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Abstract. In a variety of scientific and engineering domains, the need 
for high-fidelity and efficient solutions for high-frequency wave propa-
gation holds great significance. Recent advances in wave modeling use 
sufficiently accurate fine solver outputs to train a neural network that 
enhances the accuracy of a fast but inaccurate coarse solver. In this 
paper we build upon the work of Nguyen and Tsai (2023) and present 
a novel unified system that integrates a numerical solver with a deep 
learning component into an end-to-end framework. In the proposed set-
ting, we investigate refinements to the network arc hitecture and data
generation algorithm. A stable and fast solver further allows the use
of Parareal, a parallel-in-time algorithm to correct high-frequency wave
components. Our results show that the cohesive structure improves per-
formance without sacrificing speed, and demonstrate the importance of
temporal dynamics, as well as Parareal, for accurate wave propagation.

1 Introduction 

Wave propagation computations form the forward part of a numerical method for 
solving the inverse problem of geophysical inversion. This involves solving the 
wave equation with highly varying sound speed many times in a most efficient 
way. For instance, by accurately analyzing the reflections and transmissions gen-
erated by complex media discontinuities, it becomes possible to characterize
underground formations when searching for natural gas. However, traditional
numerical computations often demand a computationally expensive fine grid to
guarantee stability.

Aside from physics-informed neural networks (PINNs) [1, 2] and neural op er-
ators [3, 4], convolutional neural network (CNN) approaches yield remarkable
results [5– 7] to improve the efficiency of wave simulations, but demand pre-
ceding media analysis and tuning of inputs. Furthermore, numerical solvers are
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avoided to prioritize speed [8]; especially for extended periods, these m ethods
can diverge.

Therefore, combining a classical numerical solver with a neural network to 
solve the second-order linear wave equation efficiently across a variety of wave 
speed profiles is a central point of our research. We take a first step by expanding
the method of Nguyen and Tsai [5] and build an end-to-end model that enhances 
a fast numerical solver through deep learning. Thus, component interplay is opti-
mized, and training methods can involve multiple steps to account for temporal
wave dynamics. Similarly, while other Parareal-based datasets [5, 9] are limited 
to single time-steps to add back missing high-frequency components, a cohesive 
system can handle Parareal for sequential time intervals.

Approach and Contribution. An efficient numerical solver . G∆tu ≡ G∆t [u, c]
is used to propagate a wave .u(x, t) = (u, ∂tu) for a time step .t + ∆t on a medium 
described by the piecewise smooth wave speed .c(x) for .x ∈ [−1, 1]2. This method 
is computationally cheap since the advancements are computed on a coarse grid 
using a large time step within the limitation of nu merical stability; however,
it is consistently less accurate than an expensive fine solver .F∆tu ≡ F∆t [u, c]. 
Consequently, the solutions .G∆tu exhibit numerical dispersion errors and miss 
high-fidelity details. In a supervised learning framework, w e aim to reduce this
discrepancy using the outputs from .F∆t as the e xamples.

We define a restriction operator .R which transforms functions from a fine 
grid to a coarse grid. Additionally, for mapping coarse grid functions t o a fine
grid, we integrate a neural network .Iθ to augment the under-resolved wave field. 
We can now define a neural propagator .Ψ∆t [u, c, θ] ≡ Ψθ

∆t that takes a wave field . u
defined on the fine grid, propagates it on a coarser grid, and returns the enhanced
wave field on the fine grid,

.un+1 := u(x, t + ∆t) = F∆tun ≈ Ψθ
∆tun := IθG∆tRun. (1) 

The models are parameterized by the family of initial wave fields .Fu0 and wave 
speeds . Fc. 

