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Abstract

The quest for a good solution concept for the partial differential equations (PDEs)
arising in mathematical fluid dynamics is an outstanding open problem. An important
notion of solutions are the measure-valued solutions. It is well known that for many
PDEs there exists a multitude of measure-valued solutions even if admissibility criteria
like an energy inequality are imposed. Hence in recent years, people have tried to select
the relevant solutions among all admissible measure-valued solutions or at least to rule
out some solutions which are not relevant.

In this paper another such criterion is studied. In particular, we aim to select
generalized Young measures which are “maximally turbulent”. To this end, we look for
maximizers of a certain functional, namely the variance, or more precisely, the Jensen
defect of the energy. We prove existence of such a maximizer and we show that its
mean value and total energy is uniquely determined. Our theory is carried out in a very
general setting which may be applied in many situations where maximally turbulent
measures shall be selected among a set of generalized Young measures.

Finally, we apply this general framework to the incompressible and the isentropic
compressible Euler equation. Our criterion of maximal turbulence is plausible and leads
to existence and uniqueness in a certain sense (in particular, the mean value and the
total energy of different maximally turbulent solutions coincide).
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1 Introduction
The quest for a good solution concept for the partial differential equations (PDEs) arising in
mathematical fluid dynamics is an outstanding open problem. Recent developments suggest
that weak solutions do not serve as a satisfactory concept even if additional requirements such
as energy inequalities are imposed. On the one hand this is due to the lack of uniqueness of
such admissible weak solutions (i.e., weak solutions which satisfy a certain energy inequality),
which has been shown by convex integration, see e.g. De Lellis-Székelyhidi [6, 7]. On
the other hand, weak solutions seem to be impractical if the solution of a certain system of
PDEs is understood as a limit of approximate solutions. The latter is natural as we usually
consider simplified models of the real world which must be interpreted as limits of some more
involved models. Examples are the Euler equations, which arise as the vanishing viscosity
limit of the Navier-Stokes equations, or incompressible models, which are understood as the
low Mach number limit of compressible models, etc. Another important practical example is
given by sequences of approximate solutions generated by numerical schemes.

In many cases such approximative sequences exhibit oscillations and concentrations which
we would like to be captured by the corresponding limit. Note that weak solutions (which
are functions taking values in the phase space) are not able to capture such oscillatory and
concentrative behaviour, however measure-valued solutions are. A measure-valued solution
can be interpreted as a family of probability measures on the phase space parametrized by
the points x in the physical domain. Such families are also known as Young measures.
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Measure-valued solutions as introduced by DiPerna [8] have been studied vastly in
the literature. Similar to admissibility conditions imposed for weak solutions, one usually
also requires measure-valued solutions to satisfy a certain energy inequality, which leads
to the notion of admissible measure-valued solutions. Notice furthermore that in order to
incorporate concentrations properly, the notion of a generalized Young measure is necessary,
see e.g. Alibert-Bouchitté [1] and Sect. 2.1 below.

It is important to note that measure-valued solutions are indeed a generalization of weak
solutions, in particular every weak solution is also a (very special) measure-valued solution.
Moreover, admissible measure-valued solutions have other important properties which make
them a plausible solution concept, e.g. they comply with the weak-strong uniqueness principle.

Another important fact is that it is in many cases not difficult to prove existence of
admissible measure-valued solutions for any initial data, while the existence of admissible
weak solutions is an open problem for many PDEs in mathematical fluid dynamics. Note
furthermore that measure-valued solutions seem to be a much better concept (compared
to weak solutions) when turbulent flows are studied, since in turbulence theory many claims
have to be understood in an averaged or statistical sense. Genuinely measure-valued solutions
which are far away from being weak solutions are not just intuitive but also numerically
supported, see Fjordholm-Mishra-Tadmor [11].

Nevertheless, the consideration of measure-valued instead of weak solutions does not solve
the non-uniqueness problem. Quite the contrary holds, namely that there are even more
measure-valued solutions than weak solutions. Consequently, mathematicians have tried to
identity the relevant solutions among the possibly many admissible measure-valued solutions
or – a bit less ambitious – to rule out solutions that are not relevant.

For example Gallenmüller [12] proposed a criterion which discards measure-valued
solutions to the incompressible Euler equations as unphysical if they are not obtained as
low Mach number limits of solutions to the compressible Euler system. Similarly, Gallen-
müller-Wiedemann [13] ruled out solutions to the isentropic Euler equations if they do not
arise as vanishing viscosity limits from the Navier-Stokes equations. Both criteria however
still allow for a multitude of solutions, i.e., they do not lead to uniqueness.

In [15, Sect. 4.2], Lasarzik considers measure-valued solutions to the incompressible
Euler equations whose mean value minimizes the energy. The reader should notice that this
does not imply that the energy of such solutions is minimal. Since the energy of the mean
does not have a physical meaning, it is not clear what the relevance of this criterion is. Still
there exists a unique solution which satisfies this criterion.

In Breit-Feireisl-Hofmanová [2] a multi-step selection process is carried out to iden-
tify a unique measure-valued solution of the isentropic Euler system. More precisely, one
successively minimizes a countable family of cost functionals. This yields a unique mini-
mizer. However the selected solution (i.e. the minimizer) strongly depends on the functionals
as well as the order under which they are considered. It remains unclear which functionals
and which order leads to a physically relevant solution. In particular, the dependence on the
order of the functionals is counterintuitive.

The latter criterion has been improved recently by Feireisl-Jüngel-Lukáčová [10].
Here only two steps are necessary. Again there is some freedom in choosing one of the
functionals that are minimized, and it remains open which functional is a good choice in
order to obtain a physically relevant solution.
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The aim of this paper is to present another criterion which selects measure-valued solutions
that we assess to be physically relevant. More precisely, we look for solutions which maximize
the variance. Intuitively, this leads to solutions which are as turbulent as possible, or in other
words maximally turbulent in the sense that they represent the most spread out collection of
(non-unique) weak solutions. The concept thus endorses the non-uniqueness of weak solutions
instead of aiming to identify the unique “right” one.

Let us illustrate this property with the following toy example. Consider two functions
v1, v2 (which may be seen as weak solutions to a certain PDE, e.g. the incompressible Euler
equations). We may understand these functions as Young measures δv1 , δv2 (i.e., measure-
valued solutions to the PDE). We consider the convex combinations1 ντ := τδv1 + (1− τ)δv2
of δv1 , δv2 (where τ ∈ [0, 1]). Intuitively, the most turbulent Young measure νmax in {ντ | τ ∈
[0, 1]} is the one which is furthest from δv1 , δv2 , i.e.

