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Regularity of a scalar Riemann problem 
in two space dimensions 

Christian Klingenberg 
Dept. of Applied Mathematics, Heidelberg University 

1m Neuenheimer Feld 294 
6900 Heidelberg, GERMANY 

Abstract 

For the one dimensional scalar non-convex conservation law Ut + f(u)x = a let f"(u) have 
finitely many changes of sign. We show that if the initial data consists of finitely many constant 
states, the solution will be piecewise smooth with finitely many shock curves. Hence the same 
holds true for two dimensional Riemann problems for the scalar equation Ut + f(u)x +f(u)y = O. 

1. Introduction 

Consider the scalar conservation law: 

Ut + f(u)x +f(u)y = 0 ,f E C3 : R-7 R 
with Riemann initial data: u(O,x,y) is constant in finitely many wedges meeting at the origin. 

Rotating by 45°, the solution to this Riemann problem is equivalent to solving one 
dimensional initial value problems: 

Ut + f(u)x = a 
with initial data u(a,x) consisting of finitely many constant states separated by jumps. In fact the 
solutions to two initial value problems like this may be transformed back to the given two 
dimensional Riemann problem (for more details see [K] or [L]). 

We proceed to show that for many flux functions (like polynomials) the solution to the one 
dimensional problem has finitely many smooth pieces, which then also holds for the two 
dimensional Riemann problem. 

Regularity of solutions to conservation laws in one space dimension has been studied for 
convex fluxes by Oleinik [0], Schaeffer [S], Dafermos [Dl], for one inflection point by 

Dafermos [D2]. Generally speaking they show that for C'" initial data, generically the solution is 

C'" smooth except on a finite set of C'" arcs. Lindquist [L] conjectures that for more than three 
inflection points there is a loss of piecewise smoothness. We show here this need not be so. 

We allow any finite number of inflection points. The initial data is restricted to piecewise 
constant with finitely many jumps. Any compactly supported initial data may be approximated 
by this. To the author's knowledge, here is the first explicit construction of the global solution 
yielding the regularity result. 
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2. The one-dimensional problem for small times 

Consider Ut + f(u)x = 0, f E C3(R), with initial data consisting of finitely many 
constant states. Allow f"'(u) to change sign only finitely often. 

Note: This implies that f(u) has finitely many inflection points. 

For small times solve the local Riemann problems at the initial jump discontinuities by 
constructing the convex or concave hulls CH(uJ, ur), where Ul and Ur are two neighboring 
constant states (for more details on CH(uJ, ur), see [K] or [L)). Each CH(uJ, ur) corresponds to 
the Oleinik entropy solution of the local Riemann solution. For an example see Fig. 1. 

F{v.) t 

U-, x 
Figure 1.' An example of a convex hull corresponding to the one dimensional Riemann problem 

between a and b. 

Definition: Let k = k(uJ, ur) be the number of inflection points of f in the open interval 
between Ul and Ur . Let 

first integer if( Ul<Ur and f"(u) 0) orif( Ul>Ur and f"(u) < 0) 
#CH(uJ, ur) = 

first integer 1 if( Ul<Ur and f"(u) < 0) or if( Ul>Ur and f"(u) 0). 

Note: #CH(uJ, ur) counts the "valleys" of f traversed between Ul and Ur . 

Definition: Let there be n initial constant states ai. Then 
n 

the graph of U CH(aj,ai+!) =: c-ch. 
i=! 

is called the graph of the convex-concave hull. 
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The c-ch. consits of 
- straight line segments, representing jumps (1) 

pieces that touch the graph of f(u) in an interval [a,b] of the u-axis, 
called rarefaction wave (R) if a;t b, or constant state (C), if a = b. 

Note: Left and right refer to the x-t plane at the solution corresponding to the 
c-ch. 



