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Abstract. We consider the 2-d isentropic compressible Euler equations. It was shown
in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic
system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there
exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely
many weak solutions that fulfill an energy inequality. In this paper, we will prove that
there is Riemann initial data for which there exist infinitely many weak solutions that
conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we
will also show that there even exist Lipschitz initial data with the same property.
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1. Introduction and Main Result

For hyperbolic conservation laws, the quest for showing that the initial value prob-
lem is well posed is more than a century old. The focus has been on the compressible
Euler equations in particular. In one space dimensions the seminal work of Glimm
[7] and DiPerna [6] gave rise to the hope that this goal might be achievable. In the
two-dimensional case progress has been made to this end for particular self similar
solutions, see Chen and Feldman [1]. In all these cases, an admissibility condition,
which mimics the 2nd law of thermodynamics, needs to be invoked. Thus results
for the equations of two-dimensional isentropic compressible gas dynamics, that
prove that with these admissibility conditions the initial value problem may lead
to infinitely many admissible weak solutions (see [5]) have been met with quite a
surprise. Even in situations, where one can solve the initial value problem explic-
itly via an admissible solution, one could prove that in addition to this standard
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solution infinitely many other admissible weak solutions exist [2, 3, 8]. The hunt is
open for finding new admissibility conditions proving this line of research a fluke.

The admissibility criterion used so far is entropy dissipation. For the isentropic
Euler equations, energy takes the role of entropy, so this means that one was seeking
weak solutions that dissipate energy. So, could one rid oneself of these infinitely
many extra solution by demanding the more physical criterion that the solutions
conserve energy? In this paper, we show that this is not the case. We can show that
there exist Lipschitz initial data that may lead to infinitely many solutions of the
two-dimensional Euler equations all of which conserve energy.

To this end, we consider the Cauchy problem for the 2-d isentropic compressible
Euler system, i.e.

∂tϱ+ divx(ϱv) = 0,

∂t(ϱv) + divx(ϱv ⊗ v) + ∇xp(ϱ) = 0,

ϱ(0, x) = ϱ0(x),

v(0, x) = v0(x),

(1.1)

where the unknowns, more precisely the density ϱ = ϱ(t, x) ∈ R+ and the velocity
v = v(t, x) ∈ R2, are functions of time t ∈ [0,∞) and position x = (x1, x2) ∈ R2.
We will focus both on Riemann and on Lipschitz initial data (ϱ0, v0), see below.

Furthermore, we consider the polytropic pressure law

p(ϱ) = Kϱγ , (1.2)

where K > 0 and γ ≥ 1 are constants. More specifically we will focus on the case
p(ϱ) = ϱ2, i.e. we set K = 1 and γ = 2. However there are other values for K and
γ for which our results hold true, too.

In this paper, the aim is to find energy conserving weak solutions, which are
defined as follows.

Definition 1.1 (Energy Conserving Weak Solution). A weak solution to (1.1)
is energy conserving if the energy equality

∂t

(
1
2
ϱ|v|2 + P (ϱ)

)
+ divx

[(
1
2
ϱ|v|2 + P (ϱ) + p(ϱ)

)
v

]
= 0, (1.3)

holds in the weak sense, where the pressure potential is given by P (ϱ) = ϱ2. In the
case of more general pressures (1.2) the pressure potential reads P (ϱ) = K

γ−1ϱ
γ in

the case γ > 1 and P (ϱ) = Kϱ log(ϱ) for γ = 1.

In the first part of the paper, we consider Riemann initial data, i.e.

(ϱ, v)(0, x) = (ϱ0, v0)(x) :=

{
(ϱ−, v−) if x2 < 0,

(ϱ+, v+) if x2 > 0,
(1.4)

where ϱ± ∈ R+ and v± ∈ R2 are constants.
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In the past, the system (1.1) with initial data (1.4) was often discussed concern-
ing uniqueness of so-called admissible weak solutions defined as follows.