νmax = ν1/2 = 1
2
δv1 +

1
2
δv2 .

This Young measure νmax is also the maximizer of the functional

V [ν] :=
ˆ

Var[νx] dx, (1.1)

where Var[νx] = ⟨νx, | · |2⟩ −
∣∣⟨νx, ·⟩∣∣2 is the variance. Indeed, a simple computation yields

V [ντ ] =
ˆ [

⟨ντx , | · |2⟩ −
∣∣⟨ντx , ·⟩∣∣2] dx =

ˆ [
τ |v1|2 + (1− τ)|v2|2 − |τv1 + (1− τ)v2|2

]
dx

= τ(1− τ)

ˆ
|v1 − v2|2 dx = τ(1− τ)∥v1 − v2∥2L2 ,

which takes (for given v1 ̸= v2) its maximum at τ = 1
2
. Thus, it is plausible to look for Young

measures which maximize the functional (1.1).
In general, the variance Var[νx] in (1.1) needs to be replaced by the Jensen defect of the

energy. In our presentation, we will be even more general and just consider the Jensen defect
of a strictly convex function f , which leads to a functional Vf . The aim is then to find a
maximizer of Vf on a given subset M of the set of all generalized Young measures. Our main
results are the existence (see Prop. 2.12) and uniqueness of the mean value (see Prop. 2.14) of
such a maximizer under some assumptions on the set M (see Defn. 2.10). As shown in Sect. 3
below, one may take M to be the set of all admissible measure-valued solutions to the Euler
equations. So finally we are able to show existence of “maximally turbulent” measure-valued
solutions of the Euler equations, and that the mean value and the energy of the maximizer is
uniquely determined. Unlike the criterion studied in [10], our criterion of maximal turbulence
is not at all related to criteria which maximize energy dissipation like the one proposed by
Defermos [4]. In addition to that, we don’t see any link between maximal turbulence and
vanishing viscosity.

In this paper we will stick to the framework established by Alibert-Bouchitté [1]
in order to describe concentrations. In particular, we will not work with the notion of a

1Note that convex combinations of measure-valued solutions to the Euler equations are again measure-
valued solutions, see Sect. 3 for the details.
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dissipative measure-valued solution as established by Feireisl and collaborators (see e.g. [2]).
The reason for this is that the former is more general (in the sense that it applies to a large
class of PDEs) while the latter is tailored to a few particular systems of PDEs, e.g. the Euler
equations. Still our theory is valid in the context of dissipative measure-valued solutions as
well, see Rem. 3.15 below.

This paper is organized as follows. We introduce some notation and state our criterion
in a general setting in Sect. 2. We also prove our main results Props. 2.12 and 2.14, namely
that under certain properties of M (see Defn. 2.10) a maximizer exists and that its mean
value is uniquely determined. In Sect. 3 we apply our criterion to the incompressible and to
the isentropic compressible Euler equations. In both cases, we consider M to be the set of
all admissible measure-valued solutions and we show that M has the required properties of
Defn. 2.10. This allows to apply the theory which we established in Sect. 2.

2 A maximality criterion

2.1 Generalized Young measures

We first introduce some basic notation, where we follow Székelyhidi-Wiedemann [19]. We
denote the space of finite Radon measures on a locally compact separable metric space X
by M(X). Note that M(X) can be identified with the dual space of C0(X), where C0(X)
is the completion of Cc(X) (the space of continuous functions with compact support) with
respect to the supremum norm. The space of non-negative Radon measures and the space of
probability measures on X are denoted by M+(X) and P(X), respectively.

For Ω ⊆ Rn open or closed, µ ∈ M+(Ω) andX ⊆ Rm open or closed, a map ν : Ω → P(X)
is weakly-∗ µ-measurable if

x 7→ ⟨νx, f⟩ :=
ˆ
X

f(z) dνx(z)

is µ-measurable for any bounded Borel function f : X → R (i.e. the pre-image f−1(A) of any
open subset A ⊆ X is Borel-measurable). The space of all weakly-∗ µ-measurable maps from
Ω into P(X) is denoted by L∞

weak(Ω, µ;P(X)). If µ is the Lebesgue measure, we just write
L∞
weak(Ω;P(X)).

We work with the following notion of a generalized Young measure, which goes back to
Alibert-Bouchitté [1], see also [18, Chap. 12], [3, Sect. 2], [19, Sect. 2.2], [20, Sect. 3.3.1].

Definition 2.1 (See [19, Sect. 2.2]). Let Ω ⊆ Rn open and bounded (n ∈ N) and m ∈ N. A
generalized Young measure is a triple (ν, λ, ν∞), where

• (νx)x∈Ω is a (classical) Young measure, i.e. a weakly-∗ dx-measurable family of proba-
bility measures on Rm (in short ν ∈ L∞

weak(Ω;P(Rm))),

• λ is a non-negative measure on Ω (in short λ ∈ M+(Ω)),

• (ν∞x )x∈Ω is a weakly-∗ λ-measurable family of probability measures on Sm−1 (in short
ν∞ ∈ L∞

weak(Ω, λ;P(Sm−1))),
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which satisfies2 ˆ
Ω

⟨νx, | · |2⟩ dx+ λ(Ω) <∞. (2.1)

We call ν, λ, ν∞ oscillation measure, concentration measure and concentration-angle measure,
respectively. We denote the set of all generalized Young measures by Y, i.e.

Y :=
{
(ν, λ, ν∞) ∈ L∞

weak(Ω;P(Rm))×M+(Ω)× L∞
weak(Ω, λ;P(Sm−1))

∣∣∣ (2.1) holds
}
.

We endow Y with the usual weak-∗ topology, i.e. a sequence (νk, λk, (ν∞)k)k∈N ⊆ Y converges
to (ν, λ, ν∞) ∈ Y if and only if

⟨νkx , f⟩ dx+ ⟨(ν∞)kx, f
∞⟩λk ∗

⇀⟨νx, f⟩ dx+ ⟨ν∞x , f∞⟩λ in M(Ω) for all f ∈ F2(Rm). (2.2)

Here
F2(Rm) :=

{
f ∈ C(Rm)

∣∣∣ ∃f0 ∈ A(Rm) s.t. f = (1 + | · |2)f0
}
,

where

A(Rm) :=
{
f ∈ Cb(Rm)

∣∣∣ lim
s→∞

f(sz) exists and is continuous in z ∈ Sm−1
}
.

The 2-recession function f∞ of f ∈ F2(Rm) is defined by

f∞ : Sm−1 → R, f∞(z) := lim
s→∞

f0(sz).

