
teristic speed of the front tracking limit u satisfies a similar inequality.

In the following we use the notation that a discontinuity in vs separates
between a left state (u;. k) or (2. k), and a right state (u,. k) or (z,. k).
For each ¢ we let og(2.t) be a piecewise linear function in x, and os(x.t) is
defined to be linear between the discontinuities of vs. We then define the
right and left Hmits of gs(z,¢) as x approaches a discontinuity in vs from
above or below. Assume first that vs has a z wave located at y for some time
t. Then

lim os(x,t) = ks(y) 111})1+ F5 (w45 (uy — )

(1.24) e -
lim os(x.t) = ks(y) h%l‘ fs (w4 s (g —uy)) .
resyT s—0+

Note that if the z wave is such that |z — z,.{ = 6, then os{x, t) is continuous
at y. Furthermore, g is nonincreasing between two consecutive z waves
when the left wave has a speed larger or equal to the right. and increasing
if the left wave has a smaller speed than the right wave. For k waves the
limiting values of o, is defined as follows. Assume that vg has a k& wave at
2= y. then

lim as(r.t) =k min{ li%h Fi(up+s). lil})lﬁ fi(uy + s)}

s—07 5—

=y~

lim os(x.t) =k, max{ 1i1})1+ Fi(up+ ), h%l fi(up + 8) }
5= s—0~

r—y*

Since f is continuous. we have that (o5 (y1,t)—0s (y7,1)| < O (\,/5 + |k — kyr )
Note that o5 is defined so that if o is increasing on an interval between two
discontinuities of vs, then these two discontinuities constitute part of an
approximate rarefaction wave.

The following lemma justifies the term “approximate characteristic speed”:
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Lemma 1.4. For.c in any interval (v, o0,

(1.26} i aelet) = k() f (u)

&—0

in the sense of distriburions.

Proof. Tor sowe thue f. assune that the discontinuitios in o in the interval

[ o) ave located at yy for 7= 1..... N Let Bl be a test funcetion with

compact support in {r;. ,zJ,l . we then compute

Yivl

o
/ gl Bl dr = Z / ol B dr

- IR -

E:/ Koy f Cas b 8000 + OV o) dr
i Y

/" () Yo+ Oy

Tlie lennna now follows by letting ¢ — 0 in (1.27). T

i

»
-1
Il

The entropy inequality satisfied by as reads as follows:
Lemma 1.5. The following incquality holds weaklv in v in each interval

Loy and for all £ >0

.
(1.28) (m4w<—+(A+o<>

where Cy and Cy are constants independent of t and .

Proof. Let 8{) be a positive test function. and asswe that at some time f.
the <hn(<>11tunur1(>s of v+ ave located at y;. Then

eos Bl = — / el )0 () dr

Yi—i

72/ v () d
et
(1.29) = Z(J(y]) :m (y7) —os (y ]“" ]+ Z / deasla. )0 () d.

Il

If a2 wave is located at ye then. os (,ij) < o {y; ). so that the contribution
from = waves in the first swn in (1.29) is nonposirive. Also. if & b wave is
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located at g and a z or a b wave is located at y, 1. then @0, is nonpositive
between i and y —;. Hence

(1300 Do b < S Gy Ak fo<\7\>*
( ) -1

Z / deos{e t10(0) da.

2-2 segents Y

The remark inmediately prior to lemma 1.4 shows that any segment over
which J,0s is positive. is part of an approximate rarvefaction wave. in the
seuse that the two : waves at its endpoints constiture part of an approxi-
mate rarefaction wave. Now we have the following vesult for approximate
ravefaction waves:

Lemma 1.6, Assume that zp and 2> are rwo cousecutive = waves in the
approximare solution vs. and that on the segment between them d . ap{r t) >
0. rthen

(1.31} ozl =z 2 i 7 L, O () —u ().

where wi{:=1 denotes the u value of the right or left state of z. and r(z)
denotes the position of =, and ki, denotes the minimum of k{1).

