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EXISTENCE OF ENTROPY SOLUTIONS TO SYSTEM OF POLYTROPIC GAS
WITH A CLASS OF UNBOUNDED SOURCES
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Abstract. We study the global existence of entropy solutions to a gas dynamics system with a class
of unbounded sources. By using the maximum principle, we obtain the uniform L™-estimates for the
viscosity solutions. The key ingredient here is to introduce two suitable bounded functions to control
the unbounded source terms. Then, with the aid of the compensated compactness theory, we prove the
convergence of viscosity solutions and existence of global entropy solutions for any adiabatic exponent
o> 1.
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1. INTRODUCTION

The paper is devoted to the study of global weak solutions of the Cauchy problem of a poly-
tropic gas dynamics system with a class of unbounded sources. It is formulated as following

pr+ (pu)x =0,
(1.1)
(pu)s + (p1e? + p(p))x +T1(t,x,p,u) = 0,
with bounded initial data
(p(0,x),u(0,x)) = (Po(x), u0(x)),  po(x) =0, (1.2)
where p = p(t,x), p(p) = p® (& > 1), and u = u(t,x) are the density, pressure and velocity,

respectively, of the gas. The nonlinear term IT = I1(z,x, p,u) denotes the source.

System (1.1) is an important model in physics and it can be derived from different physical
backgrounds (see, for instance, [1]). During the past decades, there have been many impressive
mathematical results on this model. Among them, we only mention those which are related
to the main theorem in this paper. When I1(¢,x,p,u) is of the form II(x,¢,p,u) = a(t,x)pu
with a(t,x) > 0, there have been many literatures concerning the damping effects on the global
existence and singularity formation of (1.1); see, e.g., [2, 3, 4, 5]. If I1(¢,x, p,u) is of the form
(t,x,p,u) = —pE(t,x) + a(x)pu, then (1.1) is corresponding to the hydrodynamic model of
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semiconductors (see [6, 7, 8, 9] and references therein). For more discussions on the inho-
mogeneous hyperbolic systems, we refer the interested readers to [10, 11, 12, 13, 14] and the
references therein.

In the present paper, we restrict our attention on the case that the source I1 is unbounded and
is of the following form:

(t,x,p,u) = a(t,x)|pul, (1.3)
where  |a(t,x)| < M+ P(t) + Q(x) with 0 < P(t) € CRY)NLY(R"), 0 < Q(x) € LY(R) N
L=(R), and M > 0 is a constant.

It is well-known that classical solutions to the Cauchy problem of the nonlinear hyperbolic
system (1.1) does not exist globally in time even if the initial data (1.2) are smooth and small. In
fact, shock waves always appear in the solutions after a suitable large time. This means that the
solutions to (1.1)—(1.2) are discontinuous and do not satisfy (1.1) in the classical sense. Thus
we have to study the weak solutions to (1.1)—(1.2), that is, solutions satisfy (1.1)—(1.2) in the
sense of distributions.

In order to construct the weak solutions to Cauchy problem (1.1)—(1.2), it is standard that one
first construct approximation solutions (p®(¢,x),u®(z,x)) to the following parabolic system:

p:r + (p”)x = EPxx;
(1.4)

(pu)e+ (p + p(p))x +11(1,x,p,u) = (Pit)xx.

Then, one can obtain the weak solutions from (p®(z,x),u®(¢,x)) by the passage to the limit as €
goes to zero.
To solve (1.4), one may regard the quantity m = pu as an independent variable, which leads
to a basic techznical difficulty that the positive lower bound estimate for p® is not available
m

since pu’® = o is singular when p = 0. Thus, we consider in this paper the flux-viscosity

approximation solutions (p& ™V u®™V) to the following parabolic system (see [15, 16]):
pr+ ((p —21)u)x = €Pxy,
(1.5)
(pu); + (pu? — M + p1(p,M))x +ay(t,x) | pul = &(pu)x,
with initial data
(p™™Y (x,0),u" ™ (x,0)) = (po(x) +21,up(x)), (1.6)

where € > 0 and 1) > 0 denote the viscosity coefficient and the regular perturbation constant,
respectively, the perturbation function p; = p1(p,n) is of the form:

Pr—2
P = [ == @y,
P2
and
ay(t,x) = / a(x',t)jy(x—x")dx,
satisfies

av(6.0| < M+ + [ 100 (v —)dx.