Note that (2.2) meansˆ
Ω

ϕ(x)⟨νkx , f⟩ dx+
ˆ
Ω

ϕ(x)⟨(ν∞)kx, f
∞⟩ dλk(x)

→
ˆ
Ω

ϕ(x)⟨νx, f⟩ dx+
ˆ
Ω

ϕ(x)⟨ν∞x , f∞⟩ dλ(x) for all ϕ ∈ C(Ω), f ∈ F2(Rm).

Remark 2.2. The reader should notice that one could be more general by working with an
arbitrary growth factor p ∈ [1,∞) instead of restricting to the case p = 2. Then one needs
to replace the integral in (2.1) by

´
Ω
⟨νx, | · |p⟩ dx, and one has to consider the set

Fp(Rm) =
{
f ∈ C(Rm)

∣∣∣ ∃f0 ∈ A(Rm) s.t. f = (1 + | · |p)f0
}
.

In [18] p is chosen to be 1; in the context of the (incompressible) Euler equations, see [3, 19,
20], one usually considers p = 2. For our purposes the case p = 2 suffices as well. Still we
would like to emphasize that our theory holds for other choices of p ∈ [1,∞) too.

Next we state what a convex combination of two generalized Young measures is.

Definition 2.3. Let τ ∈ [0, 1]. The convex combination (ν̂, λ̂, ν̂∞) ∈ Y of two generalized
Young measures

(
ν1, λ1, (ν∞)1

)
,
(
ν2, λ2, (ν∞)2

)
∈ Y is given by

⟨ν̂x, f⟩ dx+⟨ν̂∞x , f∞⟩λ̂ = τ
(
⟨ν1x, f⟩ dx+⟨(ν∞)1x, f

∞⟩λ1
)
+(1−τ)

(
⟨ν2x, f⟩ dx+⟨(ν∞)2x, f

∞⟩λ2
)
,

(2.3)
for all f ∈ F2(Rm) and a.e. x ∈ Ω.

2In the context of measure-valued solutions, some authors do not explicitly require (2.1). However, in
those cases (2.1) follows from the energy inequality, see also Rem. 3.3.
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The following lemma clarifies Defn. 2.3.

Lemma 2.4. For all τ ∈ [0, 1] and all
(
ν1, λ1, (ν∞)1

)
,
(
ν2, λ2, (ν∞)2

)
∈ Y it holds that

ν̂ = τν1 + (1− τ)ν2, (2.4)

λ̂ = τλ1 + (1− τ)λ2. (2.5)

In other words the oscillation measure ν̂ and the concentration measure λ̂ of a convex combi-
nation of two generalized Young measures

(
ν1, λ1, (ν∞)1

)
,
(
ν2, λ2, (ν∞)2

)
∈ Y are indeed the

convex combinations of the oscillation measures ν1, ν2 and the concentration measures λ1, λ2
respectively.

Proof. In order to show (2.4), it suffices to prove that

⟨ν̂x, f⟩ = τ⟨ν1x, f⟩+ (1− τ)⟨ν2x, f⟩ for all f ∈ Cb(Rm) and a.e. x ∈ Ω.

The latter follows immediately from (2.3) since f∞ ≡ 0 for any f ∈ Cb(Rm). The choice
f = | · |2 (which means f∞ ≡ 1) together with (2.4) yields (2.5).

2.2 The functional Vf and its properties

Next we fix a strictly convex, non-negative function f ∈ F2(Rm). Then we define the func-
tional Vf as follows.

Definition 2.5. For a generalized Young measure (ν, λ, ν∞) ∈ Y, we set

Vf [ν, λ, ν
∞] =

ˆ
Ω

[
⟨νx, f⟩ − f

(
⟨νx, ·⟩

)]
dx+

ˆ
Ω

⟨ν∞x , f∞⟩ dλ(x).

Remark 2.6. As an example, one could consider f = | · |2. Then f∞ ≡ 1 and hence

Vf [ν, λ, ν
∞] =

ˆ
Ω

Var[νx] dx+ λ(Ω)

with the variance Var[νx] = ⟨νx, | · |2⟩ −
∣∣⟨νx, ·⟩∣∣2. When applying our theory to the Euler

equations (see Sect. 3 below), the most natural choice for f is the energy3.

We observe that Vf takes values in [0,∞), which is the content of the following proposition.

Proposition 2.7. It holds that

0 ≤ Vf [ν, λ, ν
∞] <∞ for all (ν, λ, ν∞) ∈ Y.

Proof. Since f ∈ F2(Rm), there exists C > 0 such that f(z) ≤ C(1 + |z|2) for all z ∈ Rm.
Consequently, (2.1) implies

ˆ
Ω

⟨νx, f⟩ dx ≤ C

ˆ
Ω

[
⟨νx, 1⟩+ ⟨νx, | · |2⟩

]
dx <∞.

3Note that the energy in the incompressible setting is given by 1
2 | · |

2, see Sect. 3.1 below. So (up to a
factor 1

2 ) the choice f = | · |2 coincides with choosing the energy.
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As f is non-negative, we simply find

−
ˆ
Ω

f
(
⟨νx, ·⟩

)
dx ≤ 0.

Finally ˆ
Ω

⟨ν∞x , f∞⟩ dλ(x) ≤
(

max
θ∈Sm−1

f∞(θ)
)
λ(Ω) <∞,

so we have shown that Vf [ν, λ, ν
∞] is finite for any (ν, λ, ν∞) ∈ Y.

For the lower bound we invoke Jensen’s inequality, which yields

f
(
⟨νx, ·⟩

)
≤ ⟨νx, f⟩ for a.e. x ∈ Ω,

and thus Vf [ν, λ, ν
∞] ≥ 0 for all (ν, λ, ν∞) ∈ Y as desired.

Next, we prove some important properties of the map Vf : Y → [0,∞).

Lemma 2.8. The functional Vf : Y → [0,∞) has the following properties:

(a) Vf is concave, i.e. for all (ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) ∈ Y and τ ∈ [0, 1] it holds that

Vf [ν̂, λ̂, ν̂
∞] ≥ τVf [ν

1, λ1, (ν∞)1] + (1− τ)Vf [ν
2, λ2, (ν∞)2], (2.6)

with the convex combination (ν̂, λ̂, ν̂∞) of (ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) as defined in
Defn. 2.3.
As soon as τ ∈ (0, 1), equality in (2.6) holds4 if and only if ⟨ν1x, ·⟩ = ⟨ν2x, ·⟩ for a.e.
x ∈ Ω.

