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Abstract A relaxation approach pioneered by Frédérique Coquel leads to very stable
approximate Riemann solvers with positivity preserving properties. We outline this
approach and and give examples of its usefulness in practical applications.

1 Introduction

A classical method to numerically solve hyperbolic conservation laws is the finite
volume method, which involves as its essential ingredient the numerical solution of
a Riemann problem. Phil Roe noticed in 1981 [12] that an approximation of the Rie-
mann solver suffices. This led to a quest for finding particularly useful approximate
Riemann solvers.

Such an approximateRiemann solverwas developed in Paris byFrédériqueCoquel
and co-workers around the turn of the century, see e.g. [4], [1]. It is inspired by an idea
of Shi Jin and Zhou-ping Xin [10], where the solutions to a system of conservation
laws are approximated by a straightforward relaxation system. The ensuing French
idea was two-fold:

• find a particularly clever relaxation system that approximates a given system of
conservation laws

• translate this into a numerical scheme by first solving the left hand side of the
relaxation system (a linear transport and thus numerically easy to do) and then
projecting the thus found solution to the equilibrium variables (again easy).

We shall show how this leads to approximate Riemann solvers with good prop-
erties, like stability and entropy consistency, which implies positivity of density and
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temperature for the shallow water- (see [15]), Euler- (see [5, 13, 14, 16]) and the
ideal magnetohydrodynamics equations (see [2, 3, 17]).

2 Approximate Riemann solversg

In the classical Godunov numerical algorithm to solve one-dimensional systems of
hyperbolic conservation laws

ut + f (u)x = 0 ,

(see e.g. [11]), the exact solution to the Riemann problem was originally solved
numerically by Godunov in the 1950s via an iterative method. Phil Roe noticed in
1981 [12] that for this algorithm to be successful it is enough to approximate the
Riemann solution by an approximate Riemann solver consisting of jumps separating
constant states. Roe’s approach can be made quite accurate, but suffers from not
necessarily satisfying a discrete entropy inequality. Thus soon after approximate
Riemann solvers were introduced of so called HLL type [8] that were entropy stable
but not quite accurate. A way forward was then shown by Coquel and co-workers
(see e.g. [4]) from the late 1990s on, who developed approximate Riemann solvers
that were inspired by a relaxation approach (see [10]).

To illustrate the underlying principle, consider a scalar conservation law ut +
f (u)x = 0 which gets approximated à la Jin-Xin [10] by

uεt + v
ε = 0 (1)

vεt + a2uεx =
1
ε
( f (uε ) − vε ) . (2)

This gets solved numerically by a particular splitting approach. First solve the ho-
mogeneous, linearly degenerate equation

uεt + v
ε = 0

vεt + a2uεx = 0 ,

and in the second so-called projection step, solve

uεt = 0

vεt =
1
ε
( f (uε ) − vε ) ,

by setting ε to zero.
Notice that this gives rise to an approximate Riemann solver for ut + f (u)x = 0,

which turns out to be equivalent to the Lax-Friedrichs solver. Also note that this
splitting procedure (transport - projection) is nothing but an analytic tool to determine
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the speed of the jumps and the intermediate constant states of the approximate
Reimann solver for the original equation ut + f (u)x = 0. In the numerical algorithm
never is there an ε present.

In order to prove limε→0uε = u (where uε is the solution to (1), (2), and u
is the solution to ut + f (u)x = 0) one needs to impose −a < f ′(u) < a, the so
called stability condition (see [10]). This condition ensures the entropy dissipative
property of the associated approximate Riemann solver. Thus one can show that the
relaxation-projection solver satisfies the discrete entropy inequality, which is at the
core of their extreme usefulness also in more general cases.

Historically the first relaxation-projection solver of this type for the compressible
Euler equations is what Coquel called the Siliciu solver. It is described in [1], section
2.4.4. Note that this way we obtain an approximate Riemann solver of HLLC type
(three waves with constant states in between) that gives rise to a finite volume solver
which satisfies the discrete entropy inequality. From this one deduces that this finite
volume scheme gives positive density and internal energy. Thus one has found an
approximate Riemann solver which can be made both quite accurate and stable.

As an aside it is interesting to note that in [6] it was found that even though the
Siliciu solver from the previous paragraph is positivity preserving for density and
internal energy, it will not maintain all invariant domains of the Euler equations. This
means, given a set of initial data in phase space for the Euler equations, consider the
solution set in phase space. Does the finite volume scheme based on the approximate
Riemann solver obtained by the Siliciu relaxation always stay in this solution set? It
is shown in [6] that even though this property is true for the set positive density and
internal energy, in general this will not be the case.

3 Applications

We give a few examples of approximate Riemann solvers of relaxation-projection
type, that have proven themselves quite useful in applications because of their ac-
curacy and good stability property. Note that for each case there is no systematic
procedure for finding the relaxation system analogous to (1), (2). This is a bit of an
art, in particular proving the crucial stability estimates (the estimates corresponding
to −a < f ′(u) < a in the previous section) may turn out to be a lengthy calculation.
Nonetheless, as the next examples show, it is worth the effort because they lead to
approximate Riemann solvers that are very useful in practice.

We begin with the Euler equations of compressible gas dynamics, and seek
a relaxation-projection approximate Riemann solver that is able to work for all
Mach numbers, in particular in the limit of the Mach number going to zero, where
the incompressible Euler equations are reached. This was achieved in [14, 16] by
splitting the pressure in to two parts and and then finding a relaxation system that
relaxes these two different parts separately.

Next we consider the Euler equations with gravity and seek a finite volume
solver that maintains hydrostatic equilibria, which are stationary solutions with the
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velocity set to zero. These are called well-balanced numerical methods. In [5, 13]
the relaxation system ensures that the discrete form of the hydrostatic equilibrium is
always maintained.

For the equations of ideal magnetohydrodynamics a relaxation-projection solver
has been found in [2, 3, 17]. The relaxation system takes its inspiration from the
Siliciu solver for the Euler equations. In particular it has been possible to extend the
positivity preserving property to second order in multiple space dimensions on a
cartesian mesh. The solonoidal property of the magnetic field is taken into account
by writing the equations in symmetrizable form via a Powell term, and all of this is
achieved while still maintaining the positivity preserving property.

4 Conclusion

The stable property of these solvers has been put to test in astrophysical codes. To
name only one, themagnetohydrodynamic relaxation solver [2, 3, 17] was introduced
into the FLASH code, giving rise to simulations (see e.g. [9]) where flows withMach
number 100 could be simulated in a stable way. That these solvers may be useful
also in a discontinuous Galerkin context can bee seen e.g. in [7].

These relaxation-projection solvers deserve to be better known, which we hope
to have shown in this overview.
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