2 Finite-Difference-Based Wave P ropagators

We consider smooth initial conditions and absorbing or periodic boundary con-
ditions that lead to well-posed initial boundary value problems. Since we are 
interested in seismic exploration applications, both boundary conditions can be 
used to simulate the propagation of wave fields with initial energy distributed
inside a compact domain. Following the setup in [5], let .Qhu denote a numerical 
approximation of .∆u with discretized spatial and tempo ral domains, i.e.,

.∂ttu(x, t) ≈ c2(x)Qhu(x, t). (2) 

For the spatial (.∆x, δx) and temporal spacing (.∆t, δt) on uniform Cartesian grids, 
the approximation .(u, ut )t ≈ (ut, c2Qhu) can be solved by a time integrator:
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• Coarse solver .G∆t! .:= (SQh

∆x,∆t )M with .∆t" = M∆t, which operates on the 
lower resolution grid, .∆xZ2 × ∆tZ+. .Qh is characterized by the velocity 
Verlet algorithm with absorbing boundary conditions [10]. 

• Fine solver .F∆t! .:= (SQh

δx,δt )m with .∆t" = mδt, which operates on t he higher
resolution grid, .δxZ2 × δtZ+, and is sufficiently accurate for the wave speed. 
We shall use t he explicit Runge-Kutta of forth-order (RK4) pseudo-spectral
method [11]. Since this approach is only suitable for PDEs with perio dic
boundary conditions, we first apply .F∆t! to a larger domain and t hen crop
the result.

Model Components. As the two solvers operate on different Cartesian grids,
with .δx < ∆x and .δt < ∆t, we define the restriction operator . R, which trans-
forms functions from a fine to a coarse grid, and the prolongation operator . I, 
which maps the inverse relation. The enhanced variants consist o f (a) bilinear
interpolations denoted as .R and .I0, while .I0Ru ! u, and (b) neural network 
components denoted as .Iθ ≡ Λ†I θ

∆t!
Λ, while the lower index indicates that the 

neural networks are trained when the step size .∆t" is used. For improved neu-
ral network inference, we use the transition operator .Λ to transform physical 
wave fields .(u, ut ) to energy component representations .(∇u, c−2ut ), with .Λ† as 
the pseudo-inverse (see also [5,12]). Figure 1 provides a schema visualizing the 
wave argument transitions.

Variants of the Neural Propagators. A simple model with bilinear int erpo-
lation (E2E-V, .I0Ψθ

∆t!
R) is used as a baseline. Each variant changes the baseline 

by exactly one aspect. This allows us to isolate the effect of each architecture
modification. The four investigated end-to-end models .Ψθ

∆t!
:= I θ

∆t!
G∆t!R are: 

Fig. 1. Detailed schematic of E2E-JNet3 (adapted from [5]). Each convolutional block 
(blue) encompasses a 3.× 3 convolutional layer (.groups = 3, .padding = 1), followed by a 
batch normalization and a ReLU activation function. Connectivity within the network 
is depicted by arrows, w ith the dashed arrow specifically indicating a single application
of .G∆t! .
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E2E-JNet3: E2E 3-level JNet (Fig. 1) 
E2E-JNet5: E2E 5-level JNet
E2E-Tira: Tiramisu JNet [13] 
E2E-Trans: Transformer JNet [14] 

The second baseline is taken from [5] and denoted as the modular, not end-
to-end 3-level JNet (NE2E-JNet3), .I θ

∆t!
(G∆t!R), while results of .G∆t! are used 

to separately train the E 2E-JNet3 upsampling component.

3 Data Generation Approac hes

For optimal results, the training horizon must be long enough to contain suffi-
ciently representative wave patterns that develop in the propagation from the 
chosen distribution of initial wave fields. Yet the n umber of iterations must
remain small to maintain similarities across different wave speeds. Similar to [5], 
we chose to generate the dataset in the following way:

1. An initial wave field .u0 = (u0, p0) ∈ Fu0 is sampled from a Gaussian pulse,

.u0 = e−
|x+τ |2
σ2 , p0 ≡ ∂tu0 = 0 (3) 

with .x ∈ [−1, 1]2, . 1
σ2 ∼ N(250, 10) and the initial velocity field . p0. . τ ∈

[−0.5, 0.5]2 is the displacement of the Gaussian pulse’s location from the cen-
ter.