(b) Vf is upper semi-continuous with respect to the weak-∗ topology, i.e. for all sequences
(νk, λk, (ν∞)k)k∈N ⊆ Y which converge to some (ν, λ, ν∞) ∈ Y in the weak-∗ topology
it holds that

lim sup
k→∞

Vf [ν
k, λk, (ν∞)k] ≤ Vf [ν, λ, ν

∞]. (2.7)

Proof. Let (ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) ∈ Y two generalized Young measures, and τ ∈ [0, 1].
Using Lemma 2.4, we find

Vf [ν̂, λ̂, ν̂
∞] =

ˆ
Ω

[
⟨τν1x + (1− τ)ν2x, f⟩ − f

(
⟨τν1x + (1− τ)ν2x, ·⟩

)]
dx

+ τ

ˆ
Ω

⟨(ν∞)1x, f
∞⟩ dλ1(x) + (1− τ)

ˆ
Ω

⟨(ν∞)2x, f
∞⟩ dλ2(x)

=

ˆ
Ω

[
τ⟨ν1x, f⟩+ (1− τ)⟨ν2x, f⟩ − f

(
τ⟨ν1x, ·⟩+ (1− τ)⟨ν2x, ·⟩

)]
dx

+ τ

ˆ
Ω

⟨(ν∞)1x, f
∞⟩ dλ1(x) + (1− τ)

ˆ
Ω

⟨(ν∞)2x, f
∞⟩ dλ2(x).

4Here it is important that f is strictly convex.
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The convexity of f yields

f
(
τ⟨ν1x, ·⟩+ (1− τ)⟨ν2x, ·⟩

)
≤ τf

(
⟨ν1x, ·⟩

)
+ (1− τ)f

(
⟨ν2x, ·⟩

)
for a.e. x ∈ Ω, (2.8)

and hence

Vf [ν̂, λ̂, ν̂
∞] ≥

ˆ
Ω

[
τ⟨ν1x, f⟩+ (1− τ)⟨ν2x, f⟩ − τf

(
⟨ν1x, ·⟩

)
− (1− τ)f

(
⟨ν2x, ·⟩

)]
dx

+ τ

ˆ
Ω

⟨(ν∞)1x, f
∞⟩ dλ1(x) + (1− τ)

ˆ
Ω

⟨(ν∞)2x, f
∞⟩ dλ2(x)

= τVf [ν
1, λ1, (ν∞)1] + (1− τ)Vf [ν

2, λ2, (ν∞)2].

Now let τ ∈ (0, 1). In this case, we have equality in (2.8) if and only if ⟨ν1x, ·⟩ = ⟨ν2x, ·⟩
because f is strictly convex. Consequently, equality in (2.6) holds if and only if ⟨ν1x, ·⟩ = ⟨ν2x, ·⟩
for a.e. x ∈ Ω as desired.

It remains to show (b). To this end, consider a sequence (νk, λk, (ν∞)k)k∈N ⊆ Y which
converges to (ν, λ, ν∞) ∈ Y in the weak-∗ topology. We first observe that this immediately
yields

ˆ
Ω

⟨νkx , f⟩ dx+
ˆ
Ω

⟨(ν∞)kx, f
∞⟩ dλk(x) →

ˆ
Ω

⟨νx, f⟩ dx+
ˆ
Ω

⟨ν∞x , f∞⟩ dλ(x).

Moreover, we observe that (νk, λk, (ν∞)k)
∗
⇀(ν, λ, ν∞) implies

⟨νkx , ·⟩
∗
⇀⟨νx, ·⟩ in L∞(Ω).

Together with the convexity of f , this leads to

lim inf
k→∞

ˆ
Ω

f
(
⟨νkx , ·⟩

)
dx ≥

ˆ
Ω

f
(
⟨νx, ·⟩

)
dx,

see e.g. [16, Lemma A.7.3] for more details. Collecting everything, we find (2.7) as desired.

Remark 2.9. Note that Vf is not strictly concave. Indeed take (ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) ∈
Y with ν1 ̸= ν2 but ⟨ν1x, ·⟩ = ⟨ν2x, ·⟩ for a.e. x ∈ Ω. Then according to Lemma 2.8 (a),
inequality (2.6) holds with equality for τ ∈ (0, 1).

2.3 The criterion and its properties

Our goal is to define a criterion which selects particular generalized Young measures from a
subset M ⊆ Y. We will assume that this subset M has three particular properties which are
stated in the following definition.

Definition 2.10. We call a subset M ⊆ Y of generalized Young measures suitable if it has
the following properties.

(a) It is non-empty, i.e. M ̸= ∅.

(b) It is convex, i.e. for all τ ∈ [0, 1] and all
(
ν1, λ1, (ν∞)1

)
,
(
ν2, λ2, (ν∞)2

)
∈M the convex

combination (ν̂, λ̂, ν̂∞) as defined in Defn. 2.3 lies in M .
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(c) It is sequentially compact with respect to the weak-∗ topology, i.e. any sequence
(νk, λk, (ν∞)k)k∈N ⊆M has a converging subsequence with limit in M .

Now we are ready to formulate our maximality criterion.

Definition 2.11. Let M ⊆ Y suitable in the sense of Defn. 2.10. We call a generalized
Young measure (ν, λ, ν∞) ∈M maximal if (ν, λ, ν∞) is a maximizer of Vf , i.e. if

Vf [ν, λ, ν
∞] = max

(ν̃,λ̃,ν̃∞)∈M
Vf [ν̃, λ̃, ν̃

∞].

2.3.1 Existence

In this subsection we prove existence of a maximal generalized Young measure.

Proposition 2.12. Let M ⊆ Y suitable in the sense of Defn. 2.10. Then there exists
(ν, λ, ν∞) ∈M which is maximal in the sense of Defn. 2.11.

The statement of Prop. 2.12 follows from a standard argument used in optimization theory.
Still we present a detailed proof for the sake of completeness.

Proof. As a first step, we show that Vf is bounded on M . Assume Vf was not bounded on
M . Then there exists a sequence (νk, λk, (ν∞)k)k∈N ⊆M with

Vf [ν
k, λk, (ν∞)k] ≥ k for all k ∈ N.