Proof iof lemma 1.0). By lenmuna 1.3, an approximate rarefaction wave can
onlv be cenrered ar + = 0. Consider a segment of an approximare ravefaction
wave. Over everyv interval of constant k.. the difference in speed of the two
endpoints will be at least kg, f7 O (e (=7) —w (7)), which hmplies

{1.311. This concludes the proof of lenmnua 1.6, Z

Now the difference of o, over a =egiient of aun approximate rarefaction
wave s bounded by Ayase 17 O (u (25) — w(=7)). Since f" and b both
are bounded and bounded away from 0. on every interval where dJ,.cx > 0 we
have

, &
[1.321 deosiaet) < -
Using rhix in 11,301 we obtain
. C ~
(1.32) Do bl < Ca kL0 — <71 > 0 <w> .

which concludes the proof of lemnia 1.5,
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Cowbining lemma 1.4 and lemma 1.5. we have that the front tracking limit
u satisfies the following entropy inequality weakly in each interval (z;.2;_1)

(1.33) 0. (ko)) < & (1 + A)

for some constant K.

Consider therefore two weak solutions uy and us of (1.1) having the same
initial data ug(x). such that Var, ¥ (u1) and Var,, ¥ (us) are bounded inde-
pendently of t. The solutions uy and uy ave assumed to satisfv (1.33). We
then define the potentials p;(z.t) as

(x.t)
(1.34) sl t) = / wy de — (k{a)f (uy)) dt.
J(0.0)

for i = 1.2, The well definedness of ¢; follows from (1.1). furthermore ¢,
are bounded and uniformly Lipshitz continuous functions which satisfy

(1.31) iy = Uj. wi = —k{x)f ().

Thus the difference hetween the potentials: ¢ = s — ¢o1. satisfies the linear
adjoint equation

e —a(x t)p, =0

(1.35) ez, 0) =0

for 0 < t. where the coefficient o is given by
1
(1.36) alr.t) = / @) f (1 = s)uy + sua) ds.
Jo

Note that « is bounded. Now the entropy condition (1.33) implies that for

—

el
1
i, = / (k(a)f' (1 = s)uy + suz)), ds
0
1
(1.37) = / () (1= E(s)) [ (uy) + E(s)f (u2))), ds
Jo

-1

B / (1= &(s)) () f (), + €(s) () f (w2)), ds
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where £(s) is some strictly decreasing function taking values in [0,1], (1.37)
holds since f is a strictly concave function.

We temporarily fix j and define the “stretched” coordinate y. as
(1.39)

- 1 .
ye(z) = T (dz + €z). where d= = (”L‘J_H ), T= 5 (@51 + ;).

Note that y, (z; — €) = 2; and that y (rj11 +€) = xj.1. For z € (., 2;41)
we define the smoothed coefficient a€ as

(1.40) a“(z,t) = alye(-).t) o (x),

where w® is a standard mollifier in the @ variable with support in [—¢.€]. The
simoothed coefficient satisfies the following entropy inequality:

Lemma 1.7.

(1.41) 9-a"(x,1) §K<%+k’i>

weakly for © € {x;, x5-1).

Proof. Since x — y.(x) is a linear change of variable. the following inequality
holds weakly for = € (z;,2;41)

(1.42) draly(z)) :ayad—? SK(%—HH) d+€.

dz d

Let 6(z) be a nonnegative test function with support in (z;, z;41), then

Tj41
(pat ) = ~{a". 0 = ~/ a(z)6'(z) dx

= _/.LFJ‘L/i—ea(y5(2>)wc<m—2)6/(17)d2!d_1‘

Lyt 1te Tj41
/ a(ye<z))/ & () (z — 2)dzdz

"Lyjp1te ' T
- et
S Xy —E ; -
Xj41 Tj1—€ d
/ - / a(ye(2)) wa(x —z)dz p B(x) dr

/T - (2)).we,(2)) b(x) da
/” K

< \k]) d+€9(1‘)dl‘: <K Gw«\) Jd“.e>.