Definition 1.2 (Admissible Weak Solution). A weak solution to (1.1) is admis-
sible if the energy inequality

∂t

(
1
2
ϱ|v|2 + P (ϱ)

)
+ divx

[(
1
2
ϱ|v|2 + P (ϱ) + p(ϱ)

)
v

]
≤ 0 (1.5)

holds in the weak sense.

It was shown by exploiting the convex integration method [4, 5] that for some
initial states (ϱ±, v±) ∈ R+ × R2 there exist infinitely many admissible weak solu-
tions, see [3, 2, 8]. These infinitely many solutions that are produced by the convex
integration method are usually called wild solutions. In this paper, we want to
show that there are initial states (ϱ±, v±) ∈ R+ × R2 for which there are infinitely
many weak solutions that fulfill the energy equation (1.3) rather than the energy
inequality (1.5). In other words, we will prove that there are not only infinitely
many admissible weak solutions but also infinitely many energy conserving weak
solutions.

The following theorem is our main result:

Theorem 1.3. Let p(ϱ) = ϱ2. There exist initial states (ϱ±, v±) ∈ R+ × R2 such
that there are infinitely many energy conserving weak solutions to (1.1), (1.4).

This theorem will be proved by methods first presented in [3, 2].
As a consequence of Theorem 1.3, we can show the following corollary.

Corollary 1.4. Let p(ϱ) = ϱ2. There exist Lipschitz continuous initial data (ϱ0, v0)
such that there are infinitely many energy conserving weak solutions to (1.1).

2. Proof of Theorem 1.3

2.1. Definitions

We proceed as in [3] and therefore recall the definition of a fan partition.

Definition 2.1 (Fan Partition, see [3, Definition 4]). Let µ0 < µ1 real num-
bers. A fan partition of (0,∞) × R2 consists of three open sets Ω−, Ω1, Ω+ of the
form

Ω− = {(t, x) : t > 0 and x2 < µ0t},

Ω1 = {(t, x) : t > 0 and µ0 t < x2 < µ1t},

Ω+ = {(t, x) : t > 0 and x2 > µ1t}.

Furthermore, we define

S2×2 := {M ∈ R2×2 |M symmetric} and

S2×2
0 := {M ∈ S2×2 | tr(M) = 0}.
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We also recall the definition of a fan subsolution, where we slightly adjust [3,
Definitions 5 and 6] for our needs. More precisely, we have an equality in (2.1) (see
below) in contrast to the inequality in [3, Definition 6].

Definition 2.2 (Energy Conserving Fan Subsolution, cf. [3, Definitions
5 and 6]). An energy conserving fan subsolution to the Euler system (1.1) with
initial condition (1.4) is a triple (ϱ, v, u) : (0,∞) × R2 → (R+ × R2 × S2×2

0 ) of
piecewise constant functions, which satisfies the following properties:

(1) There exists a fan partition of (0,∞)×R2 and constants ϱ1 ∈ R+, v1 ∈ R2 and
u1 ∈ S2×2

0 , such that

(ϱ, v, u) =
∑

i∈{−,+}

(
ϱi, vi, vi ⊗ vi −

|vi|2

2
Id
)

1Ωi + (ϱ1, v1, u1)1Ω1 ,

where (ϱ±, v±) are the given initial states.
(2) There is a constant C1 ∈ R+ such that

v1 ⊗ v1 − u1 <
C1

2
Id

in the sense of definiteness.
(3) For all test functions (ψ,φ) ∈ C∞

c ([0,∞)× R2, R × R2) the following identities
hold:∫ ∞

0

∫

R2
(ϱ ∂tψ + ϱv ·∇xψ)dxdt +

∫

R2
ϱ0(x)ψ(0, x)dx = 0,

∫ ∞

0

∫

R2

[
ϱ v · ∂tφ+ ϱ((v ⊗ v)1Ω−∪Ω+ + u11Ω1) : Dxφ

+
(

p(ϱ) +
1
2
ϱ1C11Ω1

)
divxφ

]
dxdt +

∫

R2
ϱ0(x)v0(x) · φ(0, x)dx = 0.