By compactness (see Defn. 2.10 (c)), we may assume that (νk, λk, (ν∞)k)k∈N converges to
some (ν, λ, ν∞) ∈ M with respect to the weak-∗ topology. Then upper semicontinuity (see
Lemma 2.8 (b)) yields

Vf [ν, λ, ν
∞] ≥ lim sup

k→∞
Vf [ν

k, λk, (ν∞)k] = ∞,

which contradicts Prop. 2.7. Hence Vf must be bounded on M .
Together with the fact that M ̸= ∅ (see Defn. 2.10 (a)), we infer that

S := sup
(ν̃,λ̃,ν̃∞)∈M

Vf [ν̃, λ̃, ν̃
∞]

exists. Consequently there exists a sequence (νk, λk, (ν∞)k)k∈N ⊆M with

S − 1

k
≤ Vf [ν

k, λk, (ν∞)k] ≤ S for all k ∈ N.

Arguing as above, we may assume that (νk, λk, (ν∞)k)k∈N converges to some (ν, λ, ν∞) ∈ M
with respect to the weak-∗ topology. Again upper semicontinuity leads to

Vf [ν, λ, ν
∞] ≥ lim sup

k→∞
Vf [ν

k, λk, (ν∞)k] ≥ lim sup
k→∞

(
S − 1

k

)
= S.

Thus, (ν, λ, ν∞) is a desired maximizer.

Remark 2.13. In order to prove existence, we only needed properties (a) and (c) from
Defn. 2.10. The convexity of M , i.e. property (b), will only play a role in the proof of
Prop. 2.14 below. Note furthermore that the above proof of existence still holds if f is con-
vex but not strictly convex. Again the strict convexity of f will only be important in the
proof of Prop. 2.14 below.
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2.3.2 Mean value of maximal measure is unique

Maximal measures are not necessarily unique, but the barycenter of their oscillation measure
is. This is the content of the following proposition.

Proposition 2.14. Let M ⊆ Y suitable in the sense of Defn. 2.10. Let furthermore

(ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) ∈M

two generalized Young measures which are both maximal in the sense of Defn. 2.11. Then

⟨ν1x, ·⟩ = ⟨ν2x, ·⟩ for a.e. x ∈ Ω, and (2.9)ˆ
Ω

⟨ν1x, f⟩ dx+
ˆ
Ω

⟨(ν∞)1x, f
∞⟩ dλ1(x) =

ˆ
Ω

⟨ν2x, f⟩ dx+
ˆ
Ω

⟨(ν∞)2x, f
∞⟩ dλ2(x). (2.10)

Proof. For τ ∈ (0, 1), consider the convex combination (ν̂, λ̂, ν̂∞) ∈ Y of
(
ν1, λ1, (ν∞)1

)
,(

ν2, λ2, (ν∞)2
)

as defined in Defn. 2.3. According to Defn. 2.10 (b) it holds that (ν̂, λ̂, ν̂∞) ∈
M . Moreover, we deduce from Lemma 2.8 (a) that

Vf [ν̂, λ̂, ν̂
∞] ≥ τVf [ν

1, λ1, (ν∞)1] + (1− τ)Vf [ν
2, λ2, (ν∞)2]

with equality if and only if ⟨ν1x, ·⟩ = ⟨ν2x, ·⟩ for a.e. x ∈ Ω. Since

Vf [ν
1, λ1, (ν∞)1] = Vf [ν

2, λ2, (ν∞)2] = max
(ν̃,λ̃,ν̃∞)∈M

Vf [ν̃, λ̃, ν̃
∞],

we infer
Vf [ν̂, λ̂, ν̂

∞] = Vf [ν
1, λ1, (ν∞)1] = Vf [ν

2, λ2, (ν∞)2],

and consequently ⟨ν1x, ·⟩ = ⟨ν2x, ·⟩ for a.e. x ∈ Ω.
The latter yields, together with Vf [ν

1, λ1, (ν∞)1] = Vf [ν
2, λ2, (ν∞)2], that even (2.10)

holds.

Remark 2.15. In order to prove Prop. 2.14, we only needed property (b) from Defn. 2.10,
while (a) and (c) were important in the proof of existence (see Prop. 2.12). Moreover, for
Prop. 2.14 to hold it is essential that f is strictly convex.

Remark 2.16. Prop. 2.14 not only states that the barycenter of the oscillation measure of
maximal generalized Young measures is unique (see (2.9)), but also that the expression

ˆ
Ω

⟨νx, f⟩ dx+
ˆ
Ω

⟨ν∞x , f∞⟩ dλ(x) (2.11)

is unique (see (2.10)). In the context of the Euler equations, see Sect. 3 below, we will
choose f to be the energy, and hence (2.11) will represent the total energy (including the
“concentration energy”).
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3 Application to measure-valued solutions of the Euler
equations

3.1 Incompressible Euler equations

The incompressible Euler equations read

div v = 0, (3.1)
∂tv + div (v ⊗ v) +∇p = 0, (3.2)

with unknown velocity v : [0, T )×Td → Rd, where d ∈ N is the space dimension, Td denotes
the d-dimensional torus and T ∈ (0,∞). The energy density for the incompressible Euler
system (3.1), (3.2) is simply given by the kinetic energy 1

2
|v|2. Note furthermore that the

pressure p can be recovered from v via the Poisson equation

∆p = −div div (v ⊗ v).

The notion of measure-valued solutions to the incompressible Euler equations (3.1), (3.2)
goes back to DiPerna-Majda [9] (which is in turn built upon DiPerna [8]). In the Al-
ibert-Bouchitté [1] framework, measure-valued solutions to (3.1), (3.2) are defined as
follows, see [3, Defn. 1], [19, Defn. 8] or [20, Defn. 3.7].

Definition 3.1 (See e.g. [19, Defn. 8 a]). A generalized Young measure (ν, λ, ν∞) ∈ Y on
Rd with parameters in (0, T ) × Td (i.e. Ω = (0, T ) × Td, n = d + 1, m = d in Defn. 2.1) is
called measure-valued solution of the incompressible Euler equations (3.1), (3.2) with initial
data v0 ∈ L2(Td) if5

ˆ T

0

ˆ
Td

⟨νt,x, v⟩ · ∇ψ dx dt = 0, (3.3)
ˆ T

0

ˆ
Td

[
⟨νt,x, v⟩ · ∂tϕ+ ⟨νt,x, v ⊗ v⟩ : ∇ϕ

]
dx dt

+

ˆ T

0

ˆ
Td

⟨ν∞t,x, θ ⊗ θ⟩ : ∇ϕ dλ(t, x) +
ˆ
Td

v0 · ϕ(0, ·) dx = 0 (3.4)

for all test functions ψ ∈ C∞
c ([0, T )× Td), ϕ ∈ C∞

c ([0, T )× Td;Rd) with div ϕ = 0.