where jy is a suitable mollifier.
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It is worth to mentioning that an advantage of this kind of approximations is that one may
prove directly the uniformly, positive lower bound:

p&MY >2n >0, (1.7)

with the aid of the maximum principle on the density equation in (1.5), which guarantees the
existence of the approximation solutions (p&"V, u®™V),
More precisely, we have

Theorem 1.1. L. Assume that a(t,x) is measurable and (1.3) holds with 0 < P(tr) € C(RT) N
L'(R"),0 < Q(x) € L"(R)NL*(R), and

z2(po,up) < € — 0|1, w(po,ug) < €M, (1.8)

where

z(p,u):—u—f—/cp ' psl(s)ds, W(p,u):u—k/cp —”psl(s)ds (1.9)

are the Riemann invariants of (1.1), and ¢ and ky > 0 are two constants. Then, for any fixed
(e,m,V), (1.5)-(1.6) admits a global solution (p&™Y u®™V) satisfying

t / /
(P& uENY) < gki+ka JoM+P(")dt 7

(1.10)
w(p&MY &Ny < ekitke JoM+P(t")dr’ Tk fj‘;" o(t'ar',
where ky, k3 are two suitable positive constants and
0 = [ OW)jv(x—)ax'. (1.11)

II. There exists a subsequence of (p&™Y u®"V), which converges pointwisely to a pair of
bounded functions (p(t,x),u(t,x)) as (€,m,v) — (0,0,0), and the limit is a weak entropy solu-
tionto (1.1)—(1.2)

Definition 1.1. (p(7,x),u(t,x)) is called a weak entropy solution to (1.1)—(1.2) if
Jo" o p @+ (pu) @cpdxdt + [, po(x) @ (x,0)dx = O,

15 J= pug + (pu® + P(p)) @ — I (x,t, p, u) pdxdt (1.12)

+ /7 Po(x)uo ()@ (x,0)dx = 0
holds for all test function ¢ € C}(R x R") and

/0/ h(p,m)e, +y(p,m)o, —(x,t,p,u)h(p,m),@dxdt > 0 (1.13)

holds for all non-negative test function ¢ € C7((R*\ {r =0}) x R), where m = pu and (h, )
is a pair of convex entropy-entropy flux of system (1.1).

Example 1.1. When II(z,x,p,u) = a(x)pu, where a(x) < 0 is corresponding to the sliding
friction [17], in general, we could not obtain the uniform L” estimate without the condition
a(x) € L'(R) (see [18]).
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Remark 1.1. If the nonlinear function I1(¢,x,p,u) is of the C' class with respect to the vari-
ables, then, without any difficulty, we may prove that Theorem 1.1 is also true for any I1(z,x, p, u)
satisfying

(2, x, p,u)| <la(t,x)pul, |a(t,x)| <M+ P(t)+QO(x), (1.14)
where M is a nonnegative constant, 0 < P(t) € C(R")NL(R"),0 < Q(x) € C(R)NL'(R).

Remark 1.2. When conditions (1.3) or (1.14) are changed to
(¢, x,p,u) = a(t,x)|pul, |a(t,x)| < P(t)+QO(x),

although the function a(z,x) could be unbounded, we may deduce a uniformly bounded estimate
of solutions with respect to the time.

2. PROOF OF THEOREM 1.1

Recall that mpu is the momentum and (w, z) is given by (1.9). Multiplying (1.5) by (‘3—:)”, 3—;)
and (g; g 55 ), respectively, we obtain that
n, _ 2 2
G A =€+ Fspxzx - W(Zp’ +pp" )P — fu(t,x)u 2.1
and )
/ 1/
Wy + )v Wy = EWgy + 2 P PxWx — #\/m(zp +pp")p; + fu(t, x)u, (2.2)

where fy(t,x) = —ay(t,x)sgn(u) and

-2n m p-—2n
)Ln:ﬂ_p "(p), Al =—+ /
LSS, Ve e), A ot o P'(p)

are two eigenvalues of (1.5).
We let z = ®(t,x) + v, for a suitable function ®(z,x) in (2. l) and obtain

Vt+th+ _P- n\/ x[q)tx +V_/ xTn p’(P)
£

L Y1 S N L AGI PR ,V D,

20%\/p'(p) 2p +pp 2p +pp

p’(P)
2 /_|_pp//

- vax -

2€e
+ed,, + prvﬁr — f(t,x)u

or

v +®; +vib(t,x) +ve(t,x) + [— ij”ﬁ;p,, D2 —ed,, — £ P(1,x)D,]

