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1 | INTRODUCTION

We consider the following system of isentropic gas dynamics in a general nozzle:

p+ (pu), = =0y
a(x) 0 1.1
2 __ax) 2
(pw); + (pu” + P(p)); = e
with bounded initial data
(p(x,0), u(x, 0)) = (po(x), up(x)),  po(x) =0, (1.2)
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where p is the density of gas, u the velocity, P = P(p) the pressure, a(x) is a slowly variable cross-section area at x in

the nozzle. For the polytropic gas, P takes the special form P(p) = lp”, where y > 1 is the adiabatic exponent. The
Y

nozzle is widely used in some types of steam turbines, rocket engine nozzles, supersonic jet engines, and jet streams
in astrophysics.

To study the existence of entropy solutions of the Cauchy problem (1.1) and (1.2), the main difficulty is to establish
L* estimate of solutions because the equations are not in conservative form and the Conley-Chuey-Smoller principle
of invariant regions does not apply (see [12, 21] for the details about the physical background of system (1.1) and its diffi-
culty in analysis). For the polytropic gas and the adiabatic exponent y € (1, 2], the definition of a finite energy solution
(unbounded) is given and its existence is obtained by using the compensated compactness method [16] in [12]. In [8, 18],
we used the maximum principle to obtain the L® estimate of the viscosity solutions of Equation (1.1), and the compen-
sated compactness method to prove the existence of bounded entropy solutions of the Cauchy problem (1.1) and (1.2) for
general pressure function P(p) under the uniformly bounded condition |a’(x)| < M and a monotonic, bounded and dis-
continuous condition on a(x), respectively. In [22, 23], the author introduced a modified Godunov scheme to construct
the approximate solutions of Equation (1.1), and obtained the global existence of weak solutions of the Cauchy problem
(1.1) and (1.2) for the Laval nozzle, which is corresponding to a’(x) - x > 0, in [22] and the general nozzle in [23] for the
usual gases 1 <y < g under the smallness assumption on |a(x)|z1(g).

In [1], the authors introduced the following approximate system, which is different from the viscosity method
introduced in [18],

'(x)
pr + (pu)y = _%Pu + €Pxx

a’(x)

a(x)

1.3)

(pw); + (pu? + P(p))x = ———=pu?® + e(pu)x — 2eb(x)p,,
to study the general nozzle for more general gases 1 <y < 3.

When y > 3, the technique introduced in [1] to obtain the a priori L™ estimates of viscosity solutions does not work
because the necessary conditions a;, < 0 and a,; < 0, to guarantee the maximum principle (cf. Lemma 3.1 in [1]), are
not true.

In this paper, we apply our method introduced in [18] to give a simple proof of the global existence of the entropy
solutions for general nozzle and to extend the results of [1] for any adiabatic exponent y > 1.

It is worthwhile to point out that, for a general inhomogeneous system of hyperbolic conservation laws, the Riemann
problem was resolved by Isaacson and Temple in [10]. More results on inhomogeneous hyperbolic systems can be found
in [2, 5-7, 9, 11], and references therein.

In [19], the following system of isentropic gas dynamics in the Laval nozzle with the friction (cf. [20]):

pi+ (pu), = — oy

a(x)

(pw); + (pu? + P(p))y = —

14)

a

a

ou? — a(x)pulul

was studied for the polytropic gas P(p) = L p” and y is limited in (3, o) for a technical difficulty; and the initial-boundary
14

value problem of the compressible Euler equations with friction and heating

(a(p), + (a(x)pu)y = 0,
(a()pu), + (a(x)pu’ + a(x)P); = a'(X)P — ar/a(x)pulul, (1.5)
(a()E); + (a()u(E + P))x = fa(x)q(x) — ay/a(x)pu?|ul,

was studied in [3], under suitable conditions among the initial data, a(x) and a(x), by using a new version of a generalized

Glimm scheme, where p, u, E are, respectively, the density, velocity, total energy and pressure of the gas, « is the coefficient
of friction, and g(x) is a given function representing the heating effect from the force outside the nozzle.
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It is well known that after we have a method to obtain the global existence of solutions for the Cauchy problem of the
following homogeneous system:

{pt +(pu), = 0 w6

(pu); + (ou® + P(p))x = 0

with the bounded initial data (1.2), the main difficulties to study the inhomogeneous system (1.1) are to obtain the a priori
L* estimate of the approximation solutions of Equation (1.1), for instance, the a priori L* estimate of the classical viscosity
solutions for the Cauchy problem of the parabolic system

!’
)
P + (pw)y = —%pu + €0y

' 1.7
(ow); + (ou? + P(p)), = —%puz + (oW

2
with the initial data (1.2), and to obtain the positive, lower estimate of o° since the term pu? = Zom= pu in the second
1ol

equation in Equation (1.4) is singular when p = 0.
To obtain these necessary estimates, in this paper, we first use the method given in [17, 18] to construct a sequence of
the regular hyperbolic systems

pr + (=26u + pu), = A(x)(p — 28)u L8
(o), + (pu? — 8u? + P1(p, 8)), = A(x)(p — 28)u? '
to approximate system (1.1), where A(x) = —i,((;)), 8 > 0 denotes a regular perturbation constant and the perturbation
pressure
p —
Py(p,8) = / %P'(t)dt. 1.9)
26

As proved in [17], both systems (1.1) and (1.8) have the same Riemann invariants and the entropy equation.
By simple calculations, two eigenvalues of system (1.1) are

A =u—VP(p), A,=u++Pl(p) (1.10)

with corresponding Riemann invariants

P /
. v };(S) ds +u, an)

P \/pr
z(p,u) = / P (S)ds —u, w(p,u)= /
l l

where [ is a constant, and two eigenvalues of system (1.8) are

m —26 m )
e DR (112)

with corresponding two same Riemann invariants (1.11) (both systems (1.1) and (1.8) have the same Riemann invariants
as well as the entropy equations [17]).

Second, we consider the Cauchy problem for the following parabolic system:

pr + (=28u + pu)y = A(x)(p — 26)u + 0y« (L13)

(pw); + (pu? — 6u” + Py(p, 6))x = ACX)(p — 28)u” + (pu) .
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with initial data
(p5,€(x’ 0)’ u5,£(x, 0)) = (pO(x) + 251 uo(x))a (114)

where (oy(x), ug(x)) are given in Equation (1.2).

To use the first equation in Equation (1.13), we deduce directly the positive lower bound p®¢ > 28 > 0 by the theory of
invariant regions [4].

Finally, we made the transformation z = v + B(x), where B(x) is a bounded function to be carefully chosen to control
the nonlinear function A(x), so that we might obtain the following inequality on the variable v :

Uy + (X, 1)vy + (X, 1)U < €Uy, (1.15)
which gave us the estimate v < 0 and so the upper estimate z(0®?, u%) < B(x) when the maximum principle was applied
to Equation (1.15).

Precisely, we have the following theorems in this paper.

Theorem 1.1. Let P(p) = L PV, y > 3. If there exist a positive constant M and a nonnegative function 3(x) such that
14

omiacon <. [ pows <, 116)
then we have
atpece, 0,500 = CE st - [ pisyas a.17)
and
w(p%4(x, 1), u®*(x, 1)) = M +udf(x,t) <M + /x B(s)ds (1.18)
if the initial data
2(05<(x, 0), uS<(x, 0)) < M — / * Bs)ds (119)
and
w(p%4(x,0), u®(x,0)) < M + / ’ B(s)ds, (1.20)

where 6 = 77—1 and (0%%(x, t), u®<(x, t)) are the solutions of the Cauchy problem (1.13) and (1.14).
Theorem 1.2. Let P(p) = lp}’, 1 <y < 3. If there exist a positive constant M and a nonnegative function 3(x) such that
4

(y —1OM

MA@ B, [ pods < TR, (1.21)

- +3)
43-y)

then we have the same estimates given in Equations (1.17) and (1.18), if the initial data satisfy Equations (1.19) and (1.20).

