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The Relaxation Limit for Systems 
of Broadwell Type 

Christian Klingenberg and Yun-Guang Lu 

This paper considers the Cauchy problem for the following systems of Broadwell's 
type 

ht+hx 
F(h,hh) 

T 

ht - hx 
F(h,hh) 

T 
(1) 

ht 
F(h,h,h) 

2T 

When the nonlinear function F takes the special form h12 - fl, (1) is a simple 
mathematical model of gas kinetics, the so called Broadwell model [1] (see also [2], 
[6] [13], [16], [17], [18] and the references therein). It describes an idealization of 
a discrete velocity gas of particles in one dimension subject to a simple binary 
collision mechanism. 

Let p = h + 12 + 413, m = h - h, s = 13 . (1) may be written as follows: 

Pt +mx =0 

} mt + (p - 4s)x =0 

P(p, m, s) 
=0 St + 

T 

(2) 

The conditions for (p, m, s) to be a local Maxwellian are 

s = (2 - VI + 3 :: ) p (3) 

for the Broadwell case F = hh - fl. If the nonlinear collision function F can be 
written as F = hI (h) - h2 (h + h + 413) for some nonlinear functions h, hI and 
h2 the conditions on (p, m, s) to be a local Maxwellian are 

s = h(p) . (4) 

The equilibrium systems corresponding to (3) and (4) are the following Euler 
equations (5) and p-system (6): 

Pt + mx = 0 
mt + (pG(u))x = 0 } (5) 
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where 
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Pt+mx =0 

mt + (p - 4h(p))x = 0 } (6) 

The asymptotic relationship between the solutions of the Broadwell model 

(1) and the solutions of the Euler equations (5) as T goes to zero has been in-

vestigated by many authors [2], [13], [16], [18] (also see references therein). All 

authors considered the limit assuming some special structure of the solution, such 

as continuity [2], Riemann solution [16]' finite number of shock waves [18]. 

In this paper, we study the Cauchy problem (2) with bounded L2 measurable 

initial data 

(p,m,s)lt=o = (po(x),mo(x),so(x)) . (7) 

When the local Maxwellian is given by (4), we show that the solution of 

the equilibrium system (6) is given by the limit of the solutions of the viscous 

approximation 

Pt+mx = Epxx 

} mt + (p - 4s)x = Emxx 
(8) 

F(p, m, s) 
St + = ESxx 

T 

as E and T go to zero. Our method is the compensated compactness. This method 

has shown itself powerful in solving some relaxation limit problems [4], [3], [5], 

[8], [9], [10], [12]. When dealing with systems of more than two equations it is 

well known that the one basic difficulty is the a priori estimate independent of 

the approximate parameter E in a suitable LP space (p > 1). Since system (2) 

in general can not be diagonalized by using Riemann invariants, it is not to be 

expected that viscosity solutions (pE, mE, SE) of the Cauchy problem (8) will be 

bounded in L oo , uniformly in E, by using the invariant region principle. We have 

to search for solutions of the system (2) in LP space. Similar results about zero 

relaxation systems of three equations are discussed in [12]. In paper [12], we studied 

the following system: 

Vt - Ux =0 

} 
Ut - (j(v, s)x =0 (9) 

S - f(v) 
=0 St + 

T 

where (j(v, s) is a nonlinear function of v and s, but f(v) must be a linear function 

cv in order to make the technique used in [12] work. System (2) is of a different 
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form. The flux functions are linear, but the zero-th order term is nonlinear. In [7], 
the authors suggested to solve the following system: 

u; + div(v'T) = 0 } 

v; + I-t div(u'T) = (J(u'T) - v'T) 

as an approximation to the general nonlinear hyperbolic system 

Ut + div(J(u)) = 0 . 

(10) 

(11) 

So in some sense, the study of the system (2) is more significant than that of 
(9) in comparing the relationship between (10) and (11). 

The difficulty in applying the compensated compactness to the system (2) is 
the compactness analysis of the viscosity solutions of the Cauchy problem (8) in 
LP. To overcome this difficulty, we adopt the method used in [12] to reduce the 
equations to two equations and then use the entropy-entropy flux pairs of system 
(6) as constructed by Jim Shearer [15] and the framework given by Serre and 
Shearer [14] to realize our aim. 