(2.3)
—{—(ff #dp - % p’(p))@x - (1 - £1>(D(t7x)q)x+fv(l7x)u < Vi,
where £; > 0 is a suitable small constant, b(,x) = u — % P'(p)— %epx, and c(t,x) = —Py.
Similarly, we let w = s+ ¥(¢,x) in (2.2) and have

si P +d(t,x)se+e(t,x)s+ [— pr”ﬁ)p,, W2 — e, +&P(t,x)P,]

(2.4)
(2 /pTp) — [P YO ) 4 (1 — (1, X)W — fo (1, X)u < 5

P
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where d(t,x) = %\ /p'(p)— 2‘?% +u and e(t,x) = ¥,. In view of the first equation in (1.5),

we have the a priori estimate p > 21. Let
/ /! X
CI)<I,X) _ ekl—i-sz(;M—i-P(t )dt —k3/ Qv(t/)dt/,

and .
T(I,X) — ek1+k2féM+P(t/)dt/+k3/ Qv(l/)dl/,

where k; (i = 1,2,3) are suitable positive constants, and Qy(x) is given by (1.11). Since |Qy |~
and v|X] |~ are uniformly bounded, |Qy|;1 = |Q];1 and

2 / a— a—
E\/ D (p) _ 2e —Tl < 2¢ (Zn)_Tl7 b, = —k3Qv(X), Dy = —k3Q/v(X),

20 +pp"  a+1 a+1

we can set € = o(7) and choose a suitable relation among €, €; and v so that the following two
inequalities (i.e., (2.3) and (2.4)) hold:

2ed2./p/
—j‘—p(p) — &Py — €D(1,x)D, > 0
2p' +pp”

and
2eW2\/p/
—#ﬁ,f)) W+ e (1, x) ¥, > 0.
Furthermore, in view of (2.3) and (2.4), we obtain
Lemma 2.1. It holds

Ve +vib(t,x) +vby (t,x) 4 sba(t,x) < Evyy,
(2.5)
St +sxd(t,x) +sdy (t,x) +vdy(t,x) < Esyy,

where
( bi(t,x) =c(t,x) — fy — 5(M+P(t) + Qv (x)),

by(t,x) = —3(M +P(t) + Qv(x)) <0,

di(t,x) = e(t,x)+ fy — (M +P(t) + Qv (x)),

(| da(t,x) = —=5(M+P(t) + Qy(x)) <0
when o > 3, and

( bi(t,x) = —fu+c(t,x) — (3(M+P(t) + Qv (x) + 35%k30v (%)),
by(t,x) = —(3(M+P(t) + Qv (x)) + 33%k30v (x)) <0,

di(t,x) = e(t,x) + fy — (3(M+P(t) + Ov(x)) + 23%k30v (x)),

( do(t,x) = —(5(M+P(1) + Qv (%)) + 23%k30y (x)) <0
when 1 < o0 < 3.
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Proof of Lemma 2.1. First, if o > 3, we choose ¢ =21 in (1.9), (2.3), and (2.4). Since

\/ a3 a3 [P —2
/ dp p Tdp<p: / 1dp ===/ (p),
n 2n P

the following terms in (2.3)

Liv =+ (5, VPhdp — 2520/ (p)) s — (1 - €)(t,x) s+ fu(t, 0
> ko (M4 P()) b R BMPO 1 f (12, VEP dp — (.2 ~v)

—1—(1—81)(k3ek1+k210M+P — k3 [2. Ov(1)dr") Oy (x)

> ko (M + P(t)) el R o MAPW)d _ (1 )y (1 — &1 )kaQy (x) ek Hha o MAP()dr!

(1= €)k20v () [*.. Qv (1)dr' — (M + P(1) + Ov (x)) (f2) Y2 Phdp + (1, )

(2.6)
due to | fy(t,x)| <M+ P(t) + Qv(x). Since
/ NEACIFR Swtz)= ;(v+s) + etk yMEP@dr
2n
we have from (2.6) that
Ly, >—fu(t,x)v— %(v—i—s)(M—i—P(t) + 0y (x))
thy(M + P(1)) ek JoM+P(t")dr" (1—&)k30y (t,x)ek1 2 JoM~+P(t")d'
—(1— &)y (x) [*.. Qv (')dt' —2(M + P(t) + Qy (x))ek1 Hh2 oM +P()ar
+hk3(M +P(t) + Qv(x)) [2., Ov(t")dr'
(2.7)