Remark 1. If we specially choose 3(x) = 6M|A(x)| in Theorem 1.1, then the condition (1.17) is equivalent to f_ozo B(s)ds <

%, which is large than :—z given in Theorem 1.1 in [1]. However, if we choose S(x) = %M |A(x)| in Theorem 1.2,
-y
1-6

then Equation (1.21) is equivalent to / 0; B(s)ds < % which is same to ﬁ.
- ¥
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Theorem 1.3. For such functions A(x) and the initial data satisfying the conditions in Theorems 1.1 and 1.2, there exists a
subsequence of (0%%(x, t), u%4(x, t)), which converges pointwisely to a pair of bounded functions (o(x, t), u(x, t)) as 8, ¢ tend
to zero, and the limit is a weak entropy solution of the Cauchy problem (1.1) and (1.2).

Definition 1. A pair of bounded functions (p(x, t), u(x, t)) is called a weak entropy solution of the Cauchy problem (1.1)
and (1.2) if

Joo [ou P+ (o) == “‘)<pu)¢dxdt + /% po()(x, 0)dx =

S5 pudy + (ou? + P(0)ps — 2¢dxdt 1.22)

+ [ po(X)ug(x)$(x, 0)dx = 0

holds for all test function ¢ € Cj(R x R*) and

/0"" /_°; Ho. ), + ale, g — = (o, m)pu
(1.23)

a(x) p 2n(p, m),,pdxdt > 0

holds for any non-negative test function ¢ € C;°(R X R* — {t = 0}), where m = pu and (7, q) is a pair of convex entropy-
entropy flux of system (1.1).

2 | PROOF OF THEOREMS1.1-1.3
In this section, we shall prove Theorems 1.1-1.3.

Proof of Theorem 1.1. We multiply Equation (1.13) by (z,, z,,) and (w,, w,,), respectively, where (z,w) are given in
Equation (1.11), to obtain

zZ; + Afzx

_ 2e ’ 1"
=E8Zyxy + ppxzx 2 ZW( 2P" + pP")px

+AG)(p - 200 + —“’p“’) — ZAG)(p - 262 @1
2
=EZxx t ;przx - ”;W(ZP, + pP”)pi
+A(X) (o — 28)u VPP(P’

and
w, + /Igwx

_ 2e ’ 17
= EWyy + ppxwx 2 ZW(ZP +pP")p3

FAG(p - 2002 + @) + Ao - 2002 (22)

2
= EWyx + ;prwx - ————@P" + PP”)PX

202 \/IT
+A(X)(p — 28)u —V”p(”
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Letting z = B(x) + v in Equation (2.1), where B(x) = M — f_xoo B(s)ds, we have
b+ (= 2P R))(wx + B(x) — AGx)(p — 28)u =2
= EUxx t+ EB”(X) + ;vax + ;PxB (x) 5 ZW(ZP/ + ,OP//)PX
or
—25 7
o+ (u = 2 P()o, — B ()(BE) + v = [ = Ldp)
~B'() 2 /P(p) - AG)(p — 28)u
_ ’ 1" __4pVP'(p) B’ 2p\/P'(p) B 2
—vax 22\/PT(P+pP )[ P’+pP” x ()+(P’+P” ())]
261/P’
+eB"(x) + :Ox x + ;,+ ;F:,) '(x )
or

v; + a(x, v, + b(x, v + [— z;: P ;p,,) '(x)?> — eB"(x) — &1B(x)B’(x)] < €V
— 7 YE2dpB () + (1 - e)BOB () + B (e)(p — 26) L
+AX)(p — 25)u—VP;(’”,
where ¢; > 0 is a suitable small constant, a(x,t) = u — T P'(p) — %px and b(x,t) = —B'(x).
Similarly, letting w = C(x) + v; in Equation (2.2), where C(x) = M + f_xoo B(s)ds, we have
—25 7
o1+ (u+ 2 VPR 01 + () = AG)(p — 2802

— " 2 2 ’ € ’ 11\ A2
= Uy +6C7(x) + S Pl + ;ch (x) - M—WQP + pP")p5

or
Pl
vg + (u+ 2 \/P'<p Mo + C'NCE) + vy — [ Y p“’)dp)
+c’(x>% VP'(0) — A(x)(p — 26>u—V”P
_ ’ 7 4p P(p c’ 2p\/P (0) vt 2
= €1 = s OF + PP} = 0.0 + (/0 C ()]
" 2 2e\/P'(p) C'(x)?
+eC (x)+ pvalx + = 2P 4pP" ( )
or