Il

<
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This concludes the proof of lemma 1.7. O

Since o' is differentiable in (. .0;21) this inequality holds strongly.
Rewriting (1.35) using the smoothed coefficient a© we get

(1.43) Cr—ate, ={(a" —a) v =g o,

If 1y and wy are periodic with the same period. we let B = 0, P}, where
P is the common period of vy and wy. If we do not have periodic solutions.
we let B = =N — Mt N + At]. where N and Al are constants which are
chosen so large that wy = wp on JR. This is always possible. since (1.1)
has finite speed of propagation. and A is coutinuous with hounded derivative
outside a bounded interval. Thus the solution of (1.1} outside R does not
depend on A in the interior of R. and therefore vy = sy for almost all » and
tourside R.

We multiply (1.43) with p? =L where p is some even positive integer. and
integrate over R to ohtain

| : .
(1.44) 2 / 2Pdr + / a“d.pl de = / g gl de.
dt g Jr i

Since ¢f i differcntiable. we may integrate by parts ineachinterval {uj., o)

(145 — [ dr = e P dr — Pl )AL+ / "2l dr
SE Y T V) RRCEERTED SEAIR R

J

The coustants A; are given by the junps in o' over the discontinuities in &
at o and ave therefore wniformly bounded since « is uniformly bounded.
Since 7 is Lipshitz continuous. there is a nonnegative constant C' such that

(1.46) Sy <O P a)de
JR

for anv . Thus.

;o
(147} £ 2Pdr £
dt Jp
i 1 ‘ Z oy .
Z / Iy <— + ‘A"\> Gite SPdr+C | SPle)dr + / G 2l dir
~ s, t d; J 1 Jr
Since ¢ — « in Lij" as € — (. we have that /13 g .ot de — 0 as € — 0.

Hence. letring e — 0. we obtain

(1.48) Y'(t) §E<%+1> Yt)
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for some nonnegative constant F., and where Y (¢) denotes the pth power of
the L, norm of ¢, Le, Y(t)= [ » ¥P dr. Gronwall’s inequality now gives

(1.49) (Ve Fe B0 <.
or
(1.50) Y(t) < tFefle Bos™ Ry (s).

for 0 < s < t. But as s — 07, the Lipshitz continuity of ¢ implies that
Y(s) = O(sP). Therefore

(1.51) Y(t) < KtFeFtemEsgp=E,

for some constant K, and by choosing p sufficiently large we get that Y (t) =
0. i.e.. uy = us for almost all z and ¢.

Using the methods and estimates from this section. with some slight gen-
eralizations where appropriate, it is now straightforward to prove:

Theorem 1.2. Assume that k(x) is a bounded. piecewise continuous func-
tion with a finite number of discontinuities, such that k'(x) is uniformly
hbounded at all points of continuity, and k(z) is either strictly positive or
negative. Let f(u) be a twice differentiable function such that f’ and f”
both are bounded. and f"(u) # 0. Furthermore assume that there is an
interval |a. bl such that ug(x) € [a,b] and f(a) = f(b). :

If ug(w) is such that W(uwg) € BV, then there exists one, and only one,
weak solution w(x,t). to the following initial value problem

w, + (k) f (1)), =0

(1.52) u(z.0) = ugla).

which also satisfies the entropy condition

(153) OAMﬂfWﬂSK<%+W>

for some constant I{. weakly in all intervals where k is continuous.