> —3(M+P(1)+Qv(x)) (v+s) = fy(t, )
(k= 2) (M + P(t)) bt o MAPE)A" 4 (1 gy Yk (Lekt — ks | Qy (x)]11) Qv (%)
H(5(1— &0)ks = 2)Qu ()b lpMPar

> —fy(t,x)v— (v +5)(M+P(t) + Qy(x))
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if we choose ko > 2,k3 > 4 and eX1 > 2k3|Qy (x)|,1. Similarly, the following terms in (2.4)

Lig =¥+ P (P20 /() — £, Y2 ap) (1 — )W (1, )P, — fo 1)

> kp(M+ P(1)) A BMEPOE 1 f () (s 4+ (1,2) — 5 Y2 Pap)

+(1— &) (kzek1 TR oMHPW)A 2 (% 0 (¢)di ) Qy (x)

> k(M + P(t)) e R SMAPWL o (1 )54 (1 — 1)k Qy (x) ki R lo M PNl

(1 - )80y (x) [* Qv ()dr’ — (M +P(e) + Qu(0)) (£, Y2 PLdp (1)

= —J(M+P(0)+ 0y () (v+5) + fy(t,%)s

o (M -+ (1)) ekt Ha o MEPUOA! 4 (1 — g)ks 0y (x)ekt Hha IoMHPENE 2.8)
+(1 = )30y (x) [*., Qv (t')dt’ = 2(M + P(t) + Qy (x)) b1t ly Ml

—ka(M+P() + Qy(x)) [*.. Qu(t")dr’

> fult,x)s = §(v+5) (M +P(1) + Qv (x))

(ks = 2) (M + P(1)) 1+ SMAPEI ey (M 4 P(1)) [*.. Qv (t')dr’

(1= &1)ks = k3 Qv (x) [ .. Qv (1)

+((1— €1)k3 —2)Qy (x)eh1 T i M+PU

> —5(M+P(t)+ Qy(x))(v+s) + fu(t,x)s

if we choose k3 > 2 and (ko —2)eft > k3|Qy (x)|;1. So, we may choose ky = 3,k3 = 5,k >
10|Qy (x)|;1 such that both (2.7) and (2.8) are true. When 1 < a < 3, set ¢ =0 in (1.9), (2.3),
and (2.4). Then

z(pyu) =——u, w(p,u) :%4—14

and

o_ 0(w+z) _ O(v+s) +eek1+k2f(§M+P(z’)dz’
2 2 ’
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where 6 = %1 Moreover, (2n)% > 2np9~!if 1 < a < 3. Thus the following terms in (2.3)
Loy =@, + (J§ Y2 PLdp — =20 /7 (p])b, — (1 - ) (1,x) by + fu(t, )
> ko (M + P(t)) ekt o MAPE)" o f () (Lp® —d(1,x) — )
+(1 — &) (ke TR OMIPIOA _ 32 (X 0 (1)dt') Qy (x)
—k3Qv(x) 575P% — (21)°k3 Qv (x)
> — fy(£,2)v = (M + P() + Qv (x)) (50° +(1,%)) + ko (M + P(r) ek 2 o M)
+(1— &) (lgeh P o MAPEIAT 43 [0, (1')dt") Qv (x)
—k3Qv(x) 575P® — (21)°k3 Qv ()
= —fu(t,x)v— (LM +P(1) + Qv (%)) + 33%k3 0y (x)) (v + 5)
(M4 P(1) + Qu(x) 4 5%k3Qy ()41 K2 BMEPUI oy (M P(r)) b P
—(M 4 P(t) + Qv (x)) el oM (M 4 P(r) + Oy (x))ks [*.. Qv (¢')dt'
+(1 = &1)k3Qy (x) k1 Ha o MEP()ar
—(1—&)k30v(x) [2. Ov(r)dr' — (210)°k3 Qv (x)
> —fy(t,x)v— (3(M +P(t) + Qv (x)) + 35%k3Qv (x)) (v + 5)
F(ky — 2) (M + P(t)) Mtk oMHPu)d | (18l g ok (1 — g))ks|Qy (x)]11]k3 Qv (%)
(55— @)k — 2+ (21)ka) @y (x)ebr HH MR

> oty — (S P(1) + 00 () + 352K 04 () (v+-5)
(2.9)
if we choose ky > 2,% k3 >4 and %5- Leki > 2k3|Qy (x)|,1. Similarly, the following terms in
(2.4)