2ey\/P
1+ 10 DVt + b1, Doy + [~ TEIC () = 60 (0) + 51 C00CT ()] < evre

+ //’ —\/P,;Tp D doC’(x) — (1 — £)C(x)C'(x) — C'(x)(p — 20) \/I?
+Ax)(p - 25)“@’

where £, > 0 is a suitable small constant, a;(x, £) = u + 2= /P(p) — Zp, and b (x,) = C'(x).
P p

=

(2.3)

(24)

(2.5)

(2.6)

@2.7)

(2.8)
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Using the first equation in Equation (1.13), we have the a priori estimate p > 25. We can choose S(x) to be smooth
enough, ¢ = 0(8) and suitable relation between ¢ and ¢; such that the following terms on the left-hand side of

Equations (2.5) and (2.8)
2e4/P'(p)
—mB,(X)Z - EBN(X) - ElB(x)B'(x) >0
and

2e4/P'(p)

—mc,(x)z - EC”(X) + 81C(x)C'(x) > 0.

When P(p) = % 7,y > 3, we choose | = 26, then by using the following inequality:

G [ VD <370
)

( —26) —26)

we have the following estimate on the terms of Equation (2.5)

L=— [ 2B () + (1 - BB ()
+B'(x)(p — 25)—“"(m + AM)(p — 25)u—vl"(m

< (1-¢)B(X)B'(x) + A(x)(p — 28)u V”p(")

for

y >3,

Now, we may analyze the function L point by point. First, at the points (x, t), where A(x) > 0,

L <(—e)BOB'(x) + AGx)(o — 25)u@
= (= eDBEB/ () + Ae - 202w - 2)
=AM — 25)@(01 — )+ (1—¢)BOOB' (%)
A - 28) L (C) - B)

= —Ap = 28) 720 — 1) = (1 = e)BCINM = [ B()ds)

FAR)(p —26) 2 7 Bs)ds

< —AE)(p = 20) T2 (0 — ) — (L= )BERM - [ B(5)ds)

+O0AX) [~ B(s)ds [} ‘/PsTd

= —A@)(p - 25)@@ — )= (1= e)BCIM — [ B(s)ds)

+20A(x) /7 Bs)ds(w + 2)

= —AG)(p = 20)* T2 - vy) = (1= )BEIM = [ B(5)ds)

+%6A(x) S BE)ds(vy + v+ C(x) + B(x)
= (éeA(X) f_xoo B(s)ds + A(x)(p — 25)@)1)1
+EOAR) [ B(s)ds — A(x)(p — 26) @)U

~((1 = e)BCOM = [ B(s)ds) —OMA(x) [~ f(s)ds),

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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where

(1 —e)BG)M — [~ B(s)ds) — BMA(x) [~ (s)ds
(2.14)
> ZB(x) = BMAM)IB)Irix) = 0

due to the conditions |3(x)|11r) < % and OM|A(x)| < B(x) in Theorem 1.1. Therefore, we obtain the following inequality
from Equations (2.5), (2.9), (2.13), and (2.14)

Uy + a(x, Do, + L0, D + L(x, 1) < €Uyy, (2.15)

where [;(x, t), [,(x,t) < 0 are suitable functions.
Second, at the points (x, t), where A(x) < 0, we have

L <(1—&)B(x)B'(x) + Ax)(p — 26)u—“"(’”

= (- e)BCOB' () + AC)e — 202 (1 Y0 )

N

< (1 - BB () - A - 200 + Bx)

< (1=¢)B(x)B'(x) — A(x)(p — 28)1—~ VP ©)y —8A(X)B(x) /” \/PSTd
= (1 —¢)BX)B'(x) — A(x)(p — 25)—VP(pv — lGA(x)B(x)(w +z)
P 2 (2.16)

= (1—¢))B(x)B'(x) — A(x)(p — 25)—“"(’% - %GA(x)B(x)(U +v; + 2M)
= ~(Ap — 288 + 20AG)B()Y

_%eA(x)B(x)Ul - ((1 —ePB(x) + OMA(x))B(x)
< ~(AGx)(p = 28) T + J6A)B())v

—2BAMX)B(x)vy,

where —%GA(x)B(x) > 0. Thus, we also obtain an inequality

Uy + a(x, Doy + L0, v + L4(x, vy < €0yy, (2.17)

where [5(x, t), [4(x, t) < 0 are suitable functions.
Now, we choose | = 26 and consider the following terms on the right-hand side of Equation (2.8)