On the c-ch. label the left and right sides of the jumps by integers according to the 
following 

Defmition: labeling rule: 
- the left side of the left most jump gets the number 1. 
- the right side Ur of any given jump is assigned an integer which increments the integer on 

its left side u\ by 

- let j be the next jump to the right of J on c-ch. Let the right side of J 

have label i. Then the left side of j has label i + 1. 
Finally add these two labels: 

label the first point of c-ch. by 0, the last point by (maximum label so 
far) + I 

Note: Using the labeling rule, one point may have two labels. 

Definition: Call the set of these integers 1 . Let Pi = (Ui,f(Ui)) denote those points on the 

graph of c-ch. labeled by iE I. 

max 1 is finite for small time since we have finitely many inflection points and 
finitely many initial jumps. 

Definition: A jump on c-ch. is denoted by J(Pi,Pj), a rarefaction wave by R(Pi,Pi+l) and 

constant state by C(Pi), i<j, i,jE I. 

For an example, see Fig. 2. 

Note: There are finitely many J, R for small time. 

ft\f 

0-, a..,-- ct,1. a., .:t3 

Figure 2: An example of c-ch. with the labels at the jump boundaries. Note that e.g. P2 = P3 . 
The initial data on the x - axis was arranged like this: 

i=iJ 
a., Q.. 4'-( 

After labeling Pi these initial states have new names. Here max 1 = 15. 
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3. The time euolution of the conueH-conC8ue hull 

We proceed to describe the unique defonnation of the c-ch. as time increases. This is done 
by considering those points Pi of c-ch. where the slope of the corresponding jump'" feuD. Call 
these interactions. 

There are two types of interactions, either J meets J or J meets R. 

3.1. Interaction .11 

Say this interaction takes place at Pi, iE I, with jumps 
J(Ph,Pi) and J(Pi+l ,Pj), h<i<i+ 1 <j , h,i,j E I. 

Possibly Ph and Pj may be interaction points for jumps to the left and right resp. This 

corresponds to two or more jumps {Jdk=l ..... n (each having left and right boundary points uf ' 
uf) meeting at one point in the x-t plane. The solution to this interaction is given by solving the 
Riemann problem (constructing CH(ut ,uP) ) using the left most state ut and the right most state 
up of the set {h}k=l ..... n. 

How does the c-ch. change with such interactions? Note that we distinguish between 
monotone jumps, where for all k=I, ... ,n we have uf<Uf or for all k=l, ... ,n we have uf>Uf, 
and the non-monotone case, where there exist Ji and Jm in {h}k=l ..... n s.th. ui<u} and uY'>up>. 

Monotone case: two or more jumps will interact to become one single jump, e.g. 

J(Pl,P2) J(P3,P4) J(Pl,P4) . 
Here we discard all "middle points", in this example throw out P2=P3. 

Non-monotone case: Since two jumps meeting in this interaction jump in opposite 
directions, more than one jump may arise. Say 

ut<up 
Pick all h from (h}k=l ..... n with uf<uf. Since their intervals satisfy 

U [ uf ,Uf] => [ ul, up] 
VI< s.th.uf<uf 

we have 

L #CH(uf,Uf) #CH(ul,up) . 
V'k s.th. uf<uf 

By non-monotonicity 3 Jm in (h}k=l ..... n with uY'>up> and #CH(uY',u¥') 1. Thus 

n 

L #CH(uf,uf) 1 + L #CH(uf,uf) > #CH(ul,up) 
k= 1 V'k s.th. u,k<uf 

After the interaction we need to relabel. First we discard all jump boundary points from 
Pdk=l ..... n except for those at ut and up . Then we label the jump boundary points in 
CH(ut ,uP) using the labeling rule. Because of the strict inequality in the above equation, the 
new labels will maintain the increasing order of I, without changing the remaining points. See 
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Fig. 3. 

Note: In the interaction J J the set 1 changes but max 1 does not change. 

r 
·f 

__________ -.;.)u 

Figure 3: An example of a non-monotone J J interaction 

J(PS,P6) J(P7,Pg) J(P9,PIO) ---7 J(PS,P6) R(P6,P7) J( P7,PIO) 
on the left before interaction, on the right after. 

