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Abstract. We propose an asymptotic preserving (AP) and well-balanced (WB) scheme for the isen-
tropic compressible Euler system with gravitational source term. When the Mach number becomes
small, the compressible Euler equation with gravitational source term converges to an incompressible
Euler equation with spatial dependent density. We achieve AP by modifying the source term by adding
and subtracting a term that includes the equilibrium information. The WB property is attained by
introducing a very special spatial discretization to the stiff source terms. The proposed scheme can
achieve both AP and WB properties. It is important to note that the WB property is independent of
Mach number, i.e. WB property holds for all Mach number. A list of numerical test cases is added at
the end to validate the robustness and the accuracy of the scheme compared to the recent literature.
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1. Introduction

The non-dimensionalized Isentropic Euler equations with gravitational source term is given by,

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +
1

ε2
∇p(ρ) = − 1

ε2
ρ∇ϕ.

(1.1)

Here ρ is the density, u is the velocity field, p is the pressure. The pressure law is given by p(ρ) = Aργ ,
where A and γ are positive constants. ϕ(x) is a given function representing the space dependent
gravitational potential. ε is the ratio of the characteristic fluid velocity and the typical sound speed

ε2 = |u|2
c2

. ε is referred to as ”Mach number” and can be at O(1) or very small.
When ε is very small, (1.1) is at the low Mach number regime, the pressure and gravity terms become

stiff. The existence and uniqueness of solution to equation (1.1) can be found in the literature [9], [4]. It
is proved rigorously in that when ε → 0, solution to (1.1) converges to the solution of an incompressible
equation. We give the formal derivation in the subsequent part. Moving the gravitational source term
to the left-hand side of the second equation of (1.1) and using the pressure law, we then write (1.1)
as,

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +
1

ε2
ρ∇W = 0,

(1.2)
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with

W =
Aγ

γ − 1
ργ−1 + ϕ. (1.3)

Assume that the Chapman-Enskog asymptotic expansions of the variables are,

ρ = ρ(0) + ερ(1) + ε2ρ(2) + ...

u = u(0) + εu(1) + ε2u(2) + ...

W = W (0) + εW (1) + ε2W (2) + ...

The expansion of ρ∇W can be seen as,

ρ∇W = (ρ(0) + ερ(1) + ε2ρ(2) + · · · )∇(W (0) + εW (1) + ε2W (2) + · · · ),

= ρ(0)∇W (0) + ε
(
ρ(0)∇W (1) + ρ(1)∇W (0)

)
+ ε2

(
ρ(0)∇W (2) + ρ(1)∇W (1) + ρ(2)∇W (0)

)
+ · · · .

(1.4)

Comparing the O( 1
ε2
) terms in system (1.2) and using ρ(0) ̸= 0, one deduces that ∇W (0) = 0. Then

looking at the O(1ε ) terms yields ∇W (1) = 0. From the definition of W in (1.3), ∇W (0) = 0 leads to,

Aγ

γ − 1

(
ρ(0)

)γ−1
+ ϕ(x) = const

with const being a constant independent of x. Then(
ρ(0)

)γ−1
+

γ − 1

Aγ
ϕ(x) = const.

In the model (1.1), for a constant independent of x, ϕ(x) and ϕ(x) + const provide the same solution.

Thus one can define a new ϕ̃(x) = ϕ(x) + const such that
(
ρ(0)

)γ−1
+ γ−1

Aγ ϕ(x) = 1. In the subsequent

part, we drop the tilde above ϕ̃(x) and let

ρ(0) =

(
1− γ − 1

γA
ϕ(x)

) 1
γ−1

, (1.5)

which indicates that when ε ≪ 1, ρ(0) becomes stationary.
To find the equation that u(0) satisfies, we consider the O(1) terms in system (1.2) such that

∂tρ
(0) +∇ · (ρ(0)u(0)) = 0,

∂t(ρ
(0)u(0)) +∇ · (ρ(0)u(0) ⊗ u(0)) + ρ(0)∇W (2) + ρ(1)∇W (1) + ρ(2)∇W (0) = 0.

(1.6)

Using ∇W (0) = ∇W (1) = 0, system (1.6) can be written as

∇ · (ρ(0)u(0)) = 0,

∂tu
(0) + u(0)∇ · u(0) +∇W (2) = 0.

(1.7)

(1.7) is the incompressible isentropic Euler equations.
When ε goes to zero in (1.1), the sound speed is fast, and classical shock capturing schemes require

very small time steps. Hence, asymptotic preserving (AP) schemes that allow large space and time
steps become popular in this area. A numerical scheme is AP if when the scaling parameter goes to
the limit in the discretized scheme, it converges to a good discretization of the corresponding limit
model. The main advantage of AP schemes is that their stability and convergence are independent
of the stiffness of the equation. AP schemes usually discretize the stiff terms implicitly, which leads
to an IMEX(Implicit-Explicit) discretization of the model [16]. The space discretization is important
as well due to the special structure of the limiting incompressible equation. Developing AP schemes
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for compressible fluid equations in their incompressible limits is a well-studied topic in computational
fluid dynamics. A list of these schemes is listed here [1, 6, 20, 11, 14, 7, 8, 15, 19, 2, 22, 21].

The hydrostatic steady state is that the velocity is zero, and the pressure exactly balances the
gravitational force. As has been discussed in [17], this steady state is of particular interest for the
Euler equations with gravitation. The dynamics when the solution is close to the hydrostatic steady
state are important in the simulation of waves in stellar atmospheres [3] or some numerical weather
prediction [10]. To get the dynamics of small perturbations near the equilibrium, the ratio between
the magnitude of the truncation errors and the perturbations has to be small enough, which is too
expensive for standard schemes. To overcome this challenge, it is of interest to have a numerical scheme
that maintains discrete stationary solutions up to machine precision [17]. This is so-called the well-
balanced property and well-balanced (WB) schemes can effectively resolve small perturbations of the
steady state of interest. For the Euler equation with gravity source term, several strategies have been
proposed to achieve the WB property [17, 5, 13], in which complicated modifications of the fluxes
taking into account the source term are usually employed.

In this paper, we extend the AP finite difference staggered approach for the isentropic Euler equa-
tion, to (1.1) with gravity source term. On the one hand, when ϕ(x) ≡ 0, we want the scheme to be the
same as the one suggested by Goudon et al. in [11], on the other hand, we aim to get an AP scheme
when ϕ(x) is not uniform in space. However, it is not easy to achieve these two requirements at the

same time. First of all, the density ρ(0) in (1.5) is space-dependent, it is obtained by the balancing
between the pressure term ∇p(ρ) and the gravity term ρ∇ϕ. But the strategies of achieving AP prop-
erties in [11, 14, 7, 8] usually split the pressure term into two parts and treat them differently, which
will break down the balance. Therefore, if keep using the same splitting strategy on the left-hand side
of (1.1), one has to design another balance that can provide the space-dependent limiting density. We
modify the source term by adding and subtracting a term that includes the equilibrium information.
Proper implicit and explicit treatments of these two additional terms provide a new balance that gives
the space nonuniform equilibrium. Secondly, one has to carefully design the spatial discretization due
to the following two apparently opposite observations: 1) when ϕ(x) ≡ 0, (1.1) becomes a conservative
hyperbolic system, the discretization for the left-hand side of (1.1) has to be conservative; 2) in the
formal derivation of the incompressible limit equation, one has to first reformulate (1.1) into (1.2)
which is a non-conservative form even if ϕ ≡ 1. We solve this difficulty by introducing a very spe-
cial spatial discretization for the stiff source terms. Since this spatial discretization preserves exactly
the discrete hydrostatic steady state, it not only achieves AP but also gives the WB property of the
scheme.

