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a b s t r a c t

In this paper, we found a special non-isentropic gas dynamics system, whose
invariant region is the opposite of the corresponding isentropic case. This shows
that the powerful invariant region theory introduced by Chueh, Conley and Smoller
for general hyperbolic system of two conservation laws cannot be obviously applied
to obtain the a priori L∞ estimates for systems of more than two equations.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

For general hyperbolic system of conservation laws, a powerful method to obtain the a priori L∞ estimates
s the invariant region theory introduced by Chueh, Conley and Smoller [1] in 1977. However, this method
s mainly valid for the following conservation systems of two equations

ut + f(u, v)x = 0, vt + g(u, v)x = 0, (1.1)

here u and v are in R (See [2] for more results about the invariant region theory on 2 × 2 systems of
onservation laws). After that, many people tried to apply this technique to obtain the L∞ estimates for
ystems of more than two equations, but did not obtain the obvious progress. An open question is whether
he invariant region theory is still feasible for large systems, in which, the number of equations is more than
wo.
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In this paper, we consider the following full Euler system of gas dynamics, with a special equation of
state: P (ρ, s) = ese− 1

ρ , ρ, P and s denoting the mass density, the pressure and the specific entropy, in which
he temperature θ, the specific internal energy ε are given by θ = ε = P (ρ, s)⎧⎪⎨⎪⎩

ρt + (ρu)x = 0
(ρu)t + (ρu2 + ese− 1

ρ )x = 0
( 1

2 ρu2 + ρese− 1
ρ )t + (u( 1

2 ρu2 + (ρ + 1)ese− 1
ρ ))x = 0.

(1.2)

System (1.2) is interesting because it is the unique diagonalizable system we can find in the family of full
non-isentropic gas dynamics systems [2,3]. The smooth solution for the Cauchy problem of system (1.2)
with suitable smooth, monotonic initial data is studied by Zhu in [3] (See also [4]). More results about the
diagonalizable hyperbolic systems can be found in [5].

In this paper, we study the invariant region of system (1.2).
The corresponding isentropic case (s = 0) of system (1.2) is as follows:{

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + P (ρ))x = 0,

(1.3)

where ρ is the density of gas, u the velocity and the pressure P = P (ρ) = e− 1
ρ .

Numerous papers deal with the analysis of weak solutions of the Cauchy problem (1.2). The first existence
theorem for large initial data of locally finite total variation was proved in [6] for γ = 1 and in [7] for
γ ∈ (1, 1 + δ) in Lagrangian coordinates, where δ is small. The Glimm scheme [8] was used in these papers.

The ideas of compensated compactness developed in [9,10] were used in [11] to established a global
existence theorem for the Cauchy problem (1.3) with large initial data for γ = 1+ 2

N , where N ≥ 5 odd, with
he use of the viscosity method. The convergence of the Lax–Friedrichs scheme and the existence of a global
olution in L∞ for large initial data with adiabatic exponent γ ∈ (1, 5

3 ] were proved in [12,13]. In [14], the
lobal existence of a weak solution was proved for γ ≥ 3 with the use of the kinetic setting in combination

with the compensated compactness method. The method in [14] was finally improved in [15] to fill the gap
γ ∈ ( 5

3 , 3), and a new proof of the existence of a global solution for all γ > 1 was given there.
By simple calculations, two eigenvalues of system (1.3) are

λ1 = m

ρ
−

√
P ′(ρ), λ2 = m

ρ
+

√
P ′(ρ), (1.4)

here m = ρu denotes the momentum, with corresponding two Riemann invariants

z(ρ, m) =
∫ ρ

0

√
P ′(τ)
τ

dτ − m

ρ
, z(ρ, m) =

∫ ρ

0

√
P ′(τ)
τ

dτ + m

ρ
. (1.5)

onsider the related parabolic system{
ρt + mx = ερxx

mt + ( m2

ρ + P (ρ))x = εmxx.
(1.6)