Loy =W, +W,( ”\/— / VPP oy 4 (1= &) (0% — ot )
> kz<M+P<t>>ek1+’<2foM+P< ) +fv<r,x)<s+xp<t,x> _gp )

—2p% — (21)°k30u ()

"t !/ /! X 3
4 (1 — &) (kyeh R lEMAPEA | 2 /_ Oy (t)dt')Qy (x) — k3Qy (x) =



EXISTENCE OF ENTROPY SOLUTIONS 445
> ko (M + P(t)) k1t o MHPIT 4 (1 x)s — (M + P(t) + Qv (x)) (590 +¥(1,x))
+(1 = &) (kaeh P MR 442 50 (1)t ) Qy ()

—k3Qv(x) 575P% — (21)°k3 Qv ()
= fu(t,0)s = (3(M + P(1) + Qv (x)) + 33%k3 Qv () (v + 5)
—(M+P(1) + Qv (x) + 5%k Qy (x) ekt H2 o MAPU)AL | jy (M 4 P(r)) ek Hha o M+P()l!
—(M+P(t) + Qv (x)) kR o MEPE — (0 4 P(1) + Oy (x))ks [*o, Qv (¢')dt!
+(1— &)k3Qy (x)ekiHha Jo MAP()dr
(1 —e)k30v(x) [2.. Ov(t")dr' — (21)°k3 Qv (x)
> fu(t,x)s — (3(M+ P(t) + Qv (x)) + 23%k3 Qv (x)) (v + 5)
+(ky —2)(M + P(t))e1 TR iMAPW)d! _ (A1 + P(2)) [* Qv ()t
+H(%E — &1)ks — 2= (21)%k3)]Qy (x) b1 T i MAP () e
+((1—&)ks — Dk3Qv (x) [X, Qv (t)art’
> fy(t,%)s = (3(M+P(t) + Qv (x)) + 23%k30 (x)) (v + 5)
(2.10)
if we choose

o—1
2

k3 > 2

and
(k2 — Z)ekl > k3| Qv (x)|p1-

Thus, we may choose ky = 3, “T_lkg > 4, and

o—1
—5 €12 210y ()]

such that both (2.9) and (2.10) are true. Therefore, inequalities in (2.5) are proved. From the
conditions in (1.8), we can conclude that v(0,x) < 0 and s(0,x) < 0. Thus, by applying the
maximum principle given in the following Lemma to (2.5), we have the estimates v(f,x) <
0,s(t,x) <0, and the estimates in (1.10).

Lemma 2.2. If by(t,x) < 0,ds(t,x) <0, and v(0,x) <0,5(0,x) <0 at the time t = 0, then the
maximum principle is true to the functions v(t,x) and s(t,x) given in inequalities (2.5), namely,
v(t,x) <0,s(t,x) <0 forallt > 0.
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Proof of Lemma 2.2. We make a transformation
N(x%+ gLe' N(x%+ gLé'
v (54 (x” +qLe") (x" +qLe")
L2 L2

where L, B, and g are some positive constants, and N is the upper bound of v,s on R x [0, T].
Clearly, from (2.5), functions 7, § satisfy the equations

)P s =(5+ )eP!

Y

‘71 +‘7xb(t7x) - 817x)c + (bl(t7x) + B)ﬁ+b2(t,x)§
N N(x?+qgLée'
< —(qLeé" + 2xb(t,x) — ZE)E — (b1(t,x) + by(t,x) +ﬁ)%,
(2.11)
S +d(1,x)5y — €5y + (di (t,x) + B)S+ da(t,x)V
N N(x*>+gLé'
\ g4¢g+mﬂmm4@§—m+m@@+@m@y_7j_l
Moreover
2 gL 24 qL
50, x) = v(0,x) — w <0, §0,x) = s(0,x) - w <0, (2.12)
v(t,+L) <0, ¥(t,—L) <0, §(¢r,+L) <0, §(t,—L) <O. (2.13)
From (2.11), (2.12), and (2.13), we have
v(t,x) <0, §(t,x)<0, on (0,T)x(—L,L). (2.14)

If (2.14) is violated at a point (¢,x) € (0,T) x (—L,L), let  be the least upper bound of values
of ¢ at which v < 0 (or § < 0); then we have by the continuity that vV = 0,§ < 0 at some points
(f,%) € (0,T) x (—L,L). Thus,

5, >0, 7,=0, —€Py>0, at (%) (2.15)

Now, choosing sufficiently large constants ¢, 3 (which may depend on the bound of the local
existence), we have

gL+ 2xb(t,x) —2¢ >0, B+bi(t,x)+ba(t,x) >0 on (0,T)x(—L,L). (2.16)
(2.15) and (2.16) give a conclusion contradicting the first inequality in (2.11). So (2.14) is
proved. Therefore, for any point (z9,xo) € (0,7) x (—L,L),
(N (x5 + qLel) N(x} +qLel)
L? L?
we take L go to infinity and obtain the desired estimates v < 0,5 < 0. Thus, Lemma 2.2 is
proved.