The new contributions of the current work are that: 1) It provides a strategy of extending the
AP schemes designed for the isentropic Euler system to the case with gravity source term, without
changing the code for the hyperbolic part; 2) It can achieve not only AP but also WB. It is important
to note that the WB property is independent of Mach number ε, i.e. WB property holds for all ε. As
far as we know, our scheme is the first scheme that can achieve both properties uniform in ϵ for an
isentropic Euler system with a gravity source term.

The organization of the paper is as follows. A detailed description of the method can be found
in section 2. We show both AP and SP properties of the proposed scheme in 3. The robustness of
the scheme and its AP and SP properties are tested via a collection of numerical test cases from the
literature in section 4. Concluding remarks and possible future extensions are mentioned in section 5.
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2. The Two-dimensional Numerical Scheme

2.1. The semi-discrete scheme

Similar as in [14] and [11], we split the divergence in the density equation as well as the pressure and
the gravitational source term in the momentum equation. Let

ρ0 =

(
1− γ − 1

γA
ϕ(x)

) 1
γ−1

. (2.1)

The system (1.1) is splitted into the following two subsystems:

∂tρ+ α∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +
1

ε2
∇ [p(ρ)− a(t)ρ] = − 1

ε2
ρ∇ϕ− a(t)

ε2
ρ∇ ln ρ0,

(2.2)

and

∂tρ+ (1− α)∇ · (ρu) = 0,

∂t(ρu) +
1

ε2
a(t)∇ρ =

a(t)

ε2
ρ∇ ln ρ0.

(2.3)

where u = (u, v)T , 0 ≤ α < 1 is a constant and the time dependent function a(t) > 0 depends on the
hyperbolicity of the system (2.2). The choices of the terms 1

ε2
∇a(t)ρ in the pressure component and

1
ε2
a(t)ρ∇ ln ρ0 in the source term are related to the fact that the leading order ρ(0) has the form as in

(1.5). When there is no gravity, i.e. ρ0 ≡ 1, the modification becomes the same as in [11]. We will see
the necessity of this modification in the AP proof later on.

The first system (2.2) takes into account the slow speed, while the second part (2.3) considers the
fast sound wave. Similar as discussed in [11], numerical viscosity will be added in the first system but
not the second.

In the conservative form, (2.2) can be written as

Ut + F (U)x +G(U)y = S(U), (2.4)

with

U =

 ρ
ρu
ρv

 , F (U) =

 αρu

ρu2 + p(ρ)−a(t)ρ
ε2

ρuv

 ,

G(U) =

 αρv
ρuv

ρv2 + p(ρ)−a(t)ρ
ε2

 , S(U) =

 0

− 1
ε2
ρϕx − a(t)

ε2
ρ(ln ρ0)x

− 1
ε2
ρϕy − a(t)

ε2
ρ(ln ρ0)y

 .

The eigenvalues of the jacobian matrix of F (U) are

λ1 = u, λ2 = u+ c, λ3 = u− c, with c(ρ, u) =

√
(1− α)u2 + α

p′(ρ)− a(t)

ε2
.

Similar calculations hold for G(U), the flux along y. The choice of a(t) is to guarantee the hyperbolicity
of the system (2.2). We choose a(t) such that the eigenvalues of the jacobian matrices of F (U), G(U)
are real and positive i.e. p′(ρ) ≥ a(t). Hence, a(t) is chosen as the following,

a0(t) = min
x

{
p′(ρ)

}
. (2.5)

But, with this choice, spurious oscillations are observed in some test cases for large values of ε. They
appear in regions where the density is nearly uniform and the material velocity vanishes. Indeed,
in these regions, the corresponding sound speed vanishes and the spurious oscillations are due to
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a lack of numerical viscosity in the slow dynamic part of the splitting. Therefore, as in [11], let
a(t) = (1 − ε2)min

x

{
p′(ρ)

}
, for ε < 1. This a(t) can eliminates the spurious oscillations that might

appear for large ε. For more details, see [11].
Let ∆t be the time step, t0 = 0, and for a positive integer n, we set tn+1 = tn + ∆t. The two

subsystems (2.2), (2.3) can now be discretized as,

{
ρ∗−ρn

∆t + α∇ · (ρu)n = 0,
(ρu)∗−(ρu)n

∆t +∇ · (ρu⊗ u)n + 1
ε2
∇ [p(ρ)− a(t)ρ]n = − 1

ε2
ρn∇ϕ− an

ε2
ρn∇ ln ρ0,

(2.6)

and {
ρn+1−ρ∗

∆t + (1− α)∇ · (ρu)n+1 = 0,
(ρu)n+1−(ρu)∗

∆t + 1
ε2
a(tn)∇ρn+1 = an

ε2
ρn+1∇ ln ρ0.

(2.7)

The above two semi-discretization (2.6) and (2.7) yield an IMEX discretization

ρn+1 − ρn

∆t
+ α∇ · (ρu)n + (1− α)∇ · (ρu)n+1 = 0,

(ρu)n+1 − (ρu)n

∆t
+∇ · (ρu⊗ u)n +

1

ε2
∇ [p(ρ)− a(t)ρ]n +

1

ε2
a(t)∇ρn+1

= − 1

ε2
ρn∇ϕ− a(t)

ε2
ρn∇ ln ρ0 +

a(t)

ε2
ρn+1∇ ln ρ0.

(2.8)

2.2. The fully-discrete scheme

For spatial discretization, we use the staggered method proposed in [11], [12]. Staggered schemes are
proven to be very efficient for incompressible flows simulations. We consider a computational domain
[xL, xR]× [yL, yR] and Cartesian 2D grid points. The grid points are xi, yj for i, j ∈ {1, ..., Nx} and j ∈
{1, ..., Ny} and we define xi+ 1

2
= xi+xi+1

2 and yj+ 1
2
=

yj+yj+1

2 for i ∈ {1, ..., Nx−1}, j ∈ {1, ..., Ny−1}.
Let ∆xi,∆xi+ 1

2
,∆yj , and ∆yj+ 1

2
be respectively the length of the interval [xi− 1

2
, xi+ 1

2
], [xi, xi+1],

[yj− 1
2
, yj+ 1

2
] and [yj , yj+1]. In our calculations, we set ∆xi = ∆xi+ 1

2
= x and ∆yj = ∆yj+ 1

2
= ∆y.

As in Figure 1, the density ρ is defined at the points (xi+ 1
2
, yj+ 1

2
), while the velocity u in the x-

direction is evaluated on the points (xi, yj+ 1
2
) and the velocity v in the y-direction is evaluated on the

points (xi+ 1
2
, yj). The density on the edges of the primal mesh can be defined by the average value of

two neighbouring cells such that

ρi,j+ 1
2
=

ρi+ 1
2
,j+ 1

2
+ ρi− 1

2
,j+ 1

2

2
,

ρi+ 1
2
,j =

ρi+ 1
2
,j+ 1

2
+ ρi+ 1

2
,j− 1

2

2
.