e multiply (1.6) by (wρ, wm) and (zρ, zm), respectively, to obtain

wt + λ2wx = εwxx + 2ε
ρ ρxwx − ε

2ρ2
√

P ′(ρ)
(2P ′ + ρP ′′)ρ2

x (1.7)

and
zt + λ1zx = εzxx + 2ε

ρ ρxzx − ε

2ρ2
√

P ′(ρ)
(2P ′ + ρP ′′)ρ2

x. (1.8)
2
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Then the assumption P (ρ) = e− 1
ρ yields

wt + λ2wx ≤ εwxx + 2ε

ρ
ρxwx (1.9)

and
zt + λ1zx ≤ εzxx + 2ε

ρ
ρxzx. (1.10)

f we consider (1.9) and (1.10) as inequalities about the variables w and z, then we can get the estimates
(ρε, mε) ≤ M, z(ρε, mε) ≤ M by applying the maximum principle to (1.9) and (1.10). This shows the

following conclusion. The region

Σ = {(ρε, mε) : w(ρε, mε) ≤ M, z(ρε, mε) ≤ M} (1.11)

s an invariant region [16].
However, we shall verify that the corresponding Riemann invariants for the non-isentropic gas dynamics

ystem (1.2) have the opposite estimates.

heorem 1. The viscosity approximate solutions (ρε, mε, sε), of system (1.2), given by the parabolic system
2.5), satisfy the following estimates

Σ = {(ρε, mε, sε) : w1(ρε, mε, sε) ≥ M1, w2(ρε, mε, sε) ≥ M2, sε ≥ M3, } (1.12)

here the functions w1, w2 and s are the Riemann invariants of system (1.2):

w1 = 2e
s
2 e− 1

2ρ − m

ρ
, w2 = 2e

s
2 e− 1

2ρ + m

ρ
, (1.13)

nd Mi, i = 1, 2, 3 are constants.

This shows that the powerful invariant region theory introduced by Chueh, Conley and Smoller for general
hyperbolic system of two conservation laws cannot be obviously applied to obtain the a priori L∞ estimates
or systems of more than two equations.

emark 1. A positive invariant region s ≥ M3 for general full Euler system of gas dynamics is established
n Theorem 8.2.2 of [2].

emark 2. In the unpublished paper [17], the authors are able to carry out Compensated Compactness for
2 × 2 system without assuming L∞ bounds by making rather restrictive assumptions on the nonlinearity

f the momentum equations. This contrasts with our result pertaining to systems of equations with more
han two equations.

We shall prove Theorem 1 in the next section.

. Proof of Theorem 1

Substituting the first equation in (1.2) into the second, and substituting the first, the second equations in
1.2) into the third, respectively, we obtain, for the smooth solution, the following equivalent system about
he variables (ρ, u, s), ⎧⎪⎨⎪⎩

ρt + uρx + ρux = 0
ut + 1

ρ3 es− 1
ρ ρx + uux + 1

ρ es− 1
ρ sx = 0 (2.1)
st + usx = 0.

3



Y. Chen, C. Klingenberg, Y.-g. Lu et al. Nonlinear Analysis: Real World Applications 73 (2023) 103915

T

W

W

Let the matrix A(U) be

A(U) =

⎛⎜⎝ u ρ 0
1

ρ3 es− 1
ρ u 1

ρ es− 1
ρ

0 0 u

⎞⎟⎠ . (2.2)

hen three eigenvalues of (2.1) are

λ1 = u − 1
ρ

e
s
2 e− 1

2ρ , λ2 = u + 1
ρ

e
s
2 e− 1

2ρ λ3 = u (2.3)

with corresponding three Riemann invariants

z = w1 = 2e
s
2 e− 1

2ρ − u, w = w2 = 2e
s
2 e− 1

2ρ + u, w3 = s. (2.4)

e consider the following parabolic system of (1.2)⎧⎪⎨⎪⎩
ρt + (ρu)x = ερxx

(ρu)t + (ρu2 + ese− 1
ρ )x = ε(ρu)xx

( 1
2 ρu2 + ρese− 1

ρ )t + (u( 1
2 ρu2 + (ρ + 1)ese− 1

ρ ))x = ε( 1
2 ρu2 + ρese− 1

ρ )xx.