L=/ VP(P dpC’(x) — (1 — £,)C(x)C" (x)

(2.18)
—C'(x)(p — 25)@ + A(x)(p — 25)u—‘/1?,

First, at the points (x, t), where A(x) < 0,
1 <A~ 20 T8 = AGx)(p ~ 28 TP (w - 2)

= AGO)(o — 25)@(01 — 0+ C(x) - B(x)) (2.19)

< A(X)(p - 25)—VZ';’”(U1 ~v),
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where the coefficient before v, —A(x)(p — 29) _VI;(P) > 0. So, we have an inequality from Equations (2.8), (2.10), and (2.19)
that

Uy + a;(x, 0o, + Is(x, D + Lg(x, £)vg < €V s (2.20)
where I5(x, t) < 0, l4(x, t) are suitable functions. Second, at the points (x, t), where A(x) > 0,
L, < —(1—£)C()C"(x) + A(x)(p — 28)u YL@ VP ©)
= (1= £)CC' () + ACx)(p — 28) 2 5 (w— [ = Pdp)

< —(1 - £)CR)C!(xX) + AG)(p — z&ﬂwl + C(x))

< —(1—£))CE)C"(x) + AGxX)(p — 25)\/1Wu1 +0AGCE) [ ‘/Pprd
= —(1 - £)CEOB() + AG)(p — 25)@1)1 +10A(CG)w +2) o
= (- e)CEBE) + A)(p — 260,

+§eA(x)C(x)(u + 0, + C(x) + B(x))
= (A = 22 + 10AGIC(),

+L8AGICGID — (1 - £)B() — BMAG)C(x)

< (A()(p — 26) VPI;(P’ + 26A()CENY; + S6A)C()

due to M| A(x)| < B(x), where the coefficient %SA(x)C(x) > 0. So, we also have an inequality
Uy + a(x, Do, + L(x, DU + Ig(x, £)v; < €V 4s (2.22)

where [;(x, t) < 0, [g(x, t) are suitable functions.
Summing up the analysis above, we have the following two inequalities on v and v;:

{Ut + a(x, v, + b(x, v + c(x, H)v; < €0y, 223
2.23

Uy + a1 (x, vy, + bi(x, H)v; + ¢1(x, )V < €V s
where the coefficient functions c(x,t) < 0,¢;(x,t) < 0, so the maximum principle [15] on nonlinear-coupled parabolic

equations gives us the estimates v(x,t) < 0,v;(x,t) < 0 and the upper bounds of z and w. This completes the proof of
Theorem 1.1. [

Proof of Theorem 1.2. To prove Theorem 1.2, when P(p) = % P, 1 <y < 3,weletl = 0and rewrite Equations (2.5) and (2.8)
as follows:
v, + a(x, t)u, + b(x, t)v
+[- i; V,f Ej,B (x)? — eB" (x) — £,B(x)B'(x) + 26 Y& VP ©) pr(x)]

<evg— f —Vpp(”de’(x) +(1—¢)B(x)B'(x) (2.24)

+B'()\/P'(p) + A(x)(p — 25)u—v’"@
=ev,, + ;/%peB (x) + (1 — £)B(x)B'(x) + A(x)(p — 28)u VPp(P’
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and
Uy + a;(x, vy, + bi(x, vy
H= 2D (2 - eC(3) 4 ,CIC () — 282 EC (o)
< cvree+ fy B dpC!(x) - (1= )CIC () (2.25)
_C' )P (R) + A(X)(p — 25)u@
= 01 = 20500 — (1= £)CCOC () + AG(p — 2002,
Since
25@ = 2ap§ < (26)§, (2.26)

we may choose (x) to be sufficiently smooth, € = 0(§) and suitable relation between ¢ and ¢; such that the following
terms on the left-hand side of Equations (2.24) and (2.25)

ﬂ B'(x)> —eB" (x) — &B(x)B'(x) 4 28 ,(p)B "(x) >0, (2.27)
2P/ P’/ p
2e/ P’ P/

—2;,— ”er(lﬁ,),c'(x)2 C"(x) + £, C(X)C"(x) — 28 p(p ) o) > 0. (2.28)