The numerical solution is evolved on the staggered grid and the fluxes are defined as in [11]. We start
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ρi+ 1
2
,j+ 1

2

ui,j+ 1
2 ui+1,j+ 1

2

vi+ 1
2
,j

vi+ 1
2
,j+1

(i, j + 1) (i+ 1, j + 1)

(i+ 1, j)(i, j)

Figure 1. MAC discretization.

by presenting a discretization for the slow explicit system (2.6),

ρ∗
i+1

2 ,j+1
2

−ρn
i+1

2 ,j+1
2

∆t + α

[
Fx,n

i+1,j+1
2

−Fx,n

i,j+1
2

∆x +
F y,n

i+1
2 ,j+1

−F y,n

i+1
2 ,j

∆y

]
= 0,

ρ∗
i,j+1

2

u∗
i,j+1

2

−ρn
i,j+1

2

un

i,j+1
2

∆t +
ζu,x
i+1

2 ,j+1
2

−ζu,x
i− 1

2 ,j+1
2

∆x +
ζu,yi,j+1−ζu,yi,j

∆y

+ 1
ε2

Πn

i+1
2 ,j+1

2

−Πn

i− 1
2 ,j+1

2
∆x = −

ρn
i,j+1

2
ε2ρ

0,i,j+1
2

P (ρ
0,i+1

2 ,j+1
2
)−P (ρ

0,i− 1
2 ,j+1

2
)

∆x −
andρ

n

i,j+1
2

ε2ρ
0,i,j+1

2

ρ
0,i+1

2 ,j+1
2
−ρ

0,i− 1
2 ,j+1

2
∆x ,

ρ∗
i+1

2 ,j
v∗
i+1

2 ,j
−ρn

i+1
2 ,j

vn
i+1

2 ,j

∆t +
ζv,xi+1,j−ζv,xi,j

∆x +
ζv,y
i+1

2 ,j+1
2

−ζv,y
i+1

2 ,j− 1
2

∆y

+ 1
ε2

Πn

i+1
2 ,j+1

2

−Πn

i+1
2 ,j− 1

2
∆y = −

ρn
i+1

2 ,j

ε2ρ
0,i+1

2 ,j

P (ρ
0,i+1

2 ,j+1
2
)−P (ρ

0,i+1
2 ,j− 1

2
)

∆y −
andρ

n

i+1
2 ,j

ε2ρ
0,i+1

2 ,j

ρ
0,i+1

2 ,j+1
2
−ρ

0,i+1
2 ,j− 1

2
∆y .

(2.9)
with

Πn
i+ 1

2
,j+ 1

2

= P
(
ρn
i+ 1

2
,j+ 1

2

)
− andρ

n
i+ 1

2
,j+ 1

2

where and is the discrete version of a(t) defined as,

and = (1− ε2)min
i,j

{
P

′
(ρn

i+ 1
2
,j+ 1

2

)

}
.

The flux terms are

F x
i,j+ 1

2

= F x,+

i,j+ 1
2

+ F x,−
i,j+ 1

2

= F+(ρi− 1
2
,j+ 1

2
, ui,j+ 1

2
) + F−(ρi+ 1

2
,j+ 1

2
, ui,j+ 1

2
),

F y

i+ 1
2
,j
= F y,+

i+ 1
2
,j
+ F y,−

i+ 1
2
,j
= F+(ρi+ 1

2
,j− 1

2
, vi+ 1

2
,j) + F−(ρi+ 1

2
,j+ 1

2
, vi+ 1

2
,j),

ζu,x
i+ 1

2
,j+ 1

2

= ui,j+ 1
2
F x,+

i+ 1
2
,j+ 1

2

+ ui+1,j+ 1
2
F x,+

i+ 1
2
,j+ 1

2

, ζu,yi,j = ui,j− 1
2
F y,+
i,j + ui,j+ 1

2
F y,+
i,j

ζv,xi,j = vi− 1
2
,jF

x,+
i,j + vi+ 1

2
,jF

x,+
i,j , ζv,y

i+ 1
2
,j+ 1

2

= vi+ 1
2
,jF

y,+

i+ 1
2
,j+ 1

2

+ vi+ 1
2
,j+1F

y,+

i+ 1
2
,j+ 1

2
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with

F+(ρ, u) =


0, if u ≤ −c(ρ, u),

ρ
4c(ρ,u)(v + c(ρ, u))2, if |u| ≤ c(ρ, u),

ρu, if u ≥ c(ρ, u),

F−(ρ, u) =


ρu, if u ≤ −c(ρ, u),

− ρ
4c(ρ,u)(v − c(ρ, u))2, if |u| ≤ c(ρ, u),

0, if u ≥ c(ρ, u),

and

F x,±
i+ 1

2
,j+ 1

2

=
1

2

(
F x,±
i,j+ 1

2

+ F x,±
i+1,j+ 1

2

)
, F y,±

i,j =
1

2

(
F y,±
i+ 1

2
,j
+ F y,±

i− 1
2
,j

)
.

In (2.9), from the definition of ρ0 in (1.5), one has

1
ρ
0,i,j+1

2

P (ρ
0,i+1

2 ,j+1
2
)−P (ρ

0,i− 1
2 ,j+1

2
)

∆x ≈ ∇ϕ, (2.10)

1
ρ
0,i,j+1

2

ρ
0,i+1

2 ,j+1
2
−ρ

0,i− 1
2 ,j+1

2
∆x ≈ ∂x ln ρ0, (2.11)

1
ρ
0,i+1

2 ,j

ρ
0,i+1

2 ,j+1
2
−ρ

0,i+1
2 ,j− 1

2
∆y ≈ ∂y ln ρ0 (2.12)

These specific discrete forms are crucial for the AP and WB properties of the fully discretized scheme.
We will see their benifits in section 3.

The next step is to discretize the implicit system (2.7) for fast sound wave by

ρn+1

i+1
2 ,j+1

2

−ρ∗
i+1

2 ,j+1
2

∆t

+(1− α)
[ (Fn+1)Up,x

i+1,j+1
2

−(Fn+1)Up,x

i,j+1
2

∆x +
(Fn+1)Up,y

i+1
2 ,j+1

−(Fn+1)Up,y

i+1
2 ,j

∆y

]
= 0,

ρn+1

i,j+1
2

un+1

i,j+1
2

−ρ∗
i,j+1

2

u∗
i,j+1

2
∆t

+
and
ε2

ρn+1

i+1
2 ,j+1

2

−ρn+1

i− 1
2 ,j+1

2
∆x =

andρ
n+1

i,j+1
2

ε2ρn+1

0,i,j+1
2

ρ
0,i+1

2 ,j+1
2
ρ
0,i− 1

2 ,j+1
2

∆x ,

ρn+1

i+1
2 ,j

vn+1

i+1
2 ,j

−ρ∗
i+1

2 ,j
v∗
i+1

2 ,j

∆t

+
and
ε2

ρn+1

i+1
2 ,j+1

2

−ρn+1

i+1
2 ,j− 1

2
∆y =

andρ
n+1

i+1
2 ,j

ε2ρn+1

0,i+1
2 ,j

ρ
0,i+1

2 ,j+1
2
−ρ

0,i+1
2 ,j− 1

2
∆y ,

(2.13)

where (Fn+1)Up,x

i,j+ 1
2

and (Fn+1)Up,y

i+ 1
2
,j
are the upwind fluxes defined as following,

(Fn+1)Up,x

i,j+ 1
2

= ρn+1
i− 1

2
,j+ 1

2

[
un+1
i,j+ 1

2

]+ − ρn+1
i+ 1

2
,j+ 1

2

[
un+1
i,j+ 1

2

]−
(Fn+1)Up,y

i+ 1
2
,j
= ρn+1

i+ 1
2
,j− 1

2

[
vn+1
i+ 1

2
,j

]+ − ρn+1
i+ 1

2
,j+ 1

2

[
vn+1
i+ 1

2
,j

]−
.