3.2. The interaction J R 

Say this interaction takes place at Pj with J(Pi,Pj) . Then Pi is either a constant state CCPi), 
or the boundary of a rarefaction wave R(Ph,Pi), or a boundary of a jump J(Ph,P;), h<i<j, 
h,i,jE I. We only describe the case of a rarefaction wave R(Ph,Pi). The other cases are evident 
then. Say the interaction at Pj begins at time to. There exists some time interval [ to , T] such that 

for all t E [to, T] we construct CH(Uict),U/t», as u;(i) and u/i) move along their respective 
rarefaction waves in time. 

How does c-ch. change in these interactions? 
As long as J(Pi,Pj) continuously moves the locations Pi and Pj may change in time. Since 

f"(u) '* 0 in the rarefaction interval Uj, Uj+l , the label Pj does not change. Similarily with Pi. 

The jump J(P;,Pj) may bifurcate, see Fig. 4. If J(P;,Pj) bifurcates, there may be at most 
#CH(Ui,Uj) new jumps arising. We need to label these new jumps. Since 

j = i + 2 (#CH(Ui,Uj) - 1 
we may label the new jump boundary points using the labeling rule without changing j and 
keeping the increasing order of the jump boundary points from left to right. 
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>"1t. ')l> >/u 

J(P2,P5) J(P2,P3) R(P3,P4) J(P4,P5) J(P2,P3) C(P3) J(P4,P5) J(P2,P5) 

Figure 4: The first arrow describes a bifurcation, the last one a monotone jump interaction. 

Note: max I remains unchanged in the interaction JR. 

Note: A point Pi may change from a tangential jump boundary point to an interaction point 
and vice versa as time evolves. 

Note: This c-ch. construction has the property that if we found the solution up to a certain 
time to , we may continue on for a certain time interval. Suppose we have constructed the 
solution using the c-ch as far in time as possible. 

Note: Since max I remains unchanged in time, at any given time the number of jumps in 
the c-ch. is uniformly bounded. 

4. Counting the number of interactions possible 

Lemma: The solution has at most finitely many of the following interactions: 
- non - monotone jump interactions 

J(Pi,Pj) J(Pj+1,Pk) CH(Ui,Uk) with Ui<Uj and Uj+l>Uk or with Ui>Uj and Uj+l<Uk 
- jump decreasing to zero strength 

J(Pi,Pj) R(Pj,Pj+d C(Pi) R(Pi,Pj+l) = CH(uj,uj+d i<j 

Proof: We have collected those interactions, where 

L #CH(Ul,Ur ) > L 
waves before interaction waves after interaction 

Thus the number of distinct Pj, iE I that may still possibly arise for t > (time of interaction) has 
decreased. Since max I is uniformly bounded in time, such interactions can only arise finitely 
often. 

Note: Both in the monotone jump interaction and bifurcation we have 

L #CH(UI,Ur) = L #CH(UI,Ur ) 
waves before interaction waves after interaction 

Thus we need a different argument if we want to rule out infinitely many of these interactions. 
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Lemma: If the solution has infinitely many bifurcations, then {'''(u) changes sign infinitely 
often. 

Proof: Suppose we had infinitely many bifurcations. Here is an example of one 
bifurcation: 

J(PI ,P4) J(PI.P:V R(P2'p3) J(P3,P4) . 
The c-ch. allows only at most a fixed finite number of jumps. Thus jumps need to interact 
infinitely often and cause two jumps to become one. Only a finite number of non-monotone 
jump interactions are allowed. Thus there have to be infinitely many monotone jump 
interactions, called recombinations, e.g. 

J(P},P2) J(P3,P4) J(PI,P4) . 
Since we have only finitely many points in Pi. iE I, there exist two points, say PI and P4, 
with infinitely many bifurcations and recombinations between these points. 

Now we ask what waves interact at PI and P 4. We claim that after some finite number of 
interactions only R(Po,Pt} and R(P 4,PS) interact there. 