Furthermore, we consider the terms on the right-hand side of Equations (2.24) and (2.25)

K = 2078 () + (1 = 2)BG)B'(x) + AQx)(p — 26 )u =2 (2.29)
and
K1 = =120°C"(x) = (1 = e)CGIC (x) + A)(p — 200, (2:30)

First, at the points (x, t), where A(x) > 0, we have that

K = ;—jpe B'(x) + (1 — £))B(x)B'(x) + A(x)(p — 25)u—VP;(m
= (W + 2)B'(0) + (1 - e)BO)B'(x) + A(x)%(w — )0

_ ﬂ(v + 01+ 2M)B(x) — (1 = e)BCIM — [ B(s)ds)

(2.31)
+A(x) (vl —v+42 f B(s)ds)p®
= (X B(X) AG)E20 + (FLBG) + A0,
+7Mﬁ(x) -a- sl)ﬁ(xxM -/ o+ A(x)f"Tz‘s S Bls)dse?,
where
AER 7 Bs)dsp® = A [T Bs)dsE(w +2)
(2.32)

= A(x)p‘TZ‘S I B(S)dsg(vl +0+2M)
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and

ZEMBG) — (1 = e)BCIM — [ B()ds) + A [7 Bls)dseM
< (SL +eDMBG) + (1 —e)BC) [ Bls)ds + /_m B(s)dsp(x) 233)
= BEO(SL + DM + (2 —)B(x) [ Bs)ds) <0
because [EMA(x)| < 2(;‘7) B(x) < B(x)and 2 [ f(s)ds < ="M as given in Theorem 1.2
Thus, we have from Equations (2.31)-(2.33) that
K < (FLB() = A2 + (L) + A0S )y

(2.34)
s - ,B(S)dsz(vl +0) =L(x, v+ lz(x, Doy,

+A(x)p —2

where I,(x, t) > 0.
Second, at the points (x, t), where A(x) < 0, we have that

K= ;—‘3 OB'(x) + (1 — £,)B(x)B'(x) + A(x)(p — z(S)u—VP’(m

w—z A W+z
—6

E2w +2)B'() + (1 - e)BG)B () + A2 -

= —(v +oy + 2M)ﬁ(x) — (1 —eDBE)M — [*_B(s)ds)
A( ) (u1 —v+42 / B(s)ds)(v + vy + 2M) (2.35)
= (FLB(x >+ A== 25(2 S Bs)ds — v —2M))

+( ZB(x )+ A )” 25(2 S, B)ds +2M))v; + L= AGx == 2,2
p—26

yMﬁ(x) (1 —e)BCIM — [7_ B(s)ds) + =MA(x = / ., B(s)ds,
where the coefficient before v;
s
) + AT [ Bs)ds +2M)
> %yﬁ( )—’—HA( IER(M +2M) (236)
= 3jTyﬁ(x) 7+3eMA( Y>0
because [OMA(x)| < 2(}/3 3)') B(x);
Y- p— 25
3 A( ) 5 5 0 (2.37)
and
ZIMB(x) — (1= e)BCIM — [ f(s)ds) o
+EIMAG) S [T Bs)ds <0 ’
because the proof of Equation (2.33). Thus, we have from Equations (2.35)—(2.38) that
K < Li(x,t)v + Ly(x, t)vy, (2.39)
where [5(x, t), [4(x, t) > 0 are two suitable functions.
Summing up the analysis above, for any A(x), we have the following inequality:
U + a(x, v, + b(x, t)v + c(x, t)U < €Uy, (2.40)

where the coefficient function c(x,t) < 0.