In this paper we make the following assumptions on F in equation (2) and 
on the initial data: 

(Ad: F(p, m, s) = H(s) - p; H(s) E C 3 (R), H'(s) 4 + c for some constants 
c> o. 

Since H'(s) > 0, H(s) = p has an inverse function H-l(p) = s. 

Let u(p) = p - 4h(p), h(p) = H-l(p) and u(p) satisfy all the conditions in 
[14], namely 

(A2): Strict hyperbolicity: u'(p) Uo > 0 with Uo = constant. 

(A3): Genuine nonlinearity except at a point: U"(AO) = 0 and U"(A) =I- 0 for 
A =I- Ao· 

. U" u", U" U'" u(p) 
(A4): Growth constramts: --5 , --7 E L2 ; --3 , --2 E L"X) -( ) - 0 

(U')4 (u')4 (U')2 (u') E p 

as Ipi - 00 and there are constants Cl, C2 with Cl > such that (u' (p) tl < 
c2(1 + E(po)), where E(po) = I; u(s)ds. 

We have the following assumption about the initial data (7): 

(A5) : Po(x), mo(x), so(x) are all bounded in L2(R) and tend to zero as Ixl - 00 

sufficiently fast such that the smooth functions given in (17) satisfy 

1· (dip6(x) dim6(x) dis6(x)) = (0 0 0) . = 0 1 
lmlxl-Hx) d' , d' , d' "Z, x' x' x' 

Ip3(x)IH1(R) :::; M(E), Im3(x)IH1(R) :::; M(E), Is3(x)IH1(R) :::; M(E) . 

From the basic property of the mollifier, we have that 

(p3(x), m3(x), s3(x)) - (po (x ), mo(x), So (x)) 

(12) 

(13) 

(14) 
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uniformly on any compact set in R as E 0, and also the following properties: 

1 
dipQ(x) 1 

dx' ' 

IPo(x) 1£2 S; Ipo(x) 1£2 S; M 

Imo(x)IL2 S; Imo(x)l£2 S; M 

Iso(x)l£2 S; Iso(x)l£2 S; M 

1 
dimQ(x) 1 

dx' ' 

} (15) 

(16) 

We now proceed as follows: At first we consider the existence of viscosity 
solutions of system (8) with initial data 

( ' ") (" ') p ,m ,s It=o = Po, mo, So (17) 

where (Po, m o, so) are smooth functions obtained by smoothing the initial data (7) 
with a mollifier. The existence is based on the standard local existence theory by 
using the contraction mapping principle to an integral representation of (8) and an 
a-priori estimation of the local solution depending on E and T. The a-priori bound 
is obtained by the energy method. 

Ip(·, t)IL2(R) S; M, Im(., t)I£2(R) S; M, Is(., t)IL2(R) S; M (18) 

(H(s) _ p)2 
I TIL' (Rx [O,T]) S; M (19) 

IEp;I£1(RX[O,T]) S; M, jEm;I£1(RX[O,T]) S; M, jEs;I£1(RX[O,T]) S; M (20) 

This gives the following theorem: 

Theorem 1. If the initial data (17) satisfies (12), (13), (15) and P(p, m, s) satisfies 
the condition (AI)' Then for any fixed E, T > 0, there is a global solution of the 
Cauchy problem (8), (17) such that all the estimates in (18), (19), (20) hold. 

In the next step, the compensated compactness method is used to study 
convergence of the viscosity solutions (p"T, m"T, S"T). First the convergence of 
(p"T, m"T) is shown, and then, using the estimate (19) the convergence of S"T is 
shown. When taking t5 = O(E), the global weak solution of the equilibrium (6) is 
obtained as E goes to zero. 

We thus arrive at the main theorem: 

Theorem 2. The solutions (p"T, m"T, S"T) of the Cauchy problem (8), (17) with 
the assumptions (Ad-(A5) converge almost everywhere in a compact set n E R x 
R+ to a L2 bounded function triple (T, m, s) as E, T go to zero related by T = 0 (E). 
Moreover (p, m) is a weak solution of the Cauchy problem (6) with initial data 
(po(x),mo(x)) in (7). 

For proofs please refer to [11]. 
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