Proof of claim: Suppose infinitely many jumps interact at P 4. Only finitely many of them 
may be jumps in the opposite direction as J(P3,P 4) or J(PI,P 4), Thus infinitely many are in the 
same direction. Say one of them is J(Ps,Ps). It interacts at P4, e.g. 

J(P3,P4) J(Ps,Ps) J(P3,Pg) 
For this to happen infinitely often, J(P3,PS) has to bifurcate infintely often, e.g. 

J(P3,PS) J(P3,P4) R(P4,PS) J(Ps,Ps) 
Thus to the right of the interval between UI and U4 there are again infinitely many bifurcations 
and recombinations in an interval between U3 and Ug. To the right of this there may be again 
such intervals, but at most finitely many. Suppose there are no more. Then to the right of Pg 
there must be a rarefaction wave 

R(PS,P9) . 
To the left of the bifurcation - recombination interval between UI and U4 there may be only 

finitely many other such intervals bounded to the left by a rarefaction wave, in our example say 
by 

R(Po,PI) . 
How do PI and Ps move in time? 
a) Suppose both PI and Ps are fixed, Uo = UI and Us = U9. Then after finitely many 

interactions the CH(uI,us) would be reached. This is not possible. 

b) Suppose PI is fixed, Uo = UJ, but Ps moves along R(PS,P9), Us * U9. Since Us moves 
monotonically towards U9, only bifurcations or only recombinations are possible. But this 
would allow only finitely many interactions, thus not possiblke. 

c) Suppose both PI and Ps move along their resp. R s , Uo * UI, Us * U9 and move away 
from each other, i.e. UI moves to the left and Us moves to the right. Since all jumps in between 
are monotone, this again implies only bifurcations or recombinations. Similarily if uland Us 
move towards each other. 

d) Suppose PI and Ps both move in the same direction. Since we assume infinitely many 
bifurcation - recombinations between PI and P 4 , one sees by inspection that in this case it is 
not possible to also have infinitely many bifurcation - recombinations between P3 and Ps. Thus 
only finitely many jumps interact at PI to with J(PJ,P2), similarily at P 4. Hence eventually only 
rarefaction waves bound PI and P 4 and uland u4 move in the same direction. End of proof of 
claim. 
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To recapitulate, we have shown that only the example given in Lindquist's paper [L] (that 
is exactly case d) above may possibly give rise to infinitely many bifurcations, see Fig. 4. 

Following the explanation in sec. 2.2 in [L], dUI (= h'l in sec. 2.2 in [L]) has to become larger 
dt 

and smaller infinitely often. Take the time derivative of the equation defining the value on the 
characteristic corning from PI in R(Po,P I), i.e. take Jid of f'(uI) = x - const. to obtain 

t t - const. 

Ox. - f(uI) 
dUI dt 
dt = -(t----"c ... o-ns-t-) ['-'-(U-l-) 

Thus [" has to become larger and smaller infintely often. Thus this example requires infinitely 
many changes of sign of ['''(u) . End of proof of lemma. 

Corollary: Only finitely many monotone jump interactions may take place. 

Proof. Since we have only finitely many bifurcations for the class of flux functions 
considered here, there may only be finitely many monotone jump interactions. 

Lemma: Only finitely many interactions are possible. 

Note: This implies that we may extend the solution for all time, since the time interval 
between two interactions may not decrease to zero 

5. Piecewise smoothness of the solution 

Definition: A smooth shock curve in the x-t plane for t to 0 corresponds 
- for t = to to a jump J(Pi,Pj) in the c-ch. 
- for t > to follow J(Pi,Pj) on the c-ch. up to either its interaction with another J, or its 

bifurcation, or its decay to zero, or up to t = 00, whichever happens first. 

Theorem: The solution to 
Ut + f(u)x = 0 

with finitely many constants as initial data and ['''(u) changing sign finitely often has finitely 
many smooth shock curves. 
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