_ MATHEMATISCHE
LA NACHRICHTEN i

Similarly, we consider K; given in Equation (2.30). First, at the points (x, t), where A(x) < 0, we have that

Ky = 12020100 ~ (1= £)CEIC () + ACe)p — 28020
_$(w +2z)C'(x) — (1 — &))C(x)C'(x) + A(x)%(w _ Z)pe

= L+ v +2MB() — (1 = e)BEM + /7 Bls)ds)

(2.41)
+A(x) (01 -v+2 / B(s)ds)p?
= (3—yﬁ(x) AR + (L) + A E ),
+EIMBR) — (1= e)BOM + [ B()ds) + A [7 B(s)dse’,
where
Alx )ﬂ /7 Bs)dsp? <0, (2.42)
LMB() — (1= )M + [ B(s)ds) o)
< (5L +e)MB(x) — (1 —e)B0) [ A(s)ds <0 '
and
5
B0 - AT 2 (2.44)
Thus, we have from Equation (2.41)-(2.44) that
K; < Is(x,t)v + L(x, vy, (2.45)

where [5(x, t) > 0, [s(x, t) are two suitable functions.
Second, at the points (x, t), where A(x) > 0, we have that

K, = —Z—* 8C/(x) — (1 — £))C(OC(x) + AX)(p — 25)14@
2+ 200 — (L= e)BCOM + [ B)ds) + A2 222
= —(v + vy + 2M)B(x) — (1 — &)BX)(M + f B(s)ds)
+= 1A(x) 2y —v+2 /" Bs)ds)(v + vy +2M) (2.46)
5( )+ A(X) 2 (v, + 2/ B(s)ds + 2M))v;
+(—B(x) + A )ﬂ(z [ Bls)ds = 2M))o = L2 A0

VMB(X)—(I—sl)ﬁ(X)(M+/ Bls)ds) + £ MA( = 26/ B(s)ds,

where

Y- p— 25
— L2 p 2<0, (2.47)

! yMﬁ’(x)— (1= e)BE)M + [~ ps)ds) + MA( )ﬂf B(s)ds
< (7 +e)DMB(x) + [~ f(s)dsP(x) <0

(2.48)
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and the coefficient before v

TR0 + LR AR [ Bls)ds - 2M)
=)
o

- 3;475@) - %GMA(x) >0

> %yﬁ(x) _ %1|A(x)| (VT_IM +2M) (2.49)

because the proof of Equation (2.36). Thus, we have from Equations (2.46)-(2.49) that
Ky < L(x,t)v + Ig(x, t)vy, (2.50)

where I;(x, t) > 0, I3(x, t) are two suitable functions.
Summing up the analysis above, for any A(x), we have the following inequality:

Uy + ai(x, vy, + bi(x, H)vg + ¢1(x, £ < €V s (2.51)

where the coefficient function ¢;(x, t) < 0.

Therefore, we may apply the maximum principle to the coupled inequalities (2.40) and (2.51) to obtain the esti-
mates v(x,t) < 0,v;(x,t) <0 and so the upper bounds of z and w (see [19] for the details). This completes the proof
of Theorem 1.2. O

Proof of Theorem 1.3. Since the original system (1.1) and the approximated system (1.8) have the same entropy equation or
the same entropies [17], also for any weak entropy-entropy flux pair (n(p, u), g(p, u)) of system (1.1), it was proved in [17]
that

1:(p%F (x, 1), uP(x, ) + g (p%(x, ), u®*(x, 1)) (2.52)

are compactin H, i(R X RT), then there exists a subsequence of (0% (x, t), u><(x, t)), which converges pointwisely to a pair
of bounded functions (p(x, t), u(x, t)) as d, € tend to zero by using the compactness framework given in [14] for1 <y < 3
and in [13] for y > 3. It is easy to prove that the limit (o(x,t), u(x,t)) satisfies Equation (1.22). Moreover, for any weak
convex entropy-entropy flux pair (n(p, u), g(p, u)) of system (1.1), we multiply Equation (1.13) by (7,,7,,) to obtain that

7% (x, 0, uP=(x, 1)) + 4 (P24 (x, ), uP(x, 1)) + 8G1,. (0% (x, 1), uP<(x, 1))
= en(p%, m?%), . — e(p3°, m3%) - V(0 mo) - (055, my*)"
+AX) (0% — 28)mPn, (0%, mF) + A(x)(pP* — 28)(UP<) 1, (7%, M) (2.53)
< (P, mOF) . + AGX)(PPF — 28)mPn,(0°%, mP<)
FAX) (PO = 28) ()7, (05, M),

where g + dq; is the entropy flux of system (1.5) corresponding to the entropy 7. Thus, the entropy inequality (1.23) is
proved if we multiply a test function to Equation (2.53) and let €, § go to zero. Theorem 1.3 is proved. O
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