Definition 3.2 (See e.g. [19, Defn. 8 b]). A measure-valued solution of the incompressible
Euler equations (3.1), (3.2) (ν, λ, ν∞) ∈ Y with initial data v0 ∈ L2(Td) is called admissible
if the following assertions hold:

• The concentration measure λ admits a disintegration of the form dλ(t, x) = dλt(x)⊗ dt,
where t 7→ λt is a bounded (with respect to the total variation norm) measurable map
from [0, T ] into M+(Td).

5In the context of the incompressible Euler equations (3.1), (3.2), we use v ∈ Rd and θ ∈ Sd−1 as dummy
variables when integrating with respect to νt,x and ν∞t,x, respectively.
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• The energy is bounded by the initial energy, i.e.

1
2

ˆ
Td

⟨νt,x, |v|2⟩ dx+ 1
2
λt(Td) ≤ 1

2

ˆ
Td

|v0(x)|2 dx for a.e. t ∈ (0, T ). (3.5)

Remark 3.3. Note that (3.5) makes (2.1) redundant. For this reason, some authors do not
explicitly require (2.1) when they introduce generalized Young measures in the context of
measure-valued solutions to the Euler equations.

Now we fix f ∈ F2(Rd), f(v) = 1
2
|v|2, which coincides (up to a factor 1

2
) with the choice

in Rem. 2.6, but also (and more importantly) with the energy for the incompressible Euler
equations (3.1), (3.2). Consequently, the functional Vf defined in Defn. 2.5 reads

Vf [ν, λ, ν
∞] = 1

2

ˆ T

0

ˆ
Td

[
⟨νt,x, |v|2⟩ −

∣∣⟨νt,x, v⟩∣∣2] dx dt+ 1
2
λ([0, T ]× Td).

Remark 3.4. The reader should notice that for the choice f(v) = 1
2
|v|2 we have f∞ ≡ 1

2
.

Hence the term ¨
[0,T ]×Td

⟨ν∞t,x, f∞⟩ dλ(t, x)

indeed simplifies to 1
2
λ([0, T ]×Td). The reason for the term 1

2
λt(Td) in the energy inequality

(3.5) is of the same spirit.

Now let v0 ∈ L2(Td) arbitrary. We set

M :=
{
(ν, λ, ν∞) ∈ Y

∣∣∣ (ν, λ, ν∞) is an admissible measure-valued solution (3.6)

of (3.1), (3.2) with initial data v0
}
.

Proposition 3.5. The set M ⊆ Y defined in (3.6) is suitable in the sense of Defn. 2.10.

Proof. We have to prove that properties (a)-(c) of Defn. 2.10 hold.

(a) Existence of admissible measure-valued solutions was shown already in [9]. We also refer
to Brenier-De Lellis-Székelyhidi [3, Prop. 1] and [20, Thm. 3.9] who (in contrast
to DiPerna-Majda [9]) use the same notation as we do. Consequently, M ̸= ∅.

(b) Let (ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) ∈ M two admissible measure-valued solutions. It is
straightforward to see that their convex combination (ν̂, λ̂, ν̂∞) as defined in Defn. 2.3
is a measure-valued solution in the sense of Defn. 3.1. Moreover we have

dλ̂(t, x) = τ dλ1(t, x) + (1− τ) dλ2(t, x)

= τ dλ1t (x)⊗ dt+ (1− τ) dλ2t (x)⊗ dt

=
(
τ dλ1t (x) + (1− τ) dλ2t (x)

)
⊗ dt,

i.e. there exists a desired disintegration of λ̂ where dλ̂t(x) := τ dλ1t (x)+ (1− τ) dλ2t (x).
The energy balance (3.5) for the convex combination (ν̂, λ̂, ν̂∞) is then obvious, which
shows that the latter is even admissible.
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(c) It is obvious that M is closed with respect to the weak-∗ topology of Y. Hence it suffices
to show that any sequence (νk, λk, (ν∞)k)k∈N ⊆ M has a converging subsequence with
limit in6 Y. Therefore, according to [18, Cor. 12.3], it suffices to show that the sequences(

λk([0, T ]× Td)
)
k∈N

⊆ R and
(ˆ T

0

ˆ
Td

⟨νkt,x, | · |2⟩ dx dt
)

k∈N
⊆ R

are uniformly bounded7. Both bounds hold due to (3.5), more precisely

λk([0, T ]× Td) =

ˆ T

0

(λk)t(Td) dt ≤ T∥v0∥2L2 and
ˆ T

0

ˆ
Td

⟨νkt,x, |v|2⟩ dx dt ≤ T∥v0∥2L2

for any k ∈ N.

Combining Props. 2.12, 2.14 with Prop. 3.5 we find the following.

Corollary 3.6. There exists an admissible measure-valued solution of the incompressible
Euler equations (3.1), (3.2) (ν, λ, ν∞) ∈ M with initial data v0 ∈ L2(Td) which is maximal
in the sense of Defn. 2.11 with f(v) = 1

2
|v|2.

Moreover, any two such maxima (ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) ∈M satisfy

⟨ν1t,x, v⟩ = ⟨ν2t,x, v⟩ for a.e. (t, x) ∈ (0, T )× Td, and

1
2

ˆ T

0

ˆ
Td

⟨ν1t,x, |v|2⟩ dx dt+ 1
2
λ1([0, T ]× Td) = 1

2

ˆ T

0

ˆ
Td

⟨ν2t,x, |v|2⟩ dx dt+ 1
2
λ2([0, T ]× Td).

3.2 Compressible Euler equations

As a second example, we consider the isentropic compressible Euler equations

∂tϱ+ div (ϱu) = 0, (3.7)
∂t(ϱu) + div (ϱu⊗ u) +∇p(ϱ) = 0. (3.8)

Here the unknowns are8 the density ϱ : [0, T )×Td → R+ and the velocity u : [0, T )×Td → Rd.
Moreover, the pressure p is given by the power law p(ϱ) = ϱγ with some γ > 1. The energy
density for the isentropic compressible Euler system (3.7), (3.8) reads

1
2
ϱ|u|2 + 1

γ−1
ϱγ.

Remark 3.7. Like in [14] we exclude vacuum in this paper, i.e. we only consider solutions with
strictly positive density ϱ > 0. A notion of measure-valued solutions to (3.7), (3.8) which
allows for vacuum states (i.e. ϱ = 0) is available in the literature, see e.g. Breit-Feireisl-
Hofmanová [2, Defn. 2.1].