(4) For every nonnegative test function ϕ ∈ C∞
c ([0,∞) × R2, R+

0 ) the equation
∫ ∞

0

∫

R2

[(
P (ϱ) +

1
2
ϱ
(
|v|21Ω−∪Ω+ + C11Ω1

))
∂tϕ

+
(

P (ϱ) + p(ϱ) +
1
2
ϱ
(
|v|21Ω−∪Ω+ + C11Ω1

))
v ·∇xϕ

]
dxdt

+
∫

R2

(
P (ϱ0(x)) + ϱ0(x)

|v0(x)|2

2

)
ϕ(0, x)dx = 0 (2.1)

is fulfilled.

2.2. Sufficient condition for non-uniqueness

We obtain a slightly adjusted version of [3, Proposition 3.1].

Theorem 2.3 (cf. [3, Proposition 3.1]). Let (ϱ±, v±) be such that there exists an
energy conserving fan subsolution (ϱ, v, u) to (1.1), (1.4). Then there are infinitely
many energy conserving weak solutions (ϱ, v) to (1.1), (1.4) with the following
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properties:

• ϱ = ϱ,
• v(t, x) = v(t, x) for almost all (t, x) ∈ Ω− ∪ Ω+,
• |v(t, x)|2 = C1 for almost all (t, x) ∈ Ω1.

Proof. For the proof we refer to the proofs of [3, Proposition 3.1] and [2, Proposi-
tion 3.6]. Note that the energy conservation (2.1) of the fan subsolution ensures that
the energy equation (1.3) holds, i.e. that the weak solutions are energy conserving.

2.3. Algebraic equations and inequalities

As in [3, Proposition 4.1], Definition 2.2 can be translated into a system of algebraic
equations and inequalities. Note again that we get here energy equations instead of
energy inequalities.

Proposition 2.4 (cf. [3, Proposition 4.1]). Let (ϱ±, v±) be given. The constants
µ0, µ1 ∈ R, ϱ1 ∈ R+,

v1 =

(
v1 1

v1 2

)
∈ R2, u1 =

(
u1 11 u1 12

u1 12 −u111

)
∈ S2×2

0

and C1 ∈ R+ define an energy conserving fan subsolution to (1.1), (1.4) if and only
if they fulfill the following algebraic equations and inequalities:

• Order of the speeds :

µ0 < µ1. (2.2)

• Rankine Hugoniot conditions on the left interface:

µ0(ϱ− − ϱ1) = ϱ−v−2 − ϱ1v1 2 (2.3)

µ0(ϱ−v−1 − ϱ1v1 1) = ϱ−v−1v−2 − ϱ1u1 12 (2.4)

µ0(ϱ−v−2 − ϱ1v1 2) = ϱ−v2
−2 + ϱ1u1 11 + p(ϱ−) − p(ϱ1) − ϱ1

C1

2
. (2.5)

• Rankine Hugoniot conditions on the right interface:

µ1(ϱ1 − ϱ+) = ϱ1v1 2 − ϱ+v+2 (2.6)

µ1(ϱ1v1 1 − ϱ+v+1) = ϱ1u1 12 − ϱ+v+1v+2 (2.7)

µ1(ϱ1v1 2 − ϱ+v+2) = −ϱ1u1 11 − ϱ+v2
+2 + p(ϱ1) − p(ϱ+) + ϱ1

C1

2
. (2.8)

• Subsolution condition:

v2
1 1 + v2

1 2 < C1 (2.9)
(

C1

2
− v2

1 1 + u1 11

)(
C1

2
− v2

1 2 − u1 11

)
− (u1 12 − v1 1v1 2)2 > 0. (2.10)
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• Energy equation on the left interface:

µ0

(
P (ϱ−) + ϱ−

|v−|2

2
− P (ϱ1) − ϱ1

C1

2

)

= (P (ϱ−) + p(ϱ−))v−2 − (P (ϱ1) + p(ϱ1))v1 2 + ϱ−v−2
|v−|2

2
− ϱ1v1 2

C1

2
.