(2.5)

Substituting the first equation in (2.5) into the second, we may obtain the following equation about the
variable u

ut + uux + 1
ρ3 es− 1

ρ ρx + 1
ρ es− 1

ρ sx = εuxx + 2ε ρx
ρ ux. (2.6)

e may rewrite the third equation in (2.5) as follows

ρes− 1
ρ (st + usx) + ( 1

2 u2 + (1 + 1
ρ )es− 1

ρ )(ρt + ρux + uρx)
+ρu(ut + uux + 1

ρ3 es− 1
ρ ρx + 1

ρ es− 1
ρ sx) = ε( 1

2 ρu2 + ρese− 1
ρ )xx

= ερuuxx + 2uρxux + ρu2
x + 1

2 u2ρxx + (1 + 1
ρ )es− 1

ρ ρxx

+ 1
ρ3 es− 1

ρ ρ2
x + 2(1 + 1

ρ )es− 1
ρ ρxsx + 1

ρ es− 1
ρ s2

x + ρes− 1
ρ sxx.

(2.7)

Thus we have from the first equation in (2.5), (2.6) and (2.7) that

st + usx = εsxx + ε(e
1
ρ −su2

x + 1
ρ4 ρ2

x + 2 1+ρ
ρ2 ρxsx + s2

x)
≥ εsxx + 2ε ρx

ρ sx.
(2.8)

By simple calculations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wρ = 1
ρ2 e

s
2 − 1

2ρ , wu = 1, ws = e
s
2 − 1

2ρ ,

wρρ = − 2
ρ3 e

s
2 − 1

2ρ + 1
2ρ4 e

s
2 − 1

2ρ , wρu = 0, wρs = 1
2ρ2 e

s
2 − 1

2ρ ,

wuu = 0, wsu = 0, wss = 1
2 e

s
2 − 1

2ρ ,

zρ = 1
ρ2 e

s
2 − 1

2ρ , zu = −1, zs = e
s
2 − 1

2ρ ,

zρρ = − 2
ρ3 e

s
2 − 1

2ρ + 1
2ρ4 e

s
2 − 1

2ρ , zρu = 0, zρs = 1
2ρ2 e

s
2 − 1

2ρ ,

zuu = 0, zsu = 0, zss = 1
2 e

s
2 − 1

2ρ .

(2.9)

Now, we multiply the first equation in (2.5) by wρ, (2.6) by wu, (2.8) by ws respectively, and add the results
to obtain an equality, whose left-hand side L and the right R are respectively

L = wt + 1
ρ2 e

s
2 − 1

2ρ (ρux + uρx) + (uux + 1
ρ3 es− 1

ρ ρx + 1
ρ es− 1

ρ sx) + e
s
2 − 1

2ρ usx

= w + (u + 1 e
s
2 − 1

2ρ )( 1 e
s
2 − 1

2ρ ρ + u + e
s
2 − 1

2ρ s ) = w + λ w
(2.10)
t ρ ρ2 x x x t 2 x

4
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and

R = εwρρxx + wu(εuxx + 2ε ρx
ρ ux) + ws(εsxx + ε(e

1
ρ −su2

x + 1
ρ4 ρ2

x + 2 1+ρ
ρ2 ρxsx + s2

x))
= εwxx − εwρxρx − εwuxux − εwsxsx + 2ε ρx

ρ ux + εws(e
1
ρ −su2

x + 1
ρ4 ρ2

x + 2 1+ρ
ρ2 ρxsx + s2

x)
= εwxx − ε[( 1

2ρ4 − 2
ρ3 )e

s
2 − 1

2ρ ρ2
x + 1

ρ2 e
s
2 − 1

2ρ ρxsx + 1
2 e

s
2 − 1

2ρ s2
x − 2 ρx

ρ ux

−e
s
2 − 1

2ρ (e
1
ρ −su2

x + 1
ρ4 ρ2

x + 2 1+ρ
ρ2 ρxsx + s2

x)]
= εwxx + 2ε ρx

ρ wx + ε( 1
2ρ4 e

s
2 − 1

2ρ ρ2
x + 1

ρ2 e
s
2 − 1

2ρ ρxsx + 1
2 e

s
2 − 1

2ρ s2
x + e

1
2ρ − s

2 u2
x)