6The fact that this limit even lies in M follows from the closedness.
7In [18] p is equal to 1 (see also Rem. 2.2) and consequently [18, Cor. 12.3] requires boundedness of the

sequence
(´ T

0

´
Td⟨νkt,x, | · |⟩ dxdt

)
k∈N

instead of
(´ T

0

´
Td⟨νkt,x, | · |2⟩ dxdt

)
k∈N

.
8Like in Sect. 3.1, d ∈ N denotes the space dimension, Td is the d-dimensional torus and T ∈ (0,∞).
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Let us next recall the definition of a measure-valued solution in the context of the com-
pressible Euler equations (3.7), (3.8). Such a notion was first introduced by Neustupa [17].
In order to properly define measure-values solutions of (3.7), (3.8) in the Alibert-Bouchitté [1]
framework, the preliminaries explained in Sect. 2.1 must be slightly modified. We only sketch
these refinements here. For more details we refer to Gwiazda-Świerczewska-Gwiazda-
Wiedemann [14, Sect. 3].

Let

S+ := S1+d−1
γ,2 ∩

{
(β1, β

′) ∈ R1+d
∣∣∣ β1 ≥ 0

}
:=

{
(β1, β

′) ∈ R1+d
∣∣∣ |β1|2γ + |β′|4 = 1, β1 ≥ 0

}
.

Similar to [14], we use (α1, α
′) ∈ R+ × Rd and (β1, β

′) ∈ S+ as dummy variables when
integrating with respect to νt,x and ν∞t,x, respectively. One may think of α1, β1 representing ϱ
and α′, β′ representing √

ϱu. In this context

A(R+×Rd) :=
{
f ∈ Cb(R+ × Rd)

∣∣∣ lim
s→∞

f(s2β1, s
γβ′) exists and is continuous in (β1, β

′) ∈ S+
}

and

Fγ,2(R+ × Rd) :=
{
f ∈ C(R+ × Rd)

∣∣∣ ∃f0 ∈ A(R+ × Rd) s.t.

f(α1, α
′) =

(
1 + (|α1|2γ + |α′|4)1/2

)
f0(α1, α

′)
}

play the role of A(Rm) and F2(Rm), respectively. Moreover, the recession function of f ∈
Fγ,2(R+ × Rd) is given by

f∞ : S+ → R, f∞(β1, β
′) := lim

s→∞
f0(s

2β1, s
γβ′).

Remark 3.8. In the context of the compressible Euler equations (3.7), (3.8) it is also possible
to work with variables ϱ and m = ϱu (instead of ϱ and √

ϱu), see e.g. Breit-Feireisl-
Hofmanová [2, Defn. 2.1].

In the compressible setting, a generalized Young measure is an object (ν, λ, ν∞) in{
(ν, λ, ν∞) ∈ L∞

weak((0, T )× Td;P(R+ × Rd))×M+([0, T ]× Td)× L∞
weak([0, T ]× Td, λ;P(S+))

∣∣∣
ˆ T

0

ˆ
Td

[
⟨νt,x, |α′|2⟩+ ⟨νt,x, αγ

1⟩
]
dx dt+ λ([0, T ]× Td) <∞

}
,

which we also denote by Y. In particular, the bound (2.1) has been replaced by
ˆ T

0

ˆ
Td

[
⟨νt,x, |α′|2⟩+ ⟨νt,x, αγ

1⟩
]
dx dt+ λ([0, T ]× Td) <∞. (3.9)

The reader should notice that all statements in Sect. 2 still hold in this modified setting.
Now we are ready to write down the definition of a measure-valued solution to the com-

pressible Euler equations.
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Definition 3.9 (See [14, Sect. 4.1]). Let ϱ0 ∈ Lγ(Td) and u0 such that ϱ0|u0|2 ∈ L1(Td). A
generalized Young measure (ν, λ, ν∞) ∈ Y is called measure-valued solution of the compress-
ible Euler equations (3.7), (3.8) with initial data ϱ0, u0 if
ˆ T

0

ˆ
Td

[
⟨νt,x, α1⟩∂tψ + ⟨νt,x,

√
α1α

′⟩ · ∇ψ
]
dx dt+

ˆ
Td

ϱ0ψ(0, ·) dx = 0, (3.10)
ˆ T

0

ˆ
Td

[
⟨νt,x,

√
α1α

′⟩ · ∂tϕ+ ⟨νt,x, α′ ⊗ α′⟩ : ∇ϕ+ ⟨νt,x, αγ
1⟩div ϕ

]
dx dt

+

ˆ T

0

ˆ
Td

[
⟨ν∞t,x, β′ ⊗ β′⟩ : ∇ϕ+ ⟨ν∞t,x, β

γ
1 ⟩div ϕ

]
dλ(t, x) +

ˆ
Td

ϱ0u0 · ϕ(0, ·) dx = 0 (3.11)

for all test functions ψ ∈ C∞
c ([0, T )× Td), ϕ ∈ C∞

c ([0, T )× Td;Rd).
Such a measure-valued solution (ν, λ, ν∞) ∈ Y is called admissible if the following asser-

tions hold:

• The concentration measure λ admits a disintegration of the form dλ(t, x) = dλt(x)⊗ dt,
where t 7→ λt is a bounded (with respect to the total variation norm) measurable map
from [0, T ] into M+(Td).

• The energy is bounded by the initial energy, i.e.ˆ
Td

[
1
2
⟨νt,x, |α′|2⟩+ 1

γ−1
⟨νt,x, αγ

1⟩
]
dx+

ˆ
Td

[
1
2
⟨ν∞t,x, |β′|2⟩+ 1

γ−1
⟨ν∞t,x, β

γ
1 ⟩
]
dλt(x)

≤
ˆ
Td

[
1
2
ϱ0|u0|2 + 1

γ−1
ϱγ0

]
dx for a.e. t ∈ (0, T ). (3.12)

Remark 3.10. Note that in the context of the compressible Euler equations (3.7), (3.8), the
term ˆ

Td

[
1
2
⟨ν∞t,x, |β′|2⟩+ 1

γ−1
⟨ν∞t,x, β

γ
1 ⟩
]
dλt(x)

cannot be further simplified. This is in contrast to the incompressible setting, see Rem. 3.4.
Remark 3.11. Like in the incompressible case (see Rem. 3.3), the energy inequality (3.12)
makes the bound (3.9) redundant. To see the bound on λ([0, T ]× Td), we compute

1 =

ˆ
S+

[
|β1|2γ + |β′|4

]
dν∞t,x ≤

ˆ
S+

[
|β1|γ + |β′|2

]
dν∞t,x

≤ ⟨ν∞t,x, |β′|2⟩+ ⟨ν∞t,x, β
γ
1 ⟩

≤ max{2, γ − 1}
[
1
2
⟨ν∞t,x, |β′|2⟩+ 1

γ−1
⟨ν∞t,x, β

γ
1 ⟩
]
,

which holds for λ-a.e. (t, x) ∈ [0, T ]×Td, or equivalently for a.e. t ∈ [0, T ] and λt-a.e. x ∈ Td.
Integration and the energy bound (3.12) yield

