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ABSTRACT
The physical laws astrophysicists use to describe their phenomena are believed to have
been understood in many cases. Thus modelling astrophysical phenomena is focussed
on the numerical implementation of these models. The main issue astrophysicists have
to overcome is the large range of spatial, temporal and density scales.

The models typically are the compressible inviscid Euler equations or magnetohy-
drodynamic equations in three space dimensions coupled with many source terms.
The numerical methods used often are finite volume methods or particle methods.
Numerical methods that deal with the large range of scales need to be addressed indi-
vidually for each problem at hand. Examples of these methods are the introduction of
subgrid scale models, using time implicit methods or moving mesh methods.

These notes are strongly indebted to discussions with Fritz R€opke from Heidelberg
University and the Heidelberg Institute of Technological Science, http://www.h-its.org/
en/research/pso/people/.
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1 INTRODUCTION

Astrophysicists describe phenomena whose underlying physical laws they usu-
ally believe to have well understood. The objects they describe typically have a
huge range of spatial and temporal and density scales. In addition, in these
objects many physical mechanisms interact with each other in a nonlinear way.

Different from engineering the astrophysical objects are out of reach for
direct experiments. All one usually has are observational data collected by
observing the electromagnetic spectrum. The limitations of this can be seen
by the example of a star, where direct observation of the physical processes
inside the star are not possible.

This gives computations a special role in astrophysics. It takes the place of
experiments in engineering by being able to study models with varying para-
meters. This requires the numerical solution of complex systems of nonlinear
partial differential equations with complicated source terms.

2 ASTROPHYSICAL SCALES FOR ASTROPHYSICAL
PHENOMENA

2.1 Spatial Scales

Let us first consider the vastly varying length scales in astrophysics (Fig. 1).
Spatial scales of interest cover 27 orders of magnitude. Beginning with the
size of a flame front inside an exploding supernova, which is of the size of
centimetres, and moving next to the size of stars (1011 cm), and on to a solar
system. Next in size consider the distance between solar systems (say 1017 cm),
where the interstellar medium is. The size of a galaxy, which contains roughly
109 solar systems, is about 1023 cm. We continue on to the distance between
galaxies (1024 cm), in between galaxies is the so-called intergalactic medium.
Galaxies cluster in groups, say of size 1025 cm. Clusters of galaxies are
combined in superclusters (1027 cm). These are all part of the observable
universe.

2.2 Density and Temporal Scales

In addition there are vastly varying density scales at which the physical pro-
cesses take place. The intergalactic medium has a density of 10!28 g cm!3,
sun-type stars may have densities like 1 g cm!3, and neutron stars have den-
sities like 1014 g cm!3. This covers a range of 40 orders of magnitude, again
illustrating the huge challenges this has for computations.
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Temporal scales in astrophysics may vary about 20 orders of magnitude,
from milliseconds to giga years.

For an individual object that gets studied the ranges of relevant scales for
individual objects are narrower but still are very challenging.

3 EQUATIONS USED IN ASTROPHYSICAL MODELLING

Phenomena like the interstellar medium (ISM) seem predestined to be mod-
elled microscopically. From a terrestrial point of view the ISM consists of
the best vacuum a man made machine can produce, where individual mole-
cules are separated by centimetres. One could be tempted to use Newton’s
law for each particle and plus a rule for their interaction. The problem is that
in the expanse of the interstellar medium these would be so many particles
that it is not feasible to follow them with a computer now and in the foresee-
able future.

Thus one is forced to move from a microscopic level of description to a
mesoscopic level of description, which will give rise to Boltzmann-type mod-
els. For certain regimes such models are actually used. Examples are the
detailed modelling of the acceleration of cosmic rays at the shock fronts on
remnants of supernovae explosions (Drury, 1983).

In other regimes the models are macroscopic fluid equations. These typi-
cally are balance laws based on the principles of conservation of mass,
momentum and energy, see Eqs. (1)–(3).