2. Asymptotic behavior. In this section we study the behavior of the
initial value problem for large times. Lemma 1.1a implies that the number
of discontinuities in the front tracking approximants vs is constant after
some time t;. Also, since the *Glimm functional” F is nonnegative, and
at each collision. F is either constant or changes by at least 8. after some
time #{. F {vs) is constant. Let ts = max{t;.#{}. We refer to a collision of
discontinuities in v¢ as a zk collision if a z wave is colliding with a k wave
from the left. similarely as a kz collsion if the z wave collides from the right.
The third part of lemuma 1.1 describes the behavior of vs after ts:
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Lemma 1.1c. Ift > ts. then a zk collision will give a kz solution. and a kz
collision will give a zk solution.

If we have nonperiodic initial data, then from lemnma 1.1¢ it follows that
after some finite time the I curve traced out by vs will be of the form

since eventually. all = waves with negative (z!) or positive (/') speed will
have “moved through™ all k& waves. The waves 2 have zero speed. Since the
munber of ~ waves is constant. the I curve traced out by vs does not change
further. so the asviptotic state is actually attaind after some finite number
of interactions. It is interesting to note that in contrast to the case with a
strictly hwperbolic and genunily nonlinear system of equations. the I curve
given by this asviuptotic state is not neccesarily the solution of the Riemann
problem defined by the states at the endpoints of the curve.

We will not pursue the case of nonperiodic initial data further. but instead
derive explicit formulas for the asymptotic solution in the case where both
the coefficient A{z) and ug(x) are periodic with the same perioc.

[n this case we also make the approximate initial data vy periodic. there-
fore 1o will form a closed I curve. Lemna 1.1c¢ now implies thar after some
time. either all = waves will have zero speed. positive speed. or negative
speed. since no zz collisions occur after ¢,

Assune first that for all ¢ larger than some time 7_, all 2 waves of v¢ have
positive speed. Since all = waves have positive speed. there must be » waves
over which the flux function ks fs changes. Since I is a closed curve, there
must be at least two of them. If there are only two, then the change in z
over each wave is £6. and they will have the same speed on cach interval
where Fa() is constant. Thus there will be no collisions. In general. there
will be no collisions if the maximum value of the flux function (A4 f(u)) minus
its mininnun is less than 6. We call such a sequence of z waves., each of
which carries a z difference of 4. with the sign of the difference alternating.
for ripples. These waves are moving from left to right. but never colliding,
since theyv will have the same speed on each interval of constavt ks, If the
waximn value of the flux function (Af(w)) minus its minimum is larger
than . since I is a closed curve. there will he some pair of neighboring waves
which have the property that the left member woves faster than the right
through cvery interval of constant ks. This pair will of course eventually
collide. Shice we have no z collisions after 7. the largest difference in Hux
values is 8.

A similar discussion shows that this is also true if for all # larger than
some F-. we onlv have waves of negative speed. In particular. this meaus
thar after some time either. (a). the solution cousists of ripples moving to
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the left or right. In this case the I curve determined by vs does not cross the
k axis. Or. (b). the solution is stationary, and the flux & f(u) is everywhere
constant.

From now on we assume that k(z) has only one minimum in each period.
that is: In each period there is a closed interval [xy. 2], possibly consisting
of one point, such that A(z) = kuyin for 2 € [11.22]. and k(z) > Emin for z €
[r1,22]. The reason for this simplifving assumption is that the asymptotic
I curve can only cross the k axis where k(z) has a minimum. therefore it
follows that this can happen at most once.

Consequently, after some finite time Ty, the approximate solutions vs
consist either of

(a) k waves and small = waves of size at most 8.
or
(b) k waves and at most one stationary z wave.
In case (a), vs will form an I curve with only nonnegative or nonpositive z
values, and in case (b), vs will form a triangle-like curve which is traversed
in the clockwise direction. In particular. I can only cross the k axis at global
minimum values of k. so since k has a minimum which is attained once in each
period. the & axis can only be crossed once per period. See the illustration
below.

(S

casca caseh

Figure 2. Asymptotic I curves.