(2.14)

Here [·]+ = max{·, 0} and [·]− = −min{·, 0} represents respectively the positive and negative parts of
the given function. The fast implicit part is solved via solving an elliptic equation of ρ. From the last

7
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two equations in (2.13), un+1
i,j+ 1

2

and vn+1
i+ 1

2
,j
can be written as a function of ρn+1 such that

un+1
i,j+ 1

2

=
1

ρn+1
i,j+ 1

2

[
ρ∗
i,j+ 1

2

u∗
i,j+ 1

2

−
and∆t

ε2

ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i− 1

2
,j+ 1

2

∆x
+

and∆t

ε2

ρn+1
i,j+ 1

2

ρ0,i,j+ 1
2

ρ0,i+ 1
2
,j+ 1

2
− ρ0,i− 1

2
,j+ 1

2

∆x

]
,

(2.15)
and

vn+1
i+ 1

2
,j
=

1

ρn+1
i+ 1

2
,j

[
ρ∗
i+ 1

2
,j
v∗
i+ 1

2
,j
−

and∆t

ε2

ρn+1
i+ 1

2
,j+ 1

2

− ρn+1
i+ 1

2
,j− 1

2

∆y
+

and∆t

ε2

ρn+1
i+ 1

2
,j

ρ0,i+ 1
2
,j

ρ0,i+ 1
2
,j+ 1

2
− ρ0,i+ 1

2
,j− 1

2

∆y

]
.

(2.16)
By substitute the above two equations into the density equation in (2.13), then we solve the system
by Newton-Raphson method.

3. The AP and WB properties of the scheme

3.1. The AP property of the semi-discretized scheme

In order to prove the AP property of the semi-discrete scheme we need to prove that as ε goes to zero,
(2.8) is a good discretization of the incompressible limit equation (1.7).

We reformulate the momentum equation in (2.8) before the expansion, as at the PDE level. Let

M(ρ) =

∫ ρ

q

1

ρ′
dρ′, N(ρ) =

∫ ρ

q
Aγ(ρ′)γ−2dρ′ (3.1)

with q > 0 being a constant independent of ρ.
We then write the last two terms on the left hand side and the right hand side of the momentum

equation in (2.8), into the multiplication of ρ and a term of divergence form:

• The two terms involving ρn+1.

1

ε2
an∇ρn+1 − an

ε2
ρn+1∇ ln ρ0 =

an

ε2
[
∇ρn+1 − ρn+1∇ ln ρ0

]
=

an

ε2
ρn+1

[
∇M(ρn+1)−∇ ln ρ0

]
.

The last equality holds due to the definition of M(ρ) in (3.1).

• The two terms involving ρn.

1

ε2
∇ [p(ρ)− a(t)ρ]n +

1

ε2
ρn∇ϕ+

an

ε2
ρn∇ ln ρ0

=
1

ε2
[
γA(ρn)γ−1∇ρn − an∇ρn + anρn∇ ln ρ0 + ρn∇ϕ

]
,

=
1

ε2
ρn

[
γA(ρn)γ−2∇ρn +∇ϕ− an

∇ρn

ρn
+ an∇ ln ρ0

]
,

=
1

ε2
ρn [∇N(ρn) +∇ϕ− an[∇M(ρn)−∇ ln ρ0]] .

The last equality holds due to the definitions of N(ρ) and M(ρ) in (3.1).

Hence, the momentum equation can be rewritten as,

(ρu)n+1 − (ρu)n

∆t
+∇ · (ρu⊗ u)n +

1

ε2
ρn

[
∇N(ρn) +∇ϕ

− an[∇M(ρn)−∇ ln ρ0]
]
+

an

ε2
ρn+1

[
∇M(ρn+1)−∇ ln ρ0

]
= 0. (3.2)

8
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Definition 3.1. (ρn, un, vn) are said to be well-prepared data if they satisfy,

ρn =

(
1− γ − 1

γA
ϕ

) 1
γ−1

+O(ε2) = ρ0 + ε2ρ(2)n +O(ε3), ∇ · (ρ0u(0)n) = 0. (3.3)

Lemma 3.2. Choose (ρn, un, vn) to be well-prepared and let a0 as in (2.5), then when ε ≪ 1,

L =
1

ε2
ρn [∇N(ρn) +∇ϕ− an[∇M(ρn)−∇ ln ρ0]] = ρ0∇

[
(N(ρn))(2) − a0(M(ρn))(2)

]
+O(ε).

Proof. Let the expansion of an be given by

an = a(0)n + εa(1)n + ε2a(2)n +O(ε3). (3.4)

Due to (3.3), from the definition a(t) = (1− ε2)min
x

{
p′(ρ)

}
, we find

a(0)n = min
x

{
p′(ρ0)

}
= a0, a(1)n = 0. (3.5)

Moreover, the expansions of M(ρn) = Mn and N(ρn) = Nn around ρ(0) are given as

Mn = M(ρn) =M
(
ρ0 + ε2ρ(2)n +O(ε3)

)
,

=M(ρ0) + ε2ρ(2)nM
′
(ρ0) +O(ε3),

Nn = N(ρn) =N(ρ0) + ε2ρ(2)nN
′
(ρ0) +O(ε3).

(3.6)

Due to the definition of ρ0, we have

ln(ρ0)
γ−1 = ln

(
1− γ − 1

γA
ϕ
)
,

Thus,

(γ − 1)
∇ρ0
ρ0

=
−γ−1

γA ∇ϕ

(1− γ−1
γA ϕ)

,

which gives

(∇Mn)(0) −∇ ln ρ0 = ∇M(ρ0)−∇ ln ρ0 = 0.

Similarly, using the definitions of N(ρ) in (3.1), we have

(∇Nn)(0) +∇ϕ = ∇N(ρ0) +∇ϕ = 0.

Therefore, from the above results, we find

L =
ρ0
ε2

[
(∇Nn)(0) +∇ϕ− a(0)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+

ρ0
ε

[
(∇Nn)(1) − a(0)n(∇Mn)(1) − a(1)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+ ρ0

[
(∇Nn)(2) − a(0)n(∇Mn)(2) − a(1)n(∇Mn)(1) − a(2)n[(∇Mn)(0) −∇ ln ρ0]

]
+ ρ(2)n

[
(∇Nn)(0) +∇ϕ− a(0)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+O(ε)

=ρ(0)
[
(∇Nn)(2) − a(0)n(∇Mn)(2)

]
+O(ε)

=ρ(0)∇
(
(Nn)(2) − a0(M

n)(2)
)
+O(ε).

Hence, we conclude the proof of the lemma.

Then we compare O( 1
ε2
) terms in the momentum equation (3.2) and the only terms left of order

1
ε2

are

a(0)nρ(0)n+1
[
(∇Mn+1)(0) −∇ ln ρ0

]
= 0.