2. Every .u0 ∈ Fu0 is then propagated eight time steps .∆t" = 0.06 by .F∆t! .  We  
adopt the fine grid settings for the spatial (.δx = 2

128 ) and temporal resolution
(.δt = 1

1280 )  from [5]. 

The wave trajectories .un+1 = F∆t!un provide the input and output data 
for the supervised learning algorithm, which aims to learn the solution map
.Ψθ
∆t!

: X () Y : 

.

X := {(∇un, c−2(un)t, c)}
Y := {(∇un+1, c−2(un+1)t )},

(4) 

where .D = {(x, y)} with .x ∈ X, .y ∈ Y . .D is modified to create .Dm, .Dw,m (Subsect. 
3.1), and .Dp (Subsect. 3.2). For brevity, the dataset is only specified if the model 
is trained on a modified version; e.g., E2E-JNet3 (.Dm) is the E2E-JNet3 m odel
trained on .Dm. 

Wave Speeds .c ∼ Fc are sampled from randomly chosen subregions of two 
synthetic geological structures, Marmousi [15] and BP [16], that are mapped 
onto the spatial grid .hZ2 ∩ [−1, 1]2 (see Fig. 2). Four manually modified media
(cf. [5]) are added during testing to examine rapid variations in wave speed.



16 L. Kaiser et al.

Fig. 2. Velocity profiles. Brighter colors indicate higher velocity, while randomly cho-
sen subregions are shown in red squares. M armousi and BP profiles are drawn with a
probability of .30% each, and the other velocity profiles with a probability of .10% each, 
respectively .

3.1 Multi-step Training 

During evaluation, the end-to-end model .Ψθ
∆t is applied multiple times to itself 

to iteratively advance waves over the duration . ∆t. It comes naturally to include 
longer-term dependencies also in our training dataset. For . k time steps, we there-
fore introduce a multi-step training strategy that modifies Eq. (1): 

.un+k := u(tn + k∆t) = (F∆t )kun ≈ (Ψθ
∆t )kun. (5) 

By computing the gradient with respect to the sum of consecutive losses, the 
gradient flows through the entire computation graph across multiple time steps.

For each initial condition . u0, .F∆t is applied .N times with solutions denoted
as .un, ∀n ∈ U1 := {0, . . . , N}. In random order, .Ψθ

∆t is applied to every .un for a 
random amount of steps .k ∈ U2 := {n+ 1, . . . , N − n}. Formally, the optimization 
problem can therefore be described as:

. min
θ∈Rm×n

L(Ψθ
∆t ;D) = min

θ∈Rm×n

1
|D|

∑
u0,c

∑
n∼U1\{N }

∑
k∼U2

n<k≤N−n

‖(Ψθ
∆t )kun − (F∆t )kun‖2Eh

.

(6) 
The norm .‖·‖2Eh

is the discretized energy semi-norm MSE as detailed in [5]. 
We draw both .n and .k from the uniform random distributions, i.e., . n ∼
U1 and .k ∼ U2, respectively. The novel dataset is denoted as . Dm =
{(∇ukn, c−2(ukn)t, c;∇un+1, c−2(un+1)t )}. 
Weighted Approach. Since in the model’s initial, untrained phase, feature 
variations can be extreme and may lead to imprecise gradient estimations, we 
aim to accelerate convergence by weighting individual losses. Therefore, rather
than drawing .k ∼ U2 from a uniform distribution, we select values according t o a
truncated normal distribution TN.(µ,σ, a, b) from the sample space r epresented
as .−∞ < a < b < ∞. This focuses on minimizing the impact of errors in the 
early training stage. After every third epoch, the mean . µ is increased by one to 
account for long-term dependencies. We refer to this dataset as .Dw,m.
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3.2 Parareal Algorithm 

Identical to [5], our implemented scheme iteratively refines the solution using 
the difference between .F∆t and .G∆t for each subinterv al . ∆t. In particular, missing 
high-frequency components occur due to the transition to a lower grid resolution, 
or a too simple numerical algorithm. Therefore, a more elaborate model .Ψθ