(2.11)

• Energy equation on the right interface:

µ1

(
P (ϱ1) + ϱ1

C1

2
− P (ϱ+) − ϱ+

|v+|2

2

)

= (P (ϱ1) + p(ϱ1))v1 2 − (P (ϱ+) + p(ϱ+))v+2 + ϱ1v1 2
C1

2
− ϱ+v+ 2

|v+|2

2
.

(2.12)

Proof. The above proposition can be proved analogously to [2, Proposition 5.1].

2.4. Proof

Finally, we prove Theorem 1.3.

Proof. Let the initial data be given by

ϱ− = 1, ϱ+ = 4,

v− =

(
0

2
√

2

)
, v+ =

(
0

0

)
.

(2.13)

We set

µ0 = − 7
2
√

2
, µ1 = 0,

ϱ1 =
15
7

, v1 =

(
0

0

)
,

u1 =

⎛

⎜⎜⎝

−29
15

0

0
29
15

⎞

⎟⎟⎠ , C1 =
712
105

.

(2.14)

Simple computations show that the equations and inequalities of Proposition 2.4
hold. Hence, there exists an energy conserving fan subsolution and according to
Theorem 2.3 infinitely many energy conserving weak solutions to (1.1) with initial
data (1.4), (2.13).

The reader might wonder where the values in (2.14) come from. Hence, we want
to expose the way we reached to them.
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Let us begin by looking for weak solutions to (1.1) with initial data (1.4),
(2.13) that are admissible instead of energy conserving. This means that the energy
inequality (1.5) holds rather than the energy equation (1.3). To this end, as shown in
[2, 3, 8], one has to look for admissible fan subsolutions. Admissible fan subsolutions
are similar to energy conserving fan subsolutions as defined in Definition 2.2, with
the only difference that the energy equation (2.1) turns into an energy inequality.
One ends up with algebraic equations and inequalities, see e.g. [2, Proposition 5.1],
like those presented in Proposition 2.4 with the difference that again the energy
equations (2.11), (2.12) are replaced by energy inequalities. Since there are six
equations for eight unknowns, the idea in [3] and also in [8] was to choose two
unknowns as parameters and express the other six unknowns as functions of the
two parameters. For convenience one replaces the unknowns u111 and C1 by

δ1 =
C1

2
− v2

1 2 − u1 11, δ2 =
C1

2
− v2

1 1 + u1 11

and chooses ϱ1, δ2 as parameters. For the special initial data (2.13) one obtains the
following proposition, shown by the authors in [8].

Proposition 2.5 (see [8, Theorem 5.2]). There exists an admissible fan sub-
solution to (1.1) with initial data (1.4), (2.13) if there exist constants ϱ1, δ2 ∈ R+

that fulfill

ϱ− < ϱ1 < ϱ+, (2.15)

δ1(ϱ1) > 0, (2.16)

(v1 2(ϱ1) − v−2)
(

p(ϱ−) + p(ϱ1) − 2
ϱ1P (ϱ−) − ϱ−P (ϱ1)

ϱ− − ϱ1

)

≤ δ1(ϱ1)ϱ1(v1 2(ϱ1) + v−2) − (δ1(ϱ1) + δ2)
ϱ−ϱ1(v1 2(ϱ1) − v−2)

ϱ− − ϱ1
, (2.17)

(v+2 − v1 2(ϱ1))
(

p(ϱ1) + p(ϱ+) − 2
ϱ+P (ϱ1) − ϱ1P (ϱ+)

ϱ1 − ϱ+

)

≤ −δ1(ϱ1)ϱ1(v+2 + v1 2(ϱ1)) + (δ1(ϱ1) + δ2)
ϱ1ϱ+(v+2 − v1 2(ϱ1))

ϱ1 − ϱ+
, (2.18)

where we define the functions

v1 2(ϱ1) :=
1

ϱ1(ϱ− − ϱ+)

(
−ϱ−v−2(ϱ+ − ϱ1) − ϱ+ v+2(ϱ1 − ϱ−)

+

√
[(ϱ− − ϱ+)(p(ϱ−) − p(ϱ+))