9
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Since a(0)n = a0 ̸= 0, when ρ(0)n+1 ̸= 0,

(∇Mn+1)(0) = ∇ ln ρ0, (3.7)

which yields

∇ ln(ρ(0)n+1) = ∇ ln(1− γ − 1

γA
ϕ)

1
γ−1 .

Thus

ln(ρ(0)n+1)γ−1 = ln(1− γ − 1

γA
ϕ) + c,

and ρ(0)n+1 satisfies

ρ(0)n+1 = c

(
1− γ − 1

γA
ϕ

) 1
γ−1

.

Here c is an arbitrary constant determined by the boundary condition of ρ. If the boundary condition
of ρ does not change with time, from the definition of ϕ(x), we find ρ(0)n+1 = ρ0. The O(1ε ) terms in
the momentum equation (3.2) are

a(0)nρ(0)n+1(∇Mn+1)(1) +
(
a(0)nρ(1)n+1 + a(1)nρ(0)n+1

)
∇
[
M (0)n+1 − ln ρ0

]
= 0,

Due to (3.7), (∇Mn+1)(1) = 0. The boundary condition of ρn+1 leads to ρ(1)n+1 = 0.
Now compare O(1) terms in the density equation in (2.8),

ρ(0)n+1 − ρ(0)n

∆t
+ α∇ · (ρ(0)u(0))n + (1− α)∇ · (ρ(0)u(0))n+1 = 0, (3.8)

Because ρ(0)n+1 = ρ(0)n = ρ0 is time independent and the initial data are well prepared, then equation
(3.8) gives

∇ · (ρ0u(0)n+1) = 0. (3.9)

Compare O(1) terms in the momentum equation,

(ρ(0)u(0))n+1 − (ρ(0)u(0))n

∆t
+∇ · (ρ(0)u(0) ⊗ u(0))n + ρ(0)n∇

(
(Nn)(2) − a(0)n(Mn)(2)

)
+ a(0)nρ(0)n+1(∇Mn+1)(2) +

(
a(0)nρ(1)n+1 + a(1),nρ(0)n+1

)
(∇Mn+1)(1)

+
(
a(0)nρ(2)n+1 + a(1)nρ(1)n+1 + a(2)nρ(0)n+1

)
∇
[
M (0)n+1 − ln ρ0

]
= 0.

Using the fact that ρ(0)n+1 = ρ(0)n = ρ0 is constant in time, (∇Mn+1)(0) = ∇ ln ρ0, and (∇Mn+1)(1) =
0, the equation simplifies to,

u(0)n+1 − u(0)n

∆t
+ u(0)n∇ · u(0)n +∇(Nn − a0M

n + a0M
n+1)(2) = 0.

Therefore, as ε goes to zero, the solution of (2.8) converges to

∇ · (ρ(0)u(0))n+1 = 0,

u(0)n+1 − u(0)n

∆t
+ u(0)n∇ · u(0)n + (∇Wn+1)(2) = 0,

(3.10)

with Wn+1 = Nn − a0M
n + a0M

n+1. Therefore, (3.10) is a good discretization of the incompressible
limit equations (1.7) and the semi-discrete scheme (2.8) is AP.

10
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3.2. The AP property of the fully-discretized scheme

As we did at the PDE level, we take the gravitational terms in the momentum equations in system
(3.11) to the left-hand side and reformulate the system as follows:

ρn+1

i+1
2 ,j+1

2

−ρn
i+1

2 ,j+1
2

∆t + α

[
(Fn)Up,x

i+1,j+1
2

−(Fn)Up,x

i,j+1
2

∆x +
(Fn)Up,y

i+1
2 ,j+1

−(Fn)Up,y

i+1
2 ,j

∆y

]

+(1− α)

[
(Fn+1)Up,x

i+1,j+1
2

−(Fn+1)Up,x

i,j+1
2

∆x +
(Fn+1)Up,y

i+1
2 ,j+1

−(Fn+1)Up,y

i+1
2 ,j

∆y

]
= 0,

ρn+1

i,j+1
2

un+1

i,j+1
2

−ρn
i,j+1

2

un

i,j+1
2

∆t +
ζu,x
i+1

2 ,j+1
2

−ζu,x
i− 1

2 ,j+1
2

∆x +
ζu,yi,j+1−ζu,yi,j

∆y

+ 1
ε2
ρn
i,j+ 1

2

[
Dx

i,j+ 1
2

Nn +Dx
i,j+ 1

2

ϕ− an[Dx
i,j+ 1

2

Mn −Dx
i,j+ 1

2

ln ρ0]
]

+an

ε2
ρn+1
i,j+ 1

2

[Dx
i,j+ 1

2

Mn+1 −Dx
i,j+ 1

2

ln ρ0] = 0,

ρn+1

i+1
2 ,j

vn+1

i+1
2 ,j

−ρn
i+1

2 ,j
vn
i+1

2 ,j

∆t +
ζv,xi+1,j−ζv,xi,j

∆x +
ζv,y
i+1

2 ,j+1
2

−ζv,y
i+1

2 ,j− 1
2

∆y

+ 1
ε2
ρn
i+ 1

2
,j

[
Dy

i+ 1
2
,j
Nn +Dy

i+ 1
2
,j
ϕ− an[Dy

i+ 1
2
,j
Mn −Dy

i+ 1
2
,j
ln ρ0]

]
+an

ε2
ρn+1
i+ 1

2
,j
[Dy

i+ 1
2
,j
Mn+1 −Dy

i+ 1
2
,j
ln ρ0] = 0.

(3.11)

with

Dx
i,j+ 1

2

q =
qi+ 1

2
,j+ 1

2
− qi− 1

2
,j+ 1

2

∆x
, Dy

i+ 1
2
,j
q =

qi+ 1
2
,j+ 1

2
− qi+ 1

2
,j− 1

2

∆y

for arbitrary function q We will show the AP property based on (3.11).
Assume that the Chapman-Enskog asymptotic expansion of the discrete variables are

ρn
i+ 1

2
,j+ 1

2

= ρ
(0)n

i+ 1
2
,j+ 1

2

+ ερ
(1)n

i+ 1
2
,j+ 1

2

+ ε2ρ
(2)n

i+ 1
2
,j+ 1

2

+ ...,

un
i,j+ 1

2

= u
(0)n

i,j+ 1
2

+ εu
(1)n

i,j+ 1
2

+ ε2u
(2)n

i,j+ 1
2

+ ...,

vn
i+ 1

2
,j
= v

(0)n

i+ 1
2
,j
+ εv

(1)n

i+ 1
2
,j
+ ε2v

(2)n

i+ 1
2
,j
+ ....

Definition 3.3. The discrete data (ρ, u, v) are said to be well-prepared if they satisfy,

ρn
i+ 1

2
,j+ 1

2

=

(
1− γ − 1

γA
ϕi+ 1

2
,j+ 1

2

) 1
γ−1

+O(ε2) = ρ
(0)

i+ 1
2
,j+ 1

2

+O(ε2)

(F (0)n)Up,x

i+1,j+ 1
2

− (F (0)n)Up,x

i,j+ 1
2

∆x
+

(F (0)n)Up,y

i+ 1
2
,j+1

− (F (0)n)Up,y

i+ 1
2
,j

∆y
= 0,

(3.12)

where (F (0)n)Up,x, (F (0)n)Up,y are defined as in (2.14) with ρn+1, un+1, vn+1 being replaced by ρ(0)n,

u(0)n and v(0)n.