Log 10 (cm)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

T
he

rm
on

uc
le

ar
 fa

m
e 

fr
on

t

P
ro

to
pl

an
et

ar
y 

du
st

P
la

ne
ta

ry
 a

tm
os

ph
er

es

P
la

ne
ts

S
ta

rs

S
up

er
m

as
si

ve
 b

la
ck

 h
ol

es

G
lo

bu
la

r 
st

ar
 c

lu
st

er
s

G
al

ax
ie

s

G
al

ax
ie

s 
cl

us
te

rs

C
os

m
ic

 la
rg

e-
sc

al
e 

st
ru

ct
ur

e

FIG. 1 Astrophysical length scales may vary vastly.
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@r
@t

+r " ðrvÞ¼ 0 (1)

@ðrvÞ
@t

+r " rvvT +rp¼ 0 (2)

@E

@t
+r " ðvðE + pÞÞ¼ 0 (3)

Here r is the density, v the velocity, p the pressure and E the total energy.
These equations are supplemented by a relation between the pressure and
the other dependent variables, see Section 3.3. These are inviscid models,
because the scale of the physical viscosity may easily be 20 orders of magni-
tude below the typically discretisation scale, and thus are impossible to
resolve numerically.

In summary the mathematical models in astrophysics are typically partial
differential equations. They may be Boltzmann-type equations, say in models
where the evolution of the universe (that are solely based on the evolution of
dark matter) is described. The mathematical models can also be macroscopic
fluid dynamics equations, an example of which are systems of compressible
inviscid flow equations describing the conservation of mass, balance of
momentum and total energy.

Next we shall list examples of additional physical phenomena that at times
need to incorporated into these equations.

3.1 Source Terms

The balance of momentum and energy in some situations needs to be supple-
mented by source terms. Examples of these are chemical reactions, radiation
and diffusion which may be anisotropic. Chemical reaction networks are very
elaborate, and typically take place on different time scales than transport, they
may, for example, take much longer. Energy transfer via radiation can be very
important and may be numerically quite time consuming given all directions
of the radiation and all its frequencies.

3.2 Additional Force Terms

The balance laws may be supplemented by forcing terms. One example is
gravity. In the universe gravity plays a most important role, so there are
instances where it needs to be modelled. Gravity is a phenomenon which
influences the evolution everywhere. On smaller spatial scales and not such
long temporal scales it is given by a fixed function. In general gravity is time
and space dependent, and thus needs to be determined by separate equations.
This equation typically lacks finite speed of propagation and this leads to
additional numerical challenges.

The equations of reactive fluid dynamics with gravity are given in (4)–(7).
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@r
@t

+r " ðrvÞ¼ 0 (4)

@ðrXiÞ
@t

+r " ðrXivÞ¼!roXi i¼ 1…N!1 (5)

@ðrvÞ
@t

+r " rvvT +rp¼!rrF (6)

@E

@t
+r " ðvðE+ pÞÞ¼ rv "rF+ rS (7)

Here oXi are the reaction rates, F the gravitational potential, both are deter-
mined in separate systems of equations. S designates the energy transfer,
again this may be given through a complicated mechanisms. Additional terms
may be included to account for diffusion of energy, conduction or magnetic
fields.

A force may occur because of the presence of magnetic fields that exerts a
force on an ionized gas. This force may be given by Maxwell’s equations,
which acts as a space and time-dependent force term acting on the balance
laws. Under some idealizing assumptions Maxwell’s equations can be
incorporated into the balance laws (Besse et al., 2004; Klingenberg et al.,
2017). These PDE models may have degeneracies. An example is the fact that
there are no magnetic monopoles, which leads under some idealizing assump-
tions to a divergence-free constraint on the magnetic field.

3.3 Equation of State

The macroscopic balance laws (1)–(3) or (4)–(7) need to have a closure rela-
tionship. This typically is given by an equation of state. In astrophysics these
can be quite complicated. At times they only exist as tabulated values. This
may leads to challenges in the numerical implementation. Often algorithms
are needed that do not depend in an essential way on standard equations of
state.

4 NUMERICAL METHODS

Of the many numerical methods used in astrophysics we shall mention only
the one’s in the following sections. Examples of additional methods are spec-
tral methods and Monte Carlo methods. In the textbook (Bodenheimer et al.,
2006) these methods are explained.