If {ss} is some sequence such that ss > Ts. and if u is the weak solution of
(1.1) with periodic initial data and periodic k. we have

(2.1) gilr[leué('.sfs)—u(~.sg)H1:0.

and. since convergence in Ly implies pointwise convergence almost every-
where. u~ (2) = limy_ . u(z.t) will either be:
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Theorem 2.1.

(a): A fuuction which is either smaller or equal to 1/2, or larger or equal
to 1/2. If k is continuous at . then so Is ux ().

or.

(b): an “N-wave”. which has one stationary shock at some point x, be-
tween two succeeding minima of k(x). Furthermore. for each such
stationary shock. vl (x) < 1/2 < ul (). where by v (2) (ul) we
denote 1. (x) for x between the minimum of k and x, {1 between x,
and the minimum). The functions v (x) and uZ (x) are continuous
where k(z) Is continuous.

We can actually compute 1. directly from wg as follows. From figure 2
we sce that us will be of the form

(2.2) (o) == (k(z) = k)

where & is some constant k < k. and the negative sign is chosen for the
part to the left of the b axis. and the positive sign for the part on the right.
If we are in case b there will of course be a horizontal part of the I curve
representing the shock from negative z values to positive. We choose x so
that the k{x) achieves its minimum for v = 0. Assuming f(u) = w(l — u).
and writing (2.2) in « coordinates gives

uz (k) for x <
ul (z. k) for @ > 2,
-é— (1 — \/,f"l — A,(é;,)> for r < a,

<1 -+ \/’/1 - ib) for o > ..

=

The mean value of v is conserved. so

1 b 1 b
(2.4) m = / upla) dr = / tac () dr

h—a J,

For simplicity setting a = 0. b = 1. we have the same two cases as before.

(a):

1™
r

1
m < / u (@ kmin) dr.
Jo

Since we have that

1
J S k) de
(2.6) Do v brk) e

Ak
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for & < kupin, and fol uz (z.0) dr =0, there is a unique 0 < k< Kmin
such that

(2.7) /01 Uy, (1 ];') dr = m.

. . 1 .
Similarly if m > fo u; (0, kmin) dz we can find a unique constant k.
0 < k < kpip. such that

(2.8) /1 ul (I, Z) dz =m.
0

(x. k).

In this case s (T) = vz

(b):
1 1
(2.9) / us (2 kmin) de <m < / us. (@, kpin) da.
Jo Jo

We have that

0 /(Jl u ("L‘7 kmine l's) dx
dx,

comparing this with (2.9), we see that this means that there is a
unique @y, 0 < a4 < 1 such that

-1
(2'11) / u (I- K pmin. -Ts) dr =m.
40

In this case s (x) = w (@, ki, T4).

3. A numerical example. In this section we present an example where
the front tracking construction is used to compute an approximate solution.
and we shall see that the stationary solution is obtained after a finite number
of Interactions (in this case 4982).

As before. let f(u) = u(l — u). The initial function ug{z) and the coeffi-
clent &{x) are given by

(3.1) ug(a) = % (1 —sin(27a))
(3.2) F(r)=1+2cos® (m{r +0.3)).

The period here is 1. and we have computed the front tracking solution for
+in the interval 10.1]. and for ¢+ < 1.3, when we see that the stationarv
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asvinptotic solution is reached.  The parameter ¢ = 0.03. In ficure 3
we show the step function approximation to the initial function uy and the
coefficient A(r)/3 in the upper left corner. In the upper right corner we see
all z waves in the (1. t) plane. In the lower left corner we see the approximate
asvimptotic limit us . and the true asvimptotic solution calculated from (2.11)
and (2.3). Finally in the lower right corner we show the Glimm functional
F(I(t)) plotted against time,

Appendix. In this appeudix we prove lemma 1.1, that is

Lemma 1.1.

a The number of discontinunities in ¢ is nonincreasing ror each col-
lision of discontinuities. Furthermore. the number of discontinuites
decreases v at least one if two z waves collide. and is constant if a
2 wave collides swith a b wave.

b There are uo approximate centered rarvefaction waves in ug fort > (.

c Ift > t.. then a zk collision will give a kz solution, and a kz collision
will give o zh solution.