Lemma 3.4. Choose (ρn, un, vn) to be well-prepared, then

Ld =
1

ε2
ρn
i,j+ 1

2

[
Dx

i,j+ 1
2

Nn +Dx
i,j+ 1

2

ϕ− an[Dx
i,j+ 1

2

Mn −Dx
i,j+ 1

2

ln ρ0]
]

= ρ
(0)

i,j+ 1
2

Dx
i,j+ 1

2

[
Nn(2) − a0M

n(2)
]
+O(ε).
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Proof. It is easy to check that

Dx
i,j+ 1

2

M(ρ(0))−Dx
i,j+ 1

2

ln ρ0 = 0, Dy

i+ 1
2
,j
M(ρ(0))−Dy

i+ 1
2
,j
ln ρ0 = 0,

Dx
i,j+ 1

2

N(ρ(0)) =
Aγ

γ − 1
Dx

i,j+ 1
2

(ρ(0))γ−1 = −Dx
i,j+ 1

2

ϕ, Dy

i+ 1
2
,j
N(ρ(0)) +Dy

i+ 1
2
,j
ϕ = 0,(

Dx
i,j+ 1

2

Mn
)(1)

=
(
Dx

i,j+ 1
2

Nn
)(1)

= 0,
(
Dy

i+ 1
2
,j
Mn

)(1)
=

(
Dy

i+ 1
2
,j
Nn

)(1)
= 0.

(3.13)

The expansion of an is the same as in (3.4), (3.5). Now, let’s look at the expansion of Ld. Noting

a(0)n = a0 and (3.13), we have

Ld =
1

ε2
ρ
(0)

i,j+ 1
2

[
(Dx

i,j+ 1
2

Nn)(0) +Dx
i,j+ 1

2

ϕ− a(0)n[(Dx
i,j+ 1

2

Mn)(0) −Dx
i,j+ 1

2

ln ρ0]
]

+ ρ
(0)

i,j+ 1
2

[
(Dx

i,j+ 1
2

Nn)(2) − a(0)n(Dx
i,j+ 1

2

Mn)(2) − a(2)n[(Dx
i,j+ 1

2

Mn)(0) −Dx
i,j+ 1

2

ln ρ0]
]

+ ρ
(2)n

i,j+ 1
2

[
(Dx

i,j+ 1
2

Nn)(0) +Dx
i,j+ 1

2

ϕ− a(0)n[(Dx
i,j+ 1

2

Mn)(0) −Dx
i,j+ 1

2

ln ρ0]
]
+O(ε),

=ρ
(0)n

i,j+ 1
2

Dx
i,j+ 1

2

[
(Nn)(2) − a0(M

n)(2)
]
+O(ε),

which conclude the proof.

Similarly,
1

ε2
ρn
i+ 1

2
,j

[
Dy

i+ 1
2
,j
Nn +Dy

i+ 1
2
,j
ϕ− and [D

y

i+ 1
2
,j
Mn −Dy

i+ 1
2
,j
ln ρ0]

]
=ρ

(0)n

i+ 1
2
,j
Dx

i+ 1
2
,j

[
(Nn)(2) − a0(M

n)(2)
]
+O(ε).

Comparing the O( 1
ε2
) terms in the momentum equation in the x-direction, one gets

a0ρ
(0)n+1

i,j+ 1
2

[(Dx
i,j+ 1

2

Mn+1)(0) −Dx
i,j+ 1

2

ln ρ0] = 0. (3.14)

Because a0 ̸= 0 and ρ
(0),n+1

i,j+ 1
2

̸= 0, then

Dx
i,j+ 1

2

ln ρ(0)n+1 = Dx
i,j+ 1

2

ln(1− γ − 1

γA
ϕ)

1
γ−1 .

Hence, the boundary conditions of ρn+1 yield

ρ
(0)n+1

i+ 1
2
,j+ 1

2

=

(
1− γ − 1

γA
ϕi+ 1

2
,j+ 1

2

) 1
γ−1

Similar result can be obtained from comparing O( 1
ε2
) terms in the momentum equation in the y-

direction. From the above calculations, we deduce that ρ
(0)

i+ 1
2
,j+ 1

2

is independent of time. Similarly,

comparing O(1ε ) terms in the momentum equation gives ρ
(1)

i+ 1
2
,j+ 1

2

= 0. From O(1) terms in the density

equation,

α

(Fn(0))Up,x

i+1,j+ 1
2

− (Fn(0))Up,x

i,j+ 1
2

∆x
+

(Fn(0))Up,y

i+ 1
2
,j+1

− (Fn(0))Up,y

i+ 1
2
,j

∆y


+ (1− α)

(Fn+1(0))Up,x

i+1,j+ 1
2

− (Fn+1(0))Up,x

i,j+ 1
2

∆x
+

(Fn+1(0))Up,y

i+ 1
2
,j+1

− (Fn+1(0))Up,y

i+ 1
2
,j

∆y

 = 0.
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Then since and ρ
(0)

i+ 1
2
,j+ 1

2

is time independent, from (2.14) and (3.12), one has

(
ρ
(0)

i+ 1
2
,j+ 1

2

[
u
n+1(0)

i+1,j+ 1
2

]+ − ρ
(0)

i+ 3
2
,j+ 1

2

[
u
n+1(0)

i+1,j+ 1
2

]−)− (
ρ
(0)

i− 1
2
,j+ 1

2

[
u
n+1(0)

i,j+ 1
2

]+ − ρ
(0)

i+ 1
2
,j+ 1

2

[
u
n+1(0)

i,j+ 1
2

]−)
∆x

+

(
ρ
(0)

i+ 1
2
,j+ 1

2

[
v
n+1(0)

i+ 1
2
,j+1

]+ − ρ
(0)

i+ 1
2
,j+ 3

2

[
v
n+1(0)

i+ 1
2
,j+1

]−)− (
ρ
(0)

i+ 1
2
,j− 1

2

[
v
n+1(0)

i+ 1
2
,j

]+ − ρ
(0)

i+ 1
2
,j+ 1

2

[
v
n+1(0)

i+ 1
2
,j

]−)
∆y

= 0.

(3.15)

Comparing O(1) terms in the momentum equation in x-direction and using (3.14), the equation
can be simplified to,

u
n+1(0)

i,j+ 1
2

− u
n(0)

i,j+ 1
2

∆t
+

1

ρ
(0)

i,j+ 1
2

ζu,x
i+ 1

2
,j+ 1

2

− ζu,x
i− 1

2
,j+ 1

2

∆x
+

1

ρ
(0)

i,j+ 1
2

ζu,yi,j+1 − ζu,yi,j

∆y

+Dx
i,j+ 1

2

[
(Nn)(2) − a0(M

n)(2) + a0(M
n+1)(2)

]
= 0.

Finally the momentum limit equation in the x-direction is,

u
n+1(0)

i,j+ 1
2

− u
n(0)

i,j+ 1
2

∆t
+

1

ρ
(0)

i,j+ 1
2

ζu,x
i+ 1

2
,j+ 1

2

− ζu,x
i− 1

2
,j+ 1

2

∆x
+

1

ρ
(0)

i,j+ 1
2

ζu,yi,j+1 − ζu,yi,j

∆y
+

W
(2)n+1

i+ 1
2
,j+ 1

2

−W
(2)n+1

i− 1
2
,j+ 1

2

∆x
= 0.