4.1 Finite Difference Methods

Let us write (1)–(3) in the form vt + f(v)x + g(v)y + h(v)z ¼ 0. Approximate
space by a Cartesian mesh, where we shall seek approximate values of the
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solution at the mesh points. A spatial discretization via a finite difference
method will be of the form

f ðvðtn, xjÞx &
1

Dx
f̂ tn, xj + 1

2

! "
! f̂ tn, xj!1

2

! "! "
, (8)

where f̂ is a numerical flux of f. The other two flux functions g and h get trea-
ted the same way. On a Cartesian mesh such schemes are easy to code and are
computationally efficient. This first-order treatment can be made into a higher
order discretization by using the assumption that away from a shock the solu-
tion is smooth. One now adapts the stencil to this smooth region and thus
avoids interpolation across the jump discontinuity. This then allows one to
approximate the conservative flux difference to higher order. This is done in
such a way that the numerical solution does not introduce additional oscilla-
tions near the discontinuity. These are called the ENO and WENO method,
see Shu (2003). This needs to be coupled to a stable higher order Runge–
Kutta time discretization, see Gottlieb et al. (2001). On a Cartesian mesh
(or a smooth curve-linear mesh), where one does not need grid refinement,
these are very efficient methods.

In an astrophysical context there is a huge range of density scales. Thus on
one side of a shock there may be an extremely low density. It is essential that
the numerical oscillations do not give rise to a negative density. Thus these
schemes need to be implemented in a way such that they ensures that the
numerical approximation of density and temperature is guaranteed to stay pos-
itive, see Zhang and Shu (2012) and Perthame and Shu (1996).

4.2 Finite Volume Methods

When discretizing the systems of the conservation laws (1)–(3) or (4)–(7)
from the previous chapter, typically a grid-based method is used. The method
of choice used in astrophysics is a finite volume method. For a quick introduc-
tion to this, the book by LeVeque (1992) is nice, even though it is 25-year old.
In LeVeque (2002), Leveque gives a more comprehensive treatment.

To describe this method, first consider one-dimensional flow. Here one
updates the mean values of the conserved variables in the control volume
given by the intervals of the discretization. For this one integrates the equa-
tions on a control volume in space and time and uses the divergence theorem
for the flux. Thus the update is achieved by computing the fluxes of the con-
served quantities across the cell boundaries. This is done by solving a
Riemann problem for the equations. In other words the method at its core
requires the numerical solution of Riemann problems, see the comprehensive
book by Toro (2009).

This leads to a first-order method in one space dimension. A second-order
extension is achieved by considering piecewise linear reconstruction in the inter-
val of discretization instead of piecewise constants when updating cell averages.
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This can be made into a higher order nonoscillatory method (WENO), see,
e.g., Shu (2003). Again the same comment as in the previous section holds:
positivity of density and temperature are of essence. For one techniques to
implement this, see Hu et al. (2013). An important ingredient in this imple-
mentation is the positivity-preserving method of the underlying first-order
method. It boils down to positivity of the Riemann solver. For the Euler equa-
tions this was achieved for many Riemann solvers, for the equations of ideal
MHD an approximate Riemann solver was found in Bouchut et al. (2007,
2010) and Klingenberg and Waagan (2010) with this useful property. It was
then implemented in the astrophysics code FLASH (see Section 6), turning
out to be useful, see, e.g., Waagan et al. (2011) and Hill et al. (2012, 2013).

We comment that in astrophysics one tends to not consider discretizations
beyond second order. The reason for not going beyond second order is the
generally held belief in this community that for a finite volume method the
increased computational complexity for higher order methods is computation-
ally more expensive than using a finer grid for a second-order method. In
addition the PDE models in astrophysics are believed to be an approximation
to the physical phenomenon that may not warrant a more precise resolution.
In recent attempts in Schaal et al. (2015) and Bauer et al. (2016), where a
third-order method has been introduced based on a different numerical
method (the discontinuous Galerkin method, see the following section), the
efficiency of the method seems to point towards the potential usefulness of
higher order methods in astrophysics.