Proof. The proof is a study of cases. Recall that an approximate centered
rarefaction wave denotes a = wave in the solution of a Riemann problemn
that Las magnitude larger than ¢. and whose left state z; is larger than its
right stare z.. Anv approximate centered rarefaction wave must arise at a
collision berween two 2 waves or a z wave and a & wave. Since f is concave.
a collision of two = waves will result i one single = wave. and no centered
ravefaction waves can arvise at such a collision. This shows part (a) aud (b)
for zz collisions.
It remains to study the collision of a = wave with a & wave. heve we have a
munber of cases:
A: The = wave collides with the & discontinuity from the let.
Aa: by > kg
Ab: b < kp.
B: The z wave collides with the & discontinuity from the right.
Ba: ) > kg
Bb: i < kg
Furthermore. cach subcase, Aa ete.. is divided into rwo cases cepending on
the sign of the z value of the middle state.
("ase Aa. We label the states involved in the collision L, 3 and R respec-
tivelv. Thus immediately before the collision we have a discontinuity with
positive speed separating states v and vy, and a b wave separafing states
vy and v,
First we consider the case Aal. where 73, < 0. This iinplies that z < 0.
Since the wave separating v; and vy has positive speed. z; < zay + 6. The
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result of such a collision is either a transmitted wave. or if zg = 0. a reflected
wave. In this case AF = 0. See the figure below.

Case Aal P

This case has the following special subcase. if z, = 0 and z; = z,, + 8.
then the result of the collision will be a reflected 2 wave. and F will decrease
by &. see the illustration below

Case Aal, special

!

L R

Aa2. now zp; > 0 which implies zz > 0. Since the colliding + wave has
positive speed z; must be such that z; < —z4; — 8. and the solution of the
Riemann problem given at the collision is a transmitted shock. and AF = 0.
See the figure on the next page.
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Case Aa2

1985

Abl. now zp < 0 which implies z3; < 0. In this case z; < min [z + £.0].

and the result of the collision will be a transmitted shock. aud AF = (). Sce

the figure below.

Case Abl

Ab2. now z; > 0 which implies zy; > 0. In this case 2, < —zy; — o, and the
result of the collision will be a transmitted shock. albeit of a larger magnitude
rhan the incoming one. also here AF = (). See the figure on the next page.
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Case Ab2 ;

t

M/

Bal. now the z wave is colliding from the right. We have that z; < 0 and
kr > kg, this implies that z3; < 0. Since the speed of the z wave is negative.
:p > —zar + 6. The result of this collision is again a transmitted shock. and
AF = 0. See the figure below.

Case Bal .

M

Ba2. now z; > 0 which implies z3; > 0. Now zg > max [za; — 6,0], and the
result of the collision is a transmitted shock. and AF = 0. See the figure
on the next page.
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Case Ba2 '

oM

Bbl. now k; < kg and zy; < 0 which implies zp < 0. Wa must have
sp > —z1 — &0 and the result of the collision is a transmitted shock. and
AF =10. See the figure helow.

Case Bbl T

Bb2. now zy; > 0 which implies z; > 0. In this case. 2 > max[zy = &.0).
and rthie result is a rransmitted shock. and AF = 0. See the figurs on the next
page.
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Case Bb2 k

¢

In this case there is a special subcase where z; = 0 and 2, = z, — ¢ This

is similar to the special case in Aal. and the result here is also a reflected 2z
wave. In this case AF = §.
This exhausts the types of zk or k2 collisions which can occur. and we have
seen that in no case does an approximate centered rarefaction wave arise.
Also in each case the collision reulted in two discontinuites, and F remaind
constant precisely in those cases where the z wave “passed through” the &
wave. [
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