(3.16)

Similar calculations are performed on the momentum equation in the y-direction, which yields

v
n+1(0)

i+ 1
2
,j

− v
n(0)

i+ 1
2
,j

∆t
+

1

ρ
(0)

i+ 1
2
,j

ζv,xi+1,j − ζv,xi,j

∆x
+

1

ρ
(0)

i+ 1
2
,j

ζv,y
i+ 1

2
,j+ 1

2

− ζu,y
i+ 1

2
,j− 1

2

∆y
+

W
(2)n+1

i+ 1
2
,j+ 1

2

−W
(2)n+1

i+ 1
2
,j− 1

2

∆y
= 0.

(3.17)

Therefore, the fully-discrete incompressible limit system is (3.15)-(3.17). It is not difficult to check
that (3.15)-(3.17) is a consist discretization of the incompressible limit system (1.7).

3.3. The WB property of the scheme

In this section we prove that the developed AP scheme for the isentropic Euler equations with gravi-
tational source term is WB. The stationary state under consideration is

us
i,j+ 1

2

= vs
i+ 1

2
,j
= 0, ρs

i+ 1
2
,j+ 1

2

=
(
1− γ − 1

γA
ϕi+ 1

2
,j+ 1

2

) 1
γ−1

.

Theorem 3.5. If the solution at time tn is stationary, i.e. (ρn
i+ 1

2
,j+ 1

2

, un
i,j+ 1

2

, vn
i+ 1

2
,j
) = (ρs

i+ 1
2
,j+ 1

2

, us
i,j+ 1

2

, vs
i+ 1

2
,j
),

then it does not change at the next time tn+1.

Proof. By substituting (ρn
i+ 1

2
,j+ 1

2

, un
i,j+ 1

2

, vn
i+ 1

2
,j
) = (ρs

i+ 1
2
,j+ 1

2

, us
i,j+ 1

2

, vs
i+ 1

2
,j
) into (3.11), it is easy to

check that
Dx

i,j+ 1
2

Nn +Dx
i,j+ 1

2

ϕ = 0, Dy

i+ 1
2
,j
Nn +Dy

i+ 1
2
,j
ϕ = 0,

Dx
i,j+ 1

2

Mn −Dx
i,j+ 1

2

ln ρ0 = 0, Dy

i+ 1
2
,j
Mn −Dy

i+ 1
2
,j
ln ρ0 = 0,

13
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and for ∀ε, (3.11) becomes

ρn+1

i+1
2 ,j+1

2

−ρn
i+1

2 ,j+1
2

∆t + (1− α)

[
(Fn+1)Up,x

i+1,j+1
2

−(Fn+1)Up,x

i,j+1
2

∆x +
(Fn+1)Up,y

i+1
2 ,j+1

−(Fn+1)Up,y

i+1
2 ,j

∆y

]
= 0,

ρn+1

i,j+1
2

un+1

i,j+1
2

∆t + an

ε2
ρn+1
i,j+ 1

2

[Dx
i,j+ 1

2

Mn+1 −Dx
i,j+ 1

2

ln ρ0] = 0,

ρn+1

i+1
2 ,j

vn+1

i+1
2 ,j

∆t + an

ε2
ρn+1
i+ 1

2
,j
[Dy

i+ 1
2
,j
Mn+1 −Dy

i+ 1
2
,j
ln ρ0] = 0.

(3.18)

One can check that (ρn+1
i+ 1

2
,j+ 1

2

, un+1
i,j+ 1

2

, vn+1
i+ 1

2
,j
) = (ρs

i+ 1
2
,j+ 1

2

, us
i,j+ 1

2

, vs
i+ 1

2
,j
) satisfies (3.18), this concludes

the proof of the WB property of the fully-discretized scheme.

4. Numerical Results

In this section, we validate the AP and WB properties of the 1D and 2D numerical schemes. Test cases
are chosen for the isentropic Euler equations with and without gravitational source term. Note that,
in the absence of the gravitational source term, the developed scheme is the AP scheme developed
by Goudon et al. [11]. As in [11], we choose α = ε2 and l = 0 in the definition of a(t) in (2.5)for all
numerical test cases.

4.1. 1D test cases

4.1.1. 1D Riemann problem

In order to validate the robustness of the 1D numerical scheme, we extract from [11] a 1D Riemann
problem for different values of ε. The initial conditions are

ρ(x, 0) =

{
1 + ε2 if x < 0.5,

1 if x > 0.5,

u(x, 0) =

{
1− ε if x < 0.5,

1 + ε if x > 0.5.

The pressure is given by p(ρ) = Aργ with A = 1 and γ = 2. The solution is computed in the interval
[0, 1] over 200 grid points for ∆t = β∆x, with β = 0.2, 0.1 or 0.01. To test the AP property of the
scheme, three different cases for different values of ε are considered. The density and the velocity are
illustrated at the final time T = 0.1 for ε =

√
0.99 and β = 0.2 in figure 2, at the final time T = 0.05

for ε =
√
0.1 and β = 0.1 in figure 3, and at the final time T = 0.007 for ε =

√
0.001 and β = 0.01 in

figure 4. In the cases where ε is small (ε =
√
0.1 or

√
0.001), the AP scheme gives relevant results for

β = 0.2, while explicit scheme simply returns negative density. By adjusting β, the AP scheme gives
better results, and the explicit scheme returns positive density. For more details about the comparison,
please refer to section 3.1 in [11]. The plots are in prefect match with the ones in the Literature. The
solution can still be captured as ε gets smaller which proves the AP property of the 1D scheme.

4.1.2. 1D steady state

As proven analytically, the AP scheme is also WB. To prove numerically the WB property of the
scheme, we simulate a steady state solution and prove numerically that the scheme preserves the
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Figure 2. 1D Riemann problem: density (left) and velocity (right) initially and at the
final time Tfinal=0.1 for ε =

√
0.99 and β = 0.2.
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Figure 3. 1D Riemann problem: density (left) and velocity (right) initially and at the
final time Tfinal=0.05 for ε =

√
0.1 and β = 0.1.

steady state. One example of a steady state for the isentropic Euler equations with gravitational
source term is ρ(x) =

(
1− γ−1

γA ϕ(x)
) 1

γ−1
,

u(x) = 0.
(4.1)

With the pressure law given as p(ρ) = Aργ where A = 1 and γ = 1.4, and a gravitational potential
ϕ(x) = x. At the PDE level, (4.1) is a steady state solution. The computational domain is the interval
[0, 1] discretized over 200 grid points. We choose ε =

√
0.99 and ∆t = β∆x with β = 0.01 With

the knowledge that the scheme should preserve the steady state independent of the choice of ε. We
run our simulations till the final time t = 0.1 and compare it to the steady state solution in figure
5. The density plot at the final time lies exactly on top of the initial density. The velocity error is
approximately 10−7 and this error stays as it is as time increases, an indication that the scheme has
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Figure 4. 1D Riemann problem: density (left) and velocity (right) initially and at the
final time Tfinal=0.007 for ε =

√
0.001 and β = 0.01.

reached the numerical steady state. It is worth mentioning that no well-balancing treatment is applied
here. In other words, the AP schemes with their IMEX structure fulfill the need for any SP treatment.
At least for the isentropic Euler equations with gravitational source term, the SP property follows
from the AP property.
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Figure 5. 1D steady state: profile of the density (left) and the momentum (right)
initially and at the final time t = 0.1 .
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4.2. 2D test cases

4.2.1. 2D Riemann problem

An extension of the 1D Riemann Problem is considered in this section. The initial data are given as

ρ(x, y, 0) =

{
1 + ε2 if x < 0.5,

1 if x > 0.5,

u(x, y, 0) =

{
1− ε if x < 0.5,

1 + ε if x > 0.5,

v(x, y, 0) = 0.