∆t is 
required for convergence. Formally, we rearrange Eq. (1) for the time stepping
of .F∆t , and replace .F∆t (IR)un by the computationally cheaper strategy .Ψθ

∆t end-
to-end: 

.uk+1n+1 := Ψθ
∆tu

k+1
n + [F∆tukn − Ψθ

∆tu
k
n], k = 0, . . . ,K − 1 (7) 

u0 n+1 := Ψ
θ 
∆t u

0 
n, n = 0,  .  .  . , N − 1. (8) 

We observe that the computationally expensive .F∆tukn on the right-hand side 
of Eq. (7) can be performed in parallel for each iteration in . k. 

Parareal iterations alter a given initial sequence of wave fields .u0n to .ukn for 
.n ∈ N. This means that neural operators should be trained to map .ukn to .F∆tukn. 
Therefore, appropriate training patterns for this setup w ould naturally differ
from those found in . D, and the dataset for use with Parareal should be sampled 
from a different distribution, denoted as .Dp. 

4 Evaluation S etup

The parameters for .G∆t! are set to .∆x = 2
64 and .∆t = 1

600 , with a bilinear 
interpolation scale factor of two.

Experiment 1: Architecture Preselection. The average training time of 
each variant is approximately .73 CPU core hours. Due to resource constraints, 
we therefore limit our main analysis to one end-to-end variant. Here, we s elected
the most promising approach from four deep learning architectures trained on
. D. 

Experiment 2: Multi-step Training. We train the chosen end-to-end variant 
from experiment 1 on .Dm using an equal number of training points as in . D. 
The test set is consistent with .D to enable comparison with other exp eriments.

Experiment 3: Weighted Multi-step Training. The setup follows experi-
ment 2, while the models are trained on .Dw,m. 

Experiment 4: Parareal Optimization. We explore improvements to our 
variants using the Parareal scheme in tw o datasets:
A. Comprehensive Training (.Dp

train): The models are trained according to the 
Parareal scheme in Eq. (7)  and  Eq. (8) with .K = 4 using a random sample 
that constitutes a quarter of the original dataset .D for fair comparisons. The 
gradients are determined by summing the losses of a Parareal iteration.
B. Fine-tuning (.Dp

refine): Rather than employing an un-trained model, we deploy 
variants that were pre-trained on a random subset containing half of . D. Then, 
for another subset that constitutes an eighth of . D, .Ψθ

∆t is applied with Parareal.
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5 Discussion 

Each of the total .72 runs required an average of .72.8 GPU core hours on one 
NVIDIA A100 Tensor Core GPU to complete, while the E2E-JNet3 was trained
almost .41% faster and the E2E-Tira three times slower than the average. This 
sums up to a total runtime on a single GPU of just over .5,241 hours. 

The best trial on the test set was achieved b y E2E-Tira with an energy MSE
of .0.0109, which is well below the .0.0462 from the previously published model, 
NE2E-JNet3. Our most efficient variant is E2E-JNet3 trained on .Dw,m with an 
energy MSE of .0.0169, which is close to the results of more extensive models 
such as E2E-Tira and E2E-Trans, but is more than five times faster.

End-to-End Structure. The first important observation based on Fig. 3 is that 
integrating NE2E-JNet3 into a single, end-to-end system (E2E-JNet3) improved 
the average accuracy on the validation set by more than .46%, and on the test 
set by ca. .53%. The ability to include the loss of both the coarse solver and 
downsampling layer also caused a lower standard deviation and fewer outliers, 
since the mean is well above the median for NE2E-JNet3 compared to E2E-
JNet3.