)eBm’ > v(t0,%0), ( )eﬁto > s(tp,X0),

After we have the estimates in (1.10), by using the Riemann invariants (1.9), we can obtain
the uniformly bounded estimates on (p&"V(¢,x),u®""V(z,x)) directly

2n < p®MY(tx) SM(r), [utMY(1x)| < M(1), (2.17)

for a suitable bounded function M(¢), which is independent of €, 7, and v.

By applying the contraction mapping principle to an integral representation of a solution, we
may first obtain the local existence result of the Cauchy problem (1.5)-(1.6). After we have the
a priori L™-estimate (2.17) on the local solution, we can extend the local time to an arbitrary
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time 7 step by step and obtain a global solution. Thus, we have the proof of Part I in Theorem
I.1.

To complete the proof of Theorem 1.1, we prove the pointwise convergence of a subsequence
of (p&"V(t,x),u®m(t,x)), as (¢,m,v) — (0,0,0), and the limit (p(¢,x),u(t,x)) is a weak
entropy solution to Cauchy problem (1.1)-(1.2).

For general pressure function p(p), we have the following.

Lemma 2.3. Suppose that the viscosity-flux approximate solutions (p&™Y (t,x),u®V(t,x)) to
(1.5)-(1.6) are uniformly bounded in L space, and the limit

’ 3

lim P (,f)))2

p—0 pp"(p)

where e > 0 is a constant. If the weak entropy-entropy flux pair (h(p,u), y(p,u)) of system

(1.1) is in the form h(p,u) = pH(p,u) and H,(p,u),H,,(p,u),Hu.(p,u) are continuous on
0 < p <My, |ul <M, where M\ is a positive constant, then

—e, (2.18)

hl(p&n’v(tvx)aM&n’v(t7x)) + Wx(p87n7v(tvx)v u£7n7v(t7x)) (2.19)
is compact in H, l;cl (R" xR)ase= o(plé—in)) and n,V tend to zero, with respect to the viscosity

solutions (&MY (t,x),u®"V(t,x)) to (1.5)—(1.6).

Proof of Lemma 2.3. For the homogeneous case, namely I1(x,7, p,u) = 0, the proof of Lemma
2.3 was given in [15]. Analogously, we may prove Lemma 2.3 for the case that I1(x,7,p,u)
satisfies condition (1.3).

Clearly, for the polytropic gas, p(p) = épo‘ and for any o > 1, all the conditions about
pressure function (2.18) and the weak entropies in Lemma 2.3 are satisfied. Thus, we may
apply the H~! compactness of (2.19), and the convergence frameworks given in [19, 20, 21, 22]
for 1 < o < 3 and in [23] for & > 3 to prove that (p®™Y(z,x),u®"V(t,x)) has a subsequence
which converges pointwisely to bounded functions (p(7,x),u(t,x)) as (,1m,v) — (0,0,0).

Finally, it is not difficult to demonstrate that limit (p(¢,x),u(t,x)) satisfies (1.12). Moreover,
for any weak convex entropy-entropy flux pair (h(p,m), y(p,m)),m = pu, of system (1.1), we
multiply (1.5) by (1p, ) to obtain that

hi (P& (2,0), mE Y (2,x)) + Y (P (8,x), mT Y (2,x)) + Ny (P (1,x),m&1Y (2, x))
= eh(p®MV,mEMY) o —e(pr ™Y, mg ™) - VER(pEMY mENY) - (oY m )T
—ay (t,x) ‘mSJLV ’hm(p&n,v7 ms,n,v)

< eh(pEMY mEMY ) — ay (t,) [ mEMY

(P51 mE1Y),

(2.20)
where ¥ 4+ Ny is the entropy flux of system (1.5) corresponding to entropy 4. Thus we can
prove the entropy inequality (1.13) if we multiply a test function to (2.20) and let (g,m,Vv) —
(0,0,0). This completes the proof of Theorem 1.1.
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