λ([0, T ]× Td) =

ˆ T

0

ˆ
Td

1 dλt(x) dt

≤ max{2, γ − 1}
ˆ T

0

ˆ
Td

[
1
2
⟨ν∞t,x, |β′|2⟩+ 1

γ−1
⟨ν∞t,x, β

γ
1 ⟩
]
dλt(x) dt

≤ max{2, γ − 1}T
ˆ
Td

[
1
2
ϱ0|u0|2 + 1

γ−1
ϱγ0

]
dx.
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Remark 3.12. One may treat (t, x) 7→ ⟨νt,x, α1⟩ and (t, x) 7→ ⟨νt,x,
√
α1α

′⟩ as being continuous
in time with respect to the weak-∗ topology in L∞. In fact, the above maps can be redefined
on a set of times of measure zero so that they have this continuity property, see e.g. [5,
Thm. 4.1.1] or [7, Lemma 1 and Appendix A]. As a consequence, (3.10), (3.11) can be
equivalently formulated in a slightly different way, namely with integrals in time only over
an interval [0, τ ] (rather than [0, T ]) for any 0 ≤ τ ≤ T and with an additional end condition
at t = τ . This is the way how (3.10), (3.11) are written in [14], see equation (4.2) therein.

In the context of the compressible Euler system (3.7), (3.8), we choose f ∈ Fγ,2(R+×Rd),
f(α1, α

′) = 1
2
|α′|2+ 1

γ−1
αγ
1 , whose recession function reads f∞(β1, β

′) = 1
2
|β′|2+ 1

γ−1
βγ
1 . Like in

the incompressible case, f represents the energy. Thus, the functional Vf defined in Defn. 2.5
is given by

Vf [ν, λ, ν
∞] =

ˆ T

0

ˆ
Td

[
1
2
⟨νt,x, |α′|2⟩+ 1

γ−1
⟨νt,x, αγ

1⟩ − 1
2

∣∣⟨νt,x, α′⟩
∣∣2 − 1

γ−1
⟨νt,x, α1⟩γ

]
dx dt

+

¨
[0,T ]×Td

[
1
2
⟨ν∞t,x, |β′|2⟩+ 1

γ−1
⟨ν∞t,x, β

γ
1 ⟩
]
dλ(t, x).

Again for given initial data ϱ0 ∈ Lγ(Td) and u0 such that ϱ0|u0|2 ∈ L1(Td), we set

M :=
{
(ν, λ, ν∞) ∈ Y

∣∣∣ (ν, λ, ν∞) is an admissible measure-valued solution (3.13)

of (3.7), (3.8) with initial data ϱ0, u0
}
.

Proposition 3.13. The set M ⊆ Y defined in (3.13) is suitable in the sense of Defn. 2.10.

Proof. We show that properties (a)-(c) of Defn. 2.10 are satisfied.

(a) Existence of measure-valued solutions for the compressible Euler system (3.7), (3.8)
goes back to Neustupa [17]. We also refer to Gwiazda-Świerczewska-Gwiazda-
Wiedemann [14, Rem. 4.1]. Thus, M ̸= ∅.

(b) The convexity of M can be shown exactly as in the incompressible case, see the proof
of Prop. 3.5.

(c) To prove that M is sequentially compact, one proceeds like in the incompressible case,
see the proof of Prop. 3.5. In particular, one has to prove that the sequences(
λk([0, T ]×Td)

)
k∈N

⊆ R and
(ˆ T

0

ˆ
Td

[
⟨νkt,x, |α′|2⟩+ ⟨νkt,x, α

γ
1⟩
]
dx dt

)
k∈N

⊆ R

are uniformly bounded. Similarly to the bound (3.9), this immediately follows from
(3.12), see Rem. 3.11.

As a consequence of Props. 2.12, 2.14 as well as Prop. 3.13 we obtain the following.
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Corollary 3.14. There exists an admissible measure-valued solution of the compressible Eu-
ler equations (3.7), (3.8) (ν, λ, ν∞) ∈ M with initial data ϱ0 ∈ Lγ(Td) and u0 such that
ϱ0|u0|2 ∈ L1(Td) which is maximal in the sense of Defn. 2.11 with f(α1, α

′) = 1
2
|α′|2+ 1

γ−1
αγ
1 .

Moreover, any two such maxima (ν1, λ1, (ν∞)1), (ν2, λ2, (ν∞)2) ∈M satisfy

⟨ν1t,x, α1⟩ = ⟨ν2t,x, α1⟩ and ⟨ν1t,x, α′⟩ = ⟨ν2t,x, α′⟩ for a.e. (t, x) ∈ (0, T )× Td, andˆ T

0

ˆ
Td

[
1
2
⟨ν1t,x, |α′|2⟩+ 1

γ−1
⟨ν1t,x, α

γ
1⟩
]
dx dt

+

¨
[0,T ]×Td

[
1
2
⟨(ν∞)1t,x, |β′|2⟩+ 1

γ−1
⟨(ν∞)1t,x, β

γ
1 ⟩
]
dλ1(t, x)

=

ˆ T

0

ˆ
Td

[
1
2
⟨ν2t,x, |α′|2⟩+ 1

γ−1
⟨ν2t,x, α

γ
1⟩
]
dx dt

+

¨
[0,T ]×Td

[
1
2
⟨(ν∞)2t,x, |β′|2⟩+ 1

γ−1
⟨(ν∞)2t,x, β

γ
1 ⟩
]
dλ2(t, x).

Remark 3.15. In the context of the isentropic Euler equations (3.7), (3.8), there is another
definition of measure-valued solutions avaliable in the literature: the so-called dissipative
measure-valued (DMV) solutions, see [2]. These DMV solutions do not exactly fit into the
Alibert-Bouchitté [1] framework outlined in Sect. 2. One of the main differences between
admissible measure-valued solutions in the sense of Defn. 3.9 and DMV solutions lies in the
defect terms. It is however not difficult to modify the functional Vf in order to apply our
theory to DMV solutions. In particular, one has to replace the term

¨
[0,T ]×Td

[
1
2
⟨ν∞t,x, |β′|2⟩+ 1

γ−1
⟨ν∞t,x, β

γ
1 ⟩
]
dλ(t, x)

by its analogue in the DMV setting.
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