The second-order finite volume method in one space dimension is then
extended to three space dimensions by using dimensional splitting in case that
one uses a Cartesian grid (which is typically done). For an unstructured
three-dimensional grid, where the grid boundaries are planar, the finite vol-
ume method is used by updating cell averages using the fluxes across all
the cell faces. Across each cell face one solves a one-dimensional Riemann
problem in the normal direction.

One reason for the success of the finite volume method in astrophysics is
that it has been typically used on a Cartesian grid combined with adaptive
mesh refinement, where the mesh adapts dynamically in space and time. Early
on the ideas of Berger and Colella (1989) caught hold and proved successful.

4.3 Discontinuous Galerkin Method

This is a method based in the weak formulation of the flow equations. The
Galerkin approach approximates the infinite-dimensional function spaces in
the weak formulation by finite-dimensional function spaces, say by polyno-
mials. Space is discretized into cells that may form an unstructured grid. In
the discontinuous Galerkin approach the polynomial approximation in neigh-
bouring cells need not be continuous across cell boundaries. Conservation is
maintained by computing the flux across cells with (an approximate) Riemann
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solvers. For the explicit time discretization a Runge–Kutta method is typically
used. For a nice survey of the method by C.-W. Shu the reader is referred to
Shu (2014). This method can be made positivity-preserving thanks to Zhang
and Shu (2010, 2012).

This method has the big advantage to be of any order of accuracy, the tri-
angulation may be of arbitrary shape and the method is extremely local in its
data communication, making it ideal for extremely parallel computer
architectures.

This method is still rather new for computational astrophysicists. Because
its potential has been in shown recently (see Bauer et al., 2016; Klingenberg
et al., 2015; Schaal et al., 2015) we included it in this survey.

4.4 N-Body Method

This refers to the classical problem of solving N bodies located at xi with mass
mi that mutually attract themselves under Newtonian gravitation

d2xi
dt2

¼!SN
j!1;j6¼i

Gmjðxi! xjÞ
jxi! xjj3

:

These are used to model the evolution of star clusters with a large amount
of stars. In another application by modifying the gravitational potential this
may model dark matter by considering dark matter as a collisionless gas mod-
elled as many small particles. For this problem the complexity of summing N2

particles is reduced to NlogN by taking account of particles far away in an
approximate way. For details, see, e.g., Springel (2005).

4.5 Grid-Free Method: Smoothed Particle Hydrodynamics

This method was originally devised by Monaghan and Gingold (1983). It is a
Lagrangian method where one writes the equations of hydrodynamics in
Lagrangian form. Then one collects the fluid in packets, called particles with
a given mass. These then get moved in a way inspired by the N-body method.
The equations of motion of the particles are

dxi
dt

¼ vi (9)

dvi
dt

¼! 1

ri
rpi (10)

where ri is the density, pi assigned to each so-called fluid particle. The idea
now is to represent the particles in a smoothed out form by convolving it with
a compactly supported smooth kernel, see Monaghan (1982). The density,
pressure and temperature at a point are them determined by summing over
all particles that make contributions to this point. The spatial derivatives of
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these quantities can then be determined by the derivatives of the smooth ker-
nel due to integrating the convolution by parts.

These methods have proved quite popular in the numerical astrophysical
community. Their advantage is that they run quite stable, their disadvantage
is that they tend to smear out shocks quite a bit. A nice review by Dan Price
can be found here (Price, 2004).

5 HIGH-PERFORMANCE COMPUTING

Astrophysicist make extensive use of supercomputers. Still their problems
typically are so computationally expensive that even these huge computa-
tional resources need to be used in a most efficient manner.

These include

l Vector processing, where the same operations are applied to whole arrays.
l Parallelization, where many computations are performed simultaneous.

Here one has to distinguish between a shared and distributed memory sys-
tems. In the former all processors access a common physical memory, in
the latter each processor has it own local processor.

In the future the architecture of supercomputers will rely heavily on massive
parallelization with reduced communication between nodes. This will have to
be taken into account when devising numerical methods in astrophysics for
them to take advantage of this development. An example if a method with
such potential is the discontinuous Galerkin method.