The 1D flow in 2D setup takes place in the direction of the horizontal velocity. The computational
domain is the square (0, 1)× (0, 1) divided into 200× 200 grid points. A comparison between the 1D
results and the 2D cross sections is illustrated. The density and the velocity are plotted at the final
time T = 0.1 for ε =

√
0.99 and β = 0.2 in figure 6, at the final time T = 0.05 for ε =

√
0.1 and

β = 0.1 in figure 7, and at the final time T = 0.007 for ε =
√
0.001 and β = 0.01 in figure 8. The

results show the accuracy and the robustness of the 2D scheme (2.9)-(2.13) as well as the AP property.
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Figure 6. 2D Riemann problem: density (left) and velocity (right) initially, and at
the final time Tfinal=0.1 for ε =

√
0.99 and β = 0.2.

4.2.2. 2D steady state

In this section, we test the SP property of the 2D scheme. An extension of the 1D steady state along
the y-axis is considered

ρ(x, y) =

(
1− γ − 1

γA
ϕ(x, y)

) 1
γ−1

, (4.2)

(4.3)

with zero velocity field u = 0 in the square (0, 1)× (0, 1) over 200×200 grid points, and a gravitational
potential ϕ(x, y) = x. A direct comparison between the 1D plots and the 2D cross sections is illustrated
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Figure 7. 2D Riemann problem: density (left) and velocity (right) initially, and at
the final time Tfinal=0.05 for ε =

√
0.1 and β = 0.1.
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Figure 8. 2D Riemann problem: density (left) and velocity (right) initially, and at
the final time Tfinal=0.007 for ε =

√
0.001 and β = 0.01.

in figure 9. This test case proves that the 2D AP scheme preserves steady states numerically without
the need for any extra well-balancing, which is a strong statement, suggesting that we can prove, so far
(analytically and numerically), for AP schemes for the isentropic Euler equations with gravitational
source term.

4.2.3. 2D translating vortex

A traveling vortex from [11] is considered in this section. The computational domain is the square
[0, 1]× [0, 1] discretized over 32×32 grid points with ε = 0.8 and ∆t = 5× 10−4. The initial data are
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Figure 9. 2D steady state: profile of the density (left) and the momentum (right)
initially and at the final time t = 0.1.

given as

ρ(x, y, 0) = 110 +
ε2

(4π)2
f(r), (4.4)

u(x, y, 0) = ν0 + g(r)(0.5− y), (4.5)

v(x, y, 0) = ν1 + g(r)(x− 0.5), (4.6)

(4.7)

with

r = 4π((x− 0.5)2 + (y − 0.5)2))
1
2 ,

f(r) = (1.5)2∆(r)(k(r)− k(π)),

g(r) = 1.5(1 + cos(r))∆(r),

∆(r) = 1r<π.

The pressure law is given as p(ρ) = 1
2ρ

2 and ν0 = 0.6, ν1 = 0. We compare our computed numerical
solution to the exact solution,

ρ(x, y, t) = ρ(x− ν0t, y − ν1t, 0), (4.8)

u(x, y, 0) = u(x− ν0t, y − ν1t, 0), (4.9)

v(x, y, 0) = v(x− ν0t, y − ν1t, 0). (4.10)

(4.11)

The vortex gets translated at speed (ν0, ν1), as one can see in figure 10. We present initially and at the
final time, the horizontal velocity in figure 11, and the vertical velocity in figure 12. To avoid spurious
oscillation, we set l in definition of a(t) to 1.

4.2.4. 2D stationary vortex

For our last test case, we consider a stationary vortex for the system of isentropic Euler equations
with gravitational source term. The aim is to prove that our numerical scheme is both WB, as for a
fixed ε, the vortex is a stationary solution of the system and AP, as the numerical solution becomes
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Figure 10. Translating vortex: the initial (left) and final (middle) profile of the density
ρ, and a cross section (right) along y = 0.5 as a function of x− v0T .

a solution of the incompressible version of the isentropic Euler system as ε goes to zero. We take the
vortex for the shallow water equations defined in [18], and we change its initial data to fit the the
rescaled shallow water equations. The initial condistions are given as,

ρ(x, y, t) = 1− ϕ(x, y), u(t, x, y) = ye1−r2 , v(t, x, y) = −xe1−r2 .

Here r2 = x2+y2, ϕ(x, y) = ε2

4 e
2(1−r2)+0.2e0.5(1−r2) is the gravitational potential. The pressure law is

p(ρ) = Aργ with A = 1
2 and γ = 2. The vortex rotates in the computational domain (−1, 1) x (−1, 1)

with steady state boundary conditions over 32 x 32 grid points. Figure 13 illustrates the profile of
the velocity q =

√
u2 + v2 initially and at the final time t = 1 for ε = 10−1, 10−2, 10−3, 10−4. The

significance of this test case lies in the fact that the scheme preserves the steady state and at the same
time converges as ε goes to zero. The result ensures the ability of our numerical scheme to preserve
steady states and to capture the solution as ε gets smaller. This test case proves that the developed
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Figure 11. Translating vortex: the initial (left) and final (middle) profile of the hori-
zontal velocity u, and a cross section (right) along x = 0.5 + v0T as a function of y.

numerical scheme for the system of isentropic Euler equations with gravitational source term is both
AP and WB for all ε.

5. Conclusion

In this paper, an AP and WB scheme is proposed for the isentropic Euler equations with gravitational
potential. The AP property is achieved by adding and subtracting certain terms that incorporate
information about the spatially nonuniform density equilibrium. The WB property is achieved by
introducing a special spatial discretization for both the source term and the pressure term, thereby
balancing these two terms across all Mach numbers.
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Figure 12. Translating vortex: the initial (left) and final (middle) profile of the ver-
tical velocity v, and a cross section (right) along y = 0.5 as a function of x− v0T.

The proof of the AP and WB properties at the semi-discrete level clearly depends on the pressure
law and the fact that we are dealing with the isentropic case. Extending the current work to the full
Euler equations with gravity is planned for future research.
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euler low mach number imex splitting. Global Science Preprint.

24



AP AND WB FOR EULER

5 10 15 20 25 30

x

5

10

15

20

25

30

y

0

0.2

0.4

0.6

0.8

1

T = 0

5 10 15 20 25 30

x

5

10

15

20

25

30

y

0

0.2

0.4

0.6

0.8

1

T = 1, ε = 10−1

5 10 15 20 25 30

x

5

10

15

20

25

30

y

0

0.2

0.4

0.6

0.8

1

T = 1, ε = 10−2

5 10 15 20 25 30

x

5

10

15

20

25

30

y

0

0.2

0.4

0.6

0.8

1

T = 1, ε = 10−3

5 10 15 20 25 30

x

5

10

15

20

25

30

y

0

0.2

0.4

0.6

0.8

1

T = 1, ε = 10−4

Figure 13. Steady vortex: the velocity q =
√
u2 + v2 initially and at the final time

for different values of ε on 32 x 32 grid points.
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