Multi-step Training. Introducing a multi-step training loss enhanced the ben-
efits of an end-to-end architecture even further (cf. E2E-JNet3 (.Dm) in Fig. 3) 
without increasing the number of model parameters. Figure 4 depicts how all 
end-to-end models had a much lower relative energy MSE (cf. [5]) increase par-
ticularly for the first three time steps on the test set. Hence, we conclude that

Fig. 3. Total performance of all hyperparameter search trials on the validation set. 
The boxes represent the range between the 25th and 75th percentile of values, while 
the whiskers indicate 1.5 times the interquartile range. The blue line illustrates the 
result of the baseline E2E-V. The red dot shows the mean and the black line marks
the median of the data. The grey histograms in the background present the average
training time of the respective variant in hours on a single GPU.
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Fig. 4. Comparing the NE2E-JNet3 model and three end-to-end JNet3 variants that 
differ in their training algorithms. Initial conditions and velocity profiles are sampled
from .D and the relative energy MSE results of 10 runs are averaged. As expected, 
all models show a bounded gro wth as the waves vanish due to absorbing boundary
conditions.

Fig. 5. Visualizing the wave field correction of E2E-JNet3 (.Dw,m) in the energy semi-
norm after four time steps of .∆t". The initial condition and velocity p rofile are sampled
from .D. 

connecting wave states to incorporate temporal propagation dynamics in the 
training data appears to be especially important for the early stages of wave 
advancements. Additionally, by taking f ewer steps through sampling from a nor-
mal distribution that is being shifted along the x-axis (cf. E2E-JNet3 (.Dw,m)), 
we successfully avoid high performance fluctuations when the m odel is only par-
tially trained. Figure 5 visualizes the correction of the low -fidelity solution of
.G∆t! by E2E-JNet3 (.Dw,m). 

Upsampling Architecture. An overview of the upsampling architecture per-
formances can be found in Table 1. As expected, the larger networks (E2E-Tira 
and E2E-Trans) performed slightly better compared to the 3-level JNet archi-
tecture, but for the ResNet architecture (E2E-JNet5), more weights did not 
increase accuracy by much. Consequently, we theorize that the ResNet design 
may be insufficient for capturing high-fidelity wave patterns, while especially
highly-connected layers with an optimized feature and gradient flow (E2E-Tira)
are better suited. Given that E2E-JNet3 (.Dw,m) had only a slightly worse aver-
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Table 1. Upsampling variants performance averaged over 10 runs using a batch size
of .64. 

variant number of parametersGPU time (sec) test energy MSE

.F∆t! - 57.96749 -

E2E-V - 2.40421 0.07437 
E2E-JNet3 40,008 2.88331 0.02496 
E2E-JNet5 640,776 10.84893 0.02379 
E2E-Tira 123,427 13.57449 0.01274 
E2E-Trans 936,816 15.67633 0.01743 

Fig. 6. Energy MSE of E2E-JNet3 and E2E-JNet3 (.Dp
refine) averaged over 1 0 runs.

age energy MSE on the test set, we generally advise against using t he expensive
models in our setup.

Parareal. While models trained with .Dp
train have an unstable training progress 

and diverging loss, applying E2E-JNet3 (.Dp
refine) within the Parareal scheme 

showed better accuracy than E2E-JNet3 with Parareal (cf. Figure 6). As this 
training method improved the stability of Parareal, sampling the causality of 
concurrently solving multiple time intervals is an efficient enhancement to our
end-to-end structure.
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6 Conclusion 

In this paper we enhanced the method proposed by Nguyen and Tsai [5], and 
reported the results of a large-scale study on different variants that in vestigate
the efficacy of these enhancements.

All end-to-end variants, including the variants with training modifications, 
outperformed the modular framework of [5]. In particular, the lightweight end-
to-end 3-level JNet (E2E-JNet3) performed reasonably well given its low com-
putation cost, and was f urther improved through a weighted, multi-step training
scheme (.Dw,m) to feature time-dependent wave dynamics without adding com-
plexity to the model or substantially extending the training duration. Similarly, 
the Parareal iterations using the neural propagator trained by the Parareal-
based data showe d significant performance improvements over E2E-JNet3 with-
out extensive additional computational cost due to parallelization.

As expected, certain expensive upsampling architectures, such as intensify 
the interconnections between feature and gradient flows (Tiramisu JNet), signif-
icantly increased the accuracy. However, the high computational demand makes 
its application mostly impractical in modern engineering workflows. 
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