6 ASTROPHYSICAL CODES

Numerical astrophysicists spend the majority of their effort running numerical
experiments with existing codes. Thus these codes play a big role in the field.
After a code has been developed and is used to publish simulations it is then
typically made publicly available by its authors. A site to share these codes
after they are made publicly available is the Astrophysics Source Code
Library (http://ascl.net).

Here we shall give a small list of some of the codes available, the selection
biased by the experience of the author. All codes mentioned below are
designed for three space dimensions.

l GADGET
This was developed by Springel (2005) to solve the evolution of gravity
(dark matter) in the universe. Gravity is modelled as a collisionless
fluid and solved by an N-body method. This gets coupled to a discreti-
zation of hydrodynamics via the smoothed particle hydrodynamics
(SPH) method.

See here http://www.mpa-garching.mpg.de/gadget/ for more details.
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l AREPO
This was developed by Springel (2010) to solve hydrodynamics (HD) or
magnetohydrodynamics (MHD) coupled to gravitation. The HD and MHD
equations are solved via a finite volume method with an innovative moving
mesh method. The reason for moving the mesh is to have a numerical
method that can achieve approximate Galilean invariance. The evolution
of the gravity (dark matter) is solved as in GADGET.

See here www.h-its.org/tap-software-de/arepo-code/ for more details.
This code will be made publicly available in the future.

l ENZO
This code was developed among others by Abel, Bryant and Norman
(Oshea et al., 2005). It solves hydrodynamics with gravitation as used in
models to describe the evolution of the universe. It is based on a Cartesian
grid with adaptive mesh refinement.

See here http://enzo-project.org/ for more details.
l NIRVANA

This was developed by Ziegler (2005) to solve ideal magnetohydrodynamics
with self-gravitation. It is based on a central scheme.

See here http://www.aip.de/Members/uziegler/nirvana-code/ for more
details.

l FLASH
Fryxell et al. (2000) wrote a code for reactive hydrodynamics using a finite
volume method based at its core on the PPM method of Colella and
Woodward (1984).

See here http://flash.uchicago.edu/site/flashcode/ for more details.
l PLUTO

One of the developers of this code is Mignone et al. (2007). It uses a finite
volume method to solve hydrodynamics and ideal magneto hydrodynamics,
both nonrelativistic and relativistic.

See here http://plutocode.ph.unito.it/ for more details.
l ATHENA

This code is developed by the group of Stone et al. (2008). It solves the
equations of ideal MHD using a finite volume method on a Cartesian mesh.
The authors strongly believe in the constrained transport method to enforce
the divergence-free constraint on the magnetic field, ensuring that there are
no magnetic monopoles.

See here https://trac.princeton.edu/Athena for more details.
l RAMSES

This code was developed by Teyssier (2002). It solves the equations of ideal
MHD (using a second-order finite volume method) under the influence of
self-gravity (using an N-body code). It is based on a Cartesian grid with a
tree based adaptive mesh refinement.

See here http://www.ics.uzh.ch/'teyssier/ramses/RAMSES.html for
more details.
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l SLH
This code was developed under the supervision of Fritz R€opke, see Miczek
et al. (2015) and Barsukow et al. (2016). It solves the Euler equations with
gravity and incorporates a general nuclear reaction network. This allows it
to model the evolutions of stars. Their numerical method has an efficient
solver for implicit time integration, thus being able to solve both low and
high Mach number flows correctly.

See here http://slh-code.org for more details. This code will be made
publicly available in the future.

7 CONCLUSION

The challenges of numerical methods in astrophysics are due to their huge
range of scales. This warrants extremely robust numerical methods. Examples
are very low densities, which numerically are not allowed to deviate below
zero, or shocks at very high Mach numbers that need to be computed in stable
manner. In addition the subject naturally solves its problems in three space
dimensions, which sometimes challenges numerical methods inherently
designed for one space dimensions.

This survey gave only a very partial view of the subject. A more compre-
hensive view, albeit written by astrophysicists, can be found in Bodenheimer
et al. (2006). A collection of lectures on computational astrophysics can be
found in the Saas Fee notes (LeVeque et al., 2006), still useful, even though
they are almost 20-year old.
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