− ϱ+ϱ−(v−2 − v+2)2](ϱ1 − ϱ−)(ϱ+ − ϱ1)

)
(2.19)
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and

δ1(ϱ1) := −p(ϱ1) − p(ϱ−)
ϱ1

+
ϱ−(ϱ1 − ϱ−)
ϱ2
1(ϱ− − ϱ+)2

(
ϱ+(v−2 − v+2)

+
√

[(ϱ− − ϱ+)(p(ϱ−) − p(ϱ+)) − ϱ+ϱ−(v−2 − v+2)2]
ϱ+ − ϱ1

ϱ1 − ϱ−

)2

.

(2.20)

Note that these functions are well-defined for ϱ− < ϱ1 < ϱ+ and for the initial
states (2.13).

Here, the conditions δ2 > 0 and (2.16) ensure the subsolution conditions, (2.15)
guarantees the correct order of the speeds and the inequalities (2.17) and (2.18)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
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δ 2
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0.0
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ρ1

δ 2
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Fig. 1. Regions in the ϱ1-δ2-plane where the conditions of Proposition 2.5 hold.
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correspond to the energy inequalities for the left and the right interface, respectively,
(see proof of [8, Theorem 5.2]).

Next, we are going to plot the regions in the ϱ1-δ2-plane where the inequalities
(2.15)–(2.18) are fulfilled, see Fig. 1. Proposition 2.5 claims that each point (ϱ, δ2)
lying in the region shown in Fig. 1(d) corresponds to an admissible fan subsolution.

Let us now return to this paper’s aim, namely to find energy conserving solutions.
The procedure presented above will lead to a similar claim as stated in Proposi-
tion 2.5 with the difference that the inequalities (2.17), (2.18) are replaced by equa-
tions. Therefore, in order to find an energy conserving fan subsolution, we have to
find a point (ϱ1, δ2) in the region shown in Fig. 1(c) which in addition lies on the
boundary of the regions shown in Figs. 1(a) and 1(b). Hence it suffices to find the
apex in Fig. 1(d). The values (2.14) correspond exactly to this apex.

3. Proof of Corollary 1.4

Proof. In order to prove Corollary 1.4, we proceed as in the proof of [2, Corol-
lary 1.2]. We solve the system (1.1) with initial data (1.4), (2.13) backwards in
time. It is an easy observation that if (ϱ(t, x), v(t, x)) is a solution to (1.1) then

(
ϱ̃(t, x), ṽ(t, x)

)
=
(
ϱ(−t,−x), v(−t,−x)

)

solves (1.1), too. Hence in order to solve (1.1) with initial data (1.4), (2.13) back-
wards in time, it suffices to solve (1.1) forward in time, where now the initial states
are switched

(ϱ, v)(0, x) = (ϱ̃0, ṽ0)(x) := (ϱ0, v0)(−x) =

{
(ϱ+, v+) if x2 < 0,

(ϱ−, v−) if x2 > 0,
(3.1)

and ϱ±, v± given in (2.13).
By well-known methods one can show that there is a self-similar solution (ϱ̃, ṽ)

to (1.1), (3.1) which consists of one rarefaction, see [8, Proposition 1.3] and the ref-
erences therein. Note that rarefaction solutions are Lipschitz in the spatial variable
x and they conserve the energy in the sense of (1.3). Hence, we can simply set the
initial data to

(ϱ0, v0)(x) := (ϱ̃, ṽ)(t = 1, x),

which is Lipschitz and leads to Riemann data (1.4), (2.13) for t = 1. Consequently
according to Theorem 1.3 there exist infinitely many energy conserving weak solu-
tions to (1.1) with Lipschitz initial data as above. All these solutions coincide for
t ∈ [0, 1].

4. Conclusion

In this paper, we showed that even if we insist that solutions conserve energy for the
two-dimensional isentropic Euler equations one can find Lipschitz initial data which
gives rise to infinitely many weak solutions. The proof makes use of the techniques
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shown in [8]. Thus if one wants to find a criterion to rule out these solutions one
has to look elsewhere.
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