≥ εwxx + 2ε ρx
ρ wx.

(2.11)

From (2.10) and (2.11), we have
wt + λ2wx ≥ εwxx + 2ε

ρx

ρ
wx. (2.12)

imilarly, we multiply the first equation in (2.5) by zρ, (2.6) by zu, (2.8) by zs respectively, and add the
esults to obtain the following equality

zt + λ1zx = εzxx + 2ε ρx
ρ zx

+ε( 1
2ρ4 e

s
2 − 1

2ρ ρ2
x + 1

ρ2 e
s
2 − 1

2ρ ρxsx + 1
2 e

s
2 − 1

2ρ s2
x + e

1
2ρ − s

2 u2
x) ≥ εzxx + 2ε ρx

ρ zx.
(2.13)

herefore we obtain the lower bounds of w(ρε, uε, sε) ≥ M2, z(ρε, uε, sε) ≥ M1 and s(ρε, uε, sε) ≥ M3 by
sing the maximum principle to (2.12), (2.8) and (2.13) if we assume that the initial data have the same
ounds, which are the opposite of the isentropic case given in (1.11). So, we obtain the proof of Theorem 1.

emark 3. It seems that we can see more clearly the genuine reason why the domains w, z ≥ M are
ositively invariant as suggested by the anonymous reviewer. We denote Q for either w or z, and λ the

corresponding velocity. The use of the artificial viscosity in (2.5) yields the transport-diffusion equation

Qt + λQx = εdQ · Uxx = εQxx − εD2Q(Ux, Ux), (2.14)

where U = (ρ, ρu, 1
2 ρu2 + ρese− 1

ρ )T . Therefore (2.11) or (2.13) amounts to proving that

rD2Q(ξ, ξ) + 2dr · ξdQ · ξ ≤ 0, ∀ ξ ∈ R3, (2.15)

here r is a coordinate of U . The details refer to [1,2].
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[10] F. Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa 5 (1978) 489–507.
[11] R.J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983) 1–30.
[12] X.-X. Ding, G.-Q. Chen, P.-Z. Luo, Convergence of the Lax–Friedrichs schemes for the isentropic gas dynamics I-II,

Acta Math. Sci. 5 (1985) 415-432, 433-472.
[13] G.-Q. Chen, Convergence of the Lax–Friedrichs scheme for isentropic gas dynamics, Acta Math. Sci. 6 (1986) 75–120.
[14] P.L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-system, Comm. Math.

Phys. 163 (1994) 415–431.
[15] P.L. Lions, B. Perthame, P.E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of

isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996) 599–638.
[16] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[17] D. Serre, J. Shearer, Convergence with physical viscosity for nonlinear elasticity, Preprint (unpublished), available from

the authors.
6

http://refhub.elsevier.com/S1468-1218(23)00085-8/sb2
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb2
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb2
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb3
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb3
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb3
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb4
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb4
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb4
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb5
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb5
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb5
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb6
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb6
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb6
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb7
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb7
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb7
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb8
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb8
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb8
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb9
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb9
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb9
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb9
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb9
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb10
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb11
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb12
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb12
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb12
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb13
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb14
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb14
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb14
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb15
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb15
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb15
http://refhub.elsevier.com/S1468-1218(23)00085-8/sb16

	Invariant region on a non-isentropic gas dynamics system
	Introduction
	Proof of Theorem 1
	Declaration of Competing Interest
	